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Abstract: The random drift particle swarm optimization (RDPSO) algorithm is an 

effective random search technique inspired by the trajectory analysis of the canonical 

PSO and the free electron model in metal conductors placed in an external electric field. 

However, like other PSO variants, the RDPSO algorithm also inevitably encounters 

premature convergence when solving multimodal problems. To address this issue, this 

paper proposes a novel Diversity Collaboratively Guided (DCG) strategy for the 

RDPSO algorithm that enhances the search ability of the algorithm. In this strategy, two 

kinds of diversity measures are defined and modified in a collaborative manner. 

Specifically, the whole search process of the RDPSO is divided into three phases based 

on the changes in the two diversity measures. In each phase, different values are 

selected for the key parameters of the update equation in the RDPSO to make the 

particle swarm perform different search modes. Consequently, the improved RDPSO 

algorithm with the DCG strategy (DCG-RDPSO) can maintain its diversity 

dynamically at a certain level, and thus can search constantly without stagnation until 

the search process terminates. The performance evaluation of the proposed algorithm 
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is done on the CEC-2013 benchmark suite, in comparison with several versions of 

RDPSO, different variants of PSO and several non-PSO evolutionary algorithms. 

Experimental results show that the proposed DCG strategy can significantly improve 

the performance and robustness of the RDPSO algorithm for most of the multimodal 

problems. Further experiments on economic dispatch problems also verify the 

effectiveness of the DCG strategy. 

Keywords: Diversity guided strategy; Random drift particle swarm optimization 

algorithm; Multimodal optimization problems; Economic dispatch problems 

 

1. Introduction 

Particle swarm optimization (PSO) is a widely used random search optimization 

algorithm, which was inspired by the collective behavior of birds within a flock, and 

was first proposed by Eberhart and Kennedy (1995). By simulating the social learning 

and self-experience abilities of birds foraging, the particles in PSO exhibit similar 

search behaviors, including global search and local search, respectively. PSO is often 

used to solve non-continuous, complex and global optimization problems, since it is 

easy to use and can obtain generally good search performance with low computational 

cost. 

Inspired by the trajectory analysis of the canonical PSO (CPSO) (Clerc and 

Kennedy 2002) and the free electron model in metal conductors placed in an external 

electric field (Omar 1975), Sun et al. (2013) proposed a novel variant of PSO, i.e. the 

random drift particle swarm optimization (RDPSO) algorithm. In this algorithm, it is 
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assumed that each particle behaves like an electron moving in a metal conductor placed 

in an external electric field. The movement of the particle is thus the superposition of 

the thermal and the drift motions, which define the global search and the local search 

of the particle, respectively. The issues of particle’s convergence behavior and 

parameter selection for the algorithm are addressed in detail in (Sun et al. 2015). 

However, like CPSO and its variants, the RDPSO algorithm also inevitably 

encounter premature convergence, especially for multimodal optimization problems. 

This is because the local search plays a more important role for the algorithm in finding 

a good solution of the problem as the particle swarm converges during a limited number 

of iterations. Such kind of search mechanism is desirable for unimodal functions. In 

contrast, for multimodal problems, this may lead the algorithm to a local optimal or 

suboptimal solution when the search process finishes. Thus, how to enhance the global 

search ability of the algorithm, or put it more exactly, how to balance the exploration 

and exploitation of the algorithm in search process is what besets the researchers in the 

field of evolutionary computation and swarm intelligence.  

During the last two decades, various kinds of strategies were implemented in PSO 

and its variants to tackle this problem. Niching (Sareni and Krahenbuhl 1998; Vitela 

and Castanos 2008) is a widely used strategy to improve the performance of the PSO 

algorithms. However, such methods require good specification of certain niching 

parameters according to the particular real problem to solve, in order to obtain good 

algorithmic performance (Brits et al. 2002; Li 2007; Liu et al. 2020). Therefore, the ring 

neighborhood topology (Kennedy 2006; Li 2009; Zou et al. 2020) was proposed to 
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enhance the global search ability of the algorithm. Other strategies, such as 

hybridization with other evolutionary algorithms (Kao and Zahara 2008; Cao et al. 2018) 

and multi-population strategy (Zhan et al. 2013; Liu et al. 2017), also have their 

limitations. For example, some hybrid algorithms require more computing resources to 

perform different evolutionary processes (Kao and Zahara 2008; Cao et al. 2018), and 

most multi-population strategies cannot make the algorithm do finely local search at 

later stage of the search process (Liu et al. 2020). 

Diversity-guided strategy is another widely used approach in the PSO algorithms 

to enhance the global search ability (Ursem 2002; Li et al. 2011; Wang et al. 2013; 

Janostik et al. 2016). However, as mentioned above, the local search ability is also very 

important in the search process, since the task of the algorithm is to find the global 

optimal solution of the problem, and, if that is not possible, a final result should be as 

good as possible. Thus, the key to solving multimodal problems effectively would be 

to properly balance the global and local search abilities of the algorithm. Explicitly, by 

controlling the diversity of the particle swarm, we can make the algorithm keep a certain 

animation so that its search ability can be maintained without stagnation over the search 

process. With this motivation in mind, this paper proposes a diversity collaboratively 

guided strategy to control the search behavior of the particles in RDPSO. In this strategy, 

the whole search process is divided into three phases according to the changes in two 

kinds of diversity measures. In each phase, different key parameter values are selected 

for the RDPSO to make the particle swarm perform different search modes. Such an 

improved RDPSO algorithm can dynamically maintain its diversity at a certain level 
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during its search process. Therefore, it can keep searching the space as long as the 

termination condition is not satisfied. As such, the proposed algorithm can effectively 

solve high-dimensional and multimodal optimization problems. Evaluated on the CEC-

2013 multimodal benchmark functions and some economic dispatch (ED) problems, 

the new Diversity Collaboratively Guided RDPSO (DCG-RDPSO) algorithm shows 

better performance than some RDPSO variants, PSO variants and some non-PSO 

evolutionary algorithms. This proves that the DCG strategy can definitely enhance the 

search ability and the robustness of RDPSO, and the DCG-RDPSO algorithm is a more 

reliable choice for solving multimodal problems than most of the compared algorithms. 

The rest part of the paper is arranged as follows. In Section 2, the principles of 

PSO and RDPSO algorithms are introduced. In Section 3, the proposed diversity 

collaboratively guided strategy for the RDPSO is presented in detail. Section 4 presents 

the experimental results and comparative analysis between the proposed method and 

other algorithms. Some conclusions are given in Section 5. 

2. Random drift particle swarm optimization 

2.1 Particle swarm optimization 

In a PSO with 𝑀  individuals, each particle 𝑖 (1 ≤ 𝑖 ≤ 𝑀)  search in a 𝑁 -

dimensional real space, with its current position vector and velocity vector at the 𝑛𝑡ℎ 

iteration represented as 𝑋𝑖,𝑛 = (𝑋𝑖,𝑛
1 , 𝑋𝑖,𝑛

2 , ⋯ , 𝑋𝑖,𝑛
𝑁 )  and 𝑉𝑖,𝑛 = (𝑉𝑖,𝑛

1 , 𝑉𝑖,𝑛
2 , ⋯ , 𝑉𝑖,𝑛

𝑁 ) , 

respectively. The particle moves according to the following equations: 

𝑉𝑖,𝑛+1
𝑗

= 𝑉𝑖,𝑛
𝑗

+ 𝑐1𝑟𝑖,𝑛
𝑗

(𝑃𝑖,𝑛
𝑗

− 𝑋𝑖,𝑛
𝑗

) + 𝑐2𝑅𝑖,𝑛
𝑗

(𝐺𝑛
𝑗

− 𝑋𝑖,𝑛
𝑗

) (1) 
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𝑋𝑖,𝑛+1
𝑗

= 𝑋𝑖,𝑛
𝑗

+ 𝑉𝑖,𝑛+1
𝑗

 (2) 

for 𝑖 = 1,2 ⋯ , 𝑀 ;  𝑗 = 1,2 ⋯ , 𝑁 , where 𝑐1  and 𝑐2  are known as the acceleration 

coefficients. The vector 𝑃𝑖,𝑛 = (𝑃𝑖,𝑛
1 , 𝑃𝑖,𝑛

2 , ⋯ , 𝑃𝑖,𝑛
𝑁 ) is the best previous position found 

by particle 𝑖 since initialization according to the fitness (or objective) function, and is 

called the personal best (pbest) position. The vector 𝐺𝑛 = (𝐺𝑛
1, 𝐺𝑛

2, ⋯ , 𝐺𝑛
𝑁) is the best 

of all the pbest positions according to the fitness function and is called the global best 

(gbest) position. The pbest positions should be updated by comparing the fitness values 

of current positions and their own previous pbest positions. Generally, 𝑟𝑖,𝑛
𝑗

 , 

𝑅𝑖,𝑛
𝑗

~𝑈(0,1), that is, they are two different sequences of random numbers distributed 

uniformly on the interval (0, 1). The absolute value of the velocity of a particle in each 

dimension should be prevented from exceeding a given 𝑉𝑚𝑎𝑥. As equation (1) makes 

the particles in PSO search too globally and thus converge too slowly, Shi and Eberhart 

(1998) proposed the PSO algorithm with inertia weight, which is also known as the 

CPSO (Assareh et al. 2010). The update of velocity can be expressed as 

𝑉𝑖,𝑛+1
𝑗

= 𝑤 ∗ 𝑉𝑖,𝑛
𝑗

+ 𝑐1𝑟𝑖,𝑛
𝑗

(𝑃𝑖,𝑛
𝑗

− 𝑋𝑖,𝑛
𝑗

) + 𝑐2𝑅𝑖,𝑛
𝑗

(𝐺𝑛
𝑗

− 𝑋𝑖,𝑛
𝑗

) (3) 

where 𝑤 is the inertia weight and is always set to linearly decrease from 0.9 to 0.4.  

The trajectory analysis of CPSO (Clerc and Kennedy 2002) demonstrated that the 

convergence of the whole particle swarm may be achieved if each particle converges to 

its local focus 𝑝𝑖,𝑛 = (𝑝𝑖,𝑛
1 , 𝑝𝑖,𝑛

2 , ⋯ , 𝑝𝑖,𝑛
𝑁 ) defined at the coordinates: 

𝑝𝑖,𝑛
𝑗

=
𝑐1𝑟𝑖,𝑛

𝑗
𝑃𝑖,𝑛

𝑗
+ 𝑐2𝑅𝑖,𝑛

𝑗
𝐺𝑛

𝑗

𝑐1𝑟𝑖,𝑛
𝑗

+ 𝑐2𝑅𝑖,𝑛
𝑗

 (4) 

or 
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𝑝𝑖,𝑛
𝑗

= 𝜙𝑖,𝑛
𝑗

𝑃𝑖,𝑛
𝑗

+ (1 − 𝜙𝑖,𝑛
𝑗

)𝐺𝑛
𝑗
, 𝜙𝑖,𝑛

𝑗
~𝑈(0,1) (5) 

According to equation (5), 𝑝𝑖,𝑛 is a random point uniformly distributed within the 

hyper-rectangle with 𝑃𝑖,𝑛  and 𝐺𝑛  being the two ends of its diagonal. Thus, the 

convergence behavior makes the particle search around the hyper-rectangle, which 

essentially reflects the local search of the particle. In equation (3), the first part on the 

right side with the inertia weight is called the “inertia part”, which may lead the particle 

to fly away from 𝑝𝑖,𝑛 or 𝐺𝑛, providing the necessary momentum for the particles to 

search globally in the search space; the last two parts on the right side are known as the 

“cognition part” and “social part”, respectively, together leading the particle to move 

towards 𝑝𝑖,𝑛 . Therefore, the “inertia part” reflects the global search of the particle, 

while the superimposition of “cognition part” and “social part” reflects the local search 

of the particle. 

2.2 Random drift particle swarm optimization 

Similar to the electron moving in a metal conductor in an external electric field 

(Omar 1975), the movement of the particle in the RDPSO algorithm is thus the 

superposition of the thermal and the drift motions. Mathematically, the velocity of 

particle 𝑖 in the 𝑗th dimension in RDPSO has two components: 

𝑉𝑖,𝑛+1
𝑗

= 𝑉𝑅𝑖,𝑛+1
𝑗

+ 𝑉𝐷𝑖,𝑛+1
𝑗

 (6) 

where 𝑉𝑅𝑖,𝑛+1
𝑗

  and 𝑉𝐷𝑖,𝑛+1
𝑗

 are the random velocity and the drift velocity, 

corresponding to the thermal motion and the drift motion of the particle, respectively 

(Sun et al. 2015). 
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In RDPSO, the random velocity component 𝑉𝑅𝑖,𝑛+1
𝑗

  implements the global 

search. It replaces the ‘inertia part’ in the velocity equation of CPSO, which is the main 

difference between CPSO and RDPSO. It is assumed that the random velocity 

component should follow the Maxwell velocity distribution law (Kittel and Kroemer 

1998). Thus, 𝑉𝑅𝑖,𝑛+1
𝑗

  essentially follows a normal distribution (i.e., Gaussian 

distribution) whose probability density function is given by 

𝑓
𝑉𝑅𝑖,𝑛+1

𝑗 (𝑣) =
1

√2𝜋𝜎𝑖,𝑛+1
𝑗

𝑒

−𝑣2

2(𝜎
𝑖,𝑛+1
𝑗

)2
 (7) 

where 𝜎𝑖,𝑛+1
𝑗

 is the standard deviation of the distribution. Using stochastic simulation, 

𝑉𝑅𝑖,𝑛+1
𝑗

 can be expressed as 

𝑉𝑅𝑖,𝑛+1
𝑗

= 𝜎𝑖,𝑛+1
𝑗

𝜑𝑖,𝑛+1
𝑗

 (8) 

where 𝜑𝑖,𝑛+1
𝑗

 is a sequence of random numbers subject to standard normal position, 

i.e. 𝜑𝑖,𝑛+1
𝑗

 ~𝑁(0,1). 𝜎𝑖,𝑛+1
𝑗

 adopts an adaptive strategy expressed as 

𝜎𝑖,𝑛+1
𝑗

= 𝛼|𝐶𝑛
𝑗

− 𝑋𝑖,𝑛
𝑗

| (9) 

where 𝛼 > 0 is a parameter in RDPSO, called the thermal coefficient. 𝐶𝑛 is the mean 

best (mbest) position defined by the mean of the pbest positions of all the particles, 

namely 

𝐶𝑛
𝑗

= (1/𝑀) ∑ 𝑃𝑖,𝑛
𝑗

𝑀

𝑖=1
 (10) 

As a result, equation (8) can be restated as 

𝑉𝑅𝑖,𝑛+1
𝑗

= 𝛼|𝐶𝑛
𝑗

− 𝑋𝑖,𝑛
𝑗

|𝜑𝑖,𝑛+1
𝑗

 (11) 

On the other hand, the drift velocity component 𝑉𝐷𝑖,𝑛+1
𝑗

 is to achieve the local 
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search of the particle. The original expression of 𝑉𝐷𝑖,𝑛+1
𝑗

 was first introduced in (Sun 

et al. 2010), which is just the combination of the “cognition part” and “social part” in 

CPSO, namely 

𝑉𝐷𝑖,𝑛+1
𝑗

= 𝑐1𝑟𝑖,𝑛
𝑗

(𝑃𝑖,𝑛
𝑗

− 𝑋𝑖,𝑛
𝑗

) + 𝑐2𝑅𝑖,𝑛
𝑗

(𝐺𝑛
𝑗

− 𝑋𝑖,𝑛
𝑗

) (12) 

which is equivalent to 

𝑉𝐷𝑖,𝑛+1
𝑗

= (𝑐1𝑟𝑖,𝑛
𝑗

+ 𝑐2𝑅𝑖,𝑛
𝑗

)(𝑝𝑖,𝑛
𝑗

− 𝑋𝑖,𝑛
𝑗

) (13) 

where 𝑝𝑖,𝑛
𝑗

 has been denoted in equation (5). However, equation (13) is not consistent 

with the free electron model, since (𝑐1𝑟𝑖,𝑛
𝑗

+ 𝑐2𝑅𝑖,𝑛
𝑗

) is a random number, making the 

movement of the particle randomized. Thus, a simple linear expression is adopted for 

𝑉𝐷𝑖,𝑛+1
𝑗

 in this paper: 

𝑉𝐷𝑖,𝑛+1
𝑗

= 𝛽(𝑝𝑖,𝑛
𝑗

− 𝑋𝑖,𝑛
𝑗

) (14) 

where 𝛽 > 0 is another algorithmic parameter in RDPSO, called the drift coefficient. 

Equation (14) has a clear physical meaning, and in (Sun et al. 2015), it has been proved 

that when 0 < 𝛽 < 2 , the expression of 𝑉𝐷𝑖,𝑛+1
𝑗

  in equation (14) can indeed 

guarantee the particle’s directional movement toward 𝑝𝑖,𝑛 as an overall result. 

With the above specification, a novel set of update equations can be obtained for 

the particle of the RDPSO algorithm: 

𝑉𝑖,𝑛+1
𝑗

= 𝛼|𝐶𝑛
𝑗

− 𝑋𝑖,𝑛
𝑗

|𝜑𝑖,𝑛+1
𝑗

+ 𝛽(𝑝𝑖,𝑛
𝑗

− 𝑋𝑖,𝑛
𝑗

) (15) 

𝑋𝑖,𝑛+1
𝑗

= 𝑋𝑖,𝑛
𝑗

+ 𝑉𝑖,𝑛+1
𝑗

 (16) 

where the value of 𝑉𝑖,𝑛
𝑗

 should also be restricted within [−𝑉𝑚𝑎𝑥, 𝑉𝑚𝑎𝑥]. 

Sun et al. (2015) highlighted that the RDPSO algorithm can obtain the average best 
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performance when 𝛼  is decreasing linearly from 0.9 to 0.3, with 𝛽 = 1.45 . In the 

following sections, the RDPSO algorithm with this parameter configuration of 𝛼 and 

𝛽 is called the canonical RDPSO (CRDPSO). 

3. Diversity collaborative guided RDPSO 

In the RDPSO algorithm, there are essentially two swarms; that is, the pbest swarm, 

which is the set of all pbest positions in the swarm, and the x swarm, which is the set of 

all the particles’ current positions in the particle swarm. Unlike PSO, the global search 

velocity and local search velocity components in the RDPSO are both related to the 

pbest swarm because of the definition of mbest. When all the pbest positions are 

distributed in a relatively large area, the velocities of most particles probably have large 

values, leading to a large distribution area for the current positions of all the particles. 

On the contrary, when all the pbest positions converge to a very small area, the current 

position of each particle always moves to a certain range of its own pbest position due 

to the dynamical behavior of the particle as analyzed in (Sun et al. 2015). This means 

the two particle swarms -- the pbest swarm and the x swarm -- are very close to each 

other. In this case, the velocities of particles should be of low value, which means the 

algorithm carries out more local search, in other words, searches in a small range. Note 

that narrowing the search range is necessary for the algorithm to improve the precision 

of the final solution. However, sharply reducing the search range and keeping a small-

range search for a long period is not desirable since it can easily make the particles 

trapped into a local optimal solution. Unfortunately, in our preliminary experiments, it 

was found that sometimes the pbest swarm in the RDPSO converges too fast for some 
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multimodal problems and then premature convergence is inevitable in these cases. 

According to the above analysis, an obviously effective mechanism to tackle this 

problem is to control the change in the distribution area of pbest swarm. However, the 

pbest positions cannot be changed directly in case the previous search experience of 

particles would be eliminated. An effective way to achieve this goal is to modify the 

convergence speed of the x swarm to control the reduction rate of the distribution area 

of the pbest swarm. As a result, the appropriate distribution of the pbest swarm can 

affect the evolution of the x swarm as well. This is how these two swarms interact each 

other and work collaboratively. 

Uresem (2002) first proposed the definition of diversity for PSO, which is 

measured by the average distance of the average point of the swarm and can be 

expressed as: 

𝐷(𝑋𝑛) =
1

𝑀 ∙ 𝐴
∑ [∑ [𝑋𝑖,𝑛

𝑗
− 𝑋𝑛

𝑗̅̅̅̅ ]2
𝑁

𝑗=1
]1/2

𝑀

𝑖=1
=

1

𝑀 ∙ 𝐴
∑ |𝑋𝑖,𝑛 − 𝑋𝑛

̅̅̅̅ |
𝑀

𝑖=1
 (17) 

where 𝐴 is the diagonal length of search space, which represents the size of the search 

area. 𝑋𝑛
𝑗̅̅̅̅  is the 𝑗𝑡ℎ dimension of the mean of the all particles’ positions. 

According to this definition, 𝐷(𝑋𝑛)  represents the proportion of the space 

distributed by the x swarm in the 𝑛𝑡ℎ iteration to the whole search space. The larger 

𝐷(𝑋𝑛) is, the more dispersedly the particles distribute, and to some extent, the particle 

swarm is more diverse.  

With this definition, we propose a novel diversity collaboratively guided (DCG) 

strategy for the RDPSO algorithm in this paper. In this strategy, the diversity of the 

pbest swarm (called pbest diversity) and the diversity of the x swarm (called x diversity) 
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should be calculated in each iteration according to equation (17) during the whole 

search process. In addition, the above analysis reveals that the pbest swarm in the 

RDPSO should be prevented to converge too fast when solving multimodal problems, 

so that a baseline of the pbest diversity is set in this strategy to provide a desirable 

downward trend of the pbest diversity. Obviously, the aim of the DCG strategy is to 

make the pbest diversity decrease in accordance with the pre-set baseline by explicitly 

controlling the x diversity in the whole search process. To this end, one or both of the 

key parameters (𝛼 or/and 𝛽) in the velocity update equation of the RDPSO (equation 

(15)) is modified based on the relationship between the values of the two diversity 

measures and the baseline, so as to realize the divergence, global search or accelerated 

convergence of x swarm, and thus indirectly controlling the change of the pbest 

diversity. The details of the DCG strategy are described as follows. 

A. The baseline of pbest diversity 

As mentioned above, a decreasing baseline of pbest diversity is used in our proposed 

strategy, with a high value at the beginning, ensuring enough global search, and a low 

enough value at the later stage, making the particles search more locally. Our 

preliminary experiments showed that decreasing the baseline in a linear way is too slow 

while the one in an exponential way is too fast for multimodal problems. Thus, the 

polynomial form in terms of the iteration number is employed for decreasing baseline 

of pbest diversity in our strategy, which is expressed as: 

𝐵𝑛 =  (1 − 𝑛/𝑛𝑚𝑎𝑥)𝑐 ∗ (𝐵𝑠𝑡𝑎𝑟𝑡 − 𝐵𝑒𝑛𝑑)+𝐵𝑒𝑛𝑑 (18) 

where 𝑛  represents the iteration number and 𝑛𝑚𝑎𝑥  is the maximum number of 
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iterations. 𝑐  is a constant which determines the decline rate of the baseline. A low 

value of 𝑐 implements more global search and less local search, while a high value 

means the opposite. Thus, 𝑐 is obviously the key parameter of the proposed strategy, 

and its value can be set according to the situation of real problems. How to set the value 

of 𝑐  for multimodal problems to generate generally good algorithmic performance 

will be discussed in the next section. 𝐵𝑠𝑡𝑎𝑟𝑡 and 𝐵𝑒𝑛𝑑 represent the start value and 

the end value of baseline, respectively. In this paper, 𝐵𝑠𝑡𝑎𝑟𝑡 is set to the pbest diversity 

at the first iteration and 𝐵𝑒𝑛𝑑 is set to a value obtained by a certain ratio times 𝐵𝑠𝑡𝑎𝑟𝑡 

as follows: 

𝐵𝑠𝑡𝑎𝑟𝑡 = 𝐷(𝑃1) =
1

𝑀 ∙ 𝐴
∑ |𝑃𝑖,1 − 𝑃1̅|

𝑀

𝑖=1
 (19) 

𝐵𝑒𝑛𝑑 = 𝑒𝑟𝑎𝑡𝑖𝑜 ∗ 𝐵𝑠𝑡𝑎𝑟𝑡 (20) 

where 𝑒𝑟𝑎𝑡𝑖𝑜 determines the final searching area for x swarm. In the later stage of the 

search process, a suitable small value of 𝑒𝑟𝑎𝑡𝑖𝑜 can make the x swarm keep searching 

in a relatively small area to lead the gbest position to improve quickly. Note that 𝑒𝑟𝑎𝑡𝑖𝑜 

cannot be set to a too small value so that the particle swarm can have a certain global 

search ability even in the later stage of search. In this work, according to our preliminary 

experiments, 𝑒𝑟𝑎𝑡𝑖𝑜 = 1 × 10−4  was set empirically, which can give the DCG 

strategy a good performance on multimodal problems. 

With the given baseline of pbest diversity, the search process of the RDPSO 

algorithm can be controlled by comparing the baseline with the current pbest diversity 

and x diversity, so that the pbest diversity can be roughly reduced in line with the 

baseline. 
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B. Global search phase 

When the x diversity is higher but the pbest diversity is lower than the baseline, the 

pbest swarm should converge slowly, waiting for the value of the baseline to decrease. 

In order to prevent a significant reduction of the pbest diversity, the x swarm cannot 

converge dramatically in this phase. Considering the relatively large difference between 

the size of the areas covered by the pbest swarm and the x swarm, we can assume that 

most of the particles are far away from their own pbest position in this situation. Thus, 

in this phase, 𝛼 = 0.9  and 𝛽 = 1.45  are kept constant to make the particles 

implement global search within a certain area. Generally, this parameter setting makes 

both x diversity and pbest diversity decline moderately to maintain the global search 

ability of the algorithm at a certain level. The maximum value of 𝛼 in the CRDPSO is 

selected in this phase, since except in the earlier stage of the search process, 𝛼 = 0.9 

can effectively slow down the decline of the x diversity. 

C. Divergence phase 

When the current pbest diversity and x diversity are both lower than the current 

value of baseline, these two swarms should stop converging or converge more slowly 

than before to prevent the pbest diversity from dropping constantly to a too small value. 

To this end, a feasible way is to set 𝛼 and/or 𝛽 in the RDPSO algorithm to a high 

value to make the x swarm diverge until its diversity is larger than the baseline. Thus, 

in this phase, not only the x diversity experiences a rise, but also does the pbest diversity 

stop or slow down decreasing. However, if the parameters were not large enough, it 

would cost a lot of iterations in the divergence phase when the x diversity was much 
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lower than the baseline. This is wasteful since, in this phase, there is not much chance 

for the particles to find a better gbest position, and moreover, the waste of many 

iterations in this phase would possibly slow down the whole convergence process. On 

the contrary, if too large values were given to the parameters, many particles would be 

easily fly beyond the search boundaries when its diversity value was large enough, and 

then the distribution of the particles would be related to handling of the out-of-bounds 

particles. This may result in the loss of searching experience of these particles. Thus, it 

is reasonable to change the parameters dynamically with the variation of diversity. Here, 

in this phase, the value of 𝛼 is set to decrease with the rise of x diversity according to 

the following equation, but with fixed 𝛽 = 1.45 

𝛼 = 𝛼0 𝐷𝑟(𝑋𝑛)⁄ , 𝐷𝑟(𝑋𝑛) = 𝐷(𝑋𝑛)/𝐷(𝑋1) (21) 

where 𝐷(𝑋1) is the x diversity in the first iteration, and 𝐷𝑟(𝑋𝑛) is the ratio of the 

diversity to 𝐷(𝑋1) indicating how small the x diversity is. 𝛼0 is set to 0.9, which is 

also the initial value of 𝛼 in the CRDPSO. This can guarantee that the x swarm stop 

diverging when the 𝐷𝑟(𝑋𝑛) is near to 1, in case many particles reach the boundary of 

the search space. In equation (21), the reciprocal form is used for 𝛼 so that the particles 

can still diverge to a relatively large area when the x diversity is low enough. 

D. Accelerated convergence phase 

Finally, if the pbest diversity is larger than the value of the baseline, the search 

process should switch to the accelerated convergence phase, regardless of whether the 

x diversity is larger or smaller than the baseline. Since the particle swarm experiences 

the divergence and global search phases in the search process, the convergence of the 
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pbest swarm may be so slow that the decline rate of the pbest diversity is lower than 

that of the baseline. Consequently, the local search ability of the RDPSO may become 

weak and thus final fitness value of the gbest position may be of poor precision at the 

end of search. To deal with this problem, in the accelerated convergence phase, 𝛽 is 

configured to decrease linearly from 1.45 to 1.05 in terms of iteration number, while 𝛼 

is set to be the same as in the CRDPSO, i.e. to decrease linearly from 0.9 to 0.3. The 𝛽 

value lower than that in the CRDPSO can definitely force the particles drift more 

quickly to the area closer to the gbest position, helping the particles update their pbest 

positions quickly. Consequently, the pbest swarm can be driven into a smaller region 

around the gbest position, resulting in that the pbest diversity can go down rapidly and 

finally catch up the baseline. 

By combining the DCG strategy with the RDPSO model, we propose a novel 

variant of RDPSO, which is named as the Diversity Collaboratively Guided RDPSO 

(DCG-RDPSO) algorithm. Note that in the DCG-RDPSO, only except parameter 𝑐, all 

the other parameters mentioned in the DCG strategy do not need to be adjusted 

according to the particular situation of real problems. The procedure of the algorithm is 

outlined below. 

Procedure of the DCG-RDPSO algorithm 

Begin 

Initialize the current position 𝑋𝑖,0 and the personal best positon 𝑃𝑖,0 of each 

particle, compute the mean best position 𝐶0
𝑗
, evaluate their fitness values and 

find the global best position 𝐺0 = 𝑃𝑔,0; 

Pre-set 𝑐 and 𝑒𝑟𝑎𝑡𝑖𝑜; 

for 𝑛 = 1 to 𝑛𝑚𝑎𝑥 do 

Calculate 𝐷(𝑋𝑛) and 𝐷(𝑃𝑛); 



 17 

𝐵𝑛,𝑠𝑡𝑎𝑟𝑡 = 𝐷(𝑃1); 

𝐵𝑛,𝑒𝑛𝑑 = 𝑒𝑟𝑎𝑡𝑖𝑜 ∗ 𝐷(𝑃1); 

 𝐵𝑛 =  (1 − 𝑛/𝑛𝑚𝑎𝑥)𝑐 ∗ (𝐵𝑛,𝑠𝑡𝑎𝑟𝑡 − 𝐵𝑛,𝑒𝑛𝑑)+𝐵𝑛,𝑒𝑛𝑑; 

if 𝐷(𝑃𝑛) < 𝐵𝑛 

 if 𝐷(𝑋𝑛) < 𝐵𝑛 

  𝛼 = 0.9 𝐷𝑟(𝑋𝑛)⁄ , 𝐷𝑟(𝑋𝑛) = 𝐷(𝑋𝑛)/𝐷(𝑋1); 

𝛽 = 1.45; 

end if 

if 𝐷(𝑋𝑛) ≥ 𝐵𝑛 

𝛼 = 0.9; 

𝛽 = 1.45; 

end if 

end if 

if 𝐷(𝑃𝑛) ≥ 𝐵𝑛 

 𝛼 =  0.9 − (0.9 − 0.3) ∗ 𝑛/𝑛𝑚𝑎𝑥; 

 𝛽 =  1.45 − (1.45 − 1.05) ∗ 𝑛/𝑛𝑚𝑎𝑥; 

end if 

 for 𝑖 = 1 to M do 

  for 𝑗 = 1 to N do 

   𝑉𝑖,𝑛+1
𝑗

=  𝛼|𝑋𝑖,𝑛
𝑗

− 𝐶𝑛
𝑗
|𝜑𝑖,𝑛

𝑗
+ 𝛽(𝑝𝑖,𝑛

𝑗
− 𝑋𝑖,𝑛

𝑗
); 

   𝑋𝑖,𝑛+1
𝑗

=  𝑋𝑖,𝑛
𝑗

+ 𝑉𝑖,𝑛+1
𝑗

; 

  end for 

  Evaluate the objective function value 𝑓(𝑋𝑖,𝑛); 

  Update 𝑃𝑖,𝑛 and 𝐺𝑛; 

 end for 

end for 

end 

4. Experimental results and discussion 

4.1 Benchmark and parameter setting 

In order to find how to set the value of 𝑐 and evaluate the effectiveness of the 

DCG-RDPSO algorithm in an empirical manner, the multimodal functions F6 to F20 

from the CEC-2013 benchmark suite (Liang et al. 2013) were employed for this purpose. 

The mathematical expressions and properties of the functions are described in detail in 

(Liang et al. 2013). Furthermore, in order to examine the performance of the DCG-

RDPSO in practical applications, the proposed algorithm was used to solve the ED 
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problems of three different real power systems. The definition of the ED problem and 

the characteristics of three systems are given in section 4.5. 

The proposed algorithm was first compared with the RDPSO using different 

parameter configurations, including CRDPSO and the RDPSO with a linearly 

decreasing 𝛽 (RDPSO-Dbeta), in order to show the effectiveness of the DCG strategy. 

Secondly, in order to show the good algorithmic performance of the proposed algorithm, 

the DCG-RDPSO was compared with some PSO algorithms, including CPSO (Clerc 

and Kennedy 2002), Fully Informed PSO (FIPS) (Mendes et al. 2004), Comprehensive 

Learning PSO (CLPSO) (Liang et al. 2006), Competitive and Cooperative PSO with 

Information Sharing Mechanism (CCPSO-ISM) (Li et al. 2015), Self Regulating PSO 

(SRPSO) (Tanweer et al. 2015), and PSO with Limited Information (LIPSO) (Du et al. 

2015), and four non-PSO evolutionary algorithms, including artificial bee colony with 

distance-fitness-based neighbor search mechanism (DFnABC) (Cui et al. 2018), 

enhanced-based self-adaptive global-best harmony search (ESGHS) (Luo et al. 2019), 

memory-based global differential evolution (MGDE) (Zou et al. 2018), and self-

adaptive real-coded genetic algorithm (SARGA) (Subbaraj et al. 2009). All the PSO 

algorithms mentioned above used fully connected topology, only except that the FIPS 

algorithm applied the ring topology. This is because according to (Mendes et al. 2004), 

the FIPS using fully connected topology could not reach criteria in all tested functions, 

while the one with the ring topology could achieve the highest success rate. Finally, all 

the aforementioned algorithms were employed to solve the ED problems of three 

practical power systems to verify the effectiveness of the proposed algorithm in real-
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world applications. Except the DCG-RDPSO algorithm, the parameter configurations 

of all the other compared algorithms are those recommended by the corresponding 

references, as shown in Table 1. 

Table 1.  Parameter configurations 

Algorithm Parameter Configurations 

CRDPSO 𝛼 = 0.9 → 0.3, 𝛽 = 1.45 

RDPSO-Dbeta 𝛼 = 0.9 → 0.3, 𝛽 = 1.45 → 1.05 

CPSO 𝑤 = 0.9 → 0.4, 𝑐1 = 𝑐2 = 2.0 

FIPS 𝜒 = 0.7298, ∑ 𝑐𝑖 = 4.1 

CLPSO 𝑤 = 0.9 → 0.4, 𝑐 = 1.49445, 𝑚 = 7, 𝑃𝑐 = 0.05~0.5 

CCPSO-ISM 𝑤 = 0.6, 𝑐 = 2.0, 𝐺 = 5, 𝑃 = 0.05 

SRPSO 𝑤𝐼 = 1.05, 𝑤𝐹 = 0.5, 𝑐1 = 𝑐2 = 1.49445, 𝜂 = 1, 𝜆 = 0.5 

LIPSO 𝜒 = 0.7298, ∑ 𝑐𝑖 = 4.1, 𝑊 = 20 

DFnABC 𝑆𝑁 = 50, 𝑙𝑖𝑚𝑖𝑡 = 𝑆𝑁 ∙ 𝐷 (𝐷 is the dimension of the problem) 

ESGHS 𝐻𝑀𝑆 = 100 

MGDE 𝐺0 = 𝐺𝑚𝑎𝑥/100 (𝐺𝑚𝑎𝑥 is the maximum iteration number) 

SARGA 𝑝𝑐 = 0.9, 𝑝𝑚 = 0.01, 𝜂𝑐 = 5, 𝜂𝑚 = 1 

For most of the algorithms, the maximum iteration number was set to 30,000 and 

3,000 for CEC-2013 functions and ED problems, respectively. The exception is the 

ESGHS, since in each iteration of ESGHS, only one candidate solution needs to be 

evaluated. Thus, the maximum iteration number of ESGHS was set to 3,000,000 and 

300,000 for CEC-2013 functions and ED problems, respectively, to make the number 

of objective function evaluations of ESGHS equal to those of the other algorithms. All 

these algorithms terminated when the number of iterations reached the maximum 

iteration number. 100 particles were used for the PSO algorithms, MGDE and SARGA. 
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Each function in CEC-2013 and the objective function of each ED problem were 

optimized 51 times (same as the default setting in (Liang et al. 2013)) with respect to 

every tested algorithm. The boundary processing method for CEC-2013 functions used 

in all these algorithms was that if the component of a particle’s current position in any 

dimension was beyond the search boundary, it should be replaced by a random value 

uniformly distributed within the defined search range. The constraint handling methods 

for the ED problems were introduced in section 4.5. With respect to the specific 

experimental setting for CEC-2013, the dimensionality for each tested benchmark 

function was 30, each dimension of all the particles was initialized randomly within the 

search range [−100, 100], and each dimension of all particles’ velocity was restricted 

in [−100, 100] . All the aforementioned experiments were implemented in the 

MATLAB programming environment (MATLAB R2018a) running on an Intel® i7-

6850K 12-core 3.60 Giga-Hz CPU system with 128 Giga-Bytes memory. 

4.2 Empirical studies on the parameter selection of the DCG strategy 

As mentioned in the previous section, 𝑐 is the key parameter in the DCG strategy. 

The value of 𝑐 determines the decline speed of the baseline, which is closely related 

to the balance between the global search ability and local search ability of the algorithm. 

Therefore, in this section, a set of experiments on the different values of 𝑐  were 

implemented. In each experiment, the value of 𝑐 was an integer on the interval from 2 

to 9. The mean final fitness values over 51 runs for F6 to F20 yielded by the DCG-

RDPSO algorithm are recorded in Table 2. 

Table 2.  Mean final fitness values and scores for the experiments with different 𝑐 
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values 

c 2 3 4 5 6 7 8 9 

F6 
3.08E+01 

(1.347) 

2.90E+01 

(0.975) 

3.01E+01 

(1.278) 

3.07E+01 

(1.441) 

2.60E+01 

(0.118) 

2.56E+01 

(0.000) 

2.62E+01 

(0.150) 

3.34E+01 

(1.829) 

F7 
3.74E+00 

(1.427) 

4.09E+00 

(1.583) 

3.04E+00 

(0.138) 

3.24E+00 

(0.476) 

3.78E+00 

(1.410) 

2.96E+00 

(0.000) 

3.18E+00 

(0.414) 

3.23E+00 

(0.510) 

F8 
2.08E+01 

(0.000) 

2.08E+01 

(0.956) 

2.09E+01 

(1.950) 

2.09E+01 

(1.556) 

2.09E+01 

(1.373) 

2.08E+01 

(0.796) 

2.09E+01 

(1.567) 

2.09E+01 

(1.358) 

F9 
1.20E+01 

(2.377) 

1.15E+01 

(1.615) 

1.05E+01 

(0.007) 

1.12E+01 

(1.196) 

1.06E+01 

(0.204) 

1.08E+01 

(0.488) 

1.11E+01 

(1.247) 

1.05E+01 

(0.000) 

F10 
6.15E-02 

(3.373) 

4.47E-02 

(0.056) 

4.45E-02 

(0.000) 

4.84E-02 

(0.966) 

4.87E-02 

(0.980) 

4.47E-02 

(0.056) 

4.60E-02 

(0.328) 

4.80E-02 

(0.794) 

F11 
3.04E+00 

(5.327) 

1.77E+00 

(3.124) 

1.44E+00 

(2.256) 

1.43E+00 

(2.193) 

1.16E+00 

(1.691) 

1.02E+00 

(1.438) 

5.87E-01 

(0.347) 

4.69E-01 

(0.000) 

F12 
3.13E+01 

(1.548) 

3.26E+01 

(2.195) 

3.28E+01 

(2.287) 

3.12E+01 

(1.437) 

2.90E+01 

(0.394) 

3.08E+01 

(1.210) 

3.11E+01 

(1.524) 

2.83E+01 

(0.000) 

F13 
7.17E+01 

(2.925) 

6.91E+01 

(1.905) 

6.08E+01 

(0.000) 

6.23E+01 

(0.355) 

6.33E+01 

(0.603) 

6.31E+01 

(0.553) 

6.55E+01 

(1.302) 

6.91E+01 

(2.308) 

F14 
5.32E+02 

(3.808) 

5.17E+02 

(2.870) 

4.25E+02 

(2.275) 

3.32E+02 

(0.000) 

4.01E+02 

(1.416) 

3.84E+02 

(1.213) 

3.42E+02 

(0.246) 

3.72E+02 

(0.731) 

F15 
5.13E+03 

(3.365) 

5.20E+03 

(3.574) 

4.71E+03 

(1.773) 

4.57E+03 

(1.255) 

4.80E+03 

(2.149) 

4.24E+03 

(0.000) 

4.74E+03 

(1.812) 

4.64E+03 

(1.432) 

F16 
2.03E+00 

(1.983) 

2.03E+00 

(2.152) 

1.97E+00 

(0.314) 

1.95E+00 

(0.000) 

2.03E+00 

(1.957) 

1.97E+00 

(0.451) 

2.02E+00 

(1.691) 

1.99E+00 

(0.941) 

F17 
4.57E+01 

(13.668) 

4.06E+01 

(10.250) 

3.60E+01 

(2.086) 

3.60E+01 

(3.509) 

3.42E+01 

(0.707) 

3.50E+01 

(1.840) 

3.36E+01 

(0.000) 

3.46E+01 

(1.295) 

F18 
1.13E+02 

(0.000) 

1.29E+02 

(1.921) 

1.13E+02 

(0.003) 

1.28E+02 

(1.919) 

1.30E+02 

(2.206) 

1.35E+02 

(3.026) 

1.37E+02 

(3.281) 

1.37E+02 

(3.270) 

F19 
2.18E+00 

(7.962) 

1.81E+00 

(5.349)) 

1.62E+00 

(2.683) 

1.49E+00 

(0.902) 

1.45E+00 

(0.250) 

1.50E+00 

(1.073) 

1.43E+00 

(0.000) 

1.52E+00 

(0.976) 

F20 
9.60E+00 

(0.846) 

9.60E+00 

(0.800) 

9.47E+00 

(0.000) 

9.69E+00 

(1.397) 

9.57E+00 

(0.627) 

9.68E+00 

(1.319) 

9.73E+00 

(1.723) 

9.53E+00 

(0.374) 

Score 7 8 10 13 13 14 14 13 

In Table 2, the result with an underline for each function is the best of mean final 

fitness values in all the experiments with different 𝑐  values. As all the algorithms 

tested in our experiments are random search techniques, therefore, in this work, the t-

test (Ruxton 2006) was used to determine whether there is a significant difference 

between the mean final fitness values obtained by two algorithms. In Table 2, the 51 
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results of each function with the same 𝑐 value is considered as an independent group. 

Mathematically, the t-test established the problem statement by assuming a null 

hypothesis that the two means are the same between the two sample sets, and the t-

value determine how likely the difference between the means occurred by chance. Since 

in this set of experiments, the variances of any two independent groups are different, 

the t-value should be calculated as (Ruxton 2006) 

𝑡 =  
𝜇1 − 𝜇2

√𝑠1
2/𝑛1 + 𝑠2

2/𝑛2

 (22) 

where 𝜇1 and 𝜇2 are the mean values, 𝑠1
2 and 𝑠2

2 are the variances and 𝑛1 and 𝑛2 

are number of samples associated with the first and second compared groups, 

respectively. In this work, the t-tests were undertaken at a 5% level of significance. 

Thus, according to the standard t tables, a t-value greater than 1.984 indicates that the 

null hypothesis can be rejected safely, that is, there is a significant difference between 

the two mean final fitness values; otherwise, the two mean final fitness values are 

regarded to be of no significant difference or to be equivalent in terms of statistical 

significance. 

In Table 2, the best of mean final fitness value or equivalently best one in terms of 

t values for each function are marked bold. We scored in the last line the overall 

performance of the DCG-RDPSO with each different 𝑐 value over all the benchmark 

functions, by counting the number of the bold results in each column. When 𝑐 = 7 and 

𝑐 = 8, the algorithm has the most “best” results among all the cases. As a smaller 𝑐 

value can make the algorithm search more globally to avoid premature convergence, in 

this paper, 𝑐 = 7  was thus used as recommend configuration for 𝑐  and also was 
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employed in all the following experiments. 

4.3 Analysis of the DCG strategy 

Table 3 records the mean final fitness values and the best final fitness values out of 

51 runs on each benchmark function for the proposed algorithm and two versions of 

RDPSO with different parameter configurations, in order to verify the effectiveness of 

the proposed DCG strategy. With respect to the mean values, for each function, the best 

results among all the compared algorithms and the equivalently best ones are all in bold 

according to their corresponding t-values.  

Table 3.  Statistics results of three versions of RDPSO 

Function CRDPSO RDPSO-Dbeta DCG-RDPSO 

F6 

Mean 

(t-value) 

Best 

3.59E+01 

(2.449) 

1.05E+01 

4.11E+01 

(3.303) 

6.64E-01 

2.56E+01 

(0.000) 

1.46E+01 

F7 

Mean 

(t-value) 

Best 

3.81E+00 

(1.404) 

3.86E-01 

4.31E+00 

(2.125) 

3.94E-01 

2.96E+00 

(0.000) 

1.96E-01 

F8 

Mean 

(t-value) 

Best 

2.09E+01 

(1.065) 

2.07E+01 

2.09E+01 

(1.302) 

2.07E+01 

2.08E+01 

(0.000) 

2.07E+01 

F9 

Mean 

(t-value) 

Best 

1.10E+01 

(0.824) 

4.84E+00 

1.06E+01 

(0.000) 

4.35E+00 

1.08E+01 

(0.323) 

4.17E+00 

F10 

Mean 

(t-value) 

Best 

3.03E-02 

(0.000) 

8.10E-03 

3.42E-02 

(0.917) 

3.48E-04 

4.47E-02 

(3.184) 

7.40E-03 

F11 

Mean 

(t-value) 

Best 

1.01E+01 

(16.993) 

3.98E+00 

9.97E+00 

(19.373) 

5.97E+00 

1.02E+00 

(0.000) 

2.76E-10 

F12 

Mean 

(t-value) 

Best 

4.58E+01 

(3.692) 

1.31E+01 

3.14E+01 

(0.279) 

1.10E+01 

3.08E+01 

(0.000) 

1.20E+01 

F13 

Mean 

(t-value) 

Best 

8.19E+01 

(4.242) 

3.43E+01 

7.55E+01 

(2.759) 

2.55E+01 

6.31E+01 

(0.000) 

1.50E+01 

F14 
Mean 

(t-value) 

8.87E+02 

(8.870) 

9.25E+02 

(7.552) 

3.84E+02 

(0.000) 
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Best 2.71E+02 3.09E+02 2.52E+01 

F15 

Mean 

(t-value) 

Best 

6.12E+03 

(9.279) 

3.04E+03 

4.63E+03 

(1.420) 

2.08E+03 

4.24E+03 

(0.000) 

1.71E+03 

F16 

Mean 

(t-value) 

Best 

1.99E+00 

(0.507) 

1.40E+00 

2.04E+00 

(1.527) 

1.32E+00 

1.97E+00 

(0.000) 

1.05E+00 

F17 

Mean 

(t-value) 

Best 

4.78E+01 

(6.549) 

3.58E+01 

4.43E+01 

(10.883) 

3.78E+01 

3.50E+01 

(0.000) 

3.06E+01 

F18 

Mean 

(t-value) 

Best 

1.76E+02 

(8.198) 

1.52E+02 

1.52E+02 

(2.794) 

6.91E+01 

1.35E+02 

(0.000) 

5.91E+01 

F19 

Mean 

(t-value) 

Best 

2.63E+00 

(8.919) 

1.57E+00 

2.66E+00 

(13.768) 

1.42E+00 

1.50E+00 

(0.000) 

1.01E+00 

F20 

Mean 

(t-value) 

Best 

1.34E+01 

(10.873) 

8.12E+00 

1.32E+01 

(9.036) 

8.22E+00 

9.68E+00 

(0.000) 

7.75E+00 

According to Table 3, it is obvious that with the help of DCG strategy, the DCG-

RDPSO algorithm can get the best or equivalently best results for almost every tested 

multimodal function in terms of the mean value and the best value, except the mean 

value for F10, and the best values for F6, F10 and F12, respectively. Moreover, according 

to the t-values, it can be found that in addition to F8, F9, F10 and F16, the performance 

improvement of the DCG-RDPSO for all the other functions are very significant, which 

verifies the effectiveness of the DCG strategy. 

To further demonstrate the performance of the operators in each phase of the DCG 

strategy, Fig.1 and Fig.2 illustrate the diversity curves as well as the baseline of F11 and 

F14 in one run as examples, respectively. The details of the second half of the two curves 

are enlarged to show more clearly the later stage of the search process. For the x 

diversity, different colors were used to mark different phases of the DCG strategy in 

these two figures. 
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(a) 

 

(b) 

Fig.1 (a) diversity changes of F11 in one run; (b) the second half of Fig.1(a) enlarged 
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(a) 

 

(b) 

Fig.2 (a) diversity changes of F14 in one run; (b) the second half of Fig.2(a) enlarged 

As Fig.1(a) and Fig.2(a) illustrate, at the beginning of the search process, both the 

x diversity and the pbest diversity have a sharp drop. This is because the particles search 

more globally, and improvement amplitude of the fitness value of the gbest position are 
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large. But afterwards, the improvement amplitude would experience a decrease so that 

the particles converge fast to the neighborhood of the gbest position to search more 

locally. When the value of x diversity is very close to that of pbest diversity, the x 

diversity strongly fluctuates due to the fast switching between the divergence phase and 

the global search phase, thus making the particles search more globally. In the later 

stage of the search process (see Fig.1(b) and Fig.2(b)), sometimes the pbest diversity 

experience a sudden increase, and then quickly decline due to the effectiveness of the 

accelerated convergence phase. Since in this stage the pbest positions of particles are 

always concentrated in a small area, the sudden increase of the pbest diversity 

demonstrates that a gbest position far away from this area has been found, verifying 

that the DCG strategy can indeed help the algorithm escape from local optima. Another 

noteworthy phenomenon in the later stage of the search process is that the pbest 

diversity sometimes remains unchanged during a relatively long iterative search process 

(i.e. the pbest diversity between 15500 to 27000 iterations in Fig. 1(b) and the pbest 

diversity between 14000 to 16000 iterations in Fig. 2(b)). During this stage of the search 

process, the adoption of the accelerated convergence phase makes the particles search 

more locally to make the pbest diversity decline. Once the pbest diversity reach the 

baseline, the rapid fluctuations of the x diversity can help the particles search globally 

temporarily, resulting in that the algorithm has a greater chance to escape from local 

optima probably. 

In addition to the aforementioned similarities, the most significant difference 

between these two figures is that the curve of pbest diversity in Fig.1(a) matches the 



 28 

baseline well, while in some parts of Fig.2(a) (between 1500 to 14000 iterations), the 

pbest diversity decreases much slower than the baseline. The reason may be that the 

points with better fitness values than all the pbest positions of the particles except the 

gbest particle are located in a small neighborhood area around the current gbest position. 

Therefore, when the pbest diversity and the x diversity are both high, the particles 

probably search in a relatively large area with a high value of 𝛽, the particles have low 

chance to find this area so that their pbest positions are difficult to update. However, 

the value of 𝛽 cannot be fixed at a low value (e.g. 𝛽 = 1.05), since it can make all 

the particles quickly drift to the current gbest and probably fall into the small 

neighborhood of a local optima. 

Actually, the phenomenon observed in F14 (shown in Fig.2) also occurs in some 

other tested functions. Table 4 illustrates the average percentage of improvements of 

the gbest position made in each phase by the DCG-RDPSO over 51 runs for each 

benchmark function. It can be observed that, in F6, F9, F12, F13, F14, and F17, more than 

70% of the gbest improvements are made in the accelerated convergence phase. This 

means that in these functions, the DCG-RDPSO stays in the accelerated convergence 

phase in most of the search process. Moreover, the last line in Table 4 further illustrates 

that the average percentage of the accelerated convergence phase to the whole search 

process over all tested functions are more than 50%. Note that there are also about 20% 

of the gbest improvements achieved in the divergence phase. Most of these 

improvements are made in the early stage of the search process, since the value of 𝛼 

at that time should be close to 0.9. Thus, the search behavior of the DCG-RDPSO is 
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similar to that of the CRDPSO in the early stage. 

Table 4.  The average percentage of the gbest improvement made in each phase by 

the DCG-RDPSO among 51 runs 

 Gbest improvement in 

Divergence 

phase 

Global search 

phase 

Accelerated Convergence 

phase 

F6 3.03% 17.80% 79.16% 

F7 10.47% 35.49% 54.04% 

F8 62.50% 0.16% 37.34% 

F9 6.10% 14.82% 79.07% 

F10 4.63% 83.11% 12.66% 

F11 4.44% 44.73% 50.83% 

F12 11.80% 9.85% 78.35% 

F13 13.44% 11.36% 75.20% 

F14 2.10% 19.93% 77.97% 

F15 43.32% 0.10% 56.58% 

F16 60.78% 0.00% 39.22% 

F17 1.92% 16.50% 81.58% 

F18 24.51% 42.48% 33.01% 

F19 2.83% 29.68% 67.49% 

F20 47.42% 5.21% 47.37% 

Avg 19.95% 22.08% 57.99% 

However, although the accelerated convergence phase plays an important role in 

the DCG strategy, it does not mean that the RDPSO with only a linear decreasing 𝛽 

can outperform the DCG-RDPSO. To illustrate this clearly, additional experiments were 

carried out on the RDPSO-Dbeta, for performance comparison, and the results is also 

shown in Table 3. As can be seen, the results for the RDPSO-Dbeta are almost 

equivalent to those of the CRDPSO, but worse than those of the DCG-RDPSO for most 

tested functions. The reason may be that the linearly decreasing 𝛽 drives the particles 

to quickly drift to the areas near the current gbest position and thus brings about 

premature convergence. It should be pointed out that if the particles are lucky enough 
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to find the “right area”, they can probably find better results than the CRDPSO and the 

DCG-RDPSO. This is why on some tested functions, the RDPSO-Dbeta outperforms 

the other two algorithms for the best final fitness values. Nevertheless, the comparative 

analysis between RDPSO-Dbeta and DCG-RDPSO shows that the divergence and the 

global search phases are necessary, and the accelerated convergence phase should be 

implemented at the right time, so that the algorithm can find a good solution with a high 

chance to escape the local optimal solution. 

4.4 Performance of the DCG-RDPSO for multimodal functions in CEC-2013 

In order to further verify the performance of the DCG-RDPSO algorithm, six 

variants of PSO and four non-PSO evolutionary algorithms were tested on the 

multimodal functions in CEC-2013, and some statistical results are recorded in Table 5. 

It should be emphasized here that in this section, the DCG-RDPSO algorithm is not 

compared with other similar diversity-guided strategies (Riget and Vesterstrøm 2002; 

Hu et al. 2007; Pant et al. 2007), since we found that the values of diversity in many 

cases failed to reach the given lower bound when these strategies were tested on the 

above benchmark functions. For an example, when the attractive and repulsive PSO 

(ARPSO) (Riget and Vesterstrøm 2002) was tested with the experimental setting 

mentioned in section 4.1, it was found that the diversity was not able to get to the default 

lower bound in (Riget and Vesterstrøm 2002) ( 5.0 × 10−6 ) for most multimodal 

functions, and, as a consequence, the algorithm was always in the “attraction phase”. 
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Table 5.  Statistics on the results of DCG-RDPSO and ten compared algorithms 

Function CPSO FIPS CLPSO 
CCPSO 

-ISM 
SRPSO LIPSO DFnABC ESGHS MGDE SARGA 

DCG-

RDPSO 

F6 

Mean 

(t-value) 

Best 

7.93E+01 

(11.105) 

2.36E-01 

4.10E+01 

(6.197) 

9.75E-02 

2.46E+01 

(5.166) 

4.72E+00 

1.63E+01 

(1.787) 

1.47E-01 

6.47E+01 

(9.632) 

2.22E-01 

1.59E+02 

(37.590) 

9.77E+01 

1.14E+01 

(0.000) 

8.46E-02 

1.15E+01 

(0.027) 

4.30E-03 

2.90E+01 

(4.469) 

2.76E-01 

3.91E+01 

(6.784) 

9.94E+00 

2.56E+01 

(5.965) 

1.46E+01 

F7 

Mean 

(t-value) 

Best 

3.80E+01 

(21.153) 

1.80E+01 

4.54E+01 

(32.498) 

2.41E+01 

4.34E+01 

(42.602) 

3.14E+01 

6.16E+01 

(44.854) 

4.20E+01 

2.35E+01 

(15.421) 

6.90E+00 

7.81E+01 

(26.928) 

3.85E+01 

6.83E+01 

(49.884) 

4.65E+01 

1.58E+02 

(19.663) 

6.31E+01 

2.30E+01 

(12.360) 

5.35E+00 

1.69E+02 

(24.746) 

8.41E+01 

2.96E+00 

(0.000) 

1.96E-01 

F8 

Mean 

(t-value) 

Best 

2.08E+01 

(0.333) 

2.07E+01 

2.09E+01 

(1.511) 

2.07E+01 

2.09E+01 

(2.417) 

2.07E+01 

2.08E+01 

(0.000) 

2.07E+01 

2.09E+01 

(2.369) 

2.08E+01 

2.09E+01 

(2.042) 

2.07E+01 

2.09E+01 

(2.209) 

2.07E+01 

2.09E+01 

(2.353) 

2.08E+01 

2.08E+01 

(1.198) 

2.07E+01 

2.09E+01 

(4.231) 

2.06E+01 

2.08E+01 

(0.984) 

2.07E+01 

F9 

Mean 

(t-value) 

Best 

2.32E+01 

(16.867) 

1.17E+01 

1.88E+01 

(14.489) 

1.22E+01 

2.24E+01 

(23.258) 

1.79E+01 

2.50E+01 

(28.590) 

2.10E+01 

2.63E+01 

(22.052) 

1.94E+01 

1.85E+01 

(9.769) 

9.71E+00 

2.63E+01 

(30.906) 

2.06E+01 

2.90E+01 

(29.463) 

2.20E+01 

1.97E+01 

(13.531) 

1.12E+01 

3.20E+01 

(35.494) 

2.66E+01 

1.08E+01 

(0.000) 

4.17E+00 

F10 

Mean 

(t-value) 

Best 

1.75E-01 

(13.579) 

1.97E-02 

1.02E-01 

(15.208) 

2.96E-02 

8.68E-02 

(29.508) 

5.34E-02 

1.34E-01 

(26.545) 

7.26E-02 

1.15E-01 

(13.972) 

2.22E-02 

3.45E+01 

(8.704) 

2.28E+00 

2.11E-02 

(5.892) 

1.36E-04 

9.14E-03 

(0.000) 

0.00E+00 

1.38E-01 

(9.210) 

1.97E-02 

3.94E-01 

(19.541) 

1.46E-01 

4.47E-02 

(9.744) 

7.40E-03 

F11 

Mean 

(t-value) 

Best 

1.01E+01 

(21.378) 

3.98E+00 

1.47E+01 

(26.753) 

8.49E+00 

0.00E+00 

(0.000) 

0.00E+00 

5.35E-14 

(28.284) 

0.00E+00 

1.21E+01 

(23.002) 

5.97E+00 

5.24E+01 

(25.500) 

2.02E+01 

3.79E-14 

(10.000) 

0.00E+00 

7.74E+01 

(30.017) 

4.08E+01 

2.75E+01 

(23.063) 

1.19E+01 

8.79E-05 

(5.926) 

2.42E-06 

1.02E+00 

(3.671) 

2.76E-10 

F12 

Mean 

(t-value) 

Best 

6.87E+01 

(12.087) 

3.18E+01 

1.02E+02 

(23.574) 

6.33E+01 

6.75E+01 

(17.518) 

4.69E+01 

1.32E+02 

(26.680) 

8.56E+01 

5.46E+01 

(9.095) 

3.08E+01 

3.65E+01 

(2.339) 

1.53E+01 

9.80E+01 

(20.350) 

4.91E+01 

6.98E+02 

(24.957) 

2.99E+02 

5.02E+01 

(7.941) 

3.20E+01 

3.04E+02 

(26.425) 

1.85E+02 

3.08E+01 

(0.000) 

1.20E+01 

F13 

Mean 

(t-value) 

Best 

1.26E+02 

(14.288) 

7.66E+01 

1.27E+02 

(14.923) 

7.12E+01 

1.05E+02 

(10.585) 

6.06E+01 

1.85E+02 

(29.561) 

1.47E+02 

1.10E+02 

(9.054) 

5.73E+01 

1.08E+02 

(7.456) 

3.15E+01 

1.44E+02 

(18.148) 

1.02E+02 

6.25E+02 

(30.147) 

3.95E+02 

7.79E+01 

(3.159) 

2.99E+01 

3.47E+02 

(36.778) 

2.35E+02 

6.31E+01 

(0.000) 

1.50E+01 

F14 

Mean 

(t-value) 

Best 

4.09E+02 

(17.706) 

2.75E+01 

2.29E+03 

(35.264) 

1.34E+03 

3.14E+00 

(16.905) 

5.91E-01 

2.19E+01 

(15.781) 

6.89E+00 

3.84E+02 

(16.658) 

8.11E+01 

3.55E+03 

(41.423) 

2.23E+03 

7.92E-01 

(3.764) 

9.20E-02 

1.60E+03 

(35.082) 

9.14E+02 

3.36E+02 

(14.247) 

3.40E+01 

4.38E-03 

(0.000) 

3.51E-05 

3.84E+02 

(11.277) 

2.52E+01 

F15 
Mean 

(t-value) 

Best 

6.17E+03 

(28.448) 

3.69E+03 

6.13E+03 

(52.804) 

5.39E+03 

3.87E+03 

(12.441) 

2.62E+03 

3.07E+03 

(0.000) 

2.40E+03 

6.71E+03 

(63.454) 

5.97E+03 

3.28E+03 

(2.164) 

1.84E+03 

3.20E+03 

(2.200) 

2.56E+03 

4.39E+03 

(13.224) 

3.02E+03 

3.26E+03 

(2.204) 

2.17E+03 

4.40E+03 

(11.454) 

2.86E+03 

4.24E+03 

(6.514) 

1.71E+03 

F16 
Mean 

(t-value) 

Best 

1.85E+00 

(49.470) 

1.09E+00 

1.96E+00 

(57.901) 

1.39E+00 

1.86E+00 

(58.398) 

1.37E+00 

7.09E-01 

(27.951) 

4.26E-01 

2.01E+00 

(71.851) 

1.36E+00 

1.86E+00 

(26.670) 

8.28E-02 

5.47E-01 

(27.638) 

1.98E-01 

4.79E-02 

(0.000) 

1.53E-02 

1.21E+00 

(33.254) 

6.35E-01 

1.53E+00 

(28.835) 

7.04E-01 

1.97E+00 

(59.837) 

1.05E+00 

F17 
Mean 

(t-value) 

Best 

4.65E+01 

(17.499) 

3.71E+01 

1.21E+02 

(66.168) 

1.05E+02 

3.05E+01 

(1.128) 

3.05E+01 

3.24E+01 

(4.175) 

3.15E+01 

4.52E+01 

(16.478) 

3.56E+01 

5.66E+01 

(24.700) 

4.44E+01 

3.05E+01 

(1.015) 

3.04E+01 

4.30E+01 

(6.545) 

3.07E+01 

4.82E+01 

(17.658) 

3.42E+01 

2.98E+01 

(0.000) 

4.21E-03 

3.50E+01 

(5.805) 

3.06E+01 

F18 
Mean 

(t-value) 

Best 

1.74E+02 

(16.635) 

6.35E+01 

1.83E+02 

(62.876) 

1.60E+02 

1.46E+02 

(36.039) 

1.07E+02 

1.32E+02 

(26.401) 

1.02E+02 

1.67E+02 

(14.394) 

7.03E+01 

6.51E+01 

(0.000) 

4.89E+01 

9.18E+01 

(11.005) 

6.85E+01 

2.19E+02 

(27.127) 

1.37E+02 

9.45E+01 

(10.933) 

6.34E+01 

3.88E+02 

(23.491) 

1.79E+02 

1.35E+02 

(14.201) 

5.91E+01 

F19 
Mean 

(t-value) 

Best 

2.55E+00 

(25.470) 

7.03E-01 

7.81E+00 

(31.173) 

5.03E+00 

1.67E+00 

(72.593) 

1.28E+00 

6.37E-01 

(16.024) 

2.62E-01 

2.22E+00 

(25.081) 

1.05E+00 

9.76E+00 

(23.837) 

3.82E+00 

3.18E-02 

(0.000) 

5.68E-14 

3.83E+00 

(27.099) 

1.79E+00 

2.48E+00 

(25.176) 

6.06E-01 

9.15E-01 

(19.334) 

3.00E-01 

1.50E+00 

(23.189) 

1.01E+00 

F20 
Mean 

(t-value) 

Best 

1.10E+01 

(7.235) 

8.94E+00 

1.18E+01 

(12.604) 

1.07E+01 

1.12E+01 

(12.199) 

1.05E+01 

1.23E+01 

(17.756) 

1.09E+01 

1.05E+01 

(4.562) 

8.31E+00 

1.47E+01 

(31.857) 

1.13E+01 

1.11E+01 

(5.201) 

9.19E+00 

1.43E+01 

(30.484) 

1.10E+01 

1.01E+01 

(2.471) 

8.35E+00 

1.40E+01 

(25.876) 

1.15E+01 

9.68E+00 

(0.000) 

7.75E+00 

Best-Mean1 1 1 2 3 0 1 3 3 1 2 6 

Best-Best2 0 0 1 1 0 1 2 3 0 3 6 

Best-Both3 0 0 1 0 0 1 1 3 0 2 5 
1 The number of mean results that are bold of the corresponding algorithm 
2 The number of best results that are bold of the corresponding algorithm 
3 The number of functions in which the corresponding algorithm can get the best or equivalently best results in both mean values and best values at 

the same time 
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In Table 5, with respect to the mean and best of the final fitness values for each 

function, the best result among all the algorithms and the equivalently best ones are 

also in bold. According to the mean values listed in the table, the proposed DCG-

RDPSO algorithm can get the best results among all the compared algorithms for the 

most tested functions, followed by DFnABC, ESGHS, CCPSO-ISM, and then CLPSO 

and SARGA, while the other algorithms can only obtain at most one smallest mean 

value. Moreover, the t-values in Table 5 further illustrate that in almost every function 

(except F6, F8 and F17), the superiority of the algorithm that can obtain the best mean 

value is statistically significant. Put it in detail, excluding F8, the proposed algorithm 

outperforms other algorithms for F7, F9, F12, F13 and F20. Moreover, as Table 6 shows, 

for the functions that the DCG-RDPSO cannot get the smallest mean values, the 

proposed algorithm is ranked second to fourth among eleven competitors in almost each 

of these functions only except F16. This shows the good robustness of the DCG-RDPSO 

in solving most multimodal problems. 

Table 6.  The rank of the mean values and best values of DCG-RDPSO in each 

function among all tested algorithms 

Function F6 F7 F8 F9 F10 F11 F12 F13 

Rank of Mean1 4 1 3 1 3 2 1 1 

Rank of Best 10 1 3 1 3 4 1 1 

Function F14 F15 F16 F17 F18 F19 F20  

Rank of Mean 3 4 10 4 4 3 1  

Rank of Best 4 1 7 4 2 6 1  

1 Ranked according to the t-values in Table 5 

As for the best values of the final fitness in Table 5, the DCG-RDPSO can also 

obtain the best results among all the compared algorithms on six test functions. For 

most of the other functions, the difference between the best value yielded by the 
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proposed algorithm and the smallest one among all the algorithms is not statistically 

significant. Furthermore, as shown in Table 6, the best values of the proposed algorithm 

are ranked top four for all the tested functions except F6, F16 and F19. It means that the 

proposed algorithm has good robustness in finding solutions with higher quality, again 

demonstrating that the accelerated convergence operators in the DCG strategy can 

definitely enhance the search ability of the RDPSO. It should be pointed out that for 

those tested functions, the mean values of which the DCG-RDPSO obtained are the 

smallest, the algorithm can also get the smallest best values at the same time (see the 

Best-Both in Table 5). This is very important in solving some real-world problems, e.g. 

in flexible ligand docking (Chen et al. 2007; Morris et al. 1998), and in ED problem 

(Chowdhury and Rahman 1990; Chokpanyasuwan 2009; see statistical results in Tables 

8 to 10). In comparison, although the CCPSO-ISM algorithm can achieve the smallest 

mean values for three functions, it cannot obtain the smallest best value for any of these 

functions. 

Additionally, the mean computational time taken by all the compared PSO 

algorithms was evaluated to show the influence of the DCG strategy on the 

computational complexity. The results in Table 7 illustrate that, compared with 

CRDPSO, RDPSO-Dbeta and CPSO, the mean computational time consumed by the 

proposed algorithm is longer, since calculating the diversity values in each iteration 

inevitably takes the proposed algorithm extra time. However, the DCG-RDPSO is less 

time-consuming than all the other algorithms, verifying that the DCG strategy is not as 

complicated as the strategies used in other compared PSO variants. It should be noted 
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that according to Table 7, the difference between the mean computational time of DCG-

RDPSO and those of CRDPSO, RDPSO-Dbeta and CPSO is relatively small, because 

the time spent in calculating the diversity values is generally much less than that in 

calculating the object function values. 

Table 7.  Mean computational time of a single run taken by all the compared PSO 

algorithms for testing all the sixteen multimodal benchmark functions 

Algorithm DCG-RDPSO CRDPSO RDPSO-Dbeta CPSO FIPS 

Mean time 54.628s 51.366s 51.438s 52.559s 65.449s 

Algorithm CLPSO CCPSO-ISM SRPSO LIPSO  

Mean time 56.710s 58.775s 61.816s 150.225s  

In conclusion, as can be observed from Tables 5 to 7, the DCG-RDPSO algorithm 

is able to get the best (or equivalently best) results in both mean values and best values 

for most of the tested functions among all the compared algorithms, and its performance 

robustness and computational complexity are also impressive. 

4.5 Performance of the DCG-RDPSO for ED problems 

Economic dispatch is one of the most important problems in operation of power 

systems. When the production schedule for a period of time of a power station should 

be prepared in advance, this issue needs to be considered. Its purpose is to minimize 

the total short-term costs of operating the generators by appropriately dividing the total 

load demand among available generators to meet the predicted customer load 

(Chowdhury and Rahman 1990). The objective function of an ED problem can be 

formulated as the following: 

Minimize    𝐹𝑐𝑜𝑠𝑡 =  ∑ 𝐹𝑗(𝑃𝑗)

𝑁𝑔

𝑗=1

 (23) 



 35 

where 𝑃𝑗  is the real output of the 𝑗 th generating units (in MW), 𝑁𝑔  is the total 

number of generators in the power system, and 𝐹𝑗(𝑃𝑗) is the cost function of the 𝑗th 

generating unit (in $/h), and is typically modeled by a smooth quadratic function 

𝐹𝑗(𝑃𝑗) = 𝑎𝑗 + 𝑏𝑗𝑃𝑗 + 𝑐𝑗𝑃𝑗
2 (24) 

where 𝑎𝑗, 𝑏𝑗 and 𝑐𝑗 are the cost coefficients of the 𝑗th generating unit. 

However, the generator sets with multi-valve steam turbines always show greater 

changes in the cost function. Considering the valve point effects, the cost function 

should contain higher-order nonlinearities, which can be expressed as: 

𝐹𝑗(𝑃𝑗) = 𝑎𝑗 + 𝑏𝑗𝑃𝑗 + 𝑐𝑗𝑃𝑗
2 + |𝑒𝑗 × sin (𝑓𝑗 × (𝑃𝑗

𝑚𝑖𝑛 − 𝑃𝑗))| (25) 

where 𝑒𝑗  and 𝑓𝑗  are the cost coefficients of the 𝑗 th generating unit reflecting the 

valve-point effects (Sinha et al. 2003), and 𝑃𝑗
𝑚𝑖𝑛 is the lower production limit of the 

𝑗th unit. 

The ED problem should satisfy various nonlinear constraints, i.e. power balance, 

generation limits, ramp rate limits, and prohibited operating zones (Swarup and 

Yamashiro 2002). All these constraints are expressed in detail below (Zhao et al. 2018). 

A. Power balance 

The power balance constraint restricts that the total system generation should meet 

the power demand and transmission losses 

∑ 𝑃𝑗

𝑁𝑔

𝑗=1

= 𝑃𝑇 + 𝑃𝐿 (26) 

where 𝑃𝑇  is the total power demand (in MW), and 𝑃𝐿 , which is the transmission 

network loss (in MW), is generally computed by using B-coefficients (Wood and 
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Wollenberg 2003) and is given by 

𝑃𝐿 = ∑ ∑ 𝑃𝑗𝐵𝑗𝑘𝑃𝑘

𝑁𝑔

𝑘=1

𝑁𝑔

𝑗=1

+ ∑ 𝑃𝑗𝐵𝑗0

𝑁𝑔

𝑗=1

+ 𝐵00 (27) 

where 𝐵𝑗𝑘 , 𝐵𝑗0  and 𝐵00 are known as the loss coefficients. [𝐵𝑗𝑘] is an 𝑁𝑔 × 𝑁𝑔 

matrix, in which the elements are all constants under normal conditions. 

B. Generation Limits 

The power generation of each unit should vary between its lower production limit 

(𝑃𝑗
𝑚𝑖𝑛) and upper one (𝑃𝑗

𝑚𝑎𝑥): 

𝑃𝑗
𝑚𝑖𝑛 ≤ 𝑃𝑗 ≤ 𝑃𝑗

𝑚𝑎𝑥 , (𝑗 = 1, 2, ⋯ , 𝑁𝑔) (28) 

C. Ramp Rate Limits 

Practically, the operating range of all online units should be restricted by their ramp 

rate limits. The increase and reduction of power generation in each generator are limited 

by 

𝑃𝑗 − 𝑃𝑗
0 ≤ 𝑈𝑅𝑗  (29) 

𝑃𝑗
0 − 𝑃𝑗 ≤ 𝐷𝑅𝑗  (30) 

where 𝑃𝑗
0  (in MW) is the previous output power, 𝑈𝑅𝑗  (in MW/h) and 𝐷𝑅𝑗  (in 

MW/h) are the up-ramp and down-ramp limit of the 𝑗th generator. Combining (29) and 

(30) with (28) results in 

max (𝑃𝑗
𝑚𝑖𝑛, 𝑃𝑗

0 − 𝐷𝑅𝑗) ≤ 𝑃𝑗 ≤ min (𝑃𝑗
𝑚𝑎𝑥, 𝑃𝑗

0 + 𝑈𝑅𝑗) (31) 

D. Prohibited Operating Zones 

In actual power system, opening or closing the steam valve always causes some 
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prohibited operating zones. Considering the constraint in (28), and to make the load 

demand of a power system avoid the prohibited zones, the feasible operating zones of 

the 𝑗th generator can be described as follows: 

𝑃𝑗 ∈ {

𝑃𝑗
𝑚𝑖𝑛 ≤ 𝑃𝑗 ≤ 𝑃𝑗,1

𝑙

𝑃𝑗,𝑘−1
𝑢 ≤ 𝑃𝑗 ≤ 𝑃𝑗,𝑘

𝑙

𝑃𝑗,𝑛𝑗

𝑢 ≤ 𝑃𝑗 ≤ 𝑃𝑗
𝑚𝑎𝑥

, 𝑘 = 2, 3, ⋯ , 𝑛𝑗  (32) 

where 𝑛𝑗  is the number of prohibited operating zones of the 𝑗th generator, and 𝑃𝑗,𝑘
𝑢  

and 𝑃𝑗,𝑘
𝑢  are the lower and upper bounds of power in the 𝑘th prohibited zones by the 

𝑗th generator, respectively.  

All these four constraints and the objective function together describe the ED 

problem mathematically. Since the ED is a multimodal problem, which has nonsmooth 

and nonconvex cost function along with nonlinear constraints, particle swarm 

algorithms and some other evolutionary algorithms are effective methods to address 

this issue. In this paper, all the aforementioned algorithms were examined on three 

practical power systems. System 1 consists of 15 thermal units with prohibited 

operating zones, ramp rate limits, and transmission network loss. The load demand of 

system 1 is 2630MW. The units’ characteristics and the loss coefficients 𝐵 of system 

1 can be accessed in (Alomoush and Oweis 2018). System 2 consists of 40 generating 

units with valve-point effects. It is adapted from (Chen and Chang 1995), with 

modifications to incorporate the valve-point loading, and its load demand is set to 

10500MW. The input data of system 2 are described in (Sinha et al. 2003). System 3 is 

a 140-unit Korean power system with valve-point effects, prohibited operating zones, 

and ramp rate limits. The load demand is set to 49342 MW and the input data are given 
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in (Park et al. 2009). 

When evolutionary algorithms are applied to the ED problems, a key issue is how 

to handle constraints with efficiency. In this paper, the power balance constraint is 

addressed by adding a penalty term to (23) (Meng et al. 2015). Thus, the objective 

function can be rewritten as 

Minimize    𝐹𝑐𝑜𝑠𝑡 =  ∑ 𝐹𝑗(𝑃𝑗)

𝑁𝑔

𝑗=1

+ 𝐾 |∑ 𝑃𝑗 − 𝑃𝐷 − 𝑃𝐿

𝑁𝑔

𝑗=1

| (33) 

where 𝐾 is the penalty coefficient. If the power balance constraint is violated when 

solving ED problems, the penalty term works by adding a large number to the objective 

function given by equation (23). Therefore, the candidate solutions violating (26) 

should have a relatively large objective function value and will be eliminated gradually 

during the search process. In this paper, 𝐾 was set to 100 for all the three tested power 

systems. 

Before evaluate the candidate solution by using equation (33), any variable in the 

solution cannot be in the range of the prohibited operation area. Therefore, a solution 

containing one or more variables within the prohibited operation area is penalized with 

a very large positive constant, to ensure this kind of solution will be abandoned. 

For any variable of a solution that violates the generation limits or the ramp-rate 

limits, our constraint handling strategy is applied to make 𝑃𝑗 move either towards the 

lower bound or the upper bound of its value range according to equation (34). 

𝑃𝑗 = {

min (𝑃𝑗
𝑚𝑎𝑥 , 𝑃𝑗

0 + 𝑈𝑅𝑗), if 𝑃𝑗 > min (𝑃𝑗
𝑚𝑎𝑥 , 𝑃𝑗

0 + 𝑈𝑅𝑗)

max(𝑃𝑗
𝑚𝑖𝑛, 𝑃𝑗

0 − 𝐷𝑅𝑗) , if 𝑃𝑗 < max(𝑃𝑗
𝑚𝑖𝑛, 𝑃𝑗

0 − 𝐷𝑅𝑗)

𝑃𝑗 , otherwise

 (34) 
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Tables 8 to 10 illustrate the statistical results of the total costs and the 

computational time obtained by each method for the ED problem of system 1 to 3, 

respectively. The t-values listed in these three tables are measured by comparing the 

mean costs of the DCG-RDPSO and those of the other compared algorithms. According 

to these tables, it is clear that the DCG-RDPSO algorithm can get the best results in 

almost every cost-related evaluation criterion, only except the minimum cost for system 

1 and the standard deviation for system 3. More specifically, for all of the three power 

systems, the mean cost and maximum cost obtained by the variants of RDPSO (i.e. 

CRDPSO, RDPSO-Dbeta, and DCG-RDPSO) are much better than those of the other 

algorithms. With respect to the variants of RDPSO, although their mean costs are 

comparable to each other for the 15-unit system (the t-value obtained by CRDPSO and 

RDPSO-Dbeta are both smaller than 1.984 for system 1), the advantage of DCG-

RDPSO over CRDPSO and RDPSO-Dbeta is obvious for the systems with higher 

dimensionalities, demonstrating the effectiveness of the DCG strategy. Furthermore, 

the standard deviation of DCG-RDPSO is also better than those of CRDPSO and 

RDPSO-Dbeta in each tested power system. This indicates that the proposed DCG 

strategy can definitely enhance the robustness of the proposed algorithm. As the 

dimensionality of the problems increases, the superiority of the DCG-RDPSO is also 

reflected in the minimum cost. For system 1, the minimum cost found by DCG-RDPSO 

is very close to those found by several other algorithms (i.e. CRDPSO, RDPSO-Dbeta, 

CPSO, SRPSO and MGDE), but for the other two systems, the DCG-RDPSO can find 

much smaller minimum costs than all the other algorithms. 
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It should be pointed out that although CCPSO-ISM, DFnABC, ESGHS and 

SARGA can get better results than DCG-RDPSO for some CEC-2013 benchmark 

functions according to Table 5, the cost-related statistical results of the ED problems in 

this section indicate that the DCG-RDPSO is superior to these algorithms, especially 

for the high-dimensional systems (system 2 and system 3). According to Tables 8 to 10, 

another advantage of the DCG-RDPSO over DFnABC and ESGHS is that the DCG-

RDPSO takes much less computational time than these two algorithms when solving 

ED problems. The reason is that in each iteration, the DFnABC algorithm needs to 

traverse a certain dimension of all food source positions multiple times to calculate 

various kinds of distances (Cui et al. 2018), and the ESGHS should find the worst 

solution among all the solutions in the harmony memory (Luo et al. 2019), which 

significantly reduces the efficiency of these two algorithms. 

Table 8.  Algorithm comparison for System 1 

 Min. Cost Mean Cost Std. Dev. Max. Cost T-value Mean Time 

CRDPSO 32645.9011 32648.8148 17.4635 32771.0171 0.8501 3.3884s 

RDPSO-Dbeta 32645.8877 32650.0487 12.2873 32699.5838 1.9224 3.4646s 

CPSO 32645.8626 32708.3769 79.0026 32977.1075 5.5719 3.6999s 

FIPS 32710.7139 32784.9386 33.6305 32867.0956 29.3387 5.7585s 

CLPSO 32646.0123 32663.4135 16.6970 32727.0185 7.1252 3.6964s 

CCPSO-ISM 32753.0063 32851.3044 43.6347 32951.5239 33.4747 4.1976s 

SRPSO 32645.8620 32654.5579 22.2930 32742.6581 2.5047 5.7371s 

LIPSO 32932.8640 33104.9754 88.9523 33268.0864 36.7878 24.3035s 

DFnABC 32844.7597 32927.6364 35.9971 33008.0859 55.7129 17.1635s 

ESGHS 32657.5012 32781.9048 90.2803 33097.2414 10.6920 67.7188s 

MGDE 32645.8617 32657.6435 23.2546 32744.7960 3.3483 4.0841s 

SARGA 32838.7315 33019.2272 83.1136 33223.8652 32.0044 5.4489s 

DCG-RDPSO 32645.8793 32646.7335 0.83905 32648.8076  3.4828s 

Table 9.  Algorithm comparison for System 2 

 Min. Cost Mean Cost Std. Dev. Max. Cost T-value Mean Time 

CRDPSO 121540.775 121974.637 399.291 122972.256 2.477 2.0850s 
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RDPSO-Dbeta 121525.651 122028.599 316.171 122832.936 4.065 1.9651s 

CPSO 124522.960 127449.206 1935.292 137467.413 20.677 1.9391s 

FIPS 122125.854 122709.112 271.746 123585.648 19.681 6.0584s 

CLPSO 123079.831 123860.384 269.944 124372.510 45.495 2.1028s 

CCPSO-ISM 125643.100 126562.806 352.625 127167.216 86.334 2.4459s 

SRPSO 123544.417 124566.112 761.101 126374.593 25.102 4.8085s 

LIPSO 128364.270 132352.906 1756.686 136786.490 42.601 26.5188s 

DFnABC 130915.014 134340.868 1770.928 138607.723 50.241 15.0021s 

ESGHS 122837.159 125737.424 885.068 127621.951 31.002 166.8165s 

MGDE 121632.627 121980.113 216.394 122603.362 4.042 2.9415s 

SARGA 124196.816 125924.545 830.826 128393.699 34.522 5.0409s 

DCG-RDPSO 121481.842 121823.957 171.212 122272.178  2.1329s 

Table 10.  Algorithm comparison for System 3 

 Min. Cost Mean Cost Std. Dev. Max. Cost T-value Mean Time 

CRDPSO 1658045.93 1659277.88 1308.58 1662842.71 4.07 15.1219s 

RDPSO-Dbeta 1658080.62 1658936.44 801.98 1662163.81 3.42 14.855s 

CPSO 1723811.80 1769446.92 23737.26 1821888.23 33.37 15.5844s 

FIPS 1660730.35 1661987.43 776.50 1666148.62 28.61 18.1654s 

CLPSO 1659238.93 1660230.31 384.28 1661029.77 22.50 16.3159s 

CCPSO-ISM 1695759.21 1709045.81 4573.86 1715507.24 78.62 14.9456s 

SRPSO 1687971.59 1716153.31 13703.42 1744368.37 30.03 19.6805s 

LIPSO 1726638.89 1812050.04 42662.09 1892142.64 25.70 47.7224s 

DFnABC 1894682.28 1920252.74 13234.63 1969680.08 141.18 27.9847s 

ESGHS 1667101.11 1680913.83 7165.46 1698333.27 22.30 699.6723s 

MGDE 1659062.85 1659720.44 319.09 1660479.31 17.21 16.4821s 

SARGA 1659822.35 1661258.04 863.55 1663871.21 20.73 20.9469s 

DCG-RDPSO 1657996.98 1658510.35 387.82 1660023.36  16.5239s 

In order to visualize how these compared algorithms are reducing the object 

function values with respect to the number of function evaluations, we plotted in Fig. 3 

the convergence curves of each tested algorithm averaged over 51 runs on the ED 

problem of each power system. As shown in Fig. 3, the convergence curves of DCG-

RDPSO are all somewhat similar to the downward trend of the baseline in Fig. 1 and 

Fig. 2. The beginning convergence speed of DCG-RDPSO is not too fast (slower than 

MGDE and SRDPSO in Fig. 3(a), and slower than CRDPSO and RDPSO-Dbeta in Fig. 

3(b) and 3(c)), which ensures enough global search behaviors. Moreover, the 
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characteristics of RDPSO itself and the accelerated convergence operations in the DCG 

strategy together guarantee that the DCG-RDPSO has fast enough convergence speed 

during the whole search process. In the later stage of the search process, the DCG-

RDPSO keeps searching without stagnation and can finally find the best mean result 

among all compared algorithms for each ED problem. All these phenomena 

demonstrate that DCG-RDPSO yielded better convergence properties than its 

competitors. Since DCG-RDPSO has better performance than most of the compared 

algorithms for both benchmark problems (CEC-2013) and real-world problems (ED), 

it can be concluded that the proposed algorithm could be a promising optimizer for 

solving multimodal problems. 
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(c) 

Fig.3 Convergence curves of the tested evolutionary algorithms for (a) 15-unit 

system; (b) 40-unit system; (c) 140-unit system 

5. Conclusions 

This paper proposed a novel diversity-guided strategy for the RDPSO algorithm 

that improves the global and local search abilities of the RDPSO algorithm. This 

strategy divides the RDPSO algorithm into several phases based on a pre-set baseline 

in order to make the x diversity and pbest diversity change in a collaborative manner. 

The operators in the divergence phase and the global search phase promote the 

algorithm to search more globally, and the proper parameter setting in the accelerated 
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convergence phase drives the particles to search in a smaller area to enhance the local 

search ability of the algorithm. The experimental results firstly proved the effectiveness 

of the DCG strategy in improving the overall performance of the RDPSO algorithm, 

and, secondly, showed that the novel DCG-RDPSO algorithm is a promising algorithm 

in solving multimodal problems, due to its good performance and high robustness. In 

future work, we will try to modify this proposed strategy in two ways: one is to set the 

baseline in an automatic way, and the other is to further generalize the strategy to other 

PSO variants. 
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