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Abstract
While machine-learning algorithms have demonstrated a strong ability in detecting Android malware, they can be evaded 
by sparse evasion attacks crafted by injecting a small set of fake components, e.g., permissions and system calls, without 
compromising intrusive functionality. Previous work has shown that, to improve robustness against such attacks, learning 
algorithms should avoid overemphasizing few discriminant features, providing instead decisions that rely upon a large subset 
of components. In this work, we investigate whether gradient-based attribution methods, used to explain classifiers’ deci-
sions by identifying the most relevant features, can be used to help identify and select more robust algorithms. To this end, 
we propose to exploit two different metrics that represent the evenness of explanations, and a new compact security measure 
called Adversarial Robustness Metric. Our experiments conducted on two different datasets and five classification algorithms 
for Android malware detection show that a strong connection exists between the uniformity of explanations and adversarial 
robustness. In particular, we found that popular techniques like Gradient*Input and Integrated Gradients are strongly cor-
related to security when applied to both linear and nonlinear detectors, while more elementary explanation techniques like 
the simple Gradient do not provide reliable information about the robustness of such classifiers.

Keywords  Adversarial machine learning · Adversarial robustness · Android malware · Explainable artificial intelligence · 
Interpretability

1  Introduction

Machine learning systems are nowadays being extensively 
adopted in computer security applications, such as network 
intrusion and malware detection, as they obtained remark-
able performances even against the increasing complexity 
of modern attacks [1, 39, 53]. More recently, learning-based 
techniques based on static analysis proved to be especially 
effective at detecting Android malware, which constitutes 
one of the major threats in mobile security. In particular, 
these approaches showed great accuracy even when tradi-
tional code concealing techniques (such as static obfusca-
tion) are employed [4, 20, 21, 23, 48, 57].

Despite the successful results reported by such 
approaches, the problem of detecting malware created to 
fool learning-based systems is still far from being solved. 
The robustness of machine-learning models is challenged 
by the creation of the so-called adversarial examples, i.e., 
malicious files that receive fine-grained modifications ori-
ented to deceive the learning-based algorithms [9, 13, 29, 
61]. In particular, recent work concerning Android malware 
demonstrated that specific changes to the contents of mali-
cious Android applications might suffice to change their 
classification (e.g., from malicious to benign) [15, 23], even 
though the real-word feasibility of these operations should 
be carefully evaluated [16, 54]. The main characteristic of 
these attacks is their sparsity, meaning that they enforce 
only a few changes to the whole feature set to be effective. 
Such changes may be represented by, e.g., the injection of 
unused permissions or parts of unreachable/unused execut-
able code. For example, adding a component that is loaded 
when the application is started (through a keyword called 
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LAUNCHER) can significantly influence the classifier’s deci-
sion [51].

One of the many reasons why such attacks are so effec-
tive is that classifiers typically assign significant relevance 
to a limited amount of features (this phenomenon has also 
been demonstrated in other applications such as email spam 
filtering). As a possible countermeasure, research showed 
that classifiers that avoid overemphasizing specific features, 
weighting them more evenly, can be more robust against 
such attacks [10, 23, 37]. Simple metrics characterizing this 
behavior were proposed to identify and select more robust 
algorithms, especially in the context of linear classifiers, 
where feature weights can be used as a direct measure of 
a feature’s relevance to each decision [23–25]. In parallel, 
the ability to understand the classifiers behavior by looking 
to the input gradient, i.e. the feature weights in the case of 
linear classifiers, was also explored by multiple works in 
the field of explainable machine learning [2, 6, 59, 60]. In 
particular, it became of interest to figure out if the infor-
mation provided by these gradient-based methods can also 
be employed to understand (and improve) the robustness of 
learning-based systems against attacks [18].

In this paper, motivated by the intuition that the classi-
fiers whose attributions are more evenly distributed should 
also be the more robust, as they rely on a broader set of fea-
tures for the decision, we propose and empirically validate 
a few synthetic metrics that allow correlating the evenness 
of gradient-based explanations with the classifier robustness 
to adversarial attacks. In summary, we make the following 
contributions:

–	 We statistically investigate the possible correlations 
between gradient-based explanations, and the classifiers 
robustness to adversarial sparse evasion attacks;

–	 We propose a new measure called adversarial robustness 
metric, to represent the classifier robustness to adver-
sarial attacks along with an increasing attack power in a 
compact way (Sect. 4);

–	 We assess our findings on the Drebin [4] feature space, 
a popular learning-based detection system for Android, 
using two different large datasets of applications, i.e., 
Drebin [4] and Tesseract [3, 52], and five different clas-
sification algorithms including linear and non-linear Sup-
port Vector Machines, logistic, ridge, and the secured 
linear SVM from [23] (Sect. 5).

The paper is structured as follows. We first provide a 
description of learning-based systems for Android mal-
ware detection (Sect. 2) and their adversarial vulnerabilities 
(Sect. 3). Then, we present the synthetic metrics we use to 
perform our correlation analysis between the evenness of 
gradient-based explanations and the adversarial robustness 
of classifiers (Sect. 4). In Sect. 5 we present the results of 

our investigation, which unveils that, under some circum-
stances, there is a clear relationship between the distribu-
tion of gradient-based explanations and the adversarial 
robustness of Android malware detectors, especially when 
exploiting more advanced explanation techniques such as 
Gradient*Input [51, 59] and Integrated Gradients [60]. After 
a brief description of many related works on Android mal-
ware detectors, adversarial attacks and explainable machine 
learning (Sect. 6), we conclude the paper with a discussion 
on how our findings can pave the way towards the develop-
ment of more efficient mechanisms both to evaluate adver-
sarial robustness and to defend against adversarial Android 
malware examples (Sect. 7).

2 � Android malware detection

Here we provide some background on the structure of 
Android applications, and then we describe Drebin [4], the 
Android malware detection system used in our analysis.

2.1 � Background on android

Android applications are compressed in apk files, i.e., 
archives that contain the following elements: (a) the 
AndroidManifest.xml file, (b) classes.dex 
files, (c) resource and asset files, such as native libraries or 
images, and (d) additional xml files that define the applica-
tion layout. Since Drebin analyzes the classes.dex files 
and the AndroidManifest.xml, we briefly describe 
them below.

Android Manifest  (manifest). The basic information about 
the Android application is included in the AndroidMani-
fest.xml, including its package name or the supported 
API levels, together with the declaration of its components, 
i.e., parts of code that perform specific actions. For example, 
one component might be associated with a screen visual-
ized by the user (activity) or to the execution of background 
tasks (services). Application components can also perform 
actions (through receivers) on the occurrence of specific 
events; for instance, a change in the device’s connectivity 
status (CONNECTIVITY_CHANGE) or the opening of an 
application (LAUNCHER). The manifest also contains the 
list of hardware components and permissions requested by 
the app to work (e.g., Internet access).

Dex bytecode  (dexcode). The classes.dex file 
embeds the compiled source code of the applications, 
including all the user-implemented methods and classes; the 
bytecode can be executed with the Dalvik Virtual Machine 
(until Android 4.4) or the Android runtime (ART). The 
classes.dex may contain specific API calls that can 
access sensitive resources such as personal contacts (sus-
picious calls). Additionally, it contains all system-related, 
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restricted API calls that require specific permissions (e.g., 
writing to the device’s storage). Finally, this file can contain 
references to network addresses that might be contacted by 
the application.

2.2 � Drebin

The majority of the approaches for Android malware detec-
tion employ static and dynamic analyses that extract infor-
mation such as usage of permissions, communications 
through Inter-Component Communication (ICC), system- 
and user-implemented API calls, and so forth [4, 14, 20, 
40, 57].

Drebin is among the most popular and used static detec-
tion approaches. It performs the detection of Android mal-
ware through static analysis of Android applications. In a 
first phase (training), it employs a set of benign and mali-
cious apps provided by the user to determine the features 
that will be used for detection (meaning that the feature set 
will be strictly dependent on the training data). Such features 
are then embedded into a sparse, high-dimensional vector 
space. Then, after the training of a linear machine-learning 
model, the system is able to perform the classification of 
previously-unseen apps. An overview of the system archi-
tecture is given in Fig. 1, and discussed more in detail below.

Feature extraction. First, Drebin statically analyzes a set 
of � training Android applications to construct a suitable 
feature space. All features extracted by Drebin are presented 
as strings and organized in 8 different feature sets, as listed 
in Table 1.

Android applications are then mapped onto the fea-
ture space as follows. Let us assume that an app is repre-
sented as an object z ∈ Z , being Z the abstract space of 
all apk  files. We denote with Φ ∶ Z ↦ X  a function 
that maps an apk file z to a �-dimensional feature vector 
x =

(
x1,… , x�

)⊤
∈ X = {0, 1}� , where each feature is set 

to 1 (0) if the corresponding string is present (absent) in the 
apk file z . An application encoded in feature space may thus 
look like the following:

Learning and Classification. Drebin uses a linear Sup-
port Vector Machine (SVM) to perform detection. It can 
be expressed in terms of a linear function f ∶ X ↦ ℝ , i.e., 
f (x) = w

⊤
x + b , where w ∈ ℝ

� denotes the vector of feature 
weights, and b ∈ ℝ is the so-called bias. These parameters, 
optimized during training, identify a hyperplane that sepa-
rates the two classes in the feature space. During classifica-
tion, unseen apps are then classified as malware if f (x) ≥ 0 , 
and as benign otherwise. In this work, we also consider other 
linear and nonlinear algorithms to learn the classification 
function f (x).

Explanation. Drebin explains its decisions by reporting, 
for any given application, the most influential features, i.e., 
the ones that are present in the given application and are 
assigned the highest absolute weights by the classifier. The 
feature relevance values reported by Drebin correspond 
exactly to its feature weights, being Drebin a linear classi-
fier. For instance, in Fig. 1 it is possible to see that Drebin 
correctly identifies the sample as malware since it connects 
to a suspicious URL and uses SMS as a side-channel for 
communication. In this work, we use different state-of-the-
art explainability methods to measure feature relevance and 
evaluate whether and to which extent the distribution of 

x = Φ(z) �→

· · ·
0
1
· · ·
1
0

· · · }
S2

permission::SEND SMS
permission::READ SMS
· · · }

S5
api call::getDeviceId
api call::getSubscriberId

Fig. 1   A schematic representation ([23]) of Drebin. First, applications 
are represented as binary vectors in a �-dimensional feature space. 
A linear classifier is then trained on an available set of malware and 
benign applications, assigning a weight to each feature. During classi-
fication, unseen applications are scored by the classifier by summing 

up the weights of the present features: if f (x) ≥ 0 , they are classified 
as malware. Drebin also explains each decision by reporting the most 
suspicious (or benign) features present in the app, along with the 
weight assigned to them by the linear classifier [4]

Table 1   Overview of Drebin feature sets

manifest dexcode

S1 Hardware components S5 Restricted API calls
S2 Requested permissions S6 Used permission
S3 Application components S7 Suspicious API calls
S4 Filtered intents S8 Network addresses
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relevance values reveals any interesting insight on adver-
sarial robustness.

3 � Adversarial android malware

Machine learning algorithms are known to be vulnerable to 
adversarial examples. The ones used for Android malware 
detection do not constitute an exception. The vulnerability 
of those systems was demonstrated in [23, 24, 31], and a 
defense mechanism was proposed in [23]. In this section, we 
first explain how an attacker can construct Android malware 
able to fool a classifier, being recognized as benign. Then, 
considering the system called Sec-SVM [23] as a case-study, 
we explain how machine learning systems can be strength-
ened against this attack.

3.1 � Attacking android malware detection

The goal of creating adversarial Android malware that 
evades detection can be formulated as an optimization 
problem, as detailed below. This optimization problem is 
constrained to ensure that the solution provides a functional 
and realizable malware sample, i.e., that the feature changes 
suggested by the attack algorithm are feasible and can be 
implemented as practical manipulations to the actual apk 
input file.

Problem Formulation. As explained in the previous sec-
tion, Drebin is a binary classifier trained on Boolean fea-
tures. To have a malware sample z misclassified as benign, 
the attacker should modify its feature vector x in order to 
decrease the classifier score f (x) . The number of features 
considered by Drebin is quite large (more than one million). 
However, the attacker can reasonably change only few of 
them (sparse attack) to preserve the malicious functionality 
of the application. The attacker has thus an �1-norm con-
straint on the number of features that can be modified. The 
feature vector of the adversarial application can be computed 
by solving the following optimization problem:

where Eq.  (2) is the �1 distance constraint between the 
original x and the modified (adversarial) x′ sample. Eq. (3) 
is a box constraint that enforces the features values of the 
adversarial malware to stay within some lower and upper 

(1)arg min
x
�

f (x�)

(2)s. t. ‖x − x
�‖1 ≤ �

(3)xlb ⪯ x
� ⪯ xub

(4)x
� ∈ {0, 1},

bounds, while Eq. (4) enforces the attack to find a Boolean 
solution. The aforementioned problem can be solved with 
gradient-based optimization techniques, e.g., Projected Gra-
dient Descent (PGD), as described in Alg. 1 [9, 24, 49]. At 
each step, this algorithm projects the feature values of the 
adversarial sample onto the constraints (Eqs. 2, 3), including 
binarization in {0, 1} . 

Algorithm 1 PGD-based attack on Android malware
Input: x, the input malware; ε, the number of features which
can be modified; η, the step size; Π, a projection operator on
the constraints (2) and (3); t > 0, a small number to ensure
convergence.
Output: x′, the adversarial (perturbed) malware.
1: x′ ← x
2: repeat
3: x� ← x′

4: x′ ← Π(x� − η · ∇f(x�))
5: until |f(x′)− f(x�)| ≤ t
6: return: x′

Feature addition. To create malware able to fool the clas-
sifier, an attacker may, in theory, both adding and removing 
features from the original applications. However, in practice, 
removing features is a non-trivial operation that can easily 
compromise the malicious functionalities of the application. 
Feature addition is a safer operation, especially when the 
injected features belong to the manifest; for example, add-
ing permissions does not influence any existing application 
functionality. When the features depend on the dexcode, 
it is possible to add them safely introducing information that 
is not actively executed, e.g., by adding code after return 
instructions (dead code) or methods that are never called by 
any invoke type instructions (i.e., the ones that indicate a 
method call). Therefore, in this work, we only consider feature 
addition. To find a solution that does not require removing 
features from the original application, the attacker can simply 
define xlb = x in Eq. (3). However, it is worth mentioning that 
this injection could be easily made ineffective, simply remov-
ing all the features extracted from code lines that are never 
executed. In this way, the attacker is forced to change the exe-
cuted code, which is more difficult, as it requires considering 
the following additional and stricter constraints. Firstly, the 
attacker should avoid breaking the application functionalities. 
Secondly, they should avoid introducing possible artifacts or 
undesired functionalities, which may influence the semantics 
of the original program. Injecting a large number of features 
may be, therefore, difficult and not always feasible.

3.2 � Sec‑SVM: defending against adversarial 
android malware

In [23], the authors showed that the sparse evasion attack 
described above is able to fool Drebin, requiring the 
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injection of a negligible number of features, and they pro-
pose a robust counterpart of that classifier. The underlying 
idea behind their countermeasure is to enforcing the classi-
fier to learn more evenly distribute feature weights since this 
will require the attacker to manipulating more features to 
evade the classifier. To this end, they added a box constraint 
on the weights w of a linear SVM, obtaining the following 
learning algorithm (Sec-SVM):

where the lower and upper bounds on w are defined, 
respectively, by the vectors wlb = (wlb

1
,… ,wlb

�
) and 

w
ub = (wub

1
,… ,wub

�
) , which are application-dependent. 

Equation (5) can be easily optimized using a constrained 
variant of the Stochastic Gradient Descent (SGD) technique, 
as described in [23].

4 � Do gradient‑based explanations help 
to understand adversarial robustness?

In this work, we investigate whether gradient-based attribu-
tion methods used to explain classifiers’ decisions provide 
useful information about the robustness of Android malware 
detectors against sparse attacks. Our intuition is that the clas-
sifiers whose attributions are usually evenly-distributed rely 
upon a broad set of features instead of overemphasizing only 
a few of them. Therefore, they are more robust against sparse 
attacks, where the attacker can change only a few features, 
having a negligible impact on the classifier decision func-
tion. To verify our intuition, we present an empirical analy-
sis whose procedure is illustrated in Fig. 2 and described 
below. Firstly, we perform a security evaluation on the tested 
classifier, obtaining a compact measure we call Adversarial 
Robustness Metric (see Sect. 4.1), representing its robustness 

(5)
min
w,b

1

2
w
⊤
w + C

∑�

i=1
max

�
0, 1 − yi f (xi)

�

s. t. wlb
k
≤ wk ≤ wub

k
, k = 1,… , �,

to the adversarial attacks along with an increasing number of 
added features � . Then, we compute the attributions for each 
benign and manipulated malware sample x using a chosen 
gradient-based explanation technique (see Sect. 4.2) obtain-
ing the relevance vectors r . For each of those, we propose 
to look for a compact metric that encapsulates the degree 
of Evenness of the attributions (see Sect. 4.3). Finally, com-
paring this value with the adversarial robustness metric, we 
asses the connections between attributions’ evenness and 
the robustness to adversarial evasion attacks. In Sect. 5, we 
present the results of our analysis on five different learning 
algorithms trained on the feature space extracted by Drebin, 
providing the empirical evidence of our intuition.

4.1 � Adversarial robustness metric

We define the robustness to the evasion samples crafted 
injecting a fixed number of features � as:

where �i = �(yi, f (xi)) is the adversarial loss attained by the 
classifier f on the data points in D� = {xi, yi}

n
i=1

 , containing 
the �-sized adversarial samples optimized with Algorithm 1.

Finally, the adversarial robustness metric R of a classifier 
f is defined as the average of R(D�, f ) on different �:

4.2 � Gradient‑based explanation methods

In our analysis, we consider gradient-based attribution meth-
ods, where attribution means the contribution of each input 
feature to the prediction of a specific sample. The positive 
(negative) value of an attribution indicates that the classi-
fier considers the corresponding feature as peculiar of the 

(6)R
(
D�, f

)
=

1

n

n∑

i=1

e−�i ,

(7)R = ��{R(D�, f )}.

Fig. 2   Schematic representation of the analysis employed to verify 
the correlation between explanation evenness and adversarial robust-
ness. First, for each malware in the test set, we create its adversarial 
counterpart. Then, for each of those adversarial applications, we eval-

uate: (1) a measure of the classifier robustness against it (adversarial 
robustness metric) (2)  the evenness of the application attributions 
(explanation evenness). Finally, we asses the correlation between 
them
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malicious (benign) samples. In the following, we review the 
three gradient-based techniques considered in this work.

Gradient. The simplest method to obtain the attributions 
is to compute the gradient of the discriminant function f 
with respect to the input sample x . For image recognition 
models, it corresponds to the saliency map of the image [6]. 
The attribution of the ith feature is computed as:

Gradient*Input. This technique has been proposed in [59] 
and utilized in one of our previous work [51], to identify 
the most influential features for an Android malware detec-
tor trained on sparse data. As we have shown in that paper, 
this approach is more suitable than the previously proposed 
ones when the feature vectors are sparse. The previously 
proposed approaches [6, 55] tended to assign relevance to 
features whose corresponding components are not present in 
the considered application, thus making the corresponding 
predictions challenging to interpret. To overcome this issue, 
this technique leverages the notion of directional derivative. 
Given the input point x , it projects the gradient ∇f (x) onto 
x , to ensure that only the non-null features are considered as 
relevant for the decision. More formally, the ith attribution 
is computed as:

Integrated Gradients. Sundararajan et al. [60] identified two 
axioms that attribution methods should satisfy: implemen-
tation invariance and sensitivity. Accordingly to the first, 
the attributions should always be identical for two function-
ally equivalent networks, e.g. they should be invariant to 
the differences in the training hyperparameters, which lead 
the network to learn the same function. The second axiom 
is satisfied if, for every input predicted differently from a 
baseline (a reference vector that models the neutral input, 
e.g. a black image) and that differs from the baseline in only 
one feature, has, for that feature, a non-zero attribution. In 
the same paper, they proposed a gradient-based explanation 
called Integrated Gradient that satisfies the axioms explained 
above. This method, firstly, considers the straight-line path 
from the baseline to the input sample and computes the gra-
dients at all points along the path. Then, it obtains the attri-
bution cumulating those gradients. The attribution along the 
ith dimension for an input x and baseline x′ is defined as:

(8)Gradienti(x) ∶=
�f (x)

�xi
.

(9)Gradient*Inputi(x) ∶=
�f (x)

�xi
∗ xi.

(10)

IntegratedGradsi(x) ∶=

(
xi − x�

i

)
⋅ ∫

1

�=0

�f
(
x
� + � ⋅

(
x − x

�
))

�xi
d�.

To efficiently approximate the previous integral, one can 
sum the gradients computed at p fixed intervals along the 
joining path from x′ to the input x:

For linear classifiers, where �f∕�xi = wi , this method is 
equivalent to Gradient*Input if x� = 0 is used as a baseline, 
which is a well-suited choice in many applications [60]. 
Therefore, in this particular case, also the Gradient*Input 
method satisfies the abovementioned axioms.

4.3 � Explanation evenness metrics

To compute the evenness of the attributions, we consider 
the two metrics, described below. The first is the one pro-
posed in [10, 37]. To compute the evenness metric, they 
firstly defined a function F(r, k) which, given a relevance 
vector r , computes the ratio of the sum of the k highest rel-
evance values to the sum of all absolute relevance values, 
for k = 1, 2,… ,m:

where r1, r2,… , rm denote the relevance values, sorted 
in descending order of their absolute values, i.e., 
|r1| ≥ |r2| ≥ ⋯ ≥ |rm| and m is the number of considered rel-
evance values ( m ≤ d ). This function essentially computes 
the evenness of the distribution of the relevance among the 
features. The evenest relevance distribution (the one where 
they are all equal), corresponds to F(r, k) = k∕n . Whereas 
the most uneven is attained when only one relevance dif-
fers from zero, and in this case, F(r, k) = 1 for each k value. 
To avoid the dependence on k and to obtain a single scalar 
value, they compute the evenness as:

The range of E1 is [0, 1], E1 = 0 and E1 = 1 indicates respec-
tively to the most uneven and to the most even relevance 
vector.

The second metric we consider is the one proposed in 
[25], based on the ratio between the �1 and �∞ norm:

To have a broader perspective of the attributions’ evenness, 
we compute the metrics on multiple samples, and we average 

(11)

IntegratedGrads
approx

i
(x) ∶=

(
xi − x�

i

)
⋅

p∑

k=1

�f
(
x
� +

k

p
⋅
(
x − x

�
))

�xi
⋅
1

p
.

F(r, k) =

∑k

i=1
�r(i)�

∑m

j=1
�r(j)�

,

(12)E1(r) =
2

m − 1

[
m −

m∑

k=1

F(r, k)

]
.

(13)E2(r) =
1

m
⋅
‖r‖1
‖r‖∞

.
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the results. More formally, we define the explanation even-
ness as:

where ri with i = 1, 2,… , n is the attribution vector com-
puted on each sample of a test dataset D = {xi, yi}

n
i=1

 , and E 
can be equal either to E1 or E2 . In the following, we represent 
the averaged evenness computed considering the per-sample 
metric E1 ( E2 ) with E1 ( E2).

4.4 � Computational complexity

An important aspect to consider when performing the adver-
sarial robustness evaluation of a classifier is the complexity 
of the process. Especially in the case of non-linear clas-
sifiers, computing a full security evaluation curve for this 
purpose may require hundred thousands iterations [13]. 
Because, for each test sample, the corresponding adversarial 
example should be computed, this process involves, for every 
single point, thousand of iterations (and thus of gradient 
and function evaluations) with the chosen optimization algo-
rithm [63]. In this sense, exploiting the gradient-based attri-
butions methods provides instead a massive computational 
advantage. In fact, for both Gradient and Gradient*Input 
methods, only a single gradient evaluation is required to 
obtain the attributions of an input sample, and this gradi-
ent is even identical for all samples in the case of linear 
classifiers (allowing to save even more evaluations). For 
the Integrated Gradients technique, the number of gradient 
evaluations depends on the chosen value of the p parameter 
in Eq. (11) which, however, is usually set to a small number. 
In our correlation analysis, we assume that the attack sam-
ples required to compute the adversarial robustness metric R 
and the attributions for each of the test samples are already 
acquired as part of the security and explainability evalua-
tion of the classifiers. The complexity of the process is then 
given by the computation of the explanation evenness and 
the adversarial robustness metric.

5 � Experimental analysis

In this section, we practically evaluate whether the measures 
introduced in Sect. 4 can be used to estimate the robustness 
of classifiers against sparse evasion attacks. After detail-
ing our experimental setup (Sect. 5.1), we show the clas-
sifiers’ detection performances, both in normal conditions 
and under attack (Sect. 5.2). In our evaluations, we focus on 
the feature addition attack setting (see Sect. 3), as they are 
typically the easiest to accomplish for the adversary. We use 
secml as a framework to implement classification systems, 

(14)E =
1

n

n∑

i=1

E(ri),

explanation techniques, and attack algorithms [50]. Finally, 
we assess the relationship of the proposed evenness metrics 
with our new adversarial robustness metric and the detection 
rate (Sect. 5.3).

5.1 � Experimental setup

Datasets. We use two different datasets of real-world 
Android applications. The first is the Drebin dataset [4], 
consisting of 121, 329 benign applications and 5, 615 mali-
cious samples, labeled with VirusTotal and collected 
between August 2010 and October 2012. A sample is labeled 
as malicious if it is flagged by at least five anti-virus scan-
ners, whereas it is labeled as benign otherwise. The second 
is the Tesseract dataset [52], consisting of 116, 993 benign 
applications and 12, 735 malicious samples, collected from 
AndroZoo [3] between January 2014 and December 2016. 
In Fig. 3 we report the distribution of malware in each data-
set with respect to the number of anti-virus scanners that 
flagged the applications as positive. We can observe how 
for Drebin most samples are flagged by 30–35 scanners, 
while for Tesseract 4–10 scanners detect most of the posi-
tives. This shows how recognizing the samples of the lat-
ter, newer dataset, still represents a significant challenge for 
many scanners.

Training-validation-test splits. We average our results on 
5 runs. In each run, we randomly selected 60,000 apps from 
both datasets to train the learning algorithms, and we used 
the remaining apps for testing.

Classifiers. We compare the standard Drebin implemen-
tation based on a linear Support Vector Machine (SVM) 
against the secured linear SVM from [23] (Sec-SVM), an 
SVM with the RBF kernel (SVM-RBF), a logistic regression 
(logistic) and a ridge regression (ridge).

Parameter setting. Using a 10-fold cross-validation 
procedure, we optimize the parameters of each clas-
sifier to maximize the detection rate (i.e., the frac-
tion of detected malware) at 1% false-positive rate (i.e., 
the fraction of legitimate applications misclassified as 

Fig. 3   Distribution of malware in each dataset with respect to the 
number of anti-virus scanners that flagged the applications as posi-
tive. Data extracted from VirusTotal 
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malware). In particular, we optimize the parameters 
C ∈ {10−2, 10−1,… , 102} for logistic and both linear and 
non-linear SVMs, the kernel � ∈ {10−4, 10−3,… , 102} for 
the SVM-RBF, and � ∈ {10−2, 10−1,… , 102} for ridge. For 
Sec-SVM, we optimized the −wlb = w

ub ∈ {0.1, 0.25, 0.5} 
and C ∈ {10−2, 10−1,… , 102} . When similar detection rates 
( ±1% ) are obtained for different hyperparameter configura-
tions, we select the configuration corresponding to a more 
regularized classifier, as more regularized classifiers are 
expected to be more robust under attack [24]. The typical 
values of the aforementioned hyperparameters found for 
both datasets after cross-validation are C = 0.1 for SVM, 
� = 10 for ridge, C = 1 for logistic, C = 1 and w = 0.25 for 
Sec-SVM, C = 10 and � = 0.01 for SVM-RBF.

Attribution computation. For each dataset, we com-
pute the attributions on 1000 malware samples randomly 
chosen from the test set. We took x� = 0 as the baseline 
for Integrated Gradients, and we compute the attributions 
with respect to the malware class. As a result, positive 
(negative) relevance values in our analysis denote mali-
cious (benign) behavior. Given the high sparsity ratio of 

the feature space, we use m = 1000 to compute the expla-
nation evenness metrics.

5.2 � Experimental results

We first perform an evaluation of the performances under 
normal conditions; the resulting Receiver Operating Charac-
teristic (ROC) curves with the Detection Rate for each clas-
sifier, averaged over the 5 repetitions, is reported in the left 
side of Fig. 4a and b. We then perform a white-box evasive 
attack against each classifier, aiming to have 1000 malware 
samples randomly chosen from the test sets misclassified as 
benign. The results are shown on the right side of Fig. 4a 
and b, which report the variation of the detection rate as the 
number of modified features � increases. On both datasets, 
we can notice how the Sec-SVM classifier (described in 
Sect. 3.2) provides a slightly worse detection rate compared 
to the other classifiers, but is particularly robust against 
adversarial evasion attacks.

(a)

(b)

Fig. 4   (left) Mean ROC curves for the tested classifiers. (right) 
White-box evasion attacks. Detection Rate at 1% False Positive Rate 
against an increasing number of added features � . We can see how the 
Sec-SVM, despite providing a slightly lower detection rate compared 

to the other tested classifiers on both datasets, requires on average 
more than 20 different new feature additions to the original applica-
tions to be fooled by the attacker
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5.3 � Is adversarial robustness correlated 
with explanation evenness?

We now investigate the connection between adversarial 
robustness and evenness of gradient-based explanations. 
We start with two illustrative examples. Table 2 shows the 
top-10 influential features for two malware samples from 
the Drebin dataset, one of FakeInstaller1 and one of 
Plankton2 family, reported for the SVM-RBF and Sec-
SVM algorithms, and obtained through the Gradient*Input 
technique. All the classifiers correctly label the samples as 
malware.

Looking at the features of the FakeInstaller mal-
ware, we can observe how both the classifiers identify the 
cellular- and SMS-related features, e.g., the GetNetwork-
Operator() method or the SEND_SMS permission, as 
highly relevant. This is coherent with the actual behavior 
of the malware sample since its goal is to send SMS mes-
sages to premium-rate numbers. With respect to the rele-
vance values, the first aspect to point out comes from their 
relative magnitude, expressed as a percentage in Table 2. 
In particular, we can observe that the top-10 relevance 
values for SVM-RBF vary, regardless of their signs, from 
3.49 to 10.35% , while for Sec-SVM the top values lie in the 
3.39–3.51% range. This suggests that SVM-RBF assigned 
high prominence to few features; conversely, Sec-SVM 
distributed the relevance values more evenly. It is possible 
to catch this behavior more easily through the synthetic 

evenness measures E1 (Eq. 12) and E2 (Eq. 13) reported in 
Table 2, which show higher values for Sec-SVM. Table 2 
also shows the �min value, i.e., the minimum number of fea-
tures to add to the malware to evade the classifier. We can 
notice how the �min parameter is strictly related to the even-
ness distribution, since higher values of E1 and E2 correspond 
to higher values of �min , i.e., a higher effort for the attacker to 
accomplish her goal. In particular, it is possible to identify a 
clear difference between the behavior of SVM-RBF and Sec-
SVM: the diversity of their evenness metrics, which cause 
the �min values to be quite different as well, indicates that, for 
this prediction, SVM-RBF is quite susceptible to a possible 
attack compared to Sec-SVM.

Conversely, considering the second sample, the attribu-
tions (regardless of the sign) and the evenness metrics pre-
sent similar values. Such behavior is also reflected in the 
associated �min values. In this case, the relevance values are 
more evenly distributed, which indicates that the evasion is 
more difficult.

We now correlate the evenness metrics with the adver-
sarial robustness metric R , introduced in Sect. 4.1. Figure 5 
shows the relationship between this value and the evenness 
metrics for 100 samples chosen from the test set of Drebin 
(Fig. 5a) and Tesseract (Fig. 5b), reported for each explain-
ability technique. From this broader view, we can see how 
the evenness values calculated on top of the Gradient*Input 
and Integrated Gradients explanations present a significant 
connection to the adversarial robustness metric for both 
datasets. This seems not applicable to the Gradient tech-
nique, which appears to be weakly correlated with explana-
tion evenness. Specifically, we observe in Fig. 5 that the dots 
of the linear classifiers are perfectly vertical-aligned. This 
fact is caused by the constant value of the gradient across all 
the samples, which implies constant values for the evenness 
metrics as well. The reliability of this technique appears to 
be low even in the case of SVM-RBF, especially for the 
Tesseract dataset where we observe a negative correlation 
with the explanation evenness.

In order to assess the statistical significance of these plots, 
we also compute the associated correlation values with three 
different metrics: Pearson (P), Spearman Rank (S), Kend-
all’s Tau (K). The results are shown in Table 3a and b. In 
the case of Drebin data, we obtain a strong p-val ≪ 0.05 
for all the tested classifiers using both Gradient*Input and 
Integrated Gradients, confirming the validity of our findings 
from Fig. 5. The same is valid in the case of Tesseract data, 
with p-val < 0.01 for the two explanation techniques and 
both evenness metrics in all cases.

We also inquire whether the connection between the even-
ness metrics and the detection performance of a classifier 
can provide a global assessment of its robustness. Figure 6a 
and b show the correlation between the explanation even-
ness and the mean detection rate under attack, calculated 

Table 2   Top-10 influential features and corresponding 
Gradient*Input relevance ( % ) for a malware of the FakeIn-
staller family (top) and a malware of the Plankton (bottom). 
Notice that the minimum number of features to add εmin to evade the 
classifiers with the evenness metric E

1
 and E

2

1  MD5: f8bcbd48f44ce973036fac0bce68a5d5.
2  MD5: eb1f454ea622a8d2713918b590241a7e.
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for � in the range [1, 50]. Similarly to the previous tests, 
the uniformity metrics computed on the explanations from 
Gradient*Input and Integrated Gradients techniques present 
a significant connection to the detection rate, also witnessed 
by the p-values mostly under 0.01 for both datasets. Finally, 
the correlation with the Gradient is again scarce, showing 
how this technique is not reliable to obtain information about 
the adversarial robustness of the tested classifiers to sparse 
evasion attacks.

6 � Related work

In this section, we provide an overview of the literature 
on Android Malware Detection systems (Sect. 6.1), on the 
techniques to craft powerful adversarial attacks against them 
(Sect. 6.2), and, finally, on the approaches to explain their 
decisions (Sect. 6.3).

6.1 � Android malware detection

The detection of Android malware attacks has been 
addressed over the years through works leveraging static, 
dynamic, or hybrid analyses.

Arzt et al. [5] proposed FlowDroid, a security tool that 
performs static taint analysis within the single components 
of Android applications. Feng et al. [27] proposed Appos-
copy, a detection tool that combines static taint analysis and 
intent flow monitoring to produce a signature for applica-
tions. Tam et al. [62] proposed CopperDroid, a dynamic ana-
lyzer that aims to identify suspicious high-level behaviors 
of malicious Android applications. More recently, MaMa-
Droid by Mariconti et al. [48] employs Markov chains to 
model sequences of API calls. Chen et al. [21] converted 
app opcodes to an image-like structure in order to perform 
data augmentation through a Generative Adversarial Net-
work (GAN), while the works by Mahindru et al. focused on 
assessing effective feature selection, mainly considering the 
usage of APIs and permissions as features [44, 45]. Moreo-
ver, different works in the literature target specific types of 

Fig. 5   Evaluation of the adversarial robustness metric R against the evenness E
1
 , E

2
 metrics for the different gradient-based explanation tech-

niques computed on 1000 samples of the test set (only 100 samples are shown)
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attacks, such as botnets [33] or ransomware samples [17, 
47, 57].

An interesting aspect to underline is that most of the fea-
ture sets used in previous work—the earliest as well as the 
newest ones—include information from Android APIs [1, 
4, 19, 38, 45, 47, 48, 57]. According to Zhang et al. [67], 
although Android malware evolves over time, many seman-
tics are still the same or similar, and can be caught by identi-
fying the relations between the different APIs. In particular, 
several works other than Drebin [4] inspect the usage of 
certain APIs [1, 45] or the number of API calls [19, 57], 
which typically implies the design of sparse feature vec-
tors for ML-based detectors. This approach is often valid for 
other Android components (e.g., the usage of permissions). 
Hence, suggesting that our analysis is likely to be relevant 
and applicable to many other detectors in the literature.

6.2 � Adversarial attacks

According to a recent survey by Biggio et al. [13], several 
works questioned the security of machine learning since 
2004. Two pioneering works were proposed by Dalvi et al. 
[22] in 2004 and by Lowd and Meek [41] in 2005. Those 
works, considering linear classifiers employed to perform 
spam filtering, demonstrated that an attacker could easily 
deceive the classifier at test time (evasion attacks) by per-
forming a limited amount of carefully-crafted changes to an 
email. Subsequent works [7, 8, 11] proposed attacker models 
and frameworks that are still used to study the security of 
learning-based systems also against training-time (poison-
ing) attacks. The first gradient-based poisoning [12] and 
evasion [9] attacks were proposed by Biggio et al. respec-
tively in 2012 and 2013. Notably, in [9] the authors also 

Table 3   Correlation between the adversarial robustness metric R 
and the evenness metrics E

1
 and E

2
 . Pearson (P), Spearman Rank (S), 

Kendall’s Tau (K) coefficients along with corresponding p-values. 

The linear classifiers lack a correlation value since the evenness is 
constant (being the gradient constant as well), thus resulting in a not 
defined correlation

Gradient Gradient*Input Int. Gradients

E
1

E
2

E
1

E
2

E
1

E
2

(a) Drebin
 logistic P

S

K

0.63,< 1e − 5

0.66,< 1e − 5

0.48,< 1e − 5

0.71,< 1e − 5

0.69,< 1e − 5

0.51,< 1e − 5

0.63,< 1e − 5

0.66,< 1e − 5

0.48,< 1e − 5

0.71,< 1e − 5

0.69,< 1e − 5

0.51,< 1e − 5

 ridge P

S

K

0.47,< 1e − 5

0.47,< 1e − 5

0.33,< 1e − 5

0.59,< 1e − 5

0.59,< 1e − 5

0.43,< 1e − 5

0.47,< 1e − 5

0.47,< 1e − 5

0.33,< 1e − 5

0.59,< 1e − 5

0.59,< 1e − 5

0.43,< 1e − 5

 SVM P

S

K

0.62,< 1e − 5

0.65,< 1e − 5

0.48,< 1e − 5

0.67,< 1e − 5

0.71,< 1e − 5

0.54,< 1e − 5

0.62,< 1e − 5

0.65,< 1e − 5

0.48,< 1e − 5

0.67,< 1e − 5

0.71,< 1e − 5

0.54,< 1e − 5

 SVM-RBF P

S

K

0.04, 0.709

0.41,< 1e − 4

0.32,< 1e − 5

0.68,< 1e − 5

0.72,< 1e − 5

0.54,< 1e − 5

0.80,< 1e − 5

0.94,< 1e − 5

0.79,< 1e − 5

0.77,< 1e − 5

0.94,< 1e − 5

0.80,< 1e − 5

0.89,< 1e − 5

0.94,< 1e − 5

0.77,< 1e − 5

0.91,< 1e − 5

0.93,< 1e − 5

0.77,< 1e − 5

 Sec-SVM P

S

K

0.77,< 1e − 5

0.84,< 1e − 5

0.66,< 1e − 5

0.81,< 1e − 5

0.87,< 1e − 5

0.79,< 1e − 5

0.77,< 1e − 5

0.84,< 1e − 5

0.66,< 1e − 5

0.81,< 1e − 5

0.87,< 1e − 5

0.79,< 1e − 5

(b) Tesseract
 logistic P

S

K

0.40,< 1e − 4

0.36,< 1e − 3

0.25,< 1e − 3

0.49,< 1e − 5

0.41,< 1e − 4

0.31,< 1e − 5

0.40,< 1e − 4

0.36,< 1e − 3

0.25,< 1e − 3

0.49,< 1e − 5

0.41,< 1e − 4

0.31,< 1e − 5

 ridge P

S

K

0.18,< 1e − 1

0.26,< 1e − 2

0.17,< 1e − 1

0.10,< 1e − 1

0.08,< 1e − 1

0.07,< 1e − 1

0.18,< 1e − 1

0.26,< 1e − 2

0.17,< 1e − 1

0.10,< 1e − 1

0.08,< 1e − 1

0.07,< 1e − 1

 SVM P

S

K

0.46,< 1e − 5

0.37,< 1e − 3

0.26,< 1e − 4

0.31,< 1e − 2

0.24,< 1e − 1

0.17,< 1e − 1

0.46,< 1e − 5

0.37,< 1e − 3

0.26,< 1e − 4

0.31,< 1e − 2

0.24,< 1e − 1

0.17,< 1e − 1

 SVM-RBF P

S

K

−0.78,< 1e − 5

−0.64,< 1e − 5

−0.45,< 1e − 5

−0.58,< 1e − 5

−0.52,< 1e − 5

−0.35,< 1e − 5

0.88,< 1e − 5

0.85,< 1e − 5

0.67,< 1e − 5

0.66,< 1e − 5

0.56,< 1e − 5

0.41,< 1e − 5

0.88,< 1e − 5

0.79,< 1e − 5

0.61,< 1e − 5

0.54,< 1e − 5

0.45,< 1e − 5

0.31,< 1e − 5

 Sec-SVM P

S

K

0.61,< 1e − 5

0.42,< 1e − 4

0.30,< 1e − 4

0.66,< 1e − 5

0.48,< 1e − 5

0.35,< 1e − 5

0.61,< 1e − 5

0.42,< 1e − 4

0.30,< 1e − 4

0.66,< 1e − 5

0.48,< 1e − 5

0.35,< 1e − 5
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introduced two important concepts that are still heavily used 
in the adversarial field, namely high-confidence adversarial 
examples and the use of a surrogate model. This work antici-
pated the discovery of the so-called adversarial examples 
against deep networks [29, 61].

The vulnerability to evasion attacks was then studied 
especially on learning systems designed to detect malware 
samples (for example, on PDF files [46, 64]), thus raising 
serious concerns about their usability under adversarial 
environments. In particular, for Android malware detectors, 
Demontis et al. [23] demonstrated that linear models trained 
on the (static) features extracted by Drebin can be easily 
evaded by performing a fine-grained injection of information 
(a more advanced injection approach that directly operates 
on the Dalvik bytecode has been proposed by Yang et al. 

[66]) by employing gradient descent-based approaches. 
Grosse et al. [31] have also attained a significant evasion 
rate on a neural network trained with the Drebin feature set. 
Although the adversarial robustness of other Android detec-
tors aside from [4] was not fully explored, it is evident that 
employing information that can be easily injected or modi-
fied may increase the probability of the attacker to attain 
successful evasion.

However, as discussed in Sect. 3, adding or removing 
(modifying) parts of a sample to create adversarial attacks 
is an apparently-straightforward operation. In practise, the 
real-world feasibility and the constraints of these operations 
should be carefully evaluated. Only recently, research efforts 
were spent into investigating problem-space attacks, focus-
ing on the generation of real evasive samples [16, 54]. Given 

(a) (b)

Fig. 6   Evaluation of the evenness metrics E
1
 (left) and E

2
 (right) against the Detection Rate (FPR 1%) for the different gradient-based explanation 

techniques
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that in the software domain there is no clear inverse mapping 
to the feature space, unlike in computer vision for example 
(so that the app’s semantics are correctly preserved), this 
research direction remained underexplored for many years.

6.3 � Explainability

Consequently to the rise of black-box models in the last dec-
ade, explainability became a hot research topic. It can be 
leveraged to achieve multiple goals, from justifying each 
prediction (the right of explanation required by the Euro-
pean General Data Protection Regulation (GDPR) [30]) to 
discovering new knowledge and causal relations. Explain-
ability became increasingly popular in security as well, as 
providing a proper explanation of predictions can help to 
secure the systems against adversarial attacks.

Several approaches for interpretability have been pro-
posed, with a particular attention to post-hoc explanations 
for black-box models. In 2016, Ribeiro et al. [55] proposed 
LIME, a model-agnostic technique that provides local 
explanations by generating small perturbations of the input 
sample, thus obtaining the explanations from a linear model 
fitted on the perturbed space. Lundberg and Lee [43] uni-
fied different techniques, including LIME, under the name 
of SHAP, by leveraging cooperative game theory results to 
identify theoretically-sound explanation methods and pro-
vide feature importance for each prediction. More recently, 
Lundberg et al. [42] improved this method for tree-based 
models, including those based on multiple trees, by man-
taining the desidered properties for local explanations and 
enabling faithful global understanding of the models as 
well. The work by Koh and Liang [35] showed that using a 
gradient-based technique called influence functions, which 
is well known in the field of robust statistics, it is possible to 
associate each input sample to the training samples (proto-
types) that are most responsible for its prediction. The theory 
behind the techniques proposed by the authors holds only 
for classifiers with differentiable loss functions. However, 
the authors empirically showed that their technique provides 
sensible prototypes also for classifiers with not-differentiable 
losses if computed on a smoothed counterpart.

Another interesting venue is the generation of high-level 
concepts rather than feature attributions. In this sense, Kim 
et al. [34] proposed a technique that introduces the notion 
of Concept Activation Vectors (CAVs), which evaluate the 
sensitivity of the models to user-defined examples defining 
particular concepts. Koh et al. [36] focused instead on guid-
ing models to learn concepts at training time; such concepts 
are then used to predict the target samples.

Notably, as recent work started explaining malware 
detectors through some of the above-described techniques 
[51, 58], Warnecke et al. [65] discussed general and secu-
rity-specific criteria to evaluate explanation methods in 

different security domains. Moreover, Guo et al. [32] pro-
posed LEMNA, a method specifically designed for security 
tasks, i.e., that is optimized for RNN and MLP networks, 
and that highlights the feature dependence (e.g., for binary 
code analysis).

Finally, a few recent works proposed to leverage expla-
nations for both generating and detecting attack samples. 
Rosenberg et al. [56] obtained from explainability algo-
rithms the most relevant features for a malware classifica-
tion task, so that those can be the first to be modified in 
order to generate an effective adversarial attack. Starting 
from the same idea, Fidel et al. [28] proposed a highly 
accurate detector of adversarial examples, based on the 
SHAP values computed for the internal layers of a DNN 
classifier. Also, Dombrowski et al. showed how saliency 
maps can be manipulated arbitrarily by applying pertur-
bations to the input, while keeping the model’s output 
approximately constant [26]. This is a worst case scenario 
where not only the prediction of the system is wrong (the 
perturbed malicious point evades detection), but also the 
explanation that might have been used to identify the vul-
nerability is compromised.

7 � Conclusions and future work

In this paper, we empirically evaluate the correlation 
between multiple gradient-based explanation techniques 
and the adversarial robustness of different linear and non-
linear classifiers, trained on two popular Android applica-
tions datasets (Drebin and Tesseract), against sparse evasion 
attacks. To this end, we leverage two synthetic measures 
of the explanation evenness, which main advantage is not 
requiring any computationally-expensive attack simulations. 
Thus, they may be used by system designers and engineers 
to choose, among a plethora of different models, the one 
that is most resilient against sparse attacks. Our experiments 
show that a strong connection exists between the evenness 
of explanations and the adversarial robustness. This correla-
tion is stronger when advanced explanation techniques such 
as Gradient*Input and Integrated Gradients are used, while 
considering the simple Gradient does not provide reliable 
information about the robustness of such classifiers.

In the future, we plan to extend our study to other mal-
ware detectors as well as other application domains. Moreo-
ver, as the proposed metrics may be used to estimate the 
robustness only against sparse evasion attacks in a boolean 
feature space, such as the one of Drebin, an interesting 
research direction would be to devise a similar measure that 
can be used to estimate the robustness of detectors working 
in continuous, dense feature spaces, and when the attack is 
subjected to different application constraints. Also, it could 
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be interesting to assess if our vulnerability measures can be 
successfully applied when the attacker does not know the 
classifier parameters or when the model is not differentiable; 
in that case, a surrogate classifier would be used to explain 
the original unknown model function.

Finally, another interesting research avenue is to modify 
the objective functions used to train the considered machine 
learning models by adding to them a penalty which is 
inversely proportional to the proposed evenness metrics, 
in order to enforce the classifier to learn more evenly dis-
tributed relevance scores and, consequently, the model 
robustness.
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