
Vol.:(0123456789)1 3

International Journal of Machine Learning and Cybernetics
https://doi.org/10.1007/s13042-021-01393-7

ORIGINAL ARTICLE

Do gradient‑based explanations tell anything about adversarial
robustness to android malware?

Marco Melis1  · Michele Scalas2 · Ambra Demontis1 · Davide Maiorca1 · Battista Biggio1,2 · Giorgio Giacinto1 ·
Fabio Roli1,2

Received: 5 December 2020 / Accepted: 22 July 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
While machine-learning algorithms have demonstrated a strong ability in detecting Android malware, they can be evaded
by sparse evasion attacks crafted by injecting a small set of fake components, e.g., permissions and system calls, without
compromising intrusive functionality. Previous work has shown that, to improve robustness against such attacks, learning
algorithms should avoid overemphasizing few discriminant features, providing instead decisions that rely upon a large subset
of components. In this work, we investigate whether gradient-based attribution methods, used to explain classifiers’ deci-
sions by identifying the most relevant features, can be used to help identify and select more robust algorithms. To this end,
we propose to exploit two different metrics that represent the evenness of explanations, and a new compact security measure
called Adversarial Robustness Metric. Our experiments conducted on two different datasets and five classification algorithms
for Android malware detection show that a strong connection exists between the uniformity of explanations and adversarial
robustness. In particular, we found that popular techniques like Gradient*Input and Integrated Gradients are strongly cor-
related to security when applied to both linear and nonlinear detectors, while more elementary explanation techniques like
the simple Gradient do not provide reliable information about the robustness of such classifiers.

Keywords  Adversarial machine learning · Adversarial robustness · Android malware · Explainable artificial intelligence ·
Interpretability

1  Introduction

Machine learning systems are nowadays being extensively
adopted in computer security applications, such as network
intrusion and malware detection, as they obtained remark-
able performances even against the increasing complexity
of modern attacks [1, 39, 53]. More recently, learning-based
techniques based on static analysis proved to be especially
effective at detecting Android malware, which constitutes
one of the major threats in mobile security. In particular,
these approaches showed great accuracy even when tradi-
tional code concealing techniques (such as static obfusca-
tion) are employed [4, 20, 21, 23, 48, 57].

Despite the successful results reported by such
approaches, the problem of detecting malware created to
fool learning-based systems is still far from being solved.
The robustness of machine-learning models is challenged
by the creation of the so-called adversarial examples, i.e.,
malicious files that receive fine-grained modifications ori-
ented to deceive the learning-based algorithms [9, 13, 29,
61]. In particular, recent work concerning Android malware
demonstrated that specific changes to the contents of mali-
cious Android applications might suffice to change their
classification (e.g., from malicious to benign) [15, 23], even
though the real-word feasibility of these operations should
be carefully evaluated [16, 54]. The main characteristic of
these attacks is their sparsity, meaning that they enforce
only a few changes to the whole feature set to be effective.
Such changes may be represented by, e.g., the injection of
unused permissions or parts of unreachable/unused execut-
able code. For example, adding a component that is loaded
when the application is started (through a keyword called

 *	 Marco Melis
	 is.marco@tiscali.it

1	 Department of Electrical and Electronic Engineering,
University of Cagliari, Piazza d’Armi, 09123 Cagliari, Italy

2	 Pluribus One, Cagliari, Italy

http://orcid.org/0000-0003-3641-2093
http://crossmark.crossref.org/dialog/?doi=10.1007/s13042-021-01393-7&domain=pdf

	 International Journal of Machine Learning and Cybernetics

1 3

LAUNCHER) can significantly influence the classifier’s deci-
sion [51].

One of the many reasons why such attacks are so effec-
tive is that classifiers typically assign significant relevance
to a limited amount of features (this phenomenon has also
been demonstrated in other applications such as email spam
filtering). As a possible countermeasure, research showed
that classifiers that avoid overemphasizing specific features,
weighting them more evenly, can be more robust against
such attacks [10, 23, 37]. Simple metrics characterizing this
behavior were proposed to identify and select more robust
algorithms, especially in the context of linear classifiers,
where feature weights can be used as a direct measure of
a feature’s relevance to each decision [23–25]. In parallel,
the ability to understand the classifiers behavior by looking
to the input gradient, i.e. the feature weights in the case of
linear classifiers, was also explored by multiple works in
the field of explainable machine learning [2, 6, 59, 60]. In
particular, it became of interest to figure out if the infor-
mation provided by these gradient-based methods can also
be employed to understand (and improve) the robustness of
learning-based systems against attacks [18].

In this paper, motivated by the intuition that the classi-
fiers whose attributions are more evenly distributed should
also be the more robust, as they rely on a broader set of fea-
tures for the decision, we propose and empirically validate
a few synthetic metrics that allow correlating the evenness
of gradient-based explanations with the classifier robustness
to adversarial attacks. In summary, we make the following
contributions:

–	 We statistically investigate the possible correlations
between gradient-based explanations, and the classifiers
robustness to adversarial sparse evasion attacks;

–	 We propose a new measure called adversarial robustness
metric, to represent the classifier robustness to adver-
sarial attacks along with an increasing attack power in a
compact way (Sect. 4);

–	 We assess our findings on the Drebin [4] feature space,
a popular learning-based detection system for Android,
using two different large datasets of applications, i.e.,
Drebin [4] and Tesseract [3, 52], and five different clas-
sification algorithms including linear and non-linear Sup-
port Vector Machines, logistic, ridge, and the secured
linear SVM from [23] (Sect. 5).

The paper is structured as follows. We first provide a
description of learning-based systems for Android mal-
ware detection (Sect. 2) and their adversarial vulnerabilities
(Sect. 3). Then, we present the synthetic metrics we use to
perform our correlation analysis between the evenness of
gradient-based explanations and the adversarial robustness
of classifiers (Sect. 4). In Sect. 5 we present the results of

our investigation, which unveils that, under some circum-
stances, there is a clear relationship between the distribu-
tion of gradient-based explanations and the adversarial
robustness of Android malware detectors, especially when
exploiting more advanced explanation techniques such as
Gradient*Input [51, 59] and Integrated Gradients [60]. After
a brief description of many related works on Android mal-
ware detectors, adversarial attacks and explainable machine
learning (Sect. 6), we conclude the paper with a discussion
on how our findings can pave the way towards the develop-
ment of more efficient mechanisms both to evaluate adver-
sarial robustness and to defend against adversarial Android
malware examples (Sect. 7).

2 � Android malware detection

Here we provide some background on the structure of
Android applications, and then we describe Drebin [4], the
Android malware detection system used in our analysis.

2.1 � Background on android

Android applications are compressed in apk files, i.e.,
archives that contain the following elements: (a) the
AndroidManifest.xml file, (b) classes.dex
files, (c) resource and asset files, such as native libraries or
images, and (d) additional xml files that define the applica-
tion layout. Since Drebin analyzes the classes.dex files
and the AndroidManifest.xml, we briefly describe
them below.

Android Manifest (manifest). The basic information about
the Android application is included in the AndroidMani-
fest.xml, including its package name or the supported
API levels, together with the declaration of its components,
i.e., parts of code that perform specific actions. For example,
one component might be associated with a screen visual-
ized by the user (activity) or to the execution of background
tasks (services). Application components can also perform
actions (through receivers) on the occurrence of specific
events; for instance, a change in the device’s connectivity
status (CONNECTIVITY_CHANGE) or the opening of an
application (LAUNCHER). The manifest also contains the
list of hardware components and permissions requested by
the app to work (e.g., Internet access).

Dex bytecode (dexcode). The classes.dex file
embeds the compiled source code of the applications,
including all the user-implemented methods and classes; the
bytecode can be executed with the Dalvik Virtual Machine
(until Android 4.4) or the Android runtime (ART). The
classes.dex may contain specific API calls that can
access sensitive resources such as personal contacts (sus-
picious calls). Additionally, it contains all system-related,

International Journal of Machine Learning and Cybernetics	

1 3

restricted API calls that require specific permissions (e.g.,
writing to the device’s storage). Finally, this file can contain
references to network addresses that might be contacted by
the application.

2.2 � Drebin

The majority of the approaches for Android malware detec-
tion employ static and dynamic analyses that extract infor-
mation such as usage of permissions, communications
through Inter-Component Communication (ICC), system-
and user-implemented API calls, and so forth [4, 14, 20,
40, 57].

Drebin is among the most popular and used static detec-
tion approaches. It performs the detection of Android mal-
ware through static analysis of Android applications. In a
first phase (training), it employs a set of benign and mali-
cious apps provided by the user to determine the features
that will be used for detection (meaning that the feature set
will be strictly dependent on the training data). Such features
are then embedded into a sparse, high-dimensional vector
space. Then, after the training of a linear machine-learning
model, the system is able to perform the classification of
previously-unseen apps. An overview of the system archi-
tecture is given in Fig. 1, and discussed more in detail below.

Feature extraction. First, Drebin statically analyzes a set
of � training Android applications to construct a suitable
feature space. All features extracted by Drebin are presented
as strings and organized in 8 different feature sets, as listed
in Table 1.

Android applications are then mapped onto the fea-
ture space as follows. Let us assume that an app is repre-
sented as an object z ∈ Z , being Z the abstract space of
all apk files. We denote with Φ ∶ Z ↦ X a function
that maps an apk file z to a �-dimensional feature vector
x =

(
x1,… , x�

)⊤
∈ X = {0, 1}� , where each feature is set

to 1 (0) if the corresponding string is present (absent) in the
apk file z . An application encoded in feature space may thus
look like the following:

Learning and Classification. Drebin uses a linear Sup-
port Vector Machine (SVM) to perform detection. It can
be expressed in terms of a linear function f ∶ X ↦ ℝ , i.e.,
f (x) = w

⊤
x + b , where w ∈ ℝ

� denotes the vector of feature
weights, and b ∈ ℝ is the so-called bias. These parameters,
optimized during training, identify a hyperplane that sepa-
rates the two classes in the feature space. During classifica-
tion, unseen apps are then classified as malware if f (x) ≥ 0 ,
and as benign otherwise. In this work, we also consider other
linear and nonlinear algorithms to learn the classification
function f (x).

Explanation. Drebin explains its decisions by reporting,
for any given application, the most influential features, i.e.,
the ones that are present in the given application and are
assigned the highest absolute weights by the classifier. The
feature relevance values reported by Drebin correspond
exactly to its feature weights, being Drebin a linear classi-
fier. For instance, in Fig. 1 it is possible to see that Drebin
correctly identifies the sample as malware since it connects
to a suspicious URL and uses SMS as a side-channel for
communication. In this work, we use different state-of-the-
art explainability methods to measure feature relevance and
evaluate whether and to which extent the distribution of

x = Φ(z) �→

· · ·
0
1
· · ·
1
0

· · · }
S2

permission::SEND SMS
permission::READ SMS
· · · }

S5
api call::getDeviceId
api call::getSubscriberId

Fig. 1   A schematic representation ([23]) of Drebin. First, applications
are represented as binary vectors in a �-dimensional feature space.
A linear classifier is then trained on an available set of malware and
benign applications, assigning a weight to each feature. During classi-
fication, unseen applications are scored by the classifier by summing

up the weights of the present features: if f (x) ≥ 0 , they are classified
as malware. Drebin also explains each decision by reporting the most
suspicious (or benign) features present in the app, along with the
weight assigned to them by the linear classifier [4]

Table 1   Overview of Drebin feature sets

manifest dexcode

S1 Hardware components S5 Restricted API calls
S2 Requested permissions S6 Used permission
S3 Application components S7 Suspicious API calls
S4 Filtered intents S8 Network addresses

	 International Journal of Machine Learning and Cybernetics

1 3

relevance values reveals any interesting insight on adver-
sarial robustness.

3 � Adversarial android malware

Machine learning algorithms are known to be vulnerable to
adversarial examples. The ones used for Android malware
detection do not constitute an exception. The vulnerability
of those systems was demonstrated in [23, 24, 31], and a
defense mechanism was proposed in [23]. In this section, we
first explain how an attacker can construct Android malware
able to fool a classifier, being recognized as benign. Then,
considering the system called Sec-SVM [23] as a case-study,
we explain how machine learning systems can be strength-
ened against this attack.

3.1 � Attacking android malware detection

The goal of creating adversarial Android malware that
evades detection can be formulated as an optimization
problem, as detailed below. This optimization problem is
constrained to ensure that the solution provides a functional
and realizable malware sample, i.e., that the feature changes
suggested by the attack algorithm are feasible and can be
implemented as practical manipulations to the actual apk
input file.

Problem Formulation. As explained in the previous sec-
tion, Drebin is a binary classifier trained on Boolean fea-
tures. To have a malware sample z misclassified as benign,
the attacker should modify its feature vector x in order to
decrease the classifier score f (x) . The number of features
considered by Drebin is quite large (more than one million).
However, the attacker can reasonably change only few of
them (sparse attack) to preserve the malicious functionality
of the application. The attacker has thus an �1-norm con-
straint on the number of features that can be modified. The
feature vector of the adversarial application can be computed
by solving the following optimization problem:

where Eq. (2) is the �1 distance constraint between the
original x and the modified (adversarial) x′ sample. Eq. (3)
is a box constraint that enforces the features values of the
adversarial malware to stay within some lower and upper

(1)arg min
x
�

f (x�)

(2)s. t. ‖x − x
�‖1 ≤ �

(3)xlb ⪯ x
� ⪯ xub

(4)x
� ∈ {0, 1},

bounds, while Eq. (4) enforces the attack to find a Boolean
solution. The aforementioned problem can be solved with
gradient-based optimization techniques, e.g., Projected Gra-
dient Descent (PGD), as described in Alg. 1 [9, 24, 49]. At
each step, this algorithm projects the feature values of the
adversarial sample onto the constraints (Eqs. 2, 3), including
binarization in {0, 1} .

Algorithm 1 PGD-based attack on Android malware
Input: x, the input malware; ε, the number of features which
can be modified; η, the step size; Π, a projection operator on
the constraints (2) and (3); t > 0, a small number to ensure
convergence.
Output: x′, the adversarial (perturbed) malware.
1: x′ ← x
2: repeat
3: x� ← x′

4: x′ ← Π(x� − η · ∇f(x�))
5: until |f(x′)− f(x�)| ≤ t
6: return: x′

Feature addition. To create malware able to fool the clas-
sifier, an attacker may, in theory, both adding and removing
features from the original applications. However, in practice,
removing features is a non-trivial operation that can easily
compromise the malicious functionalities of the application.
Feature addition is a safer operation, especially when the
injected features belong to the manifest; for example, add-
ing permissions does not influence any existing application
functionality. When the features depend on the dexcode,
it is possible to add them safely introducing information that
is not actively executed, e.g., by adding code after return
instructions (dead code) or methods that are never called by
any invoke type instructions (i.e., the ones that indicate a
method call). Therefore, in this work, we only consider feature
addition. To find a solution that does not require removing
features from the original application, the attacker can simply
define xlb = x in Eq. (3). However, it is worth mentioning that
this injection could be easily made ineffective, simply remov-
ing all the features extracted from code lines that are never
executed. In this way, the attacker is forced to change the exe-
cuted code, which is more difficult, as it requires considering
the following additional and stricter constraints. Firstly, the
attacker should avoid breaking the application functionalities.
Secondly, they should avoid introducing possible artifacts or
undesired functionalities, which may influence the semantics
of the original program. Injecting a large number of features
may be, therefore, difficult and not always feasible.

3.2 � Sec‑SVM: defending against adversarial
android malware

In [23], the authors showed that the sparse evasion attack
described above is able to fool Drebin, requiring the

International Journal of Machine Learning and Cybernetics	

1 3

injection of a negligible number of features, and they pro-
pose a robust counterpart of that classifier. The underlying
idea behind their countermeasure is to enforcing the classi-
fier to learn more evenly distribute feature weights since this
will require the attacker to manipulating more features to
evade the classifier. To this end, they added a box constraint
on the weights w of a linear SVM, obtaining the following
learning algorithm (Sec-SVM):

where the lower and upper bounds on w are defined,
respectively, by the vectors wlb = (wlb

1
,… ,wlb

�
) and

w
ub = (wub

1
,… ,wub

�
) , which are application-dependent.

Equation (5) can be easily optimized using a constrained
variant of the Stochastic Gradient Descent (SGD) technique,
as described in [23].

4 � Do gradient‑based explanations help
to understand adversarial robustness?

In this work, we investigate whether gradient-based attribu-
tion methods used to explain classifiers’ decisions provide
useful information about the robustness of Android malware
detectors against sparse attacks. Our intuition is that the clas-
sifiers whose attributions are usually evenly-distributed rely
upon a broad set of features instead of overemphasizing only
a few of them. Therefore, they are more robust against sparse
attacks, where the attacker can change only a few features,
having a negligible impact on the classifier decision func-
tion. To verify our intuition, we present an empirical analy-
sis whose procedure is illustrated in Fig. 2 and described
below. Firstly, we perform a security evaluation on the tested
classifier, obtaining a compact measure we call Adversarial
Robustness Metric (see Sect. 4.1), representing its robustness

(5)
min
w,b

1

2
w
⊤
w + C

∑�

i=1
max

�
0, 1 − yi f (xi)

�

s. t. wlb
k
≤ wk ≤ wub

k
, k = 1,… , �,

to the adversarial attacks along with an increasing number of
added features � . Then, we compute the attributions for each
benign and manipulated malware sample x using a chosen
gradient-based explanation technique (see Sect. 4.2) obtain-
ing the relevance vectors r . For each of those, we propose
to look for a compact metric that encapsulates the degree
of Evenness of the attributions (see Sect. 4.3). Finally, com-
paring this value with the adversarial robustness metric, we
asses the connections between attributions’ evenness and
the robustness to adversarial evasion attacks. In Sect. 5, we
present the results of our analysis on five different learning
algorithms trained on the feature space extracted by Drebin,
providing the empirical evidence of our intuition.

4.1 � Adversarial robustness metric

We define the robustness to the evasion samples crafted
injecting a fixed number of features � as:

where �i = �(yi, f (xi)) is the adversarial loss attained by the
classifier f on the data points in D� = {xi, yi}

n
i=1

 , containing
the �-sized adversarial samples optimized with Algorithm 1.

Finally, the adversarial robustness metric R of a classifier
f is defined as the average of R(D�, f) on different �:

4.2 � Gradient‑based explanation methods

In our analysis, we consider gradient-based attribution meth-
ods, where attribution means the contribution of each input
feature to the prediction of a specific sample. The positive
(negative) value of an attribution indicates that the classi-
fier considers the corresponding feature as peculiar of the

(6)R
(
D�, f

)
=

1

n

n∑

i=1

e−�i ,

(7)R = ��{R(D�, f)}.

Fig. 2   Schematic representation of the analysis employed to verify
the correlation between explanation evenness and adversarial robust-
ness. First, for each malware in the test set, we create its adversarial
counterpart. Then, for each of those adversarial applications, we eval-

uate: (1) a measure of the classifier robustness against it (adversarial
robustness metric) (2) the evenness of the application attributions
(explanation evenness). Finally, we asses the correlation between
them

	 International Journal of Machine Learning and Cybernetics

1 3

malicious (benign) samples. In the following, we review the
three gradient-based techniques considered in this work.

Gradient. The simplest method to obtain the attributions
is to compute the gradient of the discriminant function f
with respect to the input sample x . For image recognition
models, it corresponds to the saliency map of the image [6].
The attribution of the ith feature is computed as:

Gradient*Input. This technique has been proposed in [59]
and utilized in one of our previous work [51], to identify
the most influential features for an Android malware detec-
tor trained on sparse data. As we have shown in that paper,
this approach is more suitable than the previously proposed
ones when the feature vectors are sparse. The previously
proposed approaches [6, 55] tended to assign relevance to
features whose corresponding components are not present in
the considered application, thus making the corresponding
predictions challenging to interpret. To overcome this issue,
this technique leverages the notion of directional derivative.
Given the input point x , it projects the gradient ∇f (x) onto
x , to ensure that only the non-null features are considered as
relevant for the decision. More formally, the ith attribution
is computed as:

Integrated Gradients. Sundararajan et al. [60] identified two
axioms that attribution methods should satisfy: implemen-
tation invariance and sensitivity. Accordingly to the first,
the attributions should always be identical for two function-
ally equivalent networks, e.g. they should be invariant to
the differences in the training hyperparameters, which lead
the network to learn the same function. The second axiom
is satisfied if, for every input predicted differently from a
baseline (a reference vector that models the neutral input,
e.g. a black image) and that differs from the baseline in only
one feature, has, for that feature, a non-zero attribution. In
the same paper, they proposed a gradient-based explanation
called Integrated Gradient that satisfies the axioms explained
above. This method, firstly, considers the straight-line path
from the baseline to the input sample and computes the gra-
dients at all points along the path. Then, it obtains the attri-
bution cumulating those gradients. The attribution along the
ith dimension for an input x and baseline x′ is defined as:

(8)Gradienti(x) ∶=
�f (x)

�xi
.

(9)Gradient*Inputi(x) ∶=
�f (x)

�xi
∗ xi.

(10)

IntegratedGradsi(x) ∶=

(
xi − x�

i

)
⋅ ∫

1

�=0

�f
(
x
� + � ⋅

(
x − x

�
))

�xi
d�.

To efficiently approximate the previous integral, one can
sum the gradients computed at p fixed intervals along the
joining path from x′ to the input x:

For linear classifiers, where �f∕�xi = wi , this method is
equivalent to Gradient*Input if x� = 0 is used as a baseline,
which is a well-suited choice in many applications [60].
Therefore, in this particular case, also the Gradient*Input
method satisfies the abovementioned axioms.

4.3 � Explanation evenness metrics

To compute the evenness of the attributions, we consider
the two metrics, described below. The first is the one pro-
posed in [10, 37]. To compute the evenness metric, they
firstly defined a function F(r, k) which, given a relevance
vector r , computes the ratio of the sum of the k highest rel-
evance values to the sum of all absolute relevance values,
for k = 1, 2,… ,m:

where r1, r2,… , rm denote the relevance values, sorted
in descending order of their absolute values, i.e.,
|r1| ≥ |r2| ≥ ⋯ ≥ |rm| and m is the number of considered rel-
evance values ( m ≤ d ). This function essentially computes
the evenness of the distribution of the relevance among the
features. The evenest relevance distribution (the one where
they are all equal), corresponds to F(r, k) = k∕n . Whereas
the most uneven is attained when only one relevance dif-
fers from zero, and in this case, F(r, k) = 1 for each k value.
To avoid the dependence on k and to obtain a single scalar
value, they compute the evenness as:

The range of E1 is [0, 1], E1 = 0 and E1 = 1 indicates respec-
tively to the most uneven and to the most even relevance
vector.

The second metric we consider is the one proposed in
[25], based on the ratio between the �1 and �∞ norm:

To have a broader perspective of the attributions’ evenness,
we compute the metrics on multiple samples, and we average

(11)

IntegratedGrads
approx

i
(x) ∶=

(
xi − x�

i

)
⋅

p∑

k=1

�f
(
x
� +

k

p
⋅
(
x − x

�
))

�xi
⋅
1

p
.

F(r, k) =

∑k

i=1
�r(i)�

∑m

j=1
�r(j)�

,

(12)E1(r) =
2

m − 1

[
m −

m∑

k=1

F(r, k)

]
.

(13)E2(r) =
1

m
⋅
‖r‖1
‖r‖∞

.

International Journal of Machine Learning and Cybernetics	

1 3

the results. More formally, we define the explanation even-
ness as:

where ri with i = 1, 2,… , n is the attribution vector com-
puted on each sample of a test dataset D = {xi, yi}

n
i=1

 , and E
can be equal either to E1 or E2 . In the following, we represent
the averaged evenness computed considering the per-sample
metric E1 ( E2 ) with E1 ( E2).

4.4 � Computational complexity

An important aspect to consider when performing the adver-
sarial robustness evaluation of a classifier is the complexity
of the process. Especially in the case of non-linear clas-
sifiers, computing a full security evaluation curve for this
purpose may require hundred thousands iterations [13].
Because, for each test sample, the corresponding adversarial
example should be computed, this process involves, for every
single point, thousand of iterations (and thus of gradient
and function evaluations) with the chosen optimization algo-
rithm [63]. In this sense, exploiting the gradient-based attri-
butions methods provides instead a massive computational
advantage. In fact, for both Gradient and Gradient*Input
methods, only a single gradient evaluation is required to
obtain the attributions of an input sample, and this gradi-
ent is even identical for all samples in the case of linear
classifiers (allowing to save even more evaluations). For
the Integrated Gradients technique, the number of gradient
evaluations depends on the chosen value of the p parameter
in Eq. (11) which, however, is usually set to a small number.
In our correlation analysis, we assume that the attack sam-
ples required to compute the adversarial robustness metric R
and the attributions for each of the test samples are already
acquired as part of the security and explainability evalua-
tion of the classifiers. The complexity of the process is then
given by the computation of the explanation evenness and
the adversarial robustness metric.

5 � Experimental analysis

In this section, we practically evaluate whether the measures
introduced in Sect. 4 can be used to estimate the robustness
of classifiers against sparse evasion attacks. After detail-
ing our experimental setup (Sect. 5.1), we show the clas-
sifiers’ detection performances, both in normal conditions
and under attack (Sect. 5.2). In our evaluations, we focus on
the feature addition attack setting (see Sect. 3), as they are
typically the easiest to accomplish for the adversary. We use
secml as a framework to implement classification systems,

(14)E =
1

n

n∑

i=1

E(ri),

explanation techniques, and attack algorithms [50]. Finally,
we assess the relationship of the proposed evenness metrics
with our new adversarial robustness metric and the detection
rate (Sect. 5.3).

5.1 � Experimental setup

Datasets. We use two different datasets of real-world
Android applications. The first is the Drebin dataset [4],
consisting of 121, 329 benign applications and 5, 615 mali-
cious samples, labeled with VirusTotal and collected
between August 2010 and October 2012. A sample is labeled
as malicious if it is flagged by at least five anti-virus scan-
ners, whereas it is labeled as benign otherwise. The second
is the Tesseract dataset [52], consisting of 116, 993 benign
applications and 12, 735 malicious samples, collected from
AndroZoo [3] between January 2014 and December 2016.
In Fig. 3 we report the distribution of malware in each data-
set with respect to the number of anti-virus scanners that
flagged the applications as positive. We can observe how
for Drebin most samples are flagged by 30–35 scanners,
while for Tesseract 4–10 scanners detect most of the posi-
tives. This shows how recognizing the samples of the lat-
ter, newer dataset, still represents a significant challenge for
many scanners.

Training-validation-test splits. We average our results on
5 runs. In each run, we randomly selected 60,000 apps from
both datasets to train the learning algorithms, and we used
the remaining apps for testing.

Classifiers. We compare the standard Drebin implemen-
tation based on a linear Support Vector Machine (SVM)
against the secured linear SVM from [23] (Sec-SVM), an
SVM with the RBF kernel (SVM-RBF), a logistic regression
(logistic) and a ridge regression (ridge).

Parameter setting. Using a 10-fold cross-validation
procedure, we optimize the parameters of each clas-
sifier to maximize the detection rate (i.e., the frac-
tion of detected malware) at 1% false-positive rate (i.e.,
the fraction of legitimate applications misclassified as

Fig. 3   Distribution of malware in each dataset with respect to the
number of anti-virus scanners that flagged the applications as posi-
tive. Data extracted from VirusTotal 

	 International Journal of Machine Learning and Cybernetics

1 3

malware). In particular, we optimize the parameters
C ∈ {10−2, 10−1,… , 102} for logistic and both linear and
non-linear SVMs, the kernel � ∈ {10−4, 10−3,… , 102} for
the SVM-RBF, and � ∈ {10−2, 10−1,… , 102} for ridge. For
Sec-SVM, we optimized the −wlb = w

ub ∈ {0.1, 0.25, 0.5}
and C ∈ {10−2, 10−1,… , 102} . When similar detection rates
( ±1% ) are obtained for different hyperparameter configura-
tions, we select the configuration corresponding to a more
regularized classifier, as more regularized classifiers are
expected to be more robust under attack [24]. The typical
values of the aforementioned hyperparameters found for
both datasets after cross-validation are C = 0.1 for SVM,
� = 10 for ridge, C = 1 for logistic, C = 1 and w = 0.25 for
Sec-SVM, C = 10 and � = 0.01 for SVM-RBF.

Attribution computation. For each dataset, we com-
pute the attributions on 1000 malware samples randomly
chosen from the test set. We took x� = 0 as the baseline
for Integrated Gradients, and we compute the attributions
with respect to the malware class. As a result, positive
(negative) relevance values in our analysis denote mali-
cious (benign) behavior. Given the high sparsity ratio of

the feature space, we use m = 1000 to compute the expla-
nation evenness metrics.

5.2 � Experimental results

We first perform an evaluation of the performances under
normal conditions; the resulting Receiver Operating Charac-
teristic (ROC) curves with the Detection Rate for each clas-
sifier, averaged over the 5 repetitions, is reported in the left
side of Fig. 4a and b. We then perform a white-box evasive
attack against each classifier, aiming to have 1000 malware
samples randomly chosen from the test sets misclassified as
benign. The results are shown on the right side of Fig. 4a
and b, which report the variation of the detection rate as the
number of modified features � increases. On both datasets,
we can notice how the Sec-SVM classifier (described in
Sect. 3.2) provides a slightly worse detection rate compared
to the other classifiers, but is particularly robust against
adversarial evasion attacks.

(a)

(b)

Fig. 4   (left) Mean ROC curves for the tested classifiers. (right)
White-box evasion attacks. Detection Rate at 1% False Positive Rate
against an increasing number of added features � . We can see how the
Sec-SVM, despite providing a slightly lower detection rate compared

to the other tested classifiers on both datasets, requires on average
more than 20 different new feature additions to the original applica-
tions to be fooled by the attacker

International Journal of Machine Learning and Cybernetics	

1 3

5.3 � Is adversarial robustness correlated
with explanation evenness?

We now investigate the connection between adversarial
robustness and evenness of gradient-based explanations.
We start with two illustrative examples. Table 2 shows the
top-10 influential features for two malware samples from
the Drebin dataset, one of FakeInstaller1 and one of
Plankton2 family, reported for the SVM-RBF and Sec-
SVM algorithms, and obtained through the Gradient*Input
technique. All the classifiers correctly label the samples as
malware.

Looking at the features of the FakeInstaller mal-
ware, we can observe how both the classifiers identify the
cellular- and SMS-related features, e.g., the GetNetwork-
Operator() method or the SEND_SMS permission, as
highly relevant. This is coherent with the actual behavior
of the malware sample since its goal is to send SMS mes-
sages to premium-rate numbers. With respect to the rele-
vance values, the first aspect to point out comes from their
relative magnitude, expressed as a percentage in Table 2.
In particular, we can observe that the top-10 relevance
values for SVM-RBF vary, regardless of their signs, from
3.49 to 10.35% , while for Sec-SVM the top values lie in the
3.39–3.51% range. This suggests that SVM-RBF assigned
high prominence to few features; conversely, Sec-SVM
distributed the relevance values more evenly. It is possible
to catch this behavior more easily through the synthetic

evenness measures E1 (Eq. 12) and E2 (Eq. 13) reported in
Table 2, which show higher values for Sec-SVM. Table 2
also shows the �min value, i.e., the minimum number of fea-
tures to add to the malware to evade the classifier. We can
notice how the �min parameter is strictly related to the even-
ness distribution, since higher values of E1 and E2 correspond
to higher values of �min , i.e., a higher effort for the attacker to
accomplish her goal. In particular, it is possible to identify a
clear difference between the behavior of SVM-RBF and Sec-
SVM: the diversity of their evenness metrics, which cause
the �min values to be quite different as well, indicates that, for
this prediction, SVM-RBF is quite susceptible to a possible
attack compared to Sec-SVM.

Conversely, considering the second sample, the attribu-
tions (regardless of the sign) and the evenness metrics pre-
sent similar values. Such behavior is also reflected in the
associated �min values. In this case, the relevance values are
more evenly distributed, which indicates that the evasion is
more difficult.

We now correlate the evenness metrics with the adver-
sarial robustness metric R , introduced in Sect. 4.1. Figure 5
shows the relationship between this value and the evenness
metrics for 100 samples chosen from the test set of Drebin
(Fig. 5a) and Tesseract (Fig. 5b), reported for each explain-
ability technique. From this broader view, we can see how
the evenness values calculated on top of the Gradient*Input
and Integrated Gradients explanations present a significant
connection to the adversarial robustness metric for both
datasets. This seems not applicable to the Gradient tech-
nique, which appears to be weakly correlated with explana-
tion evenness. Specifically, we observe in Fig. 5 that the dots
of the linear classifiers are perfectly vertical-aligned. This
fact is caused by the constant value of the gradient across all
the samples, which implies constant values for the evenness
metrics as well. The reliability of this technique appears to
be low even in the case of SVM-RBF, especially for the
Tesseract dataset where we observe a negative correlation
with the explanation evenness.

In order to assess the statistical significance of these plots,
we also compute the associated correlation values with three
different metrics: Pearson (P), Spearman Rank (S), Kend-
all’s Tau (K). The results are shown in Table 3a and b. In
the case of Drebin data, we obtain a strong p-val ≪ 0.05
for all the tested classifiers using both Gradient*Input and
Integrated Gradients, confirming the validity of our findings
from Fig. 5. The same is valid in the case of Tesseract data,
with p-val < 0.01 for the two explanation techniques and
both evenness metrics in all cases.

We also inquire whether the connection between the even-
ness metrics and the detection performance of a classifier
can provide a global assessment of its robustness. Figure 6a
and b show the correlation between the explanation even-
ness and the mean detection rate under attack, calculated

Table 2   Top-10 influential features and corresponding
Gradient*Input relevance ( % ) for a malware of the FakeIn-
staller family (top) and a malware of the Plankton (bottom).
Notice that the minimum number of features to add εmin to evade the
classifiers with the evenness metric E

1
 and E

2

1  MD5: f8bcbd48f44ce973036fac0bce68a5d5.
2  MD5: eb1f454ea622a8d2713918b590241a7e.

	 International Journal of Machine Learning and Cybernetics

1 3

for � in the range [1, 50]. Similarly to the previous tests,
the uniformity metrics computed on the explanations from
Gradient*Input and Integrated Gradients techniques present
a significant connection to the detection rate, also witnessed
by the p-values mostly under 0.01 for both datasets. Finally,
the correlation with the Gradient is again scarce, showing
how this technique is not reliable to obtain information about
the adversarial robustness of the tested classifiers to sparse
evasion attacks.

6 � Related work

In this section, we provide an overview of the literature
on Android Malware Detection systems (Sect. 6.1), on the
techniques to craft powerful adversarial attacks against them
(Sect. 6.2), and, finally, on the approaches to explain their
decisions (Sect. 6.3).

6.1 � Android malware detection

The detection of Android malware attacks has been
addressed over the years through works leveraging static,
dynamic, or hybrid analyses.

Arzt et al. [5] proposed FlowDroid, a security tool that
performs static taint analysis within the single components
of Android applications. Feng et al. [27] proposed Appos-
copy, a detection tool that combines static taint analysis and
intent flow monitoring to produce a signature for applica-
tions. Tam et al. [62] proposed CopperDroid, a dynamic ana-
lyzer that aims to identify suspicious high-level behaviors
of malicious Android applications. More recently, MaMa-
Droid by Mariconti et al. [48] employs Markov chains to
model sequences of API calls. Chen et al. [21] converted
app opcodes to an image-like structure in order to perform
data augmentation through a Generative Adversarial Net-
work (GAN), while the works by Mahindru et al. focused on
assessing effective feature selection, mainly considering the
usage of APIs and permissions as features [44, 45]. Moreo-
ver, different works in the literature target specific types of

Fig. 5   Evaluation of the adversarial robustness metric R against the evenness E
1
 , E

2
 metrics for the different gradient-based explanation tech-

niques computed on 1000 samples of the test set (only 100 samples are shown)

International Journal of Machine Learning and Cybernetics	

1 3

attacks, such as botnets [33] or ransomware samples [17,
47, 57].

An interesting aspect to underline is that most of the fea-
ture sets used in previous work—the earliest as well as the
newest ones—include information from Android APIs [1,
4, 19, 38, 45, 47, 48, 57]. According to Zhang et al. [67],
although Android malware evolves over time, many seman-
tics are still the same or similar, and can be caught by identi-
fying the relations between the different APIs. In particular,
several works other than Drebin [4] inspect the usage of
certain APIs [1, 45] or the number of API calls [19, 57],
which typically implies the design of sparse feature vec-
tors for ML-based detectors. This approach is often valid for
other Android components (e.g., the usage of permissions).
Hence, suggesting that our analysis is likely to be relevant
and applicable to many other detectors in the literature.

6.2 � Adversarial attacks

According to a recent survey by Biggio et al. [13], several
works questioned the security of machine learning since
2004. Two pioneering works were proposed by Dalvi et al.
[22] in 2004 and by Lowd and Meek [41] in 2005. Those
works, considering linear classifiers employed to perform
spam filtering, demonstrated that an attacker could easily
deceive the classifier at test time (evasion attacks) by per-
forming a limited amount of carefully-crafted changes to an
email. Subsequent works [7, 8, 11] proposed attacker models
and frameworks that are still used to study the security of
learning-based systems also against training-time (poison-
ing) attacks. The first gradient-based poisoning [12] and
evasion [9] attacks were proposed by Biggio et al. respec-
tively in 2012 and 2013. Notably, in [9] the authors also

Table 3   Correlation between the adversarial robustness metric R
and the evenness metrics E

1
 and E

2
 . Pearson (P), Spearman Rank (S),

Kendall’s Tau (K) coefficients along with corresponding p-values.

The linear classifiers lack a correlation value since the evenness is
constant (being the gradient constant as well), thus resulting in a not
defined correlation

Gradient Gradient*Input Int. Gradients

E
1

E
2

E
1

E
2

E
1

E
2

(a) Drebin
 logistic P

S

K

0.63,< 1e − 5

0.66,< 1e − 5

0.48,< 1e − 5

0.71,< 1e − 5

0.69,< 1e − 5

0.51,< 1e − 5

0.63,< 1e − 5

0.66,< 1e − 5

0.48,< 1e − 5

0.71,< 1e − 5

0.69,< 1e − 5

0.51,< 1e − 5

 ridge P

S

K

0.47,< 1e − 5

0.47,< 1e − 5

0.33,< 1e − 5

0.59,< 1e − 5

0.59,< 1e − 5

0.43,< 1e − 5

0.47,< 1e − 5

0.47,< 1e − 5

0.33,< 1e − 5

0.59,< 1e − 5

0.59,< 1e − 5

0.43,< 1e − 5

 SVM P

S

K

0.62,< 1e − 5

0.65,< 1e − 5

0.48,< 1e − 5

0.67,< 1e − 5

0.71,< 1e − 5

0.54,< 1e − 5

0.62,< 1e − 5

0.65,< 1e − 5

0.48,< 1e − 5

0.67,< 1e − 5

0.71,< 1e − 5

0.54,< 1e − 5

 SVM-RBF P

S

K

0.04, 0.709

0.41,< 1e − 4

0.32,< 1e − 5

0.68,< 1e − 5

0.72,< 1e − 5

0.54,< 1e − 5

0.80,< 1e − 5

0.94,< 1e − 5

0.79,< 1e − 5

0.77,< 1e − 5

0.94,< 1e − 5

0.80,< 1e − 5

0.89,< 1e − 5

0.94,< 1e − 5

0.77,< 1e − 5

0.91,< 1e − 5

0.93,< 1e − 5

0.77,< 1e − 5

 Sec-SVM P

S

K

0.77,< 1e − 5

0.84,< 1e − 5

0.66,< 1e − 5

0.81,< 1e − 5

0.87,< 1e − 5

0.79,< 1e − 5

0.77,< 1e − 5

0.84,< 1e − 5

0.66,< 1e − 5

0.81,< 1e − 5

0.87,< 1e − 5

0.79,< 1e − 5

(b) Tesseract
 logistic P

S

K

0.40,< 1e − 4

0.36,< 1e − 3

0.25,< 1e − 3

0.49,< 1e − 5

0.41,< 1e − 4

0.31,< 1e − 5

0.40,< 1e − 4

0.36,< 1e − 3

0.25,< 1e − 3

0.49,< 1e − 5

0.41,< 1e − 4

0.31,< 1e − 5

 ridge P

S

K

0.18,< 1e − 1

0.26,< 1e − 2

0.17,< 1e − 1

0.10,< 1e − 1

0.08,< 1e − 1

0.07,< 1e − 1

0.18,< 1e − 1

0.26,< 1e − 2

0.17,< 1e − 1

0.10,< 1e − 1

0.08,< 1e − 1

0.07,< 1e − 1

 SVM P

S

K

0.46,< 1e − 5

0.37,< 1e − 3

0.26,< 1e − 4

0.31,< 1e − 2

0.24,< 1e − 1

0.17,< 1e − 1

0.46,< 1e − 5

0.37,< 1e − 3

0.26,< 1e − 4

0.31,< 1e − 2

0.24,< 1e − 1

0.17,< 1e − 1

 SVM-RBF P

S

K

−0.78,< 1e − 5

−0.64,< 1e − 5

−0.45,< 1e − 5

−0.58,< 1e − 5

−0.52,< 1e − 5

−0.35,< 1e − 5

0.88,< 1e − 5

0.85,< 1e − 5

0.67,< 1e − 5

0.66,< 1e − 5

0.56,< 1e − 5

0.41,< 1e − 5

0.88,< 1e − 5

0.79,< 1e − 5

0.61,< 1e − 5

0.54,< 1e − 5

0.45,< 1e − 5

0.31,< 1e − 5

 Sec-SVM P

S

K

0.61,< 1e − 5

0.42,< 1e − 4

0.30,< 1e − 4

0.66,< 1e − 5

0.48,< 1e − 5

0.35,< 1e − 5

0.61,< 1e − 5

0.42,< 1e − 4

0.30,< 1e − 4

0.66,< 1e − 5

0.48,< 1e − 5

0.35,< 1e − 5

	 International Journal of Machine Learning and Cybernetics

1 3

introduced two important concepts that are still heavily used
in the adversarial field, namely high-confidence adversarial
examples and the use of a surrogate model. This work antici-
pated the discovery of the so-called adversarial examples
against deep networks [29, 61].

The vulnerability to evasion attacks was then studied
especially on learning systems designed to detect malware
samples (for example, on PDF files [46, 64]), thus raising
serious concerns about their usability under adversarial
environments. In particular, for Android malware detectors,
Demontis et al. [23] demonstrated that linear models trained
on the (static) features extracted by Drebin can be easily
evaded by performing a fine-grained injection of information
(a more advanced injection approach that directly operates
on the Dalvik bytecode has been proposed by Yang et al.

[66]) by employing gradient descent-based approaches.
Grosse et al. [31] have also attained a significant evasion
rate on a neural network trained with the Drebin feature set.
Although the adversarial robustness of other Android detec-
tors aside from [4] was not fully explored, it is evident that
employing information that can be easily injected or modi-
fied may increase the probability of the attacker to attain
successful evasion.

However, as discussed in Sect. 3, adding or removing
(modifying) parts of a sample to create adversarial attacks
is an apparently-straightforward operation. In practise, the
real-world feasibility and the constraints of these operations
should be carefully evaluated. Only recently, research efforts
were spent into investigating problem-space attacks, focus-
ing on the generation of real evasive samples [16, 54]. Given

(a) (b)

Fig. 6   Evaluation of the evenness metrics E
1
 (left) and E

2
 (right) against the Detection Rate (FPR 1%) for the different gradient-based explanation

techniques

International Journal of Machine Learning and Cybernetics	

1 3

that in the software domain there is no clear inverse mapping
to the feature space, unlike in computer vision for example
(so that the app’s semantics are correctly preserved), this
research direction remained underexplored for many years.

6.3 � Explainability

Consequently to the rise of black-box models in the last dec-
ade, explainability became a hot research topic. It can be
leveraged to achieve multiple goals, from justifying each
prediction (the right of explanation required by the Euro-
pean General Data Protection Regulation (GDPR) [30]) to
discovering new knowledge and causal relations. Explain-
ability became increasingly popular in security as well, as
providing a proper explanation of predictions can help to
secure the systems against adversarial attacks.

Several approaches for interpretability have been pro-
posed, with a particular attention to post-hoc explanations
for black-box models. In 2016, Ribeiro et al. [55] proposed
LIME, a model-agnostic technique that provides local
explanations by generating small perturbations of the input
sample, thus obtaining the explanations from a linear model
fitted on the perturbed space. Lundberg and Lee [43] uni-
fied different techniques, including LIME, under the name
of SHAP, by leveraging cooperative game theory results to
identify theoretically-sound explanation methods and pro-
vide feature importance for each prediction. More recently,
Lundberg et al. [42] improved this method for tree-based
models, including those based on multiple trees, by man-
taining the desidered properties for local explanations and
enabling faithful global understanding of the models as
well. The work by Koh and Liang [35] showed that using a
gradient-based technique called influence functions, which
is well known in the field of robust statistics, it is possible to
associate each input sample to the training samples (proto-
types) that are most responsible for its prediction. The theory
behind the techniques proposed by the authors holds only
for classifiers with differentiable loss functions. However,
the authors empirically showed that their technique provides
sensible prototypes also for classifiers with not-differentiable
losses if computed on a smoothed counterpart.

Another interesting venue is the generation of high-level
concepts rather than feature attributions. In this sense, Kim
et al. [34] proposed a technique that introduces the notion
of Concept Activation Vectors (CAVs), which evaluate the
sensitivity of the models to user-defined examples defining
particular concepts. Koh et al. [36] focused instead on guid-
ing models to learn concepts at training time; such concepts
are then used to predict the target samples.

Notably, as recent work started explaining malware
detectors through some of the above-described techniques
[51, 58], Warnecke et al. [65] discussed general and secu-
rity-specific criteria to evaluate explanation methods in

different security domains. Moreover, Guo et al. [32] pro-
posed LEMNA, a method specifically designed for security
tasks, i.e., that is optimized for RNN and MLP networks,
and that highlights the feature dependence (e.g., for binary
code analysis).

Finally, a few recent works proposed to leverage expla-
nations for both generating and detecting attack samples.
Rosenberg et al. [56] obtained from explainability algo-
rithms the most relevant features for a malware classifica-
tion task, so that those can be the first to be modified in
order to generate an effective adversarial attack. Starting
from the same idea, Fidel et al. [28] proposed a highly
accurate detector of adversarial examples, based on the
SHAP values computed for the internal layers of a DNN
classifier. Also, Dombrowski et al. showed how saliency
maps can be manipulated arbitrarily by applying pertur-
bations to the input, while keeping the model’s output
approximately constant [26]. This is a worst case scenario
where not only the prediction of the system is wrong (the
perturbed malicious point evades detection), but also the
explanation that might have been used to identify the vul-
nerability is compromised.

7 � Conclusions and future work

In this paper, we empirically evaluate the correlation
between multiple gradient-based explanation techniques
and the adversarial robustness of different linear and non-
linear classifiers, trained on two popular Android applica-
tions datasets (Drebin and Tesseract), against sparse evasion
attacks. To this end, we leverage two synthetic measures
of the explanation evenness, which main advantage is not
requiring any computationally-expensive attack simulations.
Thus, they may be used by system designers and engineers
to choose, among a plethora of different models, the one
that is most resilient against sparse attacks. Our experiments
show that a strong connection exists between the evenness
of explanations and the adversarial robustness. This correla-
tion is stronger when advanced explanation techniques such
as Gradient*Input and Integrated Gradients are used, while
considering the simple Gradient does not provide reliable
information about the robustness of such classifiers.

In the future, we plan to extend our study to other mal-
ware detectors as well as other application domains. Moreo-
ver, as the proposed metrics may be used to estimate the
robustness only against sparse evasion attacks in a boolean
feature space, such as the one of Drebin, an interesting
research direction would be to devise a similar measure that
can be used to estimate the robustness of detectors working
in continuous, dense feature spaces, and when the attack is
subjected to different application constraints. Also, it could

	 International Journal of Machine Learning and Cybernetics

1 3

be interesting to assess if our vulnerability measures can be
successfully applied when the attacker does not know the
classifier parameters or when the model is not differentiable;
in that case, a surrogate classifier would be used to explain
the original unknown model function.

Finally, another interesting research avenue is to modify
the objective functions used to train the considered machine
learning models by adding to them a penalty which is
inversely proportional to the proposed evenness metrics,
in order to enforce the classifier to learn more evenly dis-
tributed relevance scores and, consequently, the model
robustness.

Acknowledgements  This work has been partly supported by the PRIN
2017 project RexLearn (grant no. 2017TWNMH2), and by the project
PON AIM Research and Innovation 2014–2020 - Attraction and Inter-
national Mobility, both funded by the Italian Ministry of Education,
University and Research, and by BMK, BMDW, and the Province of
Upper Austria in the frame of the COMET Programme managed by
FFG in the COMET Module S3AI.

Data availability statement  The datasets generated during and/or ana-
lysed during the current study are available in the Androzoo reposi-
tory, https://​andro​zoo.​uni.​lu/, and upon request at https://​www.​sec.​
tu-​bs.​de/​~danarp/​drebin/.

Declarations 

Conflict of interest  The authors declare that they have no conflict of
interest.

References

	 1.	 Aafer Y, Du W, Yin H (2013) DroidAPIMiner: mining API-
level features for robust malware detection in android. In: Proc.
of international conference on security and privacy in com-
munication networks (SecureComm). https://​doi.​org/​10.​1007/​
978-3-​319-​04283-1_6

	 2.	 Adadi A, Berrada M (2018) Peeking inside the black-box: a
survey on explainable artificial intelligence (xai). IEEE Access
6:52138–52160

	 3.	 Allix K, Bissyandé TF, Klein J, Le Traon Y (2016) Androzoo:
collecting millions of android apps for the research community.
In: 2016 IEEE/ACM 13th working conference on mining software
repositories (MSR), pp 468–471, IEEE

	 4.	 Arp D, Spreitzenbarth M, Hübner M, Gascon H, Rieck K (2014)
Drebin: efficient and explainable detection of android malware in
your pocket. In: Proc. 21st annual network & distributed system
security symposium (NDSS). The Internet Society

	 5.	 Arzt S, Rasthofer S, Fritz C, Bodden E, Bartel A, Klein J, Le
Traon Y, Octeau D, McDaniel P (2013) FlowDroid: precise con-
text, flow, field, object-sensitive and lifecycle-aware taint analysis
for Android apps. In: Proceedings of the 35th ACM SIGPLAN
conference on programming language design and implementa-
tion—PLDI ’14, pp 259–269. ACM Press. https://​doi.​org/​10.​
1145/​25942​91.​25942​99, http://​dl.​acm.​org/​citat​ion.​cfm?​doid=​
25942​91.​25942​99

	 6.	 Baehrens D, Schroeter T, Harmeling S, Kawanabe M, Hansen K,
Müller KR (2010) How to explain individual classification deci-
sions. J Mach Learn Res 11:1803–1831

	 7.	 Barreno M, Nelson B, Joseph A, Tygar J (2010) The security of
machine learning. Mach Learn 81:121–148

	 8.	 Barreno M, Nelson B, Sears R, Joseph AD, Tygar JD (2006) Can
machine learning be secure? In: Proc. ACM Symp. information,
computer and comm. Sec., ASIACCS ’06, pp 16–25. ACM, New
York

	 9.	 Biggio B, Corona I, Maiorca D, Nelson B, Šrndić N, Laskov P,
Giacinto G, Roli F (2013) Evasion attacks against machine learn-
ing at test time. In: Blockeel H, Kersting K, Nijssen S, Železný
F (eds) Machine learning and knowledge discovery in databases
(ECML PKDD), Part III, LNCS, vol 8190. Springer, Berlin, Hei-
delberg, pp 387–402

	10.	 Biggio B, Fumera G, Roli F (2010) Multiple classifier systems for
robust classifier design in adversarial environments. Int J Mach
Learn Cybern 1(1):27–41

	11.	 Biggio B, Fumera G, Roli F (2014) Security evaluation of pat-
tern classifiers under attack. IEEE Trans Knowl Data Eng
26(4):984–996

	12.	 Biggio B, Nelson B, Laskov P (2012) Poisoning attacks against
support vector machines. In: Langford J, Pineau J (eds) 29th Int’l
Conf. on Machine Learning, pp 1807–1814, Omnipress

	13.	 Biggio B, Roli F (2018) Wild patterns: ten years after the rise of
adversarial machine learning. Pattern Recogn 84:317–331

	14.	 Cai H, Meng N, Ryder B, Yao D (2018) Droidcat: effective
android malware detection and categorization via app-level pro-
filing. IEEE Trans Inf Forensics Secur 14(6):1455–1470

	15.	 Calleja A, Martin A, Menendez HD, Tapiador J, Clark D (2018)
Picking on the family: disrupting android malware triage by forc-
ing misclassification. Expert Syst Appl 95:113–126

	16.	 Cara F, Scalas M, Giacinto G, Maiorca D (2020) On the feasibil-
ity of adversarial sample creation using the android system api.
Information 11(9):433

	17.	 Chen J, Wang C, Zhao Z, Chen K, Du R, Ahn GJ (2018) Uncover-
ing the Face of Android Ransomware: characterization and real-
time detection. IEEE Trans Inf Forensics Secur 13(5):1286–1300.
https://​doi.​org/​10.​1109/​TIFS.​2017.​27879​05, http://​ieeex​plore.​
ieee.​org/​docum​ent/​82414​33/

	18.	 Chen J, Wu X, Rastogi V, Liang Y, Jha S (2019) Robust attribution
regularization. Adv Neural Inf Process Syst 2019:14300–14310

	19.	 Chen L, Hou S, Ye Y, Xu S (2018) Droideye: fortifying security
of learning-based classifier against adversarial android malware
attacks. In: Proceedings of the 2018 IEEE/ACM international
conference on advances in social networks analysis and mining,
ASONAM 2018, pp. 782–789. Institute of Electrical and Electron-
ics Engineers Inc. https://​doi.​org/​10.​1109/​ASONAM.​2018.​85082​
84

	20.	 Chen S, Xue M, Tang Z, Xu L, Zhu H (2016) Stormdroid: a
streaminglized machine learning-based system for detecting
android malware. In: Proceedings of the 11th ACM on Asia con-
ference on computer and communications security, pp 377–388

	21.	 Chen YM, Yang CH, Chen GC (2021) Using generative adversar-
ial networks for data augmentation in android malware detection.
In: 2021 IEEE conference on dependable and secure computing
(DSC), pp 1–8, IEEE. https://​doi.​org/​10.​1109/​DSC49​826.​2021.​
93462​77, https://​ieeex​plore.​ieee.​org/​docum​ent/​93462​77/

	22.	 Dalvi N, Domingos P, Mausam G, Sanghai S, Verma D (2004)
Adversarial classification. In: Tenth ACM SIGKDD international
conference on knowledge discovery and data mining (KDD), pp
99–108. Seattle

	23.	 Demontis A, Melis M, Biggio B, Maiorca D, Arp D, Rieck K,
Corona I, Giacinto G, Roli F (2017) Yes, machine learning can
be more secure! a case study on android malware detection. In:
IEEE transactions on dependable and secure computing, pp 1–1.
https://​doi.​org/​10.​1109/​TDSC.​2017.​27002​70

	24.	 Demontis A, Melis, M., Pintor M, Jagielski M, Biggio B, Oprea A,
Nita-Rotaru C, Roli F (2019) Why do adversarial attacks transfer?

https://androzoo.uni.lu/
https://www.sec.tu-bs.de/%7edanarp/drebin/
https://www.sec.tu-bs.de/%7edanarp/drebin/
https://doi.org/10.1007/978-3-319-04283-1_6
https://doi.org/10.1007/978-3-319-04283-1_6
https://doi.org/10.1145/2594291.2594299
https://doi.org/10.1145/2594291.2594299
http://dl.acm.org/citation.cfm?doid=2594291.2594299
http://dl.acm.org/citation.cfm?doid=2594291.2594299
https://doi.org/10.1109/TIFS.2017.2787905
http://ieeexplore.ieee.org/document/8241433/
http://ieeexplore.ieee.org/document/8241433/
https://doi.org/10.1109/ASONAM.2018.8508284
https://doi.org/10.1109/ASONAM.2018.8508284
https://doi.org/10.1109/DSC49826.2021.9346277
https://doi.org/10.1109/DSC49826.2021.9346277
https://ieeexplore.ieee.org/document/9346277/
https://doi.org/10.1109/TDSC.2017.2700270

International Journal of Machine Learning and Cybernetics	

1 3

Explaining transferability of evasion and poisoning attacks. In:
28th USENIX Security Symposium (USENIX Security 19), pp
321–338. USENIX Association, Santa Clara

	25.	 Demontis A, Russu P, Biggio B, Fumera G, Roli F (2016) On
security and sparsity of linear classifiers for adversarial settings.
In: Robles-Kelly A, Loog M, Biggio B, Escolano F, Wilson R
(eds) Joint IAPR Int’l workshop on structural, syntactic, and sta-
tistical pattern recognition, LNCS, vol 10029. Springer Interna-
tional Publishing, Cham, pp 322–332

	26.	 Dombrowski AK, Alber M, Anders CJ, Ackermann M, Müller
KR, Kessel P (2019) Explanations can be manipulated and geom-
etry is to blame. arXiv:​1906.​07983

	27.	 Feng Y, Anand S, Dillig I, Aiken A (2014) Apposcopy: semantics-
based detection of Android malware through static analysis. In:
Proceedings of the 22nd ACM SIGSOFT international symposium
on foundations of software engineering—FSE 2014, pp 576–587.
ACM Press. https://​doi.​org/​10.​1145/​26358​68.​26358​69, http://​dl.​
acm.​org/​citat​ion.​cfm?​doid=​26358​68.​26358​69

	28.	 Fidel G, Bitton R, Shabtai A (2020) When explainability meets
adversarial learning: Detecting adversarial examples using shap
signatures. In: 2020 international joint conference on neural
networks (IJCNN), pp 1–8, IEEE

	29.	 Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and har-
nessing adversarial examples. In: International conference on
learning representations

	30.	 Goodman B, Flaxman S (2016) European Union regulations on
algorithmic decision-making and a “right to explanation”. In:
AI magazine, vol 38, pp 50–57

	31.	 Grosse K, Papernot N, Manoharan P, Backes M, McDaniel PD
(2017) Adversarial examples for malware detection. In: ESO-
RICS (2), LNCS, vol 10493, pp 62–79. Springer

	32.	 Guo W, Mu D, Xu J, Su P, Wang G, Xing X (2018) Lemna:
explaining deep learning based security applications. In: Pro-
ceedings of the 2018 ACM SIGSAC conference on computer
and communications security, pp 364–379

	33.	 Hijawi W, Alqatawna J, Al-Zoubi AM, Hassonah MA, Faris H
(2021) Android botnet detection using machine learning models
based on a comprehensive static analysis approach. J Inf Secur
Appl 58:102735. https://​doi.​org/​10.​1016/j.​jisa.​2020.​102735,
https://​linki​nghub.​elsev​ier.​com/​retri​eve/​pii/​S2214​21262​03087​
11

	34.	 Kim B, Wattenberg M, Gilmer J, Cai C, Wexler J, Viegas F, Sayres
R (2018) Interpretability beyond feature attribution: quantitative
testing with concept activation vectors (TCAV). In: 35th interna-
tional conference on machine learning (ICML 2018), vol 80, pp
2668–2677, Stockholm

	35.	 Koh PW, Liang P (2017) Understanding black-box predictions
via influence functions. In: International conference on machine
learning (ICML)

	36.	 Koh PW, Nguyen T, Tang YS, Mussmann S, Pierson E, Kim B,
Liang P (2020) Concept bottleneck models. In: III HD, Singh A
(eds) Proceedings of the 37th international conference on machine
learning, Proceedings of Machine Learning Research, vol 119,
pp 5338–5348, PMLR. http://​proce​edings.​mlr.​press/​v119/​koh20a.​
html

	37.	 Kolcz A, Teo CH (2009) Feature weighting for improved classifier
robustness. In: Sixth conference on email and anti-spam (CEAS).
Mountain View

	38.	 Li Q, Hu Q, Qi Y, Qi S, Liu X, Gao P. (2021)Semi-supervised
two-phase familial analysis of Android malware with normalized
graph embedding. Knowl Based Syst 218:106802. https://​doi.​org/​
10.​1016/j.​knosys.​2021.​106802, https://​linki​nghub.​elsev​ier.​com/​
retri​eve/​pii/​S0950​70512​10006​54

	39.	 Lindorfer M, Neugschwandtner M, Platzer C (2015) Marvin:
efficient and comprehensive mobile app classification through
static and dynamic analysis. In: Proceedings of the 39th annual

international computers, software & applications conference
(COMPSAC)

	40.	 Lindorfer M, Neugschwandtner M, Platzer C (2015) MARVIN:
efficient and comprehensive mobile app classification through
static and dynamic analysis. In: 2015 IEEE 39th annual computer
software and applications conference, vol 2, pp 422–433

	41.	 Lowd D, Meek C (2005) Adversarial learning. In: Proc. 11th ACM
sigkdd international conference on knowledge discovery and data
mining (KDD), pp 641–647. ACM Press, Chicago

	42.	 Lundberg SM, Erion G, Chen H, DeGrave A, Prutkin JM, Nair B,
Katz R, Himmelfarb J, Bansal N, Lee SI (2020) From local expla-
nations to global understanding with explainable AI for trees.
Nature Mach Intell 2(1): 56–67. https://​doi.​org/​10.​1038/​s42256-​
019-​0138-9, http://​www.​nature.​com/​artic​les/​s42256-​019-​0138-9

	43.	 Lundberg SM, Lee SI (2017) A unified approach to interpreting
model predictions. In: Advances in neural information processing
systems, pp 4765–4774

	44.	 Mahindru A, Sangal AL (2021) MLDroid-framework for Android
malware detection using machine learning techniques. Neu-
ral Comput Appl 33(10):5183–5240. https://​doi.​org/​10.​1007/​
s00521-​020-​05309-4

	45.	 Mahindru A, Sangal AL (2021) SemiDroid: a behavioral mal-
ware detector based on unsupervised machine learning techniques
using feature selection approaches. Int J Mach Learn Cybern
12(5):1369–1411. https://​doi.​org/​10.​1007/​s13042-​020-​01238-9

	46.	 Maiorca D, Biggio B, Giacinto G (2019) Towards adversarial
malware detection: lessons learned from pdf-based attacks. ACM
Comput Surv (CSUR) 52(4):1–36

	47.	 Maiorca D, Mercaldo F, Giacinto G, Visaggio CA, Martinelli
F (2017) R-packdroid: Api package-based characterization and
detection of mobile ransomware. In: Proceedings of the sympo-
sium on applied computing, SAC ’17, pp 1718–1723. ACM, New
York. https://​doi.​org/​10.​1145/​30196​12.​30197​93

	48.	 Mariconti E, Onwuzurike L, Andriotis P, Cristofaro ED, Ross
GJ, Stringhini G (2017) Mamadroid: Detecting android malware
by building markov chains of behavioral models. In: NDSS. The
Internet Society

	49.	 Melis M, Demontis A, Biggio B, Brown G, Fumera G, Roli F
(2017) Is deep learning safe for robot vision? Adversarial exam-
ples against the icub humanoid. In: ICCV workshop on vision in
practice on autonomous robots (ViPAR)

	50.	 Melis M, Demontis A, Pintor M, Sotgiu A, Biggio B (2019)
secml: a python library for secure and explainable machine learn-
ing. arXiv:​1912.​10013

	51.	 Melis M, Maiorca D, Biggio B, Giacinto G, Roli F (2018)
Explaining black-box android malware detection. In: 2018 26th
european signal processing conference (EUSIPCO), pp 524–528,
IEEE

	52.	 Pendlebury F, Pierazzi F, Jordaney R, Kinder J, Cavallaro L
(2019) {TESSERACT​} : Eliminating experimental bias in malware
classification across space and time. In: 28th {USENIX} Security
Symposium ( {USENIX} Security 19), pp 729–746

	53.	 Peng H, Gates C, Sarma B, Li N, Qi Y, Potharaju R, Nita-Rotaru
C, Molloy I (2012) Using probabilistic generative models for
ranking risks of android apps. In: Proceedings of the 2012 ACM
conference on computer and communications security

	54.	 Pierazzi F, Pendlebury F, Cortellazzi J, Cavallaro L (2020)
Intriguing properties of adversarial ml attacks in the problem
space. In: 2020 IEEE symposium on security and privacy (SP),
pp 1332–1349, IEEE

	55.	 Ribeiro MT, Singh S, Guestrin C (2016) “why should i trust
you?”: explaining the predictions of any classifier. In: 22nd ACM
SIGKDD Int’l Conf. Knowl. Disc. Data Mining, KDD ’16, pp
1135–1144. ACM, New York

	56.	 Rosenberg I, Meir S, Berrebi J, Gordon I, Sicard G, David EO
(2020) Generating end-to-end adversarial examples for malware

http://arxiv.org/abs/1906.07983
https://doi.org/10.1145/2635868.2635869
http://dl.acm.org/citation.cfm?doid=2635868.2635869
http://dl.acm.org/citation.cfm?doid=2635868.2635869
https://doi.org/10.1016/j.jisa.2020.102735
https://linkinghub.elsevier.com/retrieve/pii/S2214212620308711
https://linkinghub.elsevier.com/retrieve/pii/S2214212620308711
http://proceedings.mlr.press/v119/koh20a.html
http://proceedings.mlr.press/v119/koh20a.html
https://doi.org/10.1016/j.knosys.2021.106802
https://doi.org/10.1016/j.knosys.2021.106802
https://linkinghub.elsevier.com/retrieve/pii/S0950705121000654
https://linkinghub.elsevier.com/retrieve/pii/S0950705121000654
https://doi.org/10.1038/s42256-019-0138-9
https://doi.org/10.1038/s42256-019-0138-9
http://www.nature.com/articles/s42256-019-0138-9
https://doi.org/10.1007/s00521-020-05309-4
https://doi.org/10.1007/s00521-020-05309-4
https://doi.org/10.1007/s13042-020-01238-9
https://doi.org/10.1145/3019612.3019793
http://arxiv.org/abs/1912.10013

	 International Journal of Machine Learning and Cybernetics

1 3

classifiers using explainability. In: 2020 international joint confer-
ence on neural networks (IJCNN), pp 1–10, IEEE

	57.	 Scalas M, Maiorca D, Mercaldo F, Visaggio CA, Martinelli F,
Giacinto G (2019) On the effectiveness of system api-related
information for android ransomware detection. Comput Secur
86:168–182

	58.	 Scalas M, Rieck K, Giacinto G (2021) Explanation-driven char-
acterization of android ransomware. In: ICPR’2020 workshop on
explainable deep learning—AI, pp 228–242. Springer, Cham.
https://​doi.​org/​10.​1007/​978-3-​030-​68796-0_​17

	59.	 Shrikumar A, Greenside P, Shcherbina A, Kundaje A (2016) Not
just a black box: learning important features through propagating
activation differences

	60.	 Sundararajan M, Taly A, Yan Q (2017) Axiomatic attribution for
deep networks. In: Proceedings of the 34th international confer-
ence on machine learning-vol 70, pp 3319–3328. JMLR. org

	61.	 Szegedy C, Zaremba W, Sutskever I, Bruna J, Erhan D, Goodfel-
low I, Fergus R (2014) Intriguing properties of neural networks.
In: International conference on learning representations. arxiv:​
1312.​6199

	62.	 Tam K, Khan SJ, Fattori A, Cavallaro L (2015) CopperDroid:
automatic reconstruction of android malware behaviors. In: Proc.
22nd annual network & distributed system security symposium
(NDSS). The Internet Society

	63.	 Tramer F, Carlini N, Brendel W, Madry A (2020) On adaptive
attacks to adversarial example defenses. In: Larochelle H, Ran-
zato M, Hadsell R, Balcan MF, Lin H (eds) Advances in neural

information processing systems, vol 33, pp 1633–1645. Curran
Associates, Inc. https://​proce​edings.​neuri​ps.​cc/​paper/​2020/​file/​
11f38​f8ecd​71867​b4243​3548d​1078e​38-​Paper.​pdf

	64.	 Šrndic N, Laskov P (2014) Practical evasion of a learning-based
classifier: a case study. In: Proc. 2014 IEEE symp. security and
privacy, SP ’14, pp 197–211. IEEE CS, Washington, DC

	65.	 Warnecke A, Arp D, Wressnegger C, Rieck K (2020) Evaluating
explanation methods for deep learning in security. In: 2020 IEEE
european symposium on security and privacy (EuroS&P), pp
158–174. IEEE, Genova. https://​doi.​org/​10.​1109/​EuroS​P48549.​
2020.​00018

	66.	 Yang W, Kong D, Xie T, Gunter CA (2017) Malware detection in
adversarial settings: exploiting feature evolutions and confusions
in android apps. In: ACSAC, pp 288–302. ACM

	67.	 Zhang X, Zhang Y, Zhong M, Ding D, Cao Y, Zhang Y, Zhang M,
Yang M (2020) Enhancing State-of-the-art Classifiers with API
Semantics to Detect Evolved Android Malware. In: Proceedings
of the 2020 ACM SIGSAC conference on computer and commu-
nications security, pp 757–770. ACM, New York. https://​doi.​org/​
10.​1145/​33722​97.​34172​91

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/978-3-030-68796-0_17
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1312.6199
https://proceedings.neurips.cc/paper/2020/file/11f38f8ecd71867b42433548d1078e38-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/11f38f8ecd71867b42433548d1078e38-Paper.pdf
https://doi.org/10.1109/EuroSP48549.2020.00018
https://doi.org/10.1109/EuroSP48549.2020.00018
https://doi.org/10.1145/3372297.3417291
https://doi.org/10.1145/3372297.3417291

	Do gradient-based explanations tell anything about adversarial robustness to android malware?
	Abstract
	1 Introduction
	2 Android malware detection
	2.1 Background on android
	2.2 Drebin

	3 Adversarial android malware
	3.1 Attacking android malware detection
	3.2 Sec-SVM: defending against adversarial android malware

	4 Do gradient-based explanations help to understand adversarial robustness?
	4.1 Adversarial robustness metric
	4.2 Gradient-based explanation methods
	4.3 Explanation evenness metrics
	4.4 Computational complexity

	5 Experimental analysis
	5.1 Experimental setup
	5.2 Experimental results
	5.3 Is adversarial robustness correlated with explanation evenness?

	6 Related work
	6.1 Android malware detection
	6.2 Adversarial attacks
	6.3 Explainability

	7 Conclusions and future work
	Acknowledgements
	References

