
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XX, NO. X, XXX 2020 1

LSTM-Assisted Evolutionary Self-Expressive
Subspace Clustering

Di Xu, Tianhang Long and Junbin Gao

Abstract—Massive volumes of high-dimensional data that
evolves over time is continuously collected by contemporary
information processing systems, which brings up the problem
of organizing this data into clusters, i.e. achieve the purpose
of dimensional deduction, and meanwhile learning its temporal
evolution patterns. In this paper, a framework for evolutionary
subspace clustering, referred to as LSTM-ESCM, is introduced,
which aims at clustering a set of evolving high-dimensional data
points that lie in a union of low-dimensional evolving subspaces.
In order to obtain the parsimonious data representation at each
time step, we propose to exploit the so-called self-expressive
trait of the data at each time point. At the same time, LSTM
networks are implemented to extract the inherited temporal
patterns behind data in an overall time frame. An efficient
algorithm has been proposed based on MATLAB. Next, experi-
ments are carried out on real-world datasets to demonstrate the
effectiveness of our proposed approach. And the results show that
the suggested algorithm dramatically outperforms other known
similar approaches in terms of both run time and accuracy.

Index Terms—subspace clustering, evolutionary clustering, self-
expressive models, temporal data, real-time clustering, motion
segmentation, deep learning, LSTM.

I. INTRODUCTION

The recent decade has witnessed a gigantic explosion of
data availability from various modalities and sources due to
the advance of contemporary information processing systems.
For instance, billions of cameras get installed worldwide and
are ceaselessly generating data. This has promoted remarkable
progresses and meanwhile created new challenges on how
to acquire, compress, store, transmit, and process massive
amounts of high-dimensional complex data. High dimension-
alities of data will bring in severe computational as well
as memorial burdens and mostly cut down the performance
of existing algorithms. An important unsupervised learning
problem encountered in such settings deals with finding
informative parsimonious structures characterizing large-scale
high-dimensional datasets. This task is critical for the detection
of meaningful patterns in complex data and enabling accurate
and efficient clustering.

Based on the observation that though the collected dataset is
in high dimension, the intrinsic dimension itself is commonly
much smaller than that of its ambient space. In computer
vision, for example, the number of pixels in an image could be

Di Xu and Junbin Gao are with the Discipline of Business Analytics, The
University of Sydney Business School, The University of Sydney, NSW 2006,
Australia. E-mail: dixu3140@uni.sydney.edu.au; junbin.gao@sydney.edu.au

Tianhang Long is with Beijing Advanced Innovation Center for Future
Internet Technology, Beijing Municipal Key Lab of Multimedia and Intelligent
Software Technology, Faculty of Information Technology, Beijing University
of Technology, Beijing 100124, China. E-mail: long54482000@163.com

rather large, yet most computer vision models use only a few
parameters to describe the appearance, geometry, and dynamic
of a scene. And this fact has motivated the development of
lots of techniques for finding a low-dimensional representation
of a high-dimensional dataset for the purpose of detecting
underlying data characteristics. Traditional approaches, e.g.
principle component analysis (PCA), are under the assumption
that data is sampled from one single low-dimensional subspace
of a high-dimensional space. In reality, the data points could
be yet drawn from a number of subspaces and the membership
of the data points to their corresponding subspaces is probably
unknown. For example, a video sequence might have several
moving objects, and different subspaces might be needed to
describe the motions of their corresponding objects in the
scene. Thus, we need to concurrently cluster the data into
several subspaces as well as detect out a low-dimensional
subspace fitting each group of points. This problem has found
a wide range of applications in motion segmentation and
face clustering in computer vision [1], image representation
and compression in image processing [2], hybrid system
identification in systems theory [3], robust principal component
analysis (RPCA) [4], and robust subspace recovery and tracking
[5].

In the aforementioned settings, apart from the property
that data could be reckoned as a bunch of points lying in
a union of low-dimensional subspaces, data is also acquired
at multiple points in time mostly. Thus, exploring its inherent
temporal behaviors will obtain more information and higher
clustering accuracy. For instance, we all know that feature
point trajectories are related to motions in a video lying
in an affine subspace [6]. Motions in any given short time
interval are associated with motions in their latest past. Thus,
aside from the union-of-subspaces structure in a video data,
the underlying evolutionary structure is as well the key to
characterize motions. As a result, designing proper frameworks
that are capable of exploiting both the union-of-subspaces
and temporal smoothness structures so as to conduct fast and
precise clustering, especially in real-time cases where clustering
is conducted in an online mode and a solution is required at
each time step, is of great interest.

In recent years, researchers have been engaged in using deep
networks to deal with various categories of temporal data and
better performance has been reported in [7], [8]. Among the
existing neural network architectures, recurrent neural networks
(RNNs), especially LSTM, have been proved to have even more
superior performance than those of other networks and, not to
mention, the commonly used traditional models. Meanwhile,
conducting unsupervised clustering with LSTM structure has

ar
X

iv
:1

91
0.

08
86

2v
1

 [
cs

.L
G

]
 1

9
O

ct
 2

01
9

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XX, NO. X, XXX 2020 2

also been explored in diverse settings, See [9] for details.
Nonetheless, till now, few neural-networks (NN) related

algorithms have covered the topic of evolutionary subspace clus-
tering. In the meantime, most researchers focus on exploring
and improving the schemes of static subspace clustering [10]
with solely a few studies taking advantages of the intrinsic tem-
poral patterns within data. Recently, Hashemi and Vikalo [11]
investigated both the evolutionary and a-union-of-subspaces
properties of a motion segmentation problem. They introduced
a convex evolutionary self-expressive model (CESM), an
optimization framework that exploits the self-expressiveness
property of data and learns sparse representations while taking
into account prior representations. However, their processing
of temporal patterns in data only limits in implementing classic
weighted average smoothing techniques, which lead to sub-
optimal efficiency in extracting complex information of data
evolution.

In this paper, we further explore the idea of CESM and
extend their design by utilizing LSTM networks to learn the
evolutionary self-expressive data representation. Our framework
alternates between two steps - LSTM clustering and spectral
clustering - to study both the data evolution and segmentation.
The advantages of the proposed scheme is in two folds; not
only we implement deep networks in seeking the temporal
patterns as well as subspace representation of data, but we
obtain as well a notably faster and more accurate algorithm
compared to the past models.

The rest of this paper is organized as follows. Section II
overviews existing approaches to subspace clustering, evo-
lutionary clustering, and evolutionary subspace clustering.
Section III proposes our LSTM evolutionary self-expressive
subspace clustering framework. Section III-B describes the
implementation of this scheme in MATLAB programming.
Section IV presents experimental results on real-world datasets.
Then, the concluding remarks are stated in section V.

II. BACKGROUND

In this section, we first state the notation used all through
the paper. Next, we recap multiple past subspace clustering,
evolutionary clustering and evolutionary subspace clustering
methods. At the end, we spotlight distinctive features of
the evolutionary subspace clustering framework that we will
introduce in the succeeding sections.

A. Notation

Bold capital letters denote matrices such as X while bold
lowercase letters such as x represent vectors. Sets as well as
subspaces are denoted by calligraphic letters, such as X for a
set and S for a subspace. N is the number of data points in
a set, e.g. X , while D is the corresponding actual dimension
of that set. n is the total number of subspaces that the points
of a set X belong to, with {Si}ni=1. And the dimension of a
subspace S is denoted by d. T is the total number of time steps
in an evolving process while t is a specific timestep constrained
by 1 ≤ t ≤ T . Let {Xt}Tt=1 be a time series in which each Xt

collects all the features of objects at time t. They may have
different structures, such as matrices or tensors, depending on

the context of specific application scenarios. Denote by I is
the identity matrix of appropriate sizes. Further, ‖X‖∗ denotes
the nuclear norm of X defined as the sum of singular values
of X. diag(X) outputs the diagonal matrix of the diagonal
elements in X. tr(X) yields the trace of the matrix X. vec(X)
constructs a vector by orderly stitching all the columns of X
together. Finally, sign(x) returns the sign of its argument and
ceil(x) returns the integer rounding up to its argument.

B. Subspace Clustering

Subspace clustering has been notably highlighted over the
past two decades (see, e.g., [12] and the references therein).
The motivation behind is to arrange data into clusters so as to
find a union of subspaces that the data points are drawn from.
In specific, let {xj ∈ RD}Nj=1 be a given set of points drawn
from a unknown union of n ≥ 1 linear subspace {Si}ni=1 of
unknown dimensions di = dim(Si), 0 < di < D, i = 1, ..., n.
Suppose that Ui is a subspace basis which is to be identified
in most learning tasks.

When the number of subspaces is equal to 1, this problem
of searching for Ui from a set of noised data {xj} comes into
the widely-applied PCA [13]. The ultimate goal of subspace
clustering is to find parameters n, {di}ni=1 and {U i}ni=1

described above as well as the segmentation of data points
with respect to subspaces [12]. In the case of affine subspaces
learning, except for the above parameters to be learned, we
also need to identify a translation vector µi for each affine
subspace. This paper is concerned with the linear subspace
clustering for which we assume that all µi = 0.

Existing studies of subspace clustering can be divided into
four main categories: (i) Algebraic; (ii) Iterative; (iii) Statistical
and (iv) Spectral Clustering methods. Algebraic methods, such
as [1], are mostly designed for linear subspaces and not robust
to noise. Iterative refinement is a relatively efficient technique
in improving the performance of algebraic methods on noisy
data, whereas, its prominent K-planes algorithm [14] suffers
from a rigid requirement on initialization and severe sensitivity
to outliers. Statistical approaches [15] further improve the sub-
optimal results in the aforesaid two categories by specifying
an appropriate generative model for data. Nevertheless, this
class of methods on the whole have theoretical imperfection
and further improvement is needed.

Spectral clustering [16] is a highly desirable technique for
clustering high-dimensional datasets. However, one of the main
challenges in applying spectral clustering to subspace clustering
problems is to define a decent affinity matrix. Since two data
points with a close physical distance do not guarantee to lie
in the same subspace (take the points near intersections as an
instance) and vice versa. As a consequence, typical distance-
based affinity measurements are no longer appropriate in this
case.

To obtain better clustering outcomes for subspace clustering,
researchers have done plenty of trials in constructing an
appropriate pairwise affinity matrix for points lying in multiple
subspaces, such as the factorization and GPCA -based affinity
[1], [6], local subspace affinity (LSA) [17] and spectral local
best-fit flats (SLBF) and locally linear manifold clustering

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XX, NO. X, XXX 2020 3

(LLMC) [18]. However, they still do not well handle the data
points near intersections and will not work properly when it
comes to dependent subspaces.

Lately, approaches based on spectral clustering which assume
data is self-expressive [19] and drawn from a union of
subspaces to form the affinity matrix, which is obtained by
solving an optimization problem that incorporates `1, `2 or
nuclear norm regularization, have become exceedingly trendy.
The self-expressiveness property states that each data point can
be represented by a linear combination of other points in the
same subspaces at the data point. Mathematically, this can be
represented as

X = XC , diag(C) = 0 (1)

where X = [x1, ...,xN] ∈ RD×N is the data matrix and C =
[c1, ..., cN] ∈ RN×N is the matrix of coefficients, sometimes
called the affinity matrix of the dataset. We will use the name
either coefficient matrix or affinity matrix.

Ideally, such an affinity matrix shall demonstrate the so-
called “block” structure if the dataset has been arranged orderly
according to its belonging subspaces. Based on this ideal fact, in
the core, all the self-expressive subspace clustering approaches
manage to handle variants of the optimization problem, which
is

min
C
‖C‖ s.t. ‖X−XC‖ ≤ ξ, diag(C) = 0. (2)

Given C, one can build a matrix A as A = |C|+ |C|T , and
then apply spectral clustering on A to cluster data.

In order to establish an affinity matrix C, the sparse subspace
clustering (SSC) algorithm [19] proceeds by implementing
the basis pursuit (BP) algorithm. Least squares regression
(LSR) [20] employs l2 regularization to find C. Nuclear
norm minimization is applied to low rank subspace clustering
(LRSC) [21] to get C. Feng et al. [22] pursues the block-
diagonal structure of C by deriving a graph Laplacian constraint
based formulation and then proposes a stochastic sub-gradient
algorithm for optimization. Gao et al. [23] proposes multi-view
subspace clustering which conducts clustering on the subspace
representation of every view simultaneously. In [24], low-
rank representation learning and data segmentation are jointly
processed by searching for individual low-rank segmentation
as well as implementing the Schatten p-norm relaxation of the
non-convex rank objective function. Lastly, [25] obtains the
similarity matrix by thresholding the correlations between data
points. Lately, further generalizations of SSC and Low rank
representation (LRR) schemes are presented. In specific, [26]
suggests a SSC-based method that jointly conducts clustering
and representation learning. The SSC was generalized to handle
data with missing information [27], [28].

Li et al. [29] propose the temporal subspace clustering
algorithm which samples a single data point at each time step
and aims at assembling data points into sequential segments,
and then come after by clustering the segments into their
corresponding subspaces.

C. Evolutionary Clustering

Aforementioned works are under the assumption that data
is obtained in an offline mode and will be fixed without any

evolution through time once acquired.
The discussion of evolutionary clustering has been trending

in the past few years and related techniques have been widely
applied in a range of practical settings [30], [31]. Under the
assumption that immediate changes of clustering in a short
period of time are not desirable, evolutionary clustering is the
problem of organizing timestamped data to generate a clustering
sequence by introducing a temporal smoothness framework.
A high-quality evolutionary clustering algorithm should be
capable of well fitting the data points at each time step as well
as generating a smooth cluster evolution that can provide the
data analyst with a coherent and easily explainable model.

Chakrabarti et al. [30] originally propose a generic frame-
work for evolutionary clustering by adding a temporal smooth-
ness penalty term to a static clustering objective function, and
this general framework explores K-means and agglomerative
hierarchical clustering as illustrative examples. Chi et al. [32],
[33] further expand on this idea by suggesting an evolutionary
spectral clustering approach. It constructs the following loss
function (3) that contains both consistency and smoothness
terms

L = αLtemporal + (1− α)Lsnapshot (3)

where Lsnapshot symbolizes the term of consistency, i.e. the
current spectral clustering loss, Ltemporal symbolizes that of
smoothness, and α is a smoothing parameter to decide the
weight of current spectral clustering loss. Equation (3) presumes
a certain degree of temporal smoothness between Xt−1 and Xt,
where the smoothness has the capability of preserving either
the Cluster Quality (PCQ) or Cluster Membership (PCM) [32],
[33].

Rosswog et al. [34] proposes evolutionary extensions of
K-means as well as agglomerative hierarchical clustering by
filtering the feature vectors using a finite impulse response (FIR)
filter which aggregates the estimations of feature vectors. The
affinity matrix is then computed among the filtered outcomes
instead of the feature vectors. Also based on the idea of
adjusting similarities followed by static clustering, AFFECT
algorithm, as an extension to static clustering, is proposed in
[35], where the similarity matrix at a specific time t is assumed
as the sum of a deterministic matrix, i.e. the affinity matrix,
and a Gaussian noise matrix. Nonetheless, for the sake of
searching for an optimal smoothing factor αt, AFFECT makes
rather strong assumptions on the structure of affinity matrices
, which is generated by assuming a block structure for affinity
matrix that only stands when the data at each time step t is a
realization of a dynamic Gaussian mixture model. But this is
generally not true in practice.

D. Evolutionary Subspace Clustering

For the sake of conducting evolutionary clustering at multiple
time steps to temporal data identified by a union-of-subspaces
structure, researchers probably will think about chaining
snapshots from all the time steps together and applying one
specific subspace clustering technique w.r.t. this set [11].
Nevertheless, the concatenation will induce a dramatic rise
in feature numbers and, thus, lead to unwanted increases in
computational complexity. Moreover, by fitting the set with a

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XX, NO. X, XXX 2020 4

single union of subspaces, it’s almost infeasible to uncover the
slight evolutionary changes in the temporal structure of data,
which results in an inefficient temporal evolution of subspaces.

We will consider the real-time motion segmentation task
[36] as an illustration over here, where the aim of this task is to
recognize and track motions in a video sequence. The problem
of real-time motion segmentation is associated with that of
offline motion segmentation [19]. The difference between them
is that by taking use of all the frames in the sequence, clustering
is performed only once in the offline scenario, whereas by
receiving each snapshot of the sequence one at a time, clustering
is performed step by step in the online setting. The generated
subspaces depict the evolution of motions, in which subspaces
in closer snapshots are similar while in more far-apart ones may
significantly deviate. Thus, as in the aforesaid C&C approach,
imposing a sole subspace layout for the whole time sequence
may incur poor clustering outcomes. And a regime that is
capable of judiciously taking advantages of the evolutionary
structure while preserving the union-of-subspaces structure is
in need.

Instead of assuming a common subspace for all clusters,
Vahdat et al. [37]–[39] proposes a bottom-up symbiotic
evolutionary subspace clustering (S-ESC) algorithm. In [31],
[33]–[35], authors propose evolutionary subspace clustering
techniques by employing static clustering algorithms, such as
spectral clustering, etc., to process the affinity matrix and then
apply equation (4) for evolutionary smoothing.

Ct = αtC̄t + (1− αt)Ct−1 (4)

where C̄t and Ct−1 denote the affinity matrix constructed
solely from Xt and smoothed affinity matrix at time t − 1
respectively, and αt is the smoothing parameter at time t. It is
worthwhile mentioning that AFFECT algorithm [35] provides
a procedure for finding the smoothing parameter αt.

Lately, Hashemi et al. [11] propose an ESCM framework
that exploits the self-expressiveness property of data to learn a
representation for Xt and meanwhile takes into account of data
representation learnt in the previous time step by the following
procedure,

Ct = fθ(Ct−1), Xt = XtCt, diag(Ct) = 0, (5)

where fθ(Ct−1) ∈ PC is a parametric family of clustering
representations. In theory, the function fθ : PC →PC could
be any parametric function while the set PC ⊆ RNt×Nt

stands for any preferred parsimonious structure imposed on
the representation matrices at each time instant, e.g., sparse or
low-rank representations.

Hashemi et al. [11] recommended

Ct = fθ(Ct−1) = αU + (1− α)Ct−1, (6)

where the values of parameters θ = (U, α) to be learned specify
the relationship between Ct−1 and Ct, and the innovation
representation matrix U captures changes in the representation
of data points between consecutive time steps.

Though [11] has done a successful trial of evolutionary
subspace clustering with its proposed ESCM framework, merely
employing (6) on time-series smoothing makes the whole

model lack of expressiveness and unable to efficiently unveil
the substantial evolutionary information behind data. In this
paper, to address the aforementioned issues, we propose
to substitute (6) with recurrent LSTM deep networks for
the reason of significant performance of LSTM in learning
complicate temporal patterns under various settings. As the
experimental results demonstrate, our proposed framework does
effectively capture the temporal behaviors of data and achieve a
significantly better accuracy than previous ones, which further
prove the fitting and capability of LSTM networks in processing
temporal information.

III. LSTM EVOLUTIONARY SUBSPACE CLUSTERING

In this section, we will present our model for the evolutionary
subspace clustering based on the recurrent neural networks
LSTM.

A. The Proposed Framework based on LSTM

Let {xt,i}Nt
i=1 be a set of real-valued Dt dimensional vectors

at time t, and we aggregate them into a matrix as Xt =
[xt,1, ...,xt,Nt

] ∈ RDt×Nt . All the data points at time step t are
drawn from a union of nt evolving subspaces {St,i}nt

i=1 with
dimensions {dt,i}nt

i=1. And the full dataset is D = {Xt}Tt=1.
Without a loss of generality, we assume that the columns
of Xt are normalized vectors with unit l2 norm. Due to the
underlying union of subspaces structure, the data points at each
time step themselves satisfy the self-expressiveness property
[19] formally stated in equation (1) of Section II-B.

The main purpose of most existing static subspace clustering
algorithms is to partition {xt,i}Nt

i=1 into nt groups so as to
allocate data points that belong to the same subspace into the
same cluster. Manipulating the self-expressive characteristic of
data does improve the progress of exploiting the fact that a
collection of data points belongs to a union of subspaces.

In numerous applications of subspace clustering, apart from
lying in a union of subspaces, data is also of temporal patterns,
which makes researchers get started on exploring the self-
expressiveness based evolutionary subspace clustering. Still, the
past studies focus on applying weighted average akin methods
or other relatively simple temporal processing models to smooth
the temporal clustering results at multiple time steps [11], with
less people taking advantage of the capability of deep learning
methods in learning data evolution.

Upon their chain-like nature, recurrent neural networks
(RNNs) have been showed to have excellent performance on
persisting past information, which naturally works for scenarios
of processing various types of sequences. Further, Long short
term memory (LSTM), a very special kind of RNNs well
capable of learning long term dependencies, works much better
than the standard version of RNNs for many tasks [40]. To this
end, we propose to find a representation matrix Ct for each
time t using LSTM networks, such that fθ in equation (5) is
instead implemented by LSTM networks. We will refer to our
proposed evolutionary subspace clustering scheme that satisfies
equation (5), with fθ expressed by LSTM networks, as LSTM
evolutionary subspace clustering method (LSTM-ESCM) in
what follows.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XX, NO. X, XXX 2020 5

An LSTM block consists of three inputs - cell and hidden
states generated from time step t− 1 and data information at t,
two outputs - processed cell and hidden states for timestamp t,
and in between are multiple gates to optionally let information
through. In our scenario, as shown in Fig. 1, we use Mt−1

and Mt to denote the cell states at time step t− 1 as well as t,
which represent the memories of previous and current blocks.
Ct−1 and Ct are hidden states, i.e. our smoothed clustering
results, at time step t− 1 and t. Xt is our input data at time
point t. And then the proposed LSTM-ESCM is proceeded by
equations in (7), where M̃t, ft, it, and ot are new cell state
candidate values, forget, input, and output gates of current
block at timestamp t correspondingly.

Figure 1. LSTM network structure of LSTM-ESCM

ft = σ(Wf · [Ct−1,Xt] + bf)

it = σ(Wi · [Ct−1,Xt] + bi)

M̃t = tanh(Wm · [Ct−1,Xt] + bm)

Mt = ft ∗Mt−1 + it ∗ M̃t

ot = σ(Wo · [Ct−1,Xt] + bo)

Ct = ot ∗ tanh (Mt)

(7)

According to the above LSTM, the hidden state Ct can
be represented as a function of Ct = fθ(Ct−1,Xt) where θ
denotes all the networks parameters W ’ss and b’s. We propose
to use the hidden state as the self-expressive matrix, hence the
natural requirement according to equation (1) prompts us to
construct the following optimization regime

min
θ

1

2
‖Xt −Xtfθ(Ct−1,Xt)‖2F ,

s.t. diag(Ct) = 0.
(8)

After getting a solution to (8) by solving the general constrained
representation learning problem, we build an affinity matrix
At = |Ct|+ |Ct|T and then apply spectral clustering to At.

B. Implementation of LSTM-ESCM

To implement the framework introduced in the last sub-
section, we shall carefully define the learning objective —
the loss function for the model. The basic building block (8)
consider the consistent requirement at the timestamp t. Given
that the hidden state variable Ct is being used as the data
self-expressive matrix, we shall propose the following different
models

1) Model 1:: In this model, we will train the proposed
LSTM with the following loss function over the data sequence

min
θ

L =
1

2T

T∑
t=1

‖Xt −XtCt‖2F , s.t. diag(Ct) = 0 (9)

We call this the Plain LSTM-ESCM.
2) Model 2:: In the sparse subspace clustering, it is

desired that the self-expressive matrix should be sparse. There
are different ways to achieve this. For example, based on
the deep learning approach, we can add an drop-out layer
on the topic of hidden state output. However to have an
intuitive implementation, we propose adding a sparse-inducing
regularization to the loss function. This introduces out the
so-called Sparse LSTM-ESCM

min
θ

L =
1

2T

T∑
t=1

‖Xt −XtCt‖2F + λ

T∑
t=1

‖Ct‖1,

s.t. diag(Ct) = 0. (10)

where ‖·‖1 is the `1 norm of the matrix, equal to the sum of the
absolute values of all the matrix elements. When λ = 0, this
model goes back to the Plain LSTM-ESCM. So we will only
analyze the model Sparse LSTM-ESCM, i.e., LSTM-ESCM.

To conduct the backpropagation for training the LSTM with
the new loss function, we shall work out the derivative of
the loss function with respect to the hidden state variable
Ct. Obviously, as shown in Figure 1, the output of our last
layer is the self-expressive matrix Ct ∈ RNt×Nt while the
target is Xt ∈ RDt×Nt1. Specifically consider the loss term at
timestamp t,

L =
1

2
‖Xt −XCt‖2F + λ‖Ct‖1

=
1

2
tr((I−Ct)

TXT
t Xt(I−Ct)) + λ‖Ct‖1

=
1

2
tr((XT

t Xt)((I−Ct)(I−CT
t))) + λ‖Ct‖1 (11)

and its corresponding derivative is

∂L

∂C t
= (XT

t Xt)(Ct − I) + λsign(Ct).

We know the size of XT
t Xt ∈ RNt×Nt , as new targets, is

same as the size of Ct ∈ RNt×Nt , as the output from the
network.

1As these dimensions of those two: input and output variable, do not align,
it is impossible to define a customized loss function in MATLAB deep learning
toolbox. But fortunately we have managed to rewrite the loss as the form that
is compatible with the requirement.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XX, NO. X, XXX 2020 6

C. Data Structure in MATLAB Implementation
We have re-written the loss function in such a way that the

new target data XT
t Xt ∈ RNt×Nt has the same size as that

of Ct ∈ RNt×Nt , as the output from the network. This has
satisfied the requirement in MALTAB deep learning toolbox.

Another issue with MATLAB deep learning toolbox is that
the LSTM layer only accepts vector sequence, thus we have
to convert our inputs and targets into vectors.

At any time point t, we have a data matrix Xt containing
features for Nt objects (to be clustered) in columns while
the rows corresponding to Dt features of objects. That is
Xt ∈ RDt×Nt . In the most experiments of this paper, we have
assumed we always have Nt objectis to be clustered at any
time step.

However if the number of objects at different timestamps is
different, we suggest a full size LSTM should be constructed
with the largest N0. If an Xt has less columns than N0, we will
randomly add N0−Nt columns of zero vectors. In calculating
the loss and derivatives, we will take out those terms cij where
either i or j is one of column indices where zeros vectors
are added. Intuitively we are not care about those similarity
cij’s. More formally, we can see it in this way. For the sake of
convenience, we assume that after adding zero columns we have

X̂t = [Xt,0]. Denote I − Ct =

I11 −C11 I12 −C12

I21 −C21 I22 −C22

.

Note that I12 = IT21 = 0. Then for the loss over the LSTM,
the term concerning us is

‖X̂t − X̂tCt‖2F = ‖X̂t(I−Ct)‖2F
=‖

[
Xt(I11 −C11) −XtC12

]
‖2F

=‖Xt(I11 −C11)‖2F + ‖XtC12‖2F
The first term is actually the loss for the data Xt without
adding any zero columns, so we can remove the second term
when calculating loss. Or except for C11, on the top of the
hidden state, we can add a layer zeroing out all C12,C21 and
C22.

For a full dataset D , it is a general practice to break down the
time series into shorter sections of sequence. For example, using
a moving window to slide out a length St shorter sequence, or
cut the entire sequence into many shorter sequences without
overlapping. The number of such shorter sequences is denoted
by N , i.e., the training number (or the total number of training
and testing), and these sequences will be sent into networks
for training purpose individually. Our data is processed by the
former option.

Under MATLAB syntax, we organize each “data” (a shorter
sequence) in the following matrix

Xi = [vec(Xti+1), ..., vec(Xti+s)] ∈ R(Dt×Nt)×St

where i = 1, 2, ..., N . All these training data in matrix should
be organized into MATLAB cells of size N × 1, that is,

Xtrain = {X1, ...,XN}
Given the special loss function defined in (11), we organize

the target data as

Yi = [vec(XT
ti+1Xti+1), ..., vec(XT

ti+sXti+s)] ∈ RN
2
t ×St

and the target data Ytrain will be organized into MATLAB cells
of size N × 1 as well, which is

Ytrain = {Y1, ...,YN}

Similarly, the output clustering and affinity results for each
sequence will be

Ci = [vec(Cti+1), ..., vec(Cti+s)] ∈ RN
2
t ×St

and

Ai = [vec(Ati+1), ..., vec(Ati+s)] ∈ RN
2
t ×St

and all these outputs will be stored into MATLAB cells of size
N × 1 as

C = {C1, ...,CN}

and
A = {A1, ...,AN}.

D. Network Architecture

1) Architecture 1:: This is a individual sequence training
model. In this setting, we will construct a LSTM architecture
accepting the sequences of Xi as input for training purpose. The
training process of each sequence is independent. Meanwhile,
during training, a single column of Xi will be sent into the
network architecture at each time step. Hence, in each t, the data
dimension is DtNt × 1. As each target in the target sequence
is in dimension NtNt × 1, directly taking the output from the
LSTM to the target will need a hidden dimension of NtNt×1.
This will produce huge numbers of weight parameters in LSTM
at scale of O(Dt × N3

t). We will use an LSTM of a much
smaller hidden input size h and then use a fully connected
layer to connect LSTM with the target.

As constrained in (5), we do not expect the network
to produce the diagonal elements of each Ct ∈ RNt×Nt .
Therefore, the number of entries of the output from the fully
connected layer should be N2

t − Nt. To match MATLAB
requirement on the Regression Layer, we will custom a padding
layer to add zeros back to the diagonal of Ct to make sure
diag(Ct) = 0. To this end, we have defined two custom
layers: one for padding and one for loss. Plus, the new custom
regression layer will take a parameter for λ > 0.

The algorithm can be summarized as Algorithm 1.
2) Architecture 2:: This is a sequence-to-sequence training

model, and we will call it ”Solver” in the following experiment
section. In this training, the working mechanism is mostly the
same with Architecture 1, except that the model accept all
sequences of Xtrain and Ytrain as input and output separately
and train them with one model in a whole.

The algorithm can be summarized as Algorithm 2.
The networks for both architectures can be defined in

MATLAB code as
layers = [...
sequenceInputLayer(Dt ∗Nt)
lstmLayer(h, ’OutputMode’, ’sequence’)
fullyConnectedLayer(Nt ∗Nt −Nt)
myPaddingLayer(Nt)
myRegressionLayer(’Evolving’, λ)];

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XX, NO. X, XXX 2020 7

Algorithm 1: Architecture 1 of LSTM-ESCM Algorithm
Input: Training dataset Xtrain. Target dataset Ytrain.

Regulariser λ. Hidden size h. Learning rate η.
1: for i = 1, 2, ..., N do
2: Apply (5), (7), and (8) to conduct clustering training

with LSTM networks and generate Ci;
3: Construct affinity matrix Ai from Ci;
4: Implement spectral clustering to Ai to obtain data

segmentation;
5: end for

Algorithm 2: Architecture 2 of LSTM-ESCM Algorithm
Input: Training dataset Xtrain. Target dataset Ytrain.

Regulariser λ. Hidden size h. Learning rate η.
1: Apply (5), (7), and (8) to conduct clustering training with

LSTM networks on all sequences and generate C ;
2: for i = 1, 2, ..., N do
3: Construct affinity matrix Ai from Ci;
4: Implement spectral clustering to Ai to obtain data

segmentation;
5: end for

IV. THE EXPERIMENTAL RESULTS

In this Section, we investigate the performance of our
proposed model. All experiments are carried out on a laptop
machine running a 64-bit operating system with Intel Core
i7-7660U CPU @ 2.50GHz and 16G RAM with MATLAB
2019a version.

A. Real Time Motion Segmentation Tasks

The motion segmentation problem - recovering scene ge-
ometry and camera motion from a sequence of images - is
a very crucial pre-processing step for multiple applications
in computer vision, such as surveillance, tracking, action
recognition, etc, and has attracted much of the attention of the
vision community over the last decade [6], [41]. The problem
is formed as clustering a set of two dimensional trajectories
extracted from a video sequence with several rigidly moving
objects into groups; the resulting clusters represent different
spatial-temporal regions.

The video sequence is often times obtained as a stream of
frames and it is mostly processed in a real-time mode [36]. In
the real-time setting, the tth snapshot of Xt (a time interval
consisting of multiple video frames) is of dimension 2Ft×Nt,
where Nt is the number of trajectories at tth time interval, Ft
is the number of video frames received in tth time interval,
nt is the number of rigid motions at tth time interval, and
F =

∑
t Ft denotes the total number of frames [11].

As the obtained video sequence is identified by its temporal
pattern, the real-time motion segmentation problem has a good
chance of getting solved by evolutionary subspace clustering
algorithms. Specifically, the trajectories of nt rigid motions
sit in a set of nt low-dimensional subspaces in R2Ft at tth
snapshot, each having no more than dt = 3nt dimension
[41]. In contrast, offline evolutionary subspace clustering is

Table I
DISTRIBUTION OF THE NUMBER OF POINTS AND FRAMES.

2 Groups 3 Groups

Seq. Points Frames # Seq. Points Frames

Check. 78 291 28 26 437 28

Traffic 31 241 30 7 332 31

Articul. 11 155 40 2 122 31

All 120 266 30 35 398 29

Point Distr. 35-65 20-24-56

conducted on the whole video sequence, and thus we will
expect much higher accuracy than that in the online structures.
Whereas, offline modes solely limit in several specific situations
and cannot be well extended to the settings where a few motions
gradually vanish or new motions come up in the video sequence
[11]. To validate the performance of the proposed LSTM-ESCM
framework, Hopkins 155 database [6] is considered here.

B. Hopkins 155 Dataset

The database collects 50 video sequences of indoor and
outdoors scenes containing two or three motions, in which
each video sequence X with three motions was split into three
motion sequences Xg12, Xg13 and Xg23 containing the points
from groups one and two, one and three, and two and three,
respectively. This gives a total of 155 motion sequences: 120
with two motions and 35 with three motions, in which the
number of checkerboard sequences is 104, traffic is 38, and
articulated/non-rigid is 13.

Checkerboard sequences are indoor scenes taken with a
handheld camera under controlled conditions. The checkerboard
pattern on the objects is used to assure a large number of tracked
points. Traffic scenes are taken by a moving handheld camera
and most of them contain degenerate motions, particularly linear
and planar motions. Articulated/non-rigid sequences display
motions constrained by joints, head and face motions, people
walking, etc [6].

The entire database is available at [42]. Table I reports the
number of sequences and the average number of tracked points
and frames for each category. In the entire dataset, per sequence,
the number of points ranges from 39 to 556, while frames from
15 to 100. Point distribution represents the average distribution
of points per moving object, where the last group corresponds
to the camera motion (motion of the background). The statistic
in table is solely computed based on the original 50 videos [6].
Example frames from the videos in the Hopkins 155 dataset
are shown in Figure 2.

C. Experiment 1: Individual Sequence Motion Segmentation

In contrast to most of the previous work which handles the
aforedescribed dataset in an offline mode, we will process it in
a real-time setting. Each video is divided into T data matrices
{Xt}Tt=1 so that Ft ≥ 2n for a video sequence with n motions.
Next, PCA is applied on Xt and the top D = 4n singular
vectors are kept as the final input to the representation learning
algorithms. The input parameters for LSTM-ESCM are set as

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XX, NO. X, XXX 2020 8

(a) 1R2RC (b) 1R2RCR (c) 1R2RCTA (d) 1R2RCTB

(e) cars1 (f) car2 (g) cars2.06 (h) cars10

(i) arm (j) truck1 (k) kanatani1 (l) people1

Figure 2. Sample images from some sequences in the database with tracked points superimposed.

Table II
PERFORMANCE COMPARISONS OF STATIC SUBSPACE CLUSTERING, AFFECT AND CESM BENCHMARK ALGORITHMS ON HOPKINS 155 DATASET

Learning Method
Static AFFECT CESM

error (%) runtime (s) error (%) runtime (s) error (%) runtime (s)

BP 10.76 1.92 9.86 1.29 8.77 1.32

OMP 31.66 0.06 14.47 0.03 6.85 0.03

AOLS (L = 1) 16.27 0.27 9.27 0.20 8.24 0.22

AOLS (L = 2) 8.54 0.5 6.17 0.23 5.70 0.25

AOLS (L = 3) 6.97 0.76 5.92 0.26 5.60 0.28

λ = 0.1, h = ceil(Nt

5) and η = 0.001 for each sequence. Note
that Nt is the same for each sequence.

A specific static subspace clustering algorithm [10], AF-
FECT [35] ,and CESM [11] are used as benchmarks for
our proposed framework. Static subspace clustering applies
subspace clustering at each time step independently from the
previous outcomes; AFFECT and CESM both applies spectral
clustering [16] on the weighted average of affinity matrices
At and At−1. The default choices for the affinity matrix
in AFFECT are the negative squared Euclidean distance or
its exponential form, while the affinity matrices in CESM
are explored under the self-expressive properties [19] of X.
Under its original settings, AFFECT achieves a clustering
error of 44.1542% and 21.9643% using the negative squared
Euclidean distance or its exponential form, respectively, which,
as presented in Table II, is inferior even to the static subspace
clustering algorithms. Hence, to fairly compare the performance

of different evolutionary clustering strategies, BP [19], [43],
OMP [44], and AOLS (L = 1, 2, 3) [45], [46] are employed
to learn the representations for all the benchmark schemes,
including AFFECT. Plus, the results are averaged over all
sequences and time intervals excluding the initial time interval
t = 1. The initial time interval is excluded because for a
specific representation learning method (e.g., BP), the results
of static as well as evolutionary subspace clustering coincide
[11].

The performances of multiple benchmark schemes are
presented in Table II, where all the error rates are smoothing
(training) errors, while the performances of our proposed
LSTM-ESCM framework are shown in Table III, in which
both smoothing errors as well as test errors on the last one
or two snapshots of each sequence are displayed. Note that
for the CESM algorithm, though authors in [11] list results
corresponding to both a constant smoothing factor and a

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XX, NO. X, XXX 2020 9

Table III
PERFORMANCE OF PROPOSED FRAMEWORK ON HOPKINS 155 DATASET

Learning Method
smoothing Test on 1 snapshot Test on 2 snapshots

error (%) runtime (s) error (%) error (%)

Proposed LSTM-ESCM 0.005 0.13 4.42 4.42

smoothing factor achieved by using their proposed alternating
minimization schemes, we will solely keep the later one as
our benchmark.

As presented in Table II, for all the representation learning
schemes, static subspace clustering has the highest clustering
errors among all benchmark models due to not incorporating
any knowledge about the representations of the data points at
other times, while CESM performs relatively better than its
AFFECT counterparts. For runtimes, methods rooted on OMP
are the most time-efficient, whereas BP-based approaches have
the slowest processing speed. The outcomes in Table III show
that the cluster errors of LSTM-ESCM is fairly promising and
the training error is not even in the same scale as those in Table
II and meanwhile even the test clustering outcomes perform
better than the training error rates of all our benchmark models.
Plus, apart from a bit slower than methods based on the OMP
optimization regime, the runtime of our proposed framework
is also quite superior.

D. Experiment 2: Overall Motion Segmentation Solver

In the previous experiment, we explored the performance
of the LSTM-ESCM model in segmenting motion sequence.
Each sequence has its own evolving LSTM-ESCM model.

In the following experiment, we want to explore whether
we can build up a well performed LSTM-ESCM for a number
of motion sequence so that the learned LSTM can be used as
a universal solver for the affinity matrix Ct for any sequences
from the similar video contexts. Our method is to train the
LSTM-ESCM in a whole by using the sequence data from
multiple different motion sequences. To make the training task
easier, we make an assumption that the number of keypoints
to be segmented is the same for all the sequence.

This experimental study is still set on the Hopkins Motion
155 dataset. Since, in this set, the number of keypoints for
each sequence varies from 63 to 548, whereas our assumption
for building the overall LSTM-ESCM solver is under the
setting of uniform number of keypoints. Thus, in our attempts,
300 keypoints are set as the target for qualified sequences.
To achieve that, we first filter out 21 specific sequences by
thresholding between 300 and 350 keypoints in their original.
Then, by limiting 300 keypoints for all the 21 selected ones,
we randomly remove equal number of excess keypoints in all
motions for each sequence. Next, 17 sequences are randomly
selected as the training set and the rest 4 is left as test set.
Finally, to this end, the LSTM-ESCM solver is built by learning
the whole training set altogether. The error rate we get on test
set is 32.86%, and the training time is 850.34s.

E. Experiment 3: Ocean Water Mass Clustering

The Argo Program has succeeded in achieving more than 13
years of global coverage from 2004 to the present. The website
http://sio-argo.ucsd.edu/RG Climatology.html hosts the Argo
dataset with related ocean observations from other programs.
In this experiment, we will apply our evolutionary subspace
clustering algorithm to analyse the ocean temperature and
salinity profiles for ocean water mass clustering.

Study [47] shows that a body of water with a common
features such as salinity and temperature can be used to charac-
terize a watermass. Analysing water masses can facilitate our
understanding of global climate change, seasonal climatological
variations, ocean biogeochemistry, and ocean circulation and
its effect on transport of oxygen and organisms.

To demonstrate the ability and performance of our LSTM
evolutionary subspace clustering in modeling various real-world
problems, we conduct an experiment on clustering water masses
based on the salinity and temperature profiles. The dataset
considered, downloable from the above website, tracks the
ocean temperature and salinity by Argo ocean observatory
system comprising more than 3000 floats which provide
100,000 plus profiles each year. These floats cycle between the
oceansurface and 2000m depth every 10 days, taking salinity
and temperature measurements at varying depths. The dataset
contains normalized monthly averages (from January 2004
and December 2016) of ocean salinity and temperature with 1
degree resolution worldwide.

We will take a subset of data covering the location near the
coast of South Africa where the Indian Ocean meets the South
Atlantic, specifically the area is at at latitudes 25° South to
55° South and longitudes 10° West to 60° East.

At each gridded location, we construct a feature vector
of dimension 48 consisting of (normalized) salinity and
temperature values of two years (24 months) at the depth
level measured at 1000 dbar. There are in total of 1684 valid
gridded location. Hence at each time step t, the data Xt is a
matrix of size 48× 1684. Our evolutionary sequence consists
of 6 time steps, i.e., t = 1 for Jan 2004 - Dec 2005; t = 2 for
Jan 2006 - Dec 2007; t = 3 for Jan 2008 - Dec 2009; t = 4
for Jan 2010 - Dec 2011; t = 5 for Jan 2012 - Dec 2013; and
t = 1 for Jan 2014 - Dec 2015.

The tunable parameters in model design and training are set
to λ = 0.01, LSTM hidden size h = 200, and the maximal
epoch T = 300. For the final clustering, we assume the number
of clusters to be 4, accounting for the three well-known and
strong water masses: (1) Agulhas currents, (2) the Antarctic
intermediate water (AAIW), (3) the circumpolar deep water
mass, and (4) other water masses in the area. Our result is
shown in Figure 3(a) while as a comparison the result by

http://sio-argo.ucsd.edu/RG_Climatology.html

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XX, NO. X, XXX 2020 10

using the CESM framework from [11] with a strategy of using
the OLS-based representation learning of level 3 is shown in
Figure 3(b). The CESM model was actually conducted with
a warm start from the initial affinity matrix given the static
Sparse Subspace Clustering (SSC) model [10]. For the LSTM-
ESCM, the initialization was randomly set by using MATLAB
default LSTM initialization. From the experiment we have not
seen any significant impact on the final results.

In terms of applications, every time when a clustering should
be conducted as a new time step, CESM algorithm has to solve
a new SSC problem, however for our LSTM-ESCM this is to
simply conduct a forward step of LSTM-ESCM starting with
the kept hidden state from the last time step.

By comparing the clustering results of LSTM-ESCM and
CESM methods, we can clearly see that LSTM-ESCM is
capable of extracting more complicate patterns from the
underlying data, and correspondingly will have higher chance
of better clustering the water temperature and salinity.

V. CONCLUSION

In this paper, we research on evolutionary subspace clus-
tering, the problem of arranging a set of evolving data points
which in actual fact lie in a union of low-dimensional evolving
subspaces, and proposed the LSTM-ESCM framework to
cope with the related applications. Our proposed model takes
advantage of the self-expressive property behind data so as
to learn out the parsimonious representation of data at each
timestamp while using LSTM deep networks to conduct
temporal information learning over the whole data sequence.
Under the MATLAB deep learning toolbox, we combine its
predefined sections and our customized loss functions to realize
our proposed model. Then, the experiment is executed on
real-world well-known datasets. The experimental outcomes
demonstrate that, compared to the benchmark models, our
model remarkably dominates in the case of both run time and
accuracy.

Nonetheless, even after adding in a fully connected layer to
lower down the computational cost of LSTM-ESCM, this model
is for now still only capable of processing small to medium-
scale datasets. Thus, how to expand our algorithm to solve the
computational infeasibility of real-world high-dimensional data
is of great interest.

For future research interests, there are four directions to
be pointed out. First, it would be worthwhile to further
expand the LSTM-ESCM scheme to other subspace clustering
methods, such as the approaches relying on seeking low-
rank representations, etc. Second, analysis of the theoretical
foundation of subspace clustering to interpret and analyze the
performance of the proposed model would be meaningful. Next,
apart from LSTM networks, other neural network architectures
could also be exploited for conducting temporal smoothing.
Lastly, how to apply LSTM-ESCM to other evolving learning
tasks, such as the topic of variational continual learning [48],
is also of great interest to explore.

REFERENCES

[1] R. Vidal, R. Tron, and R. Hartley, “Multiframe motion segmentation
with missing data using power factorization and GPCA,” International
Journal of Computer Vision, vol. 79, no. 1, pp. 85–105, 2008.

[2] Z. Li, J. Tang, and X. He, “Robust structured nonnegative matrix
factorization for image representation,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 29, no. 5, pp. 1947–1960, 2017.

[3] Y. Zheng, J. Ma, and L. Wang, “Consensus of hybrid multi-agent systems,”
IEEE Transactions on Neural Networks and Learning Systems, vol. 29,
no. 4, pp. 1359–1365, 2017.

[4] J. Wright, A. Ganesh, S. Rao, Y. Peng, and Y. Ma, “Robust principal
component analysis: Exact recovery of corrupted low-rank matrices via
convex optimization,” in Advances in Neural Information Processing
Systems, 2009, pp. 2080–2088.

[5] S. Li and Y. Fu, “Learning robust and discriminative subspace with low-
rank constraints,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 27, no. 11, pp. 2160–2173, 2015.

[6] R. Tron and R. Vidal, “A benchmark for the comparison of 3-d
motion segmentation algorithms,” in Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition. IEEE, 2007, pp. 1–8.

[7] X. Cao, Y. Zhong, Y. Zhou, J. Wang, C. Zhu, and W. Zhang, “Interactive
temporal recurrent convolution network for traffic prediction in data
centers,” IEEE Access, vol. 6, pp. 5276–5289, 2018.

[8] N. Laptev, J. Yosinski, L. E. Li, and S. Smyl, “Time-series extreme event
forecasting with neural networks at Uber,” in Proceedings of International
Conference on Machine Learning, no. 34, 2017, pp. 1–5.

[9] M. Wöllmer, F. Eyben, B. Schuller, E. Douglas-Cowie, and R. Cowie,
“Data-driven clustering in emotional space for affect recognition using
discriminatively trained lstm networks,” in Proceedings of Interspeech,
Brighton, UK, 2009, pp. 1595–1598.

[10] R. Vidal, “Subspace clustering,” IEEE Signal Processing Magazine,
vol. 28, no. 2, pp. 52–68, 2011.

[11] A. Hashemi and H. Vikalo, “Evolutionary self-expressive models
for subspace clustering,” IEEE Journal of Selected Topics in Signal
Processing, vol. 12, no. 6, pp. 1534–1546, 2018.

[12] R. Vidal, “Subspace clustering,” IEEE Signal Processing Magazine,
vol. 28, pp. 52 – 68, 04 2011.

[13] I. T. Jolliffe, “Principal component analysis,” Technometrics, vol. 45,
no. 3, p. 276, 2003.

[14] P. S. Bradley and O. L. Mangasarian, “K-plane clustering,” Journal of
Global Optimization, vol. 16, no. 1, pp. 23–32, 2000.

[15] H. Derksen, Y. Ma, W. Hong, and J. Wright, “Segmentation of multi-
variate mixed data via lossy coding and compression,” in Proceedings of
Visual Communications and Image Processing, vol. 6508. International
Society for Optics and Photonics, 2007, p. 65080H.

[16] A. Y. Ng, M. I. Jordan, and Y. Weiss, “On spectral clustering: Analysis
and an algorithm,” in Advances in Neural Information Processing Systems,
2002, pp. 849–856.

[17] J. Yan and M. Pollefeys, “A general framework for motion segmentation:
Independent, articulated, rigid, non-rigid, degenerate and non-degenerate,”
in Proceedings of European Conference on Computer Vision. Springer,
2006, pp. 94–106.

[18] A. Goh and R. Vidal, “Segmenting motions of different types by
unsupervised manifold clustering,” in Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition. IEEE, 2007, pp. 1–6.

[19] E. Elhamifar and R. Vidal, “Sparse subspace clustering,” in Proceedings
of IEEE Conference on Computer Vision and Pattern Recognition. IEEE,
2009, pp. 2790–2797.

[20] C. Lu, J. Feng, Z. Lin, and S. Yan, “Correlation adaptive subspace
segmentation by trace LASSO,” in Proceedings of IEEE International
Conference on Computer Vision, 2013, pp. 1345–1352.

[21] G. Liu, Z. Lin, S. Yan, J. Sun, Y. Yu, and Y. Ma, “Robust recovery of
subspace structures by low-rank representation,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 35, no. 1, pp. 171–184,
2013.

[22] J. Feng, Z. Lin, H. Xu, and S. Yan, “Robust subspace segmentation with
block-diagonal prior,” in Proceedings of IEEE conference on Computer
Vision and Pattern Recognition, 2014, pp. 3818–3825.

[23] H. Gao, F. Nie, X. Li, and H. Huang, “Multi-view subspace clustering,”
in Proceedings of IEEE international Conference on Computer Vision,
2015, pp. 4238–4246.

[24] F. Nie and H. Huang, “Subspace clustering via new low-rank model
with discrete group structure constraint.” in Proceedings of International
Joint Conference on Artificial Intelligence, 2016, pp. 1874–1880.

[25] R. Heckel and H. Bölcskei, “Robust subspace clustering via thresholding,”
IEEE Transactions on Information Theory, vol. 61, no. 11, pp. 6320–6342,
Nov 2015.

[26] C.-G. Li, C. You, and R. Vidal, “Structured sparse subspace clustering:
A joint affinity learning and subspace clustering framework,” IEEE
Transactions on Image Processing, vol. 26, no. 6, pp. 2988–3001, 2017.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XX, NO. X, XXX 2020 11

t = 1

10°W 0° 10°E 20°E 30°E 40°E 50°E60°E

25°S

35°S

45°S

55°S

t = 2

10°W 0° 10°E 20°E 30°E 40°E 50°E60°E

25°S

35°S

45°S

55°S

t = 3

10°W 0° 10°E 20°E 30°E 40°E 50°E60°E

25°S

35°S

45°S

55°S

t = 4

10°W 0° 10°E 20°E 30°E 40°E 50°E60°E

25°S

35°S

45°S

55°S

t = 5

10°W 0° 10°E 20°E 30°E 40°E 50°E60°E

25°S

35°S

45°S

55°S

t = 6

10°W 0° 10°E 20°E 30°E 40°E 50°E60°E

25°S

35°S

45°S

55°S

(a) LSTM-ESCM

t = 1

10°W 0° 10°E 20°E 30°E 40°E 50°E60°E

25°S

35°S

45°S

55°S

t = 2

10°W 0° 10°E 20°E 30°E 40°E 50°E60°E

25°S

35°S

45°S

55°S

t = 3

10°W 0° 10°E 20°E 30°E 40°E 50°E60°E

25°S

35°S

45°S

55°S

t = 4

10°W 0° 10°E 20°E 30°E 40°E 50°E60°E

25°S

35°S

45°S

55°S

t = 5

10°W 0° 10°E 20°E 30°E 40°E 50°E60°E

25°S

35°S

45°S

55°S

t = 6

10°W 0° 10°E 20°E 30°E 40°E 50°E60°E

25°S

35°S

45°S

55°S

(b) CESM-AOLS-L3

Figure 3. The Comparing Results from LSTM-ESCM and CESM Methods: Four types of water masses are identified by different colors. All the clustering
results at six time steps from two methods are shown where t = i in the figure titles show the time steps. The dark red color means the type of Other Water
Masses.

[27] E. Elhamifar, “High-rank matrix completion and clustering under self-
expressive models,” in Advances in Neural Information Processing
Systems, 2016, pp. 73–81.

[28] M. C. Tsakiris and R. Vidal, “Theoretical analysis of sparse subspace
clustering with missing entries,” preprint arXiv:1801.00393, 2018.

[29] S. Li, K. Li, and Y. Fu, “Temporal subspace clustering for human motion
segmentation,” in Proceedings of the IEEE International Conference on
Computer Vision, 2015, pp. 4453–4461.

[30] D. Chakrabarti, R. Kumar, and A. Tomkins, “Evolutionary clustering,”
in Proceedings of the 12th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. New York, NY, USA: ACM,
2006, pp. 554–560.

[31] Y. Chi, X. Song, D. Zhou, K. Hino, and B. L. Tseng, “Evolutionary
spectral clustering by incorporating temporal smoothness,” in Proceedings
of the 13th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, ser. KDD ’07. New York, NY, USA: ACM,
2007, pp. 153–162.

[32] ——, “Evolutionary spectral clustering by incorporating temporal
smoothness,” in Proceedings of the 13th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM, 2007,
pp. 153–162.

[33] ——, “On evolutionary spectral clustering,” ACM Transactions on
Knowledge Discovery from Data, vol. 3, no. 4, p. 17, 2009.

[34] J. Rosswog and K. Ghose, “Detecting and tracking spatio-temporal clus-
ters with adaptive history filtering,” in Proceedings of IEEE International
Conference on Data Mining Workshops. IEEE, 2008, pp. 448–457.

[35] K. S. Xu, M. Kliger, and A. O. Hero Iii, “Adaptive evolutionary clustering,”
Data Mining and Knowledge Discovery, vol. 28, no. 2, pp. 304–336,
2014.

[36] S. M. Smith and J. M. Brady, “ASSET-2: Real-time motion segmentation
and shape tracking,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 17, no. 8, pp. 814–820, 1995.

[37] A. Vahdat, M. Heywood, and N. Zincir-Heywood, “Bottom-up evolution-
ary subspace clustering,” in IEEE Congress on Evolutionary Computation.
IEEE, 2010, pp. 1–8.

[38] A. Vahdat, M. I. Heywood, and A. N. Zincir-Heywood, “Symbiotic
evolutionary subspace clustering,” in Proceedings of IEEE Congress on
Evolutionary Computation. IEEE, 2012, pp. 1–8.

[39] A. Vahdat and M. I. Heywood, “On evolutionary subspace clustering
with symbiosis,” Evolutionary Intelligence, vol. 6, no. 4, pp. 229–256,
2014.

[40] T. N. Sainath, O. Vinyals, A. Senior, and H. Sak, “Convolutional,
long short-term memory, fully connected deep neural networks,” in
Proceedings of 2015 IEEE International Conference on Acoustics, Speech
and Signal Processing. IEEE, 2015, pp. 4580–4584.

[41] C. Tomasi and T. Kanade, “Shape and motion from image streams under

orthography: a factorization method,” International Journal of Computer
Vision, vol. 9, no. 2, pp. 137–154, 1992.

[42] “Jhu johns hopkins computer vision machine learning.” [Online].
Available: http://www.vision.jhu.edu/

[43] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition
by basis pursuit,” SIAM Review, vol. 43, no. 1, pp. 129–159, 2001.

[44] E. L. Dyer, A. C. Sankaranarayanan, and R. G. Baraniuk, “Greedy feature
selection for subspace clustering,” The Journal of Machine Learning
Research, vol. 14, no. 1, pp. 2487–2517, 2013.

[45] A. Hashemi and H. Vikalo, “Accelerated sparse subspace clustering,”
preprint arXiv:1711.00126, 2017.

[46] ——, “Sparse linear regression via generalized orthogonal least-squares,”
in Proceedings of IEEE Global Conference on Signal and Information
Processing. IEEE, 2016, pp. 1305–1309.

[47] H. Li, F. Xu, W. Zhou, D. Wang, J. S. Wright, Z. Liu, and Y. Lin,
“Development of a global gridded argo data set with Barnes successive
corrections,” Journal of Geophysical Research: Oceans, vol. 122, no. 2,
pp. 866–889, 2017.

[48] S. Swaroop, C. V. Nguyen, T. D. Bui, and R. E. Turner, “Improving and
understanding variational continual learning,” preprint arXiv:1905.02099,
2019.

Di Xu received MCom in business analytics degree
from The University of Sydney, Australia in 2019 and
B.E. in Materials in Physics from Hebei University
of Technology, China in 2017.Her main research
interests are in machine learning and data analytics.

http://www.vision.jhu.edu/

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. XX, NO. X, XXX 2020 12

Tianhang Long received the B.S. degrees from
Beihang University, Beijing, China, in 2014. He
is currently pursuing the Ph.D. degree in computer
science and technology at the Faculty of Informa-
tion Technology, Beijing University of Technology,
Beijing, China. His current research interests include
deep learning and pattern recognition.

Junbin Gao graduated from Huazhong University of
Science and Technology (HUST), China in 1982 with
a BSc. in Computational Mathematics and obtained
his PhD. from Dalian University of Technology,
China in 1991. He is a Professor of Big Data Ana-
lytics in the University of Sydney Business School
at the University of Sydney and was a Professor in
Computer Science in the School of Computing and
Mathematics at Charles Sturt University, Australia.
He was a senior lecturer, a lecturer in Computer
Science from 2001 to 2005 at the University of New

England, Australia. From 1982 to 2001 he was an associate lecturer, lecturer,
associate professor, and professor in Department of Mathematics at HUST.
His main research interests include machine learning, data analytics, Bayesian
learning and inference, and image analysis.

	I Introduction
	II Background
	II-A Notation
	II-B Subspace Clustering
	II-C Evolutionary Clustering
	II-D Evolutionary Subspace Clustering

	III LSTM Evolutionary Subspace Clustering
	III-A The Proposed Framework based on LSTM
	III-B Implementation of LSTM-ESCM
	III-B1 Model 1:
	III-B2 Model 2:

	III-C Data Structure in MATLAB Implementation
	III-D Network Architecture
	III-D1 Architecture 1:
	III-D2 Architecture 2:

	IV The Experimental Results
	IV-A Real Time Motion Segmentation Tasks
	IV-B Hopkins 155 Dataset
	IV-C Experiment 1: Individual Sequence Motion Segmentation
	IV-D Experiment 2: Overall Motion Segmentation Solver
	IV-E Experiment 3: Ocean Water Mass Clustering

	V Conclusion
	References
	Biographies
	Di Xu
	Tianhang Long
	Junbin Gao

