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Abstract
Emergencies require various emergency departments to collaborate to achieve timely and effective emergency responses. 
Thus, the overall performance of emergency response is influenced not only by the efficiency of each department alternative 
but also by the coordination effect among different department alternatives. This paper proposes a collaborative emergency 
decision making (CEDM) approach considering the synergy among different department alternatives based on the best–worst 
method (BWM) and TODIM (an acronym in Portuguese of interactive and multiple attribute decision making) method within 
an interval 2-tuple linguistic environment. First, the evaluation information provided by decision makers (DMs) is repre-
sented by interval 2-tuple linguistic variables to reflect and model the underlying diversity and uncertainty. On the basis of 
the DMs’ evaluations, the individual and collaborative performance evaluations of multi-alternative combinations composed 
of different department alternatives are constructed. Then, the BWM is extended into interval 2-tuple linguistic environ-
ment to obtain the weights of evaluation criteria, where the group decision making is taken into account in an interval fuzzy 
mathematical programming model. Furthermore, to derive more practical and accurate decision results, an interval 2-tuple 
linguistic TODIM (ITL-TODIM) method is proposed by considering the DMs’ psychological behaviours. In the developed 
ITL-TODIM method, both the gain and loss degrees of one alternative relative to another are simultaneously computed. 
Finally, a numerical example is presented to illustrate the applicability of the proposed method. Sensitivity and comparative 
analyses are also provided to demonstrate the effectiveness and advantages of the proposed approach.

Keywords  Emergency decision making · Interval 2-tuple linguistic · Multiple criteria decision making · Best–worst method 
(BWM) · TODIM

1  Introduction

In the past few years, different kinds of emergency events 
have frequently occurred around the world, such as the tsu-
nami in the Indian Ocean in 2004, Hurricane Katrina in the 

United States in 2005, the 9.0 magnitude earthquake in Japan 
in 2011, the Tianjin Port explosion in China in 2015, the 
novel coronavirus pneumonia that first broke out in China 
in 2019 and the Beirut Port explosion in Lebanon in 2020. 
These emergencies not only brought great inconvenience to 
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human life and work but also caused much loss of life and 
property. After an emergency, to reduce or eliminate various 
losses and potential hazards, effective emergency solutions 
must be developed within a short period of time [46, 66]. 
However, because of the lack of decision information and 
the uncertainty and complexity of emergencies, it is diffi-
cult to cope with emergencies through conventional response 
measures [71]. Consequently, the emergency decision mak-
ing (EDM) problem has recently attracted increasing atten-
tion from scholars and governments [2, 9, 13, 22, 25, 61, 
65]. Multiple criteria decision making (MCDM) techniques, 
which support decision makers (DMs) in choosing the best 
option from several alternatives based on multiple and often 
conflicting criteria, are considered effective means to deter-
mine the best solution in EDM problems [4, 8, 36, 52].

In the literature, many studies have addressed EDM 
problems within the framework of MCDM [7, 26, 45, 55, 
62, 70]. Previous works on solving EDM problems mainly 
concentrated on selecting the best emergency response 
alternative from several ones based on multiple criteria, and 
rarely considered the synergy among alternatives supplied 
by different emergency departments. However, because of 
the complexity and urgency of emergencies and the interde-
pendence of social systems, an emergency response system 
is undoubtedly a complex whole composed of multiple ele-
ments. To respond to emergencies in a timely and effective 
manner, it is necessary to integrate the emergency response 
forces of multiple departments to carry out an emergency 
rescue [6]. Thus, emergency responses usually involve many 
emergency decision making departments, and each depart-
ment has its own alternatives in response to an emergency. 
In these circumstances, a desirable emergency solution 
should be the organic combination of multiple department 
emergency alternatives. From this realistic point of view, for 
emergency management, the overall performance of emer-
gency response is influenced not only by the efficiency of 
each department alternative (individual performance) but 
also by the coordination effect between different department 
alternatives (collaborative performance). Therefore, for the 
generation of a reasonable and effective emergency solution, 
collaborative emergency decision making (CDEM) should 
be conducted by taking multiple department emergency 
alternatives and their synergy into consideration. Accord-
ingly, it is meaningful and significant to develop a CDEM 
approach to handle this issue.

Based on the concept of fuzzy sets, many researchers 
have solved EDM problems [9, 36, 46, 55]. However, in 
real EDM processes, due to the uncertainty of emergency 
situations and the inaccuracy of decision information, it is 
difficult for DMs to express their evaluations with fuzzy val-
ues [37, 47]. Instead, the use of linguistic variables, first pro-
posed by Zadeh [68], has been regarded as an effective way 
to depict the fuzziness and uncertainty of DMs’ assessments. 

The interval 2-tuple linguistic representation model pro-
posed by Zhang [69] allows DMs to express their evaluation 
information between two linguistic terms in the form of an 
interval 2-tuple from predefined linguistic term sets, which 
may have different granularities. Additionally, this model, as 
an extension of the 2-tuple linguistic representation model, 
is renowned for its ability to exactly process linguistic infor-
mation and avoid information distortion or loss [42, 53]. 
Therefore, a method based on the interval 2-tuple linguistic 
representation model not only is highly useful in reflecting 
the diversity and uncertainty of DMs’ linguistic assessments 
but also can be used as a highly flexible and accurate tool in 
various fuzzy and uncertain linguistic information environ-
ments [5, 48]. Since its introduction, this model has received 
much attention and has been successfully applied in many 
fields [12, 21, 23, 24, 38, 29]. Hence, the interval 2-tuple lin-
guistic representation model is of great value in dealing with 
the diversity, fuzziness and uncertainty of the emergency 
decision information provided by DMs in CEDM.

The determination of criteria weights is a critical part of 
MCDM problems [16, 50]. The best–worst method (BWM), 
recently developed by Rezaei [50], is an innovative and sim-
ple method for the determination of criteria weights and is 
considered an appropriate alternative to using the analytic 
hierarchy process (AHP) method [67]. Compared with the 
AHP method, the BWM is flexible and efficient, and has 
two pivotal superiorities [64]: (1) the BWM constructs com-
parison relations that require fewer comparisons than the 
pairwise comparison matrix in the AHP, and (2) the criteria 
weights obtained by the BWM are more consistent with prac-
tical cases. Hence, the BWM can be regarded as a convenient 
and robust way to obtain the weights of criteria in EDM 
problems. This method has been extended with many fuzzy 
theories and widely utilized in real-world MCDM problems 
[15, 16, 28, 39, 41, 63]. A detailed literature review on the 
extension and application of the BWM can be found in Mi 
et al. [43] and Yazdi et al. [67]. To date, however, there 
have been no relevant extensions of the BWM into interval 
2-tuple linguistic environment, nor has there been research 
on their applications to cope with EDM problems. Further-
more, on account of the complexity of emergency situations 
and the participation of multiple departments, taking mul-
tiple opinions of DMs from different departments is worth 
advocating in EDM. Therefore, it is expected to integrate the 
BWM with interval 2-tuple linguistic representation model 
to address CEDM issues while simultaneously considering 
group decision making.

Different approaches have been adopted to rank the 
EDM solutions, such as Technique in Order of Preference 
by Similarity to Ideal Solution (TOPSIS) [2], VIseKrit-
erijumska Optimizacija I Kompromisno Resenje (VIKOR) 
[60], Weighted Distance Based Approximation (WDBA) 
and COmbinative Distance-based ASsessment (CODAS) 
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[46], DEcision-MAking Trial and Evaluation Laboratory 
(DEMATEL) [4], QUALItative FLEXible multiple criteria 
(QUALIFLEX) [11] and Preference Ranking Organization 
METHod for Enrichment Evaluations II (PROMETHEE II) 
[45]. Although these methods are beneficial to EDM, they 
assume that DMs are completely rational. Many behavioural 
experiments have shown that DMs have bounded cognition 
in decision making processes under risk and uncertainty [3, 
19, 58]. DMs usually have psychological expectations and 
are more sensitive to losses than to gains [1]. Because of 
the irregularity in emergencies, practical EDM processes 
are characterized by risks and uncertainties [10]. Thus, 
DMs’ psychological behaviours are crucial and must be 
considered in solving EDM problems. As a typical MCDM 
approach that considers the psychological behaviours of 
DMs, the TODIM (an acronym in Portuguese of interac-
tive and multiple attribute decision making) method pro-
posed by Gomes and Lima [14] has gained much attention 
from researchers. Different from the studies using prospect 
theory to describe DMs’ psychological behaviours [8, 36, 
70], the TODIM method does not require the aspiration 
levels of criteria, which are usually difficult to determine in 
advance. At present, the TODIM method has been extended 
into various types of fuzzy environments [24, 33–40, 49, 
57]. However, little attention has been given to the exten-
sion of TODIM method into the interval 2-tuple linguistic 
context. In view of the advantages of interval 2-tuple lin-
guistic representation model discussed before, it is encour-
aged to extend the TODIM method into interval 2-tuple 
linguistic environment to generate more reasonable decision 
results in CEDM.

Based on the above motivations, the objective of this 
paper is to develop an integrated approach combining the 
interval 2-tuple linguistic BWM (ITL-BWM) method and 
interval 2-tuple linguistic TODIM (ITL-TODIM) method 
to solve CEDM problems that consider the synergy among 
different department alternatives. The main contributions of 
this study are summarized as follows:

(1)	 In the EDM process, the synergy among different 
department alternatives is taken into account, and the 
construction processes of the individual performance 
evaluations and collaborative performance evaluations 
of multi-alternative combinations comprising different 
department alternatives are suggested.

(2)	 A new extension of the BWM with interval 2-tuple lin-
guistic information is proposed to determine the criteria 
weights. Group decision making is incorporated into an 
interval fuzzy mathematical programming model in the 
developed ITL-BWM.

(3)	 The TODIM method is extended into interval 2-tuple 
linguistic environment by considering DMs’ psycho-
logical behaviours, in which the gain degree and loss 

degree of one alternative relative to another are both 
calculated to derive more accurate decision results.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews the current EDM methods. Section 3 intro-
duces some basic concepts of the interval 2-tuple linguis-
tic information. Section 4 describes the proposed CEDM 
methodology in detail. In Sect. 5, a numerical example is 
presented. Next, sensitivity and comparative analyses are 
conducted in Sect. 6. Finally, some concluding remarks are 
given in Sect. 7.

2 � Literature review

Currently, a variety of methods have been developed for 
EDM under diverse uncertain circumstances to effectively 
respond to and resolve emergency events. For example, Ju 
and Wang [18] proposed a method of combining Demp-
ster–Shafer evidence theory with the analytic hierarchy 
process (DS/AHP) and extended TOPSIS for emergency 
alternative evaluation and selection. Gao et al. [13] proposed 
an emergency decision support method using probabilistic 
linguistic preference relations and case-based reasoning. 
Ding and Liu [7] presented an extended zero-sum game 
approach based on the BWM and Pythagorean fuzzy uncer-
tain linguistic variables for solving EDM problems. The 
probabilistic linguistic weighted averaging operator combin-
ing Dempster–Shafer evidence theory was advanced by Li 
and Wei [22] for the EDM of a serious mine accident. Ding 
et al. [11] suggested a large group EDM method by extend-
ing the QUALIFLEX method using linguistic Z-numbers. 
Ashraf and Abdullah [2] designed three EDM algorithms 
using TOPSIS, grey relational analysis and Einstein aggre-
gation operators under a spherical fuzzy environment. To 
manage emergency alternative selection under group DMs, 
a method based on entropy weight and intuitionistic fuzzy 
DEMATEL was developed by Chen et al. [4]. Liang et al. 
[25] combined the linguistic distribution weighted power 
average operator and linguistic distribution multi-attributive 
border approximation area comparison method to solve the 
emergency alternative selection problem. Aiming at describ-
ing DMs’ psychological characteristics in emergency events, 
Liu et al. [36] extended the trapezoidal intuitionistic fuzzy 
thermodynamic method with prospect theory to appraise 
emergency alternatives. According to the constructed pros-
pect decision matrix, an extended VIKOR approach was sug-
gested by Ding and Liu [8] to address EDM problems with 
2-dimensional uncertain linguistic information. For a mine 
EDM problem, Liang et al. [26] proposed a multi-granularity 
proportional hesitant fuzzy linguistic TODIM method. Wang 
et al. [61] suggested a regret theory-based EDM model for 
the emergency response to different rainstorm disaster 
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scenarios. Thereafter, Wang and Day [62] applied the AHP 
method to explore the selection and prioritization of major 
decision making factors for typhoon disaster preparedness 
and emergency response. Ding et  al. [9] integrated the 
TODIM method with bidirectional projection to solve the 
group EDM problem in the context of hesitant triangular 
fuzzy sets. Based on case-based reasoning and the cloud 
model, Xia et al. [65] constructed an EDM method to handle 
the risk decision making problem in emergency response 
alternative selection. Rong et al. [52] propounded a decision 
methodology that combines the novel score function and 
generalized picture fuzzy Archimedean copula prioritized 
aggregation operators to determine the issue of emergency 
management scheme evaluation. In addition, Zhou et al. [72] 
provided an overview of the EDM methods for natural disas-
ters and presented a detailed illustration of the construction 
and development of emergency decision support systems.

The above literature review shows that various methods 
have been introduced to cope with EDM problems in vague 
and indeterminate environments. However, the extant works 
rarely consider multiple department emergency alternatives 
and their synergy in EDM processes. Moreover, little atten-
tion has been paid to EDM problems in the context of inter-
val 2-tuple linguistic information. In addition, to the best of 
our knowledge, an investigation of the BWM and TODIM 
with interval 2-tuple linguistic information to address emer-
gencies cannot be found in the existing literature. Therefore, 
to bridge these research gaps, this paper proposes a collab-
orative emergency decision making approach combining 
the BWM and TODIM within the interval 2-tuple linguis-
tic information environment to solve EDM problems. The 
developed EDM method can not only manage the evaluation 
information of DMs flexibly and accurately but also support 
the rescue team in finding the optimal emergency solution to 
an emergency event reasonably and effectively.

3 � Preliminaries

This section introduces some basic concepts of interval 
2-tuple linguistic information.

3.1 � 2‑Tuple linguistic information

Let S = {s0, s1,… , sg} be a predefined linguistic term set 
with granularity g + 1 , where si obeys the following rule: if 
m > n , then sm > sn . The 2-tuple fuzzy linguistic representa-
tion model, developed by Herrera and Martínez [17], expresses 
linguistic information using a linguistic 2-tuple (si, �) , where 
si is a linguistic term from S and � denotes the value of sym-
bolic translation. Together with the 2-tuple (si, �) , there exists 
a numerical value � representing the aggregation result of the 
linguistic symbol. In the classical 2-tuple linguistic model [17], 

� ranges from 0 to g. Consequently, there is a limitation that 
the range of � varies with the granularity of the linguistic term 
sets. To overcome this limitation, Chen and Tai [56] proposed 
a generalized 2-tuple linguistic model.

Definition 1  [56]. Let S = {s0, s1,… , sg} be a linguistic 
term set and � ∈ [0, 1] be a value expressing the result of 
a symbolic aggregation operation. To obtain the 2-tuple 
equivalent to � , the following generalized translation func-
tion is defined:

where round (⋅) is the usual rounding operation, si possesses 
the closest index label to � and � is the symbolic translation 
value.

Definition 2  [56]. Let S = {s0, s1,⋯ , sg} be a linguistic 
term set and (si, �) be a 2-tuple. There is a reverse function 
Δ−1 to transform a 2-tuple into its equivalent numerical value 
� ∈ [0, 1] , where:

Obviously, a linguistic term si can be converted into a 
2-tuple (si, 0).

Theorem 1  [17]. Let (sk, �1) and (sl, �2) be two 2-tuples, the 
comparison of which can be performed according to an 
ordinary lexicographic order as follows:

(1)	 If k < l , then (sk, 𝛼1) < (sl, 𝛼2);
(2)	 If k = l , then

(a)	 if �1 = �2 , then (sk, �1) = (sl, �2);
(b)	 if 𝛼1 < 𝛼2 , then (sk, 𝛼1) < (sl, 𝛼2);
(c)	 if 𝛼1 > 𝛼2 , then (sk, 𝛼1) > (sl, 𝛼2).

3.2 � Interval 2‑tuple linguistic information

Based on the 2-tuple linguistic model [56], Zhang [69] put 
forward a novel interval 2-tuple linguistic representation 
model, which has more advantages in addressing vague and 
incomplete linguistic information.

Definition 3  [69]. Let S = {s0, s1,⋯ , sg} be a linguistic 
term set. An interval 2-tuple is composed of two 2-tuples, 
denoted as [(si, �1), (sj, �2)] , where i ≤ j and �1 ≤ �2 if i = j , 

(1)

Δ ∶ [0, 1] → S × [−0.5∕g, 0.5∕g),

Δ(�) = (si, �), with

{
si, i = round(� ⋅ g),

� = � − i∕g, � ∈ [−0.5∕g, 0.5∕g),

(2)
Δ−1 ∶ S × [−0.5∕g, 0.5∕g) → [0, 1],

Δ−1(si, �) = i∕g + � = �.
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si(sj) and �1(�2) represent the linguistic term from S and the 
symbolic translation value, respectively. The following func-
tion is defined to acquire the interval 2-tuple equivalent to an 
interval value [�1, �2] (�1, �2 ∈ [0, 1], �1 ≤ �2):

Conversely, a reverse function Δ−1 to transform an inter-
val 2-tuple into its equivalent interval value [�1, �2] always 
exists, where:

Definition 4  [30]. Let [(r1, �1), (t1, �1)] and [(r2, �2), (t2, �2)] 
be two interval 2-tuples and � ∈ [0, 1] , then the following 
basic operations can be defined:

Definition 5  [69]. Let X = {[(r1, �1), (t1, �1)], [(r2, �2),

(t2, �2)],⋯ , [(r
n
, �

n
), (t

n
, �

n
)]} be a set of interval 2-tuples 

and w = (w1,w2,… ,wn)
T be their associated weighting vec-

tor, with wi ∈ [0, 1] and 
∑n

i=1
wi = 1 . The interval 2-tuple 

weighted average (ITWA) operator is defined as:

4 � Proposed methodology

In this section, an integrated method combining the BWM 
and TODIM is developed to solve the CEDM problems 
within the interval 2-tuple fuzzy linguistic environment. 
The basic procedure of the proposed method is shown in 

(3)Δ([�1, �2]) = [(si, �1), (sj, �2)], with

⎧
⎪⎪⎨⎪⎪⎩

si, i = round(�1 ⋅ g),

sj, j = round(�2 ⋅ g),

�1 = �1 − i∕g, �1 ∈ [−0.5∕g, 0.5∕g),

�2 = �2 − j∕g, �2 ∈ [−0.5∕g, 0.5∕g).

(4)Δ−1([(si, �1), (sj, �2)]) = [i∕g + �1,j∕g + �2] = [�1, �2].

(5)

[(r1, �1), (t1, �1)] + [(r2, �2), (t2, �2)]

= Δ[Δ−1(r1, �1) + Δ−1(r2, �2),Δ
−1(t1, �1) + Δ−1(t2, �2)];

(6)

[(r1, �1), (t1, �1)] × [(r2, �2), (t2, �2)]

= Δ[Δ−1(r1, �1) × Δ−1(r2, �2),Δ
−1(t1, �1) × Δ−1(t2, �2)];

(7)�[(r1, �1), (t1, �1)] = Δ[�Δ−1(r1, �1), �Δ
−1(t1, �1)];

(8)[(r1, �1), (t1, �1)]
� = Δ[(Δ−1(r1, �1))

�, (Δ−1(t1, �1))
�].

(9)

ITWA([(r1, �1), (t1, �1)], [(r2, �2), (t2, �2)],… , [(rn, �n), (tn, �n)])

= Δ

[
n∑
i=1

wiΔ
−1(ri, �i),

n∑
i=1

wiΔ
−1(ti, �i)

]
.

Fig. 1. First, the construction processes of individual and 
collaborative performance evaluations of multi-alternative 
combinations regarding individual criteria and collaborative 
criteria are introduced. Second, the ITL-BWM method is 
developed to calculate the weights of individual criteria and 

collaborative criteria. Third, the ITL-TODIM method is pro-
posed to determine the priority ranking of multi-alternative 
combinations on the basis of individual and collaborative 
performances.

For a CEDM problem, let D =
{
D1,D2,… ,DJ

}
 be a set 

of emergency departments, DM =
{
DM1,DM2,… ,DMJ

}
 

be a set of DMs from each department, � =
{
�1, �2,… , �J

}
 

be the weighting vector of DM  , with �j ∈ [0, 1] and 
J∑
j=1

�j = 1 , ADj =

{
A
Dj

1
,A

Dj

2
,… ,A

Dj

NDj

}
 be a set of emergency 

a l t e r n a t i v e s  p r o v i d e d  b y  Dj(j = 1, 2,… , J)  , 
IC =

{
IC1, IC2,… , ICI

}
 be a set of individual criteria, and 

CC =
{
CC1,CC2,… ,CCC

}
 be a set of collaborative criteria. 

This study takes both the individual performances and col-
laborative performances of multi-alternative combinations 
into consideration and focuses on how to select the best 
response solution to an emergency event. Then, the main 
steps of the proposed approach integrating the ITL-BWM 
and ITL-TODIM are presented as shown below.

Stage 1: Obtain the individual and collaborative perfor-
mance evaluations

Emergency response usually requires multiple emergency 
departments to carry out rescue activities. To obtain a bet-
ter yield of emergency activities, not only the effectiveness 
of the emergency response of a single department but also 
the effectiveness of coordination between different depart-
ments needs to be considered. Hence, when selecting the 
most suitable alternative combination, both the individual 
performances and collaborative performances of multi-
alternative combinations should be assessed.

(1)	 Individual performance evaluations
	   Step 1.1: Decision maker DMj(j = 1, 2,… , J) 

chooses a linguistic term set Sj from the multi-granu-
larity ones and evaluates the performance of alternative 
A
Dj

nDj
(nDj

= 1, 2,… ,NDj
) provided by his/her department 

Dj with respect to individual criterion ICi(i = 1, 2,… , I) 
t h rough  an  in t e r va l  l i ngu i s t i c  va r i ab le 
ė
j

nDj
,i
= [r

j

nDj
,i
, t

j

nDj
,i
] , with rj

nDj
,i
, t

j

nDj
,i
∈ Sj and rj

nDj
,i
< t

j

nDj
,i
 . 
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Then, transform ėj
nDj

,i
 into interval 2-tuple linguistic 

variable ej
nDj

,i
= [(r

j

nDj
,i
, 0), (t

j

nDj
,i
, 0)].

	   Step 1.2: For any multi-alternative combination 
A
D1

nD1
A
D2

nD2
…A

DJ

nDJ
 , its individual performance evaluation 

regarding ICi is determined by

	   From this, the individual performance evaluations of 
all the multi-alternative combinations can be obtained as

(10)E
A
D1
nD1

A
D2
nD2

⋯A
DJ
nDJ

i
=

J∑
j=1

�j ⋅ e
j

nDj
,i
, i = 1, 2,… , I, nDj

= 1, 2,… ,NDj
, j = 1, 2,… , J.

IC1 ⋯ ICi ⋯ ICI .

EIC =

A
D1

1
A
D2

1
⋯A

DJ

1

⋮

A
D1

nD1
A
D2

nD2
⋯A

DJ

nDJ

⋮

A
D1

ND1

A
D2

ND2

⋯A
DJ

NDJ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

J∑
j=1

�j ⋅ e
j

1,1
⋯

J∑
j=1

�j ⋅ e
j

1,i
⋯

J∑
j=1

�j ⋅ e
j

1,I

⋮ ⋮ ⋮
J∑
j=1

�j ⋅ e
j

nDj
,1

⋯

J∑
j=1

�j ⋅ e
j

nDj
,i
⋯

J∑
j=1

�j ⋅ e
j

nDj
,I

⋮ ⋮ ⋮
J∑
j=1

�j ⋅ e
j

NDj
,1
⋯

J∑
j=1

�j ⋅ e
j

ND
j
,i
⋯

J∑
j=1

�j ⋅ e
j

ND
j
,I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, nDj
= 1, 2,… ,NDj

, j = 1, 2,… , J.

(2)	 Collaborative performance evaluations
	   Step 1.3: DMp and DMq (p, q = 1, 2,… , J, p < q) 

r e s p e c t i ve ly  p r ov i d e  t h e i r  eva l u a t i o n s 
ė
p,c
nDp ,nDq

= [r
p,c
nDp ,nDq

, t
p,c
nDp ,nDq

] and ėq,cnDp ,nDq = [rq,c
nDp

,nDq
, tq,c

nDp
,nDq

] 
about the performance of the pair of alternatives 
(A

Dp

nDp
,A

Dq

nDq
) (n

D
p

= 1, 2,… ,N
D
p

, n
D
q

= 1, 2,… ,N
D
q

, p < q) 

w i t h  r e spec t  to  co l l abora t ive  c r i t e r ion 
CCc(c = 1, 2,… ,C) . Therein, the alternatives ADp

nDp
 and 

Fig. 1   The procedural steps of 
the proposed approach

Evaluate the individual performance of each 

alternative regarding individual criteria

Evaluate the collaborative performance of each 

alternative pair regarding collaborative criteria

Determine the best and worst individual

/collaborative criteria

Obtain individual performance evaluations of all 

the multi-alternative combinations

Obtain collaborative performance evaluations of all 

the multi-alternative combinations

Calculate collaborative performance evaluations of 

any pair of alternatives

Obtain the interval linguistic best-to-others and 

others-to-worst vectors

Transform interval linguistic vectors into interval 

2-tuple linguistic vectors

Construct the interval fuzzy mathematical 

programming model

Derive the weights of individual/collaborative 

criteria

Calculate gain and loss degrees of one multi-alternative combination

relative to another regarding individual/collaborative criteria

Compute the positive and negative dominance degrees based on

the gain matrix and loss matrix

Construct the dominance degree matrix, and derive the overall

dominance values regarding individual/collaborative criteria

Determine comprehensive dominance values, and rank the

multi-alternative combinations

Stage 1: Obtain performance evaluations Stage 2: Derive criteria weights by ITL-BWM

Stage 3: Rank the solutions using ITL-TODIM
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A
Dq

nDq
 are respectively supplied by departments Dp and 

Dq , and ėp,cnDp ,nDq
 and ėq,cnDp ,nDq are interval linguistic vari-

ables, with rp,cnDp ,nDq
, t

p,c
nDp ,nDq

∈ Sp , rq,cnDp ,nDq
, t

q,c
nDp ,nDq

∈ Sq , 
r
p,c
nDp ,nDq

< t
p,c
nDp ,nDq

 and rq,cnDp ,nDq
< t

q,c
nDp ,nDq

 . Then, transform 
ė
p,c
nDp ,nDq

 and ėq,cnDp ,nDq into interval 2-tuple linguistic  
va r i ab les  e

p,c
nDp ,nDq

= [(r
p,c
nDp ,nDq

, 0), (t
p,c
nDp ,nDq

, 0)] and 
e
q,c
nDp ,nDq

= [(r
q,c
nDp ,nDq

, 0), (t
q,c
nDp ,nDq

, 0)].
	   Step 1.4: For any pair of alternatives (ADp

nDp
,A

Dq

nDq
) , its 

collaborative performance evaluation regarding CCc is 
calculated as

	   Step 1.5: For any multi-alternative combination 
A
D1

nD1
A
D2

nD2
…A

DJ

nDJ
 , its collaborative performance evalua-

tion regarding CCc is determined by

where �pq is the normalized joint weight of DMp and 
DMq.

From this, the collaborative performance evaluations of 
all the multi-alternative combinations can be obtained as

Stage 2: Determine criteria weights using the ITL-BWM
In the traditional BWM, the reference comparisons for 

the best criterion and worst criterion are described by a 1–9 
scale. However, because of the inherent complexity and 

(11)
E

(A
D
p

n
D
p

,A
D
q

n
D
q

)

c
= 𝜆

p
⋅ e

p,c

n
D
p
,n
D
q

+ 𝜆
q
⋅ e

q,c

n
D
p
,n
D
q

, c = 1, 2,… ,C, n
D
p

= 1, 2,… ,N
D
p

, n
D
q

= 1, 2,… ,N
D
q

, p, q = 1, 2,… , J, p < q.

(12)E

A

D1
n
D1

A

D2
n
D2

⋯A

D
J

n
D
J

c
=

J−1∑
p=1

J∑
q=p+1

𝜆
pq
⋅ E

(A
D
p

n
D
p

,A
D
q

n
D
q

)

c
, c = 1, 2,… ,C, n

D
p

= 1, 2,… ,N
D
p

, n
D
q

= 1, 2,… ,N
D
q

, p, q = 1, 2,… , J, p < q,

(13)

𝜆pq =
𝜆p𝜆q∑J−1

p=1

∑J

q=p+1
𝜆p𝜆q

, p, q = 1, 2,… , J, p < q,

CC1 ⋯ CCc ⋯ CCC

ECC =

A
D1

1
A
D2

1
⋯A

DJ

1

⋮

A
D1

nD1
A
D2

nD2
⋯A

DJ

nDJ

⋮

A
D1

ND1

A
D2

ND2

⋯A
DJ

NDJ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

J−1∑
p=1

J∑
q=p+1

𝜆pq ⋅ E
(A1Dp,A

Dq

1
)

1
⋯

J−1∑
p=1

J∑
q=p+1

𝜆pq ⋅ E
(A1Dp,A

Dq

1
)

c ⋯

J−1∑
p=1

J∑
q=p+1

𝜆pq ⋅ E
(A1Dp,A

Dq

1
)

C

⋮ ⋮ ⋮

J−1∑
p=1

J∑
q=p+1

𝜆pq ⋅ E
(A

Dp
nDp

,A
Dq
nDq

)

1
⋯

J−1∑
p=1

J∑
q=p+1

𝜆pq ⋅ E
(A

Dp
nDp

,A
Dq
nDq

)

c ⋯

J−1∑
p=1

J∑
q=p+1

𝜆pq ⋅ E
(A

Dp
nDp

,A
Dq
nDq

)

C

⋮ ⋮ ⋮

J−1∑
p=1

J∑
q=p+1

𝜆pq ⋅ E
(A

Dp

NDp
,A

Dq

NDq
)

1
⋯

J−1∑
p=1

J∑
q=p+1

𝜆pq ⋅ E
(A

Dp

NDp
,A

Dq

NDq
)

c ⋯

J−1∑
p=1

J∑
q=p+1

𝜆pq ⋅ E
(A

Dp

NDp
,A

Dq

NDq
)

C

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

nDp
= 1, 2,⋯ ,NDp

, nDq
= 1, 2,⋯ ,NDq

, p, q = 1, 2,⋯ , J, p < q

uncertainty and DMs’ limited knowledge and experiences, 
it is difficult for DMs to express their judgements by numeri-
cal values with full determinacy and confidence in the EDM 
processes. In these cases, multi-granularity interval linguis-
tic variables are more suitable to capture fuzzy, uncertain 
and diversified evaluation information in reference compari-
sons. With the aid of interval 2-tuple linguistic model, this 
study employs multi-granularity interval linguistic variables 
to represent DMs’ preferences on reference comparisons and 
proposes the ITL-BWM to derive the criteria weights.

Step 2.1: Each DMj(j = 1, 2,… , J) determines the best 
(most important) and the worst (least important) criteria 

from his/her perspective.
Step 2.2: Each DMj(j = 1, 2,… , J) chooses a linguistic 

term set S
j
 from the multi-granularity ones and expresses his/

her preference degree of the best criterion B over each crite-

rion n (n = 1, 2,… ,N) using an interval linguistic variable 
ȧ
j

Bn
= [r

j

Bn
, t

j

Bn
] , with rj

Bn
, t

j

Bn
∈ S

j
 and rj

Bn
≤ t

j

Bn
 . The obtained 

interval linguistic best-to-others (ILBO) vector from the 
viewpoint of DMj is denoted as Ȧj

B
= (ȧ

j

B1
, ȧ

j

B2
,… , ȧ

j

BN
).

Step 2.3: Each DMj(j = 1, 2,… , J) provides his/her 
preference degree of each criterion n (n = 1, 2,… ,N) 
over the worst criterion W using an interval linguis-
tic variable ȧj

nW
= [r

j

nW
, t

j

nW
] , with rj

nW
, t

j

nW
∈ S

j
 and 

r
j

nW
≤ t

j

nW
 . The obtained interval linguistic others-to-worst 

(ILOW) vector from DMj ’s viewpoint is represented as 
Ȧ
j

W
= (ȧ

j

1W
, ȧ

j

2W
,… , ȧ

j

NW
).

Step 2.4: Transform the ILBO and ILOW vectors into 
interval 2-tuple linguistic best-to-others (ITLBO) vector 
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A
j

B
= (a

j

B1
, a

j

B2
,… , a

j

BN
) and interval 2-tuple linguistic oth-

ers-to-worst (ITLOW) vector Aj

W
= (a

j

1W
, a

j

2W
,… , a

j

NW
) , 

where aj
Bn

= [(r
j

Bn
, 0), (t

j

Bn
, 0)] and aj

nW
= [(r

j

nW
, 0), (t

j

nW
, 0)] , 

with j = 1, 2,… , J and n = 1, 2,… ,N.
Step 2.5: Compute the optimal weights (w∗

1
,w∗

2
,… ,w∗

N
).

The optimal interval weights of criteria are determined 
such that  the maximum absolute dif ferences |||
wB

wn

− U(Δ−1(a
j

Bn
))
||| and |||

wn

wW

− U(Δ−1(a
j

nW
))
||| for all n are 

minimized, which can be formulated as the following non-
linear programming model:

whe re  wB = [lw
B
, uw

B
] ,  wn = [lw

n
, uw

n
] ,  wW = [lw

W
, uw

W
] , 

�j = [l�
j
, u�

j
] , �j is the weight of DMj , 

∑N

�=1,�≠n uw� + lw
n
≥ 1 

and 
∑N

�=1,�≠n lw� + uw
n
≤ 1 are the constraints of interval 

weights for reducing the redundant solution space [54], 
U(Δ−1(a

j

Bn
)) = [𝓁g⋅Δ−1(r

j

Bn
,0),𝓁g⋅Δ−1(t

j

Bn
,0)]  a n d 

U(Δ−1(a
j

nW
)) = [𝓁g⋅Δ−1(r

j

nW
,0),𝓁g⋅Δ−1(t

j

nW
,0)] are the utility values 

of cognitive linguistic evaluations aj
Bn

 and aj
nW

 , 
� = g

√
Best∕Worst is the objective importance ratio of two 

adjacent terms considering that different DMs may have dif-
ferent cognitive standards towards the MCDM problem [27, 
28], g represents the granularity of linguistic term set, and 
Best∕Worst is provided by the decision maker and stands for 
the maximum difference in the decision maker’s evaluation 
information.

According to the study of Rezaei [51], we can minimize 
t h e  m a x i m u m  a m o n g  t h e  s e t  o f {|||wB − U(Δ−1(a

j

Bn
)) ⋅ wn

|||,
|||wn − U(Δ−1(a

j

nW
)) ⋅ wW

|||
}

 

instead of 
{|||

wB

wn

− U(Δ−1(a
j

Bn
))
|||,
|||
wn

wW

− U(Δ−1(a
j

nW
))
|||
}

 . 

(14)

min Z =

J�
j

�j�j

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

����
wB

wn

− U(Δ−1(a
j

Bn
))
���� ≤ �j, for all n,

����
wn

wW

− U(Δ−1(a
j

nW
))
���� ≤ �j, for all n,

⎫
⎪⎬⎪⎭
for all j

N�
�=1,�≠n

uw
�
+ lw

n
≥ 1

N�
�=1,�≠n

lw
�
+ uw

n
≤ 1

0 ≤ lw
n
≤ uw

n

n = 1, 2,… ,N

J�
j

�j = 1

Simultaneously, considering l𝜀
j
< u𝜀

j
 and assuming 

�∗
j
= [�∗

j
,�∗

j
], �∗

j
≤ l�

j
 , model (14) can be converted into the 

following interval fuzzy mathematical programming model:

By solving model (15), the optimal interval weights 

(w
∗

1
,w

∗

2
,⋯ ,w

∗

N
) and (�∗

1
, �∗

2
,⋯ , �∗

J
) can be obtained. 

J∑
j

�j�
∗
j
 

can be interpreted as a measure of the consistency level of 

group decisions. A value of 
J∑
j

�j�
∗
j
 close to zero shows a 

high consistency level. Then, the optimal weights 
(w∗

1
,w∗

2
,… ,w∗

N
) are derived as follows:

where [l
w∗

n
, u

w∗

n
] = w

∗

n
 , with n = 1, 2,… ,N.

By now, the weights of individual and collaborative cri-
teria can be calculated through above developed ITL-BWM.

Stage 3: Derive the priority ranking using the 
ITL-TODIM

Because EDM problems are usually risky and uncertain, 
it is preferred to consider DMs’ psychological behaviours. 
Therefore, in this stage, an ITL-TODIM approach is pro-
posed to derive the priority ranking of solutions, which is 
completed by the following steps.

S t e p  3 . 1 :  L e t  xan = [(ran, �an), (tan, �an)] a n d 
xbn = [(rbn, �bn), (tbn, �bn)] be respectively the performance 
evaluations of solutions Aa (such as a multi-alternative com-
bination) and Ab (such as another multi-alternative combi-
nation) concerning criterion n , with a, b = 1, 2,… ,M and 
n = 1, 2,… ,N . Let �an and �bn be the random variables in 
interval numbers Δ−1(xan) and Δ−1(xbn) , respectively, and 
their probability density functions are denoted as.

(15)

min Z =

J�
j

�j�
∗
j

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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B
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,0)

⋅ uw
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j
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,0)

⋅ lw
n
]
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j
,�∗

j
], forall n,

����[l
w
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, uw

n
] − [𝓁

g⋅Δ−1 (r
j

nW
,0)

⋅ uw
W
,𝓁

g⋅Δ−1(t
j

nW
,0)

⋅ lw
W
]
���� ≤ [�∗
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,�∗

j
], forall n,

⎫⎪⎬⎪⎭
forall j

N�
�=1,�≠n

uw
�
+ lw

n
≥ 1

N�
�=1,�≠n

lw
�
+ uw

n
≤ 1

0 ≤ lw
n
≤ uw

n

n = 1, 2,… ,N

J�
j

�j = 1

.

(16)w∗
n
= mean(w

∗

n
) = (l

w∗

n
+ u

w∗

n
)
/
2,
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Step 3.2: Calculate the gains and losses.
If n is a benefit criterion, the gain degree ĝn

ab
 of Aa rela-

tive to Ab is expressed as the expectation of �an − �bn for 
𝛾an > 𝛾bn , i.e.,

The loss degree l̂n
ab

 of Aa relative to Ab is expressed as the 
expectation of �an − �bn for �an ≤ �bn , i.e.,

Similarly, if n is a cost criterion, the gain degree ĝn
ab

 and 
loss degree l̂n

ab
 of Aa relative to Ab are respectively expressed 

as

Thus, the gain matrix ĝn = [ĝn
ab
]M×M and loss matrix 

l̂n = [l̂n
ab
]M×M with respect to criterion n can be obtained, 

where ĝn
zz
= l̂n

zz
= 0 , with z = 1, 2,… ,M and n = 1, 2,… ,N.

Step 3.3: For analysis and computation convenience, the 
matrices ĝn = [ĝn

ab
]M×M and l̂n = [l̂n

ab
]M×M need to be nor-

malized. Let the normalized matrices be g̃n = [g̃n
ab
]M×M and 

l̃n = [l̃n
ab
]M×M , where g̃n

ab
 and l̃n

ab
 can be determined as

(17)fan(x) =

⎧
⎪⎨⎪⎩

1

Δ−1(tan, �an) − Δ−1(ran, �an)
, Δ−1(ran, �an) ≤ x ≤ Δ−1(tan, �an)

0, otherwise

, a = 1, 2,… ,M, n = 1, 2,… ,N,

(18)fbn(x) =

⎧
⎪⎨⎪⎩

1

Δ−1(tbn, �bn) − Δ−1(rbn, �bn)
, Δ−1(rbn, �bn) ≤ x ≤ Δ−1(tbn, �bn)

0, otherwise

, b = 1, 2,… ,M, n = 1, 2,… ,N.

(19)ĝn
ab

= ∫ ∫
x∈Δ−1(xan),y∈Δ

−1(xbn)

𝛾an>𝛾bn

(x − y)fan(x)fbn(y)dxdy = ∫x∈Δ−1(xan)

fan(x)∫
y∈Δ−1(xbn)

𝛾an>𝛾bn

(x − y)fbn(y)dydx,

a, b = 1, 2,… ,M, n = 1, 2,… ,N.

(20)l̂n
ab

= � �
x∈Δ−1(xan),y∈Δ

−1(xbn)

𝛾an≤𝛾bn
(x − y)fan(x)fbn(y)dxdy = �x∈Δ−1(xan)

fan(x)�
y∈Δ−1(xbn)

𝛾an≤𝛾bn
(x − y)fbn(y)dydx,

a, b = 1, 2,… ,M, n = 1, 2,… ,N.

(21)ĝn
ab

= ∫ ∫
x∈Δ−1(xan),y∈Δ

−1(xbn)

𝛾an<𝛾bn

(y − x)fan(x)fbn(y)dxdy = ∫x∈Δ−1(xan)

fan(x)∫
y∈Δ−1(xbn)

𝛾an<𝛾bn

(y − x)fbn(y)dydx,

a, b = 1, 2,… ,M, n = 1, 2,… ,N,

(22)l̂n
ab

= � �
x∈Δ−1(xan),y∈Δ

−1(xbn)

𝛾an≥𝛾bn
(y − x)fan(x)fbn(y)dxdy = �x∈Δ−1(xan)

fan(x)�
y∈Δ−1(xbn)

𝛾an≥𝛾bn
(y − x)fbn(y)dydx,

a, b = 1, 2,… ,M, n = 1, 2,… ,N.

(23)

g̃n
ab

=
ĝn
ab

max
a,b={1,2,⋯,M}

{ĝn
ab
}
, a, b = 1, 2,⋯ ,M, n = 1, 2,⋯ ,N,

(24)

l̃n
ab

=
l̂n
ab

max
a,b={1,2,⋯,M}

{|l̂n
ab
|} , a, b = 1, 2,… ,M, n = 1, 2,… ,N,
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Step 3.4: Based on the function of dominance degree in 
the classical TODIM method [14], the positive dominance 
degree �n+

ab
 and negative dominance degree �n−

ab
 of Aa over 

Ab regarding criterion n can be computed by

where wn denotes the weight of cr i ter ion n , 
wr = max{wn

||n = {1, 2,… ,N}} , and 𝜃 > 0 is the attenua-
tion factor of loss. � can measure the loss aversion degree of 
DMs. Apparently, 0 ≤ 𝜓n+

ab
< 1 and �n−

ab
≤ 0.

Step 3.5: Construct the dominance degree matrix 
ℏ = [ℏab]M×M , where ℏab represents the dominance degree 
of Aa over Ab and is expressed by

Step 3.6: Derive the overall dominance value �(Aa) of Aa 
over other solutions by

According to �(Aa) , the priority ranking of solutions can 
be determined. The larger �(Aa) is, the better Aa will be.

At this point, based on the individual/collaborative per-
formance evaluations obtained in Stage 1 and weights of 
individual/collaborative criteria obtained in Stage 2, the 
ove r a l l  d o m i n a n c e  va l u e s  �IC(A

D1

nD1
A
D2

nD2
⋯A

DJ

nDJ
)

(25)

𝜓n+
ab

=

���� g̃n
ab
wn

wr

∑N

n=1
(wn

�
wr)

, a, b = 1, 2,… ,M, n = 1, 2,… ,N,

(26)𝜓n−
ab

= −
1

𝜃

√
−l̃n

ab
wr

wn

∑N

n=1
(wn

/
wr), a, b = 1, 2,… ,M, n = 1, 2,… ,N,

(27)ℏab =

N∑
n=1

�n+
ab

+

N∑
n=1

�n−
ab
, a, b = 1, 2,… ,M.

(28)�(Aa) =

∑M

b=1
ℏab − min

a∈{1,2,⋯,M}

�∑M

b=1
ℏab

�

max
a∈{1,2,⋯,M}

�∑n

b=1
ℏab

�
− min

a∈{1,2,⋯,M}

�∑M

b=1
ℏab

� , a = 1, 2,… ,M.

/�CC(AD1

nD1
A
D2

nD2
⋯A

DJ

nDJ
) concerning individual/collaborative 

criteria of any multi-alternative combination AD1

nD1
A
D2

nD2
⋯A

DJ

nDJ
 

can be derived by using the above proposed ITL-TODIM 
method. Then, the comprehensive dominance value 
�(A

D1

nD1
A
D2

nD2
⋯A

DJ

nDJ
) of AD1

nD1
A
D2

nD2
⋯A

DJ

nDJ
 is calculated to rank 

the multi-alternative combinations by the following 
equation:

where � ∈ [0, 1] is a control parameter. �(AD1

nD1
A
D2

nD2
⋯A

DJ

nDJ
) 

can trade off the overall dominance values with respect to 
individual criteria and collaborative criteria by changing the 
value of �.

5 � Numerical example

This section provides a numerical example to illustrate the 
application and feasibility of the proposed method.

Suppose that a landslide accident occurs and causes 
some casualties and economic losses. For simplicity, three 

(29)

�(AD1

n
D1

A
D2

n
D2

⋯A
D

J

n
D
J

) =(1 − �)�IC(AD1

n
D1

A
D2

n
D2

⋯A
D

J

n
D
J

)

+ ��CC(AD1

n
D1

A
D2

n
D2

⋯A
D

J

n
D
J

), n
D

j

=1, 2,⋯ ,N
D

j

, j = 1, 2,⋯ , J

Table 1   Emergency alternatives of three departments

Department Alternative

D1 A
D1

1
 : normal traffic without restriction

A
D1

2
 : partial traffic restrictions

D2 A
D2

1
 : medium-duty trucks for emergency supply 

transportation

A
D2

2
 : light-duty trucks for emergency supply transpor-

tation
D3 A

D3

1
 : large-scale machinery and equipment

A
D3

2
 : medium-scale machinery and equipment

Table 2   Interval 2-tuple linguistic evaluations of the alternative per-
formances regarding individual criteria

Decision 
maker

Alterna-
tive

Individual criteria

IC1 IC2 IC3

DM1 A
D1

1
[(a1,0),(a1,0)] [(a3,0),(a3,0)] [(a1,0),(a3,0)]

A
D1

2
[(a2,0),(a3,0)] [(a1,0),(a2,0)] [(a3,0),(a3,0)]

DM2 A
D2

1
[(b3,0),(b5,0)] [(b4,0),(b5,0)] [(b4,0),(b6,0)]

A
D2

2
[(b5,0),(b5,0)] [(b5,0),(b6,0)] [(b4,0),(b5,0)]

DM3 A
D3

1
[(a2,0),(a2,0)] [(a2,0),(a3,0)] [(a4,0),(a4,0)]

A
D3

2
[(a3,0),(a4,0)] [(a3,0),(a3,0)] [(a2,0),(a3,0)]
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Table 3   Individual performance 
evaluations of multi-alternative 
combinations

Multi-alternative com-
bination

Individual criteria

IC1 IC2 IC3

A
D1

1
A
D2

1
A
D3

1
Δ([0.4250,0.5417]) Δ([0.6333,0.7792]) Δ([0.6583,0.9250])

A
D1

1
A
D2

1
A
D3

2
Δ([0.5125,0.7167]) Δ([0.7208,0.7792]) Δ([0.4833,0.8375])

A
D1

1
A
D2

2
A
D3

1
Δ([0.5417,0.5417]) Δ([0.6917,0.8375]) Δ([0.6583,0.8667])

A
D1

1
A
D2

2
A
D3

2
Δ([0.6292,0.7167]) Δ([0.7792,0.8375]) Δ([0.4833,0.7792])

A
D1

2
A
D2

1
A
D3

1
Δ([0.5000,0.6917]) Δ([0.4833,0.7042]) Δ([0.8083,0.9250])

A
D1

2
A
D2

1
A
D3

2
Δ([0.5875,0.8667]) Δ([0.5708,0.7042]) Δ([0.6333,0.8375])

A
D1

2
A
D2

2
A
D3

1
Δ([0.6167,0.6917]) Δ([0.5417,0.7625]) Δ([0.8083,0.8667])

A
D1

2
A
D2

2
A
D3

2
Δ([0.7042,0.8667]) Δ([0.6292,0.7625]) Δ([0.6333,0.7792])

Table 4   Collaborative 
performance evaluations of 
alternative pairs

Pair of alternatives Collaborative criteria

CC1 CC2 CC3

(A
D1

1
,A

D2

1
) Δ([0.2500,0.3250]) Δ([0.3250,0.3833]) Δ([0.1333,0.3250])

(A
D1

1
,A

D2

2
) Δ([0.3250,0.4583]) Δ([0.4000,0.5167]) Δ([0.3250,0.3250])

(A
D1

1
,A

D3

1
) Δ([0.0000,0.0875]) Δ([0.1625,0.2500]) Δ([0.0875,0.1625])

(A
D1

1
,A

D3

2
) Δ([0.2375,0.3250]) Δ([0.3250,0.4000]) Δ([0.1625,0.3250])

(A
D1

2
,A

D2

1
) Δ([0.4000,0.4583]) Δ([0.3833,0.4583]) Δ([0.3250,0.3250])

(A
D1

2
,A

D2

2
) Δ([0.4000,0.5333]) Δ([0.5167,0.5167]) Δ([0.4583,0.5333])

(A
D1

2
,A

D3

1
) Δ([0.4125,0.4875]) Δ([0.3250,0.3250]) Δ([0.2375,0.3250])

(A
D1

2
,A

D3

2
) Δ([0.4875,0.5625]) Δ([0.4125,0.4875]) Δ([0.3250,0.4000])

(A
D2

1
,A

D3

1
) Δ([0.4958,0.5833]) Δ([0.4375,0.5542]) Δ([0.1458,0.2625])

(A
D2

1
,A

D3

2
) Δ([0.4375,0.4958]) Δ([0.4375,0.4958]) Δ([0.2917,0.4375])

(A
D2

2
,A

D3

1
) Δ([0.3500,0.5250]) Δ([0.3500,0.4958]) Δ([0.3500,0.5250])

(A
D2

2
,A

D3

2
) Δ([0.2917,0.4958]) Δ([0.3500,0.4375]) Δ([0.4375,0.5833])

Table 5   Collaborative 
performance evaluations of 
multi-alternative combinations

Multi-alternative combi-
nations

Collaborative criteria

CC1 CC2 CC3

A
D1

1
A
D2

1
A
D3

1
Δ([0.2616,0.3452]) Δ([0.3151,0.4042]) Δ([0.1235,0.2507])

A
D1

1
A
D2

1
A
D3

2
Δ([0.2316,0.3658]) Δ([0.3066,0.4248]) Δ([0.2592,0.3474])

A
D1

1
A
D2

2
A
D3

1
Δ([0.3151,0.3879]) Δ([0.3664,0.4300]) Δ([0.2009,0.3664])

A
D1

1
A
D2

2
A
D3

2
Δ([0.2851,0.4300]) Δ([0.3579,0.4507]) Δ([0.3151,0.4202])

A
D1

2
A
D2

1
A
D3

1
Δ([0.4393,0.5136]) Δ([0.3849,0.4515]) Δ([0.2314,0.3020])

A
D1

2
A
D2

1
A
D3

2
Δ([0.3855,0.5158]) Δ([0.3947,0.4485]) Δ([0.3487,0.4645])

A
D1

2
A
D2

2
A
D3

1
Δ([0.4414,0.5050]) Δ([0.4125,0.4814]) Δ([0.3127,0.3901])

A
D1

2
A
D2

2
A
D3

2
Δ([0.3877,0.5287]) Δ([0.4224,0.4783]) Δ([0.4086,0.5096])
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emergency departments are considered for rescue and relief: 
traffic management department ( D1 ), emergency service 
department ( D2 ), and construction and repair department 
( D3 ). DM1 , DM2 and DM3 are three DMs respectively repre-
senting D1 , D2 and D3 in the decision making process, whose 
weighting vector is � = {0.3, 0.35, 0.35} . The emergency 
alternatives supplied by above three departments are listed 
in Table 1. To select a desirable multi-alternative combina-
tion for coping with this accident, some individual criteria, 
such as the cost ( IC1 , cost criterion), operation feasibility 
( IC2 ) and rescue effect ( IC3 ), and some collaborative crite-
ria, such as the program complementarity ( CC1 ), resource 
sharing ( CC2 ) and action coordination ( CC3 ), are taken into 
account.

In what follows, the proposed approach is applied to find 
the best multi-alternative combination.

Stage 1: Obtain the individual and collaborative perfor-
mance evaluations

(1)	 Individual performance evaluations
	   The three DMs adopt different linguistic term sets to 

assess the performances of alternatives given by their 
own departments with respect to individual criteria. 
Specifically, DM1 and DM3 provide their assessments 
in a set of 5 labels, S5 ; DM2 expresses his assessments 
in a set of 7 labels, S7 . These linguistic term sets are 
denoted as follows:

	   S5 = {a0 = very low/poor, a1 = low/poor, a2 = fair, 
a3 = high/good, a4 = very high/good},

	   S7 = {b0 = very low/poor, b1 = low/poor, b2 = mod-
erately low/poor, b3 = fair, b4 = moderately high/good, 
b5 = high/good, b6 = very high/good}.

	   Interval 2-tuple linguistic evaluations on the alter-
native performances furnished by the three DMs are 

shown in Table 2. In addition, by Eq. (10), the indi-
vidual performance evaluations of multi-alternative 
combinations are obtained, as displayed in Table 3.

(2)	 Collaborative performance evaluations

The performances of each pair of alternatives regarding 
collaborative criteria are appraised by the associated DMs 
with chosen linguistic term sets. To save space, the results 
in the form of interval 2-tuples are listed in Table A1. Based 
on Eqs. (11–13), the collaborative performance evaluations 
of alternative pairs and multi-alternative combinations are 
obtained, as shown in Tables 4 and 5, respectively.

Stage 2: Determine criteria weights using the ITL-BWM
The three DMs determine the most important and the 

least important individual criteria from their own view-
points. Then, they choose suitable linguistic term sets from 
multi-granularity sets to evaluate the preference degrees of 
the most important individual criterion over others and other 
individual criteria over the least important individual crite-
rion using interval linguistic variables. Specifically, DM1 and 
DM3 select linguistic term set S̄5 , and DM2 chooses linguistic 
term set S̄7 . The linguistic term sets are displayed as follows:

S̄5 = {c0 = equally important, c1 = moderately important, 
c2 = important, c3 = strongly important, c4 = absolutely 
important},

S̄7 = {d0 = equally important, d1 = slightly important, 
d2 = moderately important, d3 = important, d4 = strongly 
important, d5 = very strongly important, d6 = absolutely 
important}.

According to the DMs’ assessments, the ITLBO and 
ITLOW vectors on individual criteria are obtained, as listed 
in Table 6.

Based on model (15), the optimization model for indi-
vidual criteria weights is built as follows:

Table 6   ITLBO and ITLOW 
vectors regarding individual 
criteria

Decision maker Most/least important 
individual criterion

ITLBO/ITLOW vector

IC1 IC2 IC3

DM1 Most important: IC2 A
1

B
[(c2,0),(c3,0)] [(c0,0),(c0,0)] [(c1,0),(c2,0)]

Least important: IC1 A
1

W
[(c0,0),(c0,0)] [(c3,0),(c3,0)] [(c2,0),(c3,0)]

DM2 Most important: IC1 A
2

B
[(d0,0),(d0,0)] [(d1,0),(d2,0)] [(d1,0),(d1,0)]

Least important: IC2 A
2

W
[(d2,0),(d4,0)] [(d0,0),(d0,0)] [(d1,0),(d1,0)]

DM3 Most important: IC3 A
3

B
[(c3,0),(c4,0)] [(c1,0),(c1,0)] [(c0,0),(c0,0)]

Least important: IC1 A
3

W
[(c0,0),(c0,0)] [(c1,0),(c2,0)] [(c3,0),(c4,0)]
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By solving above model, Z is obtained as 0.2958, with 
�∗
1
= 0.2981 , �∗

2
= 0.4779 and �∗

3
= 0.1118 . Additionally, the 

optimal interval weights of three individual criteria are cal-
culated as w∗

1
= [0.1043, 0.2414] , w∗

2
= [0.2310, 0.4531] and 

w
∗

3
= [0.3055, 0.5708] . Then, the optimal weights of three 

individual criteria are derived via Eq. (16) as w∗
1
= 0.1814 , 

w∗
2
= 0.3589 and w∗

3
= 0.4597.

Similarly, the preference degrees among collabora-
tive criteria are assessed by the DMs, which are given in 

min Z = 0.3�∗
1
+ 0.35�∗

2
+ 0.35�∗

3

s.t
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Table A2. Then, based on model (15) and Eq. (16), the 
weight vector of collaborative criteria is determined as 
(0.4671, 0.2365, 0.2964).

Stage 3: Derive the priority ranking using the 
ITL-TODIM

Based on the individual performance evaluations, the gain 
and loss matrices about individual criteria are obtained using 
Eqs. (17–22), i.e.,

ĝIC1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.0194 0.1314 0.0583 0.1896 0.1130 0.2438 0.1709 0.3021

0.0002 0.0340 0.0021 0.0062 0.0245 0.1188 0.0107 0.1709

0 0.0750 0 0.1313 0.0587 0.1854 0.1125 0.2438

0 0.0646 0 0.0146 0.1011 0.0684 0.0254 0.1125

0.0005 0.0433 0.0045 0.0240 0.0319 0.1348 0.0632 0.1896

0 0.0063 0 0.0142 0.0035 0.0465 0.0088 0.0741

0 0.0503 0 0.0066 0.0049 0.0817 0.0125 0.1312

0 0 0 0 0 0.0158 0 0.0271

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

ĝIC2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.0243 0.0039 0.0052 0 0.1143 0.0718 0.0653 0.0018

0.0476 0.0097 0.0126 0 0.1563 0.1125 0.0988 0.0557

0.0636 0.0272 0.0243 0.0039 0.1709 0.1271 0.1143 0.0718

0.1021 0.0584 0.0476 0.0097 0.2146 0.1709 0.1563 0.1125

0.0018 0 0 0 0.0368 0.0134 0.0147 0.0024

0.0031 0 0 0 0.0572 0.0222 0.0241 0.0040

0.0112 0.0009 0.0018 0 0.0730 0.0387 0.0368 0.0134

0.1143 0.0016 0.0030 0 0.1045 0.0623 0.0572 0.0222

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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l̂
IC3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.0444 −0.0102 −0.0271 −0.0037 −0.0835 −0.0176 −0.0607 −0.0076

−0.1414 −0.0590 −0.1151 −0.0412 −0.2064 −0.0946 −0.1773 −0.0727

−0.0563 −0.0130 −0.0347 −0.0048 −0.1055 −0.0225 −0.0777 −0.0097

−0.1641 −0.0703 −0.1360 −0.0493 −0.2354 −0.1127 −0.2063 −0.0870

−0.0085 −0.0001 −0.0014 0 −0.0195 −0.0002 −0.0049 0

−0.0739 −0.0196 −0.0496 −0.0086 −0.1314 −0.0340 −0.1024 −0.0174

−0.0149 −0.0002 −0.0027 0 −0.0340 −0.0003 −0.0097 0

−0.0930 −0.0268 −0.0659 −0.0120 −0.1604 −0.0465 −0.1312 −0.0243

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

After normalization of the gain and loss matrices by 
Eqs. (23, 24), the positive and negative dominance degrees 
among multi-alternative combinations concerning individ-
ual criteria are computed through Eqs. (25, 26), where the 
attenuation factor � is considered to be 1 in this paper, i.e.,

ĝIC3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.0444 0.1414 0.0563 0.1641 0.0085 0.0739 0.0149 0.0930

0.0102 0.0590 0.0130 0.0703 0.0001 0.0196 0.0002 0.0268

0.0271 0.1151 0.0347 0.1360 0.0014 0.0496 0.0027 0.0659

0.0037 0.0412 0.0048 0.0493 0 0.0086 0 0.0120

0.0835 0.2064 0.1055 0.2354 0.0195 0.1314 0.0340 0.1604

0.0176 0.0946 0.0225 0.1127 0.0002 0.0340 0.0003 0.0465

0.0607 0.1773 0.0777 0.2063 0.0049 0.1024 0.0097 0.1312

0.0076 0.0727 0.0097 0.0870 0 0.0174 0 0.0243

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

l̂
IC1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.0194 −0.0002 0 0 −0.0005 0 0 0

−0.1314 −0.0340 −0.0750 −0.0646 −0.0433 −0.0063 −0.0503 0

−0.0583 −0.0021 0 0 −0.0045 0 0 0

−0.1896 −0.0062 −0.1313 −0.0146 −0.0240 −0.0142 −0.0066 0

−0.1130 −0.0245 −0.0587 −0.1011 −0.0319 −0.0035 −0.0049 0

−0.2438 −0.1188 −0.1854 −0.0684 −0.1348 −0.0465 −0.0817 −0.0158

−0.1709 −0.0107 −0.1125 −0.0254 −0.0632 −0.0088 −0.0125 0

−0.3021 −0.1709 −0.2438 −0.1125 −0.1896 −0.0741 −0.1312 −0.0271

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

l̂IC2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.0243 −0.0476 −0.0636 −0.1021 −0.0018 −0.0031 −0.0112 −0.1143

−0.0039 −0.0097 −0.0272 −0.0584 0 0 −0.0009 −0.0016

−0.0052 −0.0126 −0.0243 −0.0476 0 0 −0.0018 −0.0030

0 0 −0.0039 −0.0097 0 0 0 0

−0.1143 −0.1563 −0.1709 −0.2146 −0.0368 −0.0572 −0.0730 −0.1045

−0.0718 −0.1125 −0.1271 −0.1709 −0.0134 −0.0222 −0.0387 −0.0623

−0.0653 −0.0988 −0.1143 −0.1563 −0.0147 −0.0241 −0.0368 −0.0572

−0.0018 −0.0557 −0.0718 −0.1125 −0.0024 −0.0040 −0.0134 −0.0222

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

� IC1+ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.1079 0.2809 0.1871 0.3374 0.2605 0.3826 0.3203 0.4259

0.0110 0.1429 0.0355 0.0610 0.1213 0.2671 0.0802 0.3203

0 0.2122 0 0.2808 0.1877 0.3337 0.2599 0.3826

0 0.1970 0 0.0936 0.2464 0.2027 0.1235 0.2599

0.0173 0.1612 0.0520 0.1200 0.1384 0.2845 0.1948 0.3374

0 0.0615 0 0.0923 0.0458 0.1671 0.0727 0.2109

0 0.1738 0 0.0630 0.0542 0.2215 0.0866 0.2807

0 0 0 0 0 0.0974 0 0.1276

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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� IC2+ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.2016 0.0808 0.0933 0 0.4372 0.3465 0.3305 0.0549

0.2821 0.1274 0.1452 0 0.5113 0.4338 0.4065 0.3052

0.3261 0.2133 0.2016 0.0808 0.5346 0.4610 0.4372 0.3465

0.4132 0.3125 0.2821 0.1274 0.5991 0.5346 0.5113 0.4338

0.0549 0 0 0 0.2481 0.1497 0.1568 0.0634

0.0720 0 0 0 0.3093 0.1927 0.2008 0.0818

0.1369 0.0388 0.0549 0 0.3494 0.2544 0.2481 0.1497

0.4372 0.0517 0.0708 0 0.4181 0.3228 0.3093 0.1927

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

� IC3+ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.2945 0.5255 0.3316 0.5661 0.1288 0.3799 0.1706 0.4262

0.1411 0.3394 0.1593 0.3705 0.0140 0.1956 0.0198 0.2288

0.2300 0.4741 0.2603 0.5154 0.0523 0.3112 0.0726 0.3587

0.0850 0.2836 0.0968 0.3103 0 0.1296 0 0.1531

0.4038 0.6349 0.4539 0.6780 0.1951 0.5066 0.2577 0.5597

0.1854 0.4298 0.2096 0.4691 0.0198 0.2577 0.0242 0.3013

0.3443 0.5884 0.3895 0.6347 0.0978 0.4472 0.1376 0.5062

0.1218 0.3768 0.1376 0.4122 0 0.1843 0 0.2178

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

� IC1− =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.5950 −0.0604 0 0 −0.0955 0 0 0

−1.5485 −0.7877 −1.1699 −1.0858 −0.8889 −0.3391 −0.9581 0

−1.0315 −0.1958 0 0 −0.2866 0 0 0

−1.8601 −0.3364 −1.5479 −0.5162 −0.6618 −0.5091 −0.3470 0

−1.4360 −0.6687 −1.0350 −1.3583 −0.7630 −0.2527 −0.2990 0

−2.1093 −1.4724 −1.8394 −1.1172 −1.5684 −0.9212 −1.2210 −0.5370

−1.7660 −0.4419 −1.4328 −0.6808 −1.0739 −0.4007 −0.4776 0

−2.3480 −1.7660 −2.1093 −1.4328 −1.8601 −1.1629 −1.5473 −0.7032

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Table 7   Dominance values and 
solution ranking

Multi-alternative combi-
nations

Dominance values Solution 
ranking

�IC(A
D1

n
D1

A
D2

n
D2

⋯A
D

J

n
D
J

) �CC(A
D1

n
D1

A
D2

n
D2

⋯A
D

J

n
D
J

) �(A
D1

n
D1

A
D2

n
D2

⋯A
D

J

n
D
J

)

A
D1

1
A
D2

1
A
D3

1
0.9133 0 0.4567 6

A
D1

1
A
D2

1
A
D3

2
0.4269 0.3772 0.4020 8

A
D1

1
A
D2

2
A
D3

1
1 0.1866 0.5933 2

A
D1

1
A
D2

2
A
D3

2
0.5757 0.5338 0.5548 4

A
D1

2
A
D2

1
A
D3

1
0.5118 0.6488 0.5803 3

A
D1

2
A
D2

1
A
D3

2
0 0.8886 0.4443 7

A
D1

2
A
D2

2
A
D3

1
0.5661 0.8309 0.6985 1

A
D1

2
A
D2

2
A
D3

2
0.0091 1 0.5045 5
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� IC2− =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.5617 −0.7861 −0.9087 −1.1514 −0.1529 −0.2006 −0.3813 −1.2182

−0.2250 −0.3549 −0.5943 −0.8708 0 0 −0.1081 −0.1441

−0.2598 −0.4045 −0.5617 −0.7861 0 0 −0.1529 −0.1974

0 0 −0.2250 −0.3549 0 0 0 0

−1.2182 −1.4246 −1.4896 −1.6692 −0.6912 −0.8618 −0.9736 −1.1648

−0.9655 −1.2086 −1.2846 −1.4896 −0.4171 −0.5369 −0.7089 −0.8994

−0.9208 −1.1326 −1.2182 −1.4246 −0.4369 −0.5594 −0.6912 −0.8618

−0.1529 −0.8504 −0.9655 −1.2086 −0.1765 −0.2279 −0.4171 −0.5369

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

� IC3− =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.6405 −0.3070 −0.5004 −0.1849 −0.8784 −0.4033 −0.7489 −0.2650

−1.1431 −0.7384 −1.0313 −0.6170 −1.3811 −0.9350 −1.2800 −0.8196

−0.7213 −0.3466 −0.5663 −0.2106 −0.9874 −0.4560 −0.8474 −0.2994

−1.2314 −0.8060 −1.1211 −0.6750 −1.4749 −1.0205 −1.3807 −0.8966

−0.2803 −0.0304 −0.1137 0 −0.4245 −0.0430 −0.2128 0

−0.8264 −0.4256 −0.6770 −0.2819 −1.1019 −0.5605 −0.9728 −0.4010

−0.3711 −0.0430 −0.1580 0 −0.5605 −0.0527 −0.2994 0

−0.9270 −0.4976 −0.7804 −0.3330 −1.2175 −0.6555 −1.1011 −0.4739

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Fig. 2   The comprehensive dominance values under different values 
of �

Table 8   Ranking results for 
different �

� Ranking Best solution

0 MAC3 > MAC1 > MAC4 > MAC7 > MAC5 > MAC2 > MAC8 > MAC6 MAC3

0.1 MAC3 > MAC1 > MAC7 > MAC4 > MAC5 > MAC2 > MAC8 > MAC6 MAC3

0.2 MAC3 > MAC1 > MAC7 > MAC4 > MAC5 > MAC2 > MAC8 > MAC6 MAC3

0.3 MAC3 > MAC7 > MAC1 > MAC4 > MAC5 > MAC2 > MAC8 > MAC6 MAC3

0.4 MAC3 > MAC7 > MAC5 > MAC4 > MAC1 > MAC2 > MAC8 > MAC6 MAC3

0.5 MAC7 > MAC3 > MAC5 > MAC4 > MAC8 > MAC1 > MAC6 > MAC2 MAC7

0.6 MAC7 > MAC8 > MAC5 > MAC4 > MAC6 > MAC3 > MAC2 > MAC1 MAC7

0.7 MAC7 > MAC8 > MAC6 > MAC5 > MAC4 > MAC3 > MAC2 > MAC1 MAC7

0.8 MAC8 > MAC7 > MAC6 > MAC5 > MAC4 > MAC2 > MAC3 > MAC1 MAC8

0.9 MAC8 > MAC7 > MAC6 > MAC5 > MAC4 > MAC2 > MAC3 > MAC1 MAC8

1 MAC8 > MAC6 > MAC7 > MAC5 > MAC4 > MAC2 > MAC3 > MAC1 MAC8

Fig. 3   The comprehensive dominance values under different � values
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According to Eq. (27), the dominance degree matrix is 
constructed as follows:

By Eq.  (28),  the overall  dominance value 
�IC(A

D1

nD1
A
D2

nD2
⋯A

DJ

nDJ
) with respect to individual criteria of each 

multi-alternative combination is obtained, as listed in Table 7.
In a similar manner, on the basis of collaborative perfor-

mance evaluations, the overall dominance value 
�CC(A

D1

nD1
A
D2

nD2
⋯A

DJ

nDJ
) with respect to the collaborative crite-

ria of each multi-alternative combination can also be deter-
mined by using ITL-TODIM method. Then, the comprehen-
sive dominance values �(AD1

nD1
A
D2

nD2
⋯A

DJ

nDJ
) are calculated via 

Eq. (29), according to which the multi-alternative combina-
tions are ranked. Here, without loss of generality, the control 
parameter � is set as 0.5. Table 7 displays the above results.

It can be seen from Table 7 that the optimal multi-alter-
native combination for the response to the current landside 
accident is AD1

2
A
D2

2
A
D3

1
 . The worst multi-alternative combi-

nation is AD1

1
A
D2

1
A
D3

2
 , which is the reciprocal version of the 

optimal solution.

6 � Discussion

In this section, a sensitivity analysis is provided to show the 
effect of different values of the control parameter � and loss 
attenuation factor � on the solution ranking. Furthermore, a 

ℏIC =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1.1933 −0.2664 −0.7972 −0.4328 −0.3003 0.5051 −0.3089 −0.5763

−2.4824 −1.2713 −2.4555 −2.1420 −1.6234 −0.3776 −1.8398 −0.1094

−1.4564 −0.0472 −0.6661 −0.1199 −0.4993 0.6499 −0.2305 0.5911

−2.5933 −0.3492 −2.5150 −1.0147 −1.2912 −0.6627 −1.0930 −0.0499

−2.4585 −1.3275 −2.1325 −2.2295 −1.2971 −0.2167 −0.8761 −0.2044

−3.6438 −2.6152 −3.5914 −2.3273 −2.7126 −1.4011 −2.6050 −1.2433

−2.5767 −0.8165 −2.3646 −1.4077 −1.5699 −0.0897 −0.9959 0.0748

−2.8688 −2.6855 −3.6467 −2.5622 −2.8360 −1.4417 −2.7562 −1.1759

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

comparative analysis is carried out to demonstrate the valid-
ity of the proposed method.

6.1 � Sensitivity analysis

(1)	 The effect of � on the solution ranking
	   In the above implementation process, the control 

parameter � is taken as 0.5 in calculating the compre-
hensive dominance values. However, if the synergy 
effect among different alternatives supplied by differ-
ent emergency departments is considered more or less, 
i.e., � = 1 or � = 0 , it is obvious that the comprehensive 
dominance value of each multi-alternative combination 
together with its ranking may be changed. The change 
trends of comprehensive dominance values over � are 
vividly shown in Fig. 2, where MACi(i = 1, 2,… , 8) 
represents the multi-alternative combinations listed in 
the first column of Table 7 from top to bottom.

	   The ranking orders of multi-alternative combinations 
under different � values are displayed in Table 8. It can 
be observed that the solution rankings are changed with 
different values of � . More specifically, for � from 0 to 
0.4, MAC3 is the most desirable one. For � from 0.5 to 
0.7, MAC7 is the most desirable one. For � from 0.8 to 

Table 9   Ranking results for 
different �

� Ranking Best solution

0.2, 0.4 MAC7 > MAC3 > MAC5 > MAC4 > MAC8 > MAC6 > MAC1 > MAC2 MAC7

0.6, 0.8, 1 MAC7 > MAC3 > MAC5 > MAC4 > MAC8 > MAC1 > MAC6 > MAC2

2, 4, 6, 8 MAC7 > MAC5 > MAC3 > MAC4 > MAC8 > MAC1 > MAC6 > MAC2

Table 10   Ranking results 
obtained by different methods

Method Ranking Best solution

Proposed method MAC7 > MAC3 > MAC5 > MAC4 > MAC8 > MAC1 > MAC6 > MAC2 MAC7

Method-I MAC7 > MAC5 > MAC3 > MAC8 > MAC1 > MAC4 > MAC6 > MAC2

Method-II MAC7 > MAC5 > MAC3 > MAC8 > MAC1 > MAC4 > MAC6 > MAC2

Method-III MAC7 > MAC8 > MAC5 > MAC6 > MAC4 > MAC3 > MAC2 > MAC1
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1, the most desirable one changes to MAC8 . Therefore, 
in the selection of a multi-alternative combination to 
deal with the emergency, considering the synergy effect 
between different alternatives indeed brings about dif-
ferent decision results, which demonstrates its neces-
sity and rationality. In addition, DMs should choose a 
rational value of � to trade off the individual and col-
laborative performances according to the needs of real-
world decision making situations.

(2)	 The effect of � on the solution ranking
	   On account of the influence of the loss attenua-

tion factor � in Eq. (26), we use different values of � 
to observe the change in ranking results. When 𝜃 > 1 , 
the influence of loss is weakened. In contrast, when 
0 < 𝜃 ≤ 1 , the influence of loss is amplified. Thus, the 
value of � is divided into two ranges: 0 < 𝜃 ≤ 1 and 
𝜃 > 1 . Figure 3 describes the comprehensive domi-
nance values of multi-alternative combinations with 
different � values. It can be seen that the trends of the 
comprehensive dominance values under different � val-
ues are consistent. Although the comprehensive domi-
nance values slightly change for different � values, the 
largest ones are always associated with MAC7.

Table 9 presents the solution rankings of multi-alterna-
tive combinations under different values of � . As can be 
observed, the best solution is always MAC7 . Nevertheless, 
taking a closer look, the ranking orders undergo some 
interchanges as � increases. More specifically, the ranking 
order changes at � = 0.6 , with MAC1 and MAC6 being inter-
changed. This order stays the same until � is equal to 1. 
At � = 2 , the ranking order changes again, with MAC3 and 
MAC5 being interchanged. This order remains unchanged 
until � is equal to 8. Hence, although the final decision 
results are not sensitive to the change in � values for the 
considered example, it is suggested that in a practical appli-
cation, DMs should also select a reasonable value of � to 
reflect their preferences about the influence of loss.

6.2 � Comparative analysis

Regarding EDM problems, previous studies have mainly 
focused on how to select an optimal alternative from sev-
eral alternatives. However, the decision making of multi-
ple alternatives from multiple departments and the synergy 
among different department alternatives are rarely reported 
in the literature but are often encountered in real-world EDM 
situations. This study investigates a multi-criteria decision 
making method for determining the best multi-alternative 
combination composed of alternatives provided by differ-
ent emergency departments, considering both the individ-
ual performance of each alternative and the collaborative 
performance between different department alternatives. 

With the aid of the developed method, more realistic emer-
gency decision results can be produced that support DMs 
in improving the emergency response performance. In the 
proposed approach, the construction procedure of individual 
and collaborative performance evaluations of multi-alterna-
tive combinations is first introduced, and then the extended 
BWM and TODIM methods with interval 2-tuple linguistic 
information are developed to find the most desirable multi-
alternative combination.

To verify the effectiveness and superiority of the pro-
posed method, a comparative analysis is conducted between 
the proposed method and three existing methods: the BWM-
TODIM method [14, 50], the BWM and multi-granularity 
interval 2-tuple linguistic TODIM [24], and the fuzzy BWM 
and fuzzy TOPSIS [44]. For concision, above three methods 
are denoted as Method-I, Method-II and Method-III, respec-
tively. For a valid comparison, interval linguistic evaluation 
information used in the proposed method is converted into 
crisp numbers for implementing Method-I. The obtained 
crisp preferences on the relative importance of criteria are 
also used in Method-II. Additionally, the average values of 
interval linguistic evaluations are calculated and then trans-
formed into triangular fuzzy numbers adopted in Method-
III. After these operations, above three methods are applied 
to solve the same EDM problem described in Sect. 5. The 
ranking results derived by these approaches are displayed 
in Table 10.

From Table 10, it can be seen that despite some differ-
ences in the ranking orders, the multi-alternative combina-
tion with the highest priority is still MAC7 . This finding 
validates the outcome obtained by the proposed method to 
some extent. To reflect the correlation between the rank-
ing results of proposed method and three existing methods, 
the Spearman rank correlation coefficient is computed. 
It is observed that the correlation between the suggested 
method and Method-I is the same as that between the sug-
gested method and Method-II, with a value of 0.9048. As 
recommended by Ghorabaee et al. [20], a Spearman rank 
correlation coefficient higher than 0.8 shows a remarkably 
high correlation. Though there are some ranking variations 
that may result from not fully addressing the vagueness and 
uncertainty of DMs’ assessments in Method-I and Method-
II. It can also be claimed that the ranking orders obtained by 
the proposed method, Method-I and Method-II have a con-
siderable correlation. For the proposed method and Method-
III, the Spearman rank correlation coefficient between the 
ranking orders is determined to be 0.5238, which indicates 
a lower correlation. The reasons for this may come from two 
aspects: criteria weight determination and ranking method.

About criteria weight determination, the crisp average 
weights of three individual criteria are 0.2344, 0.3570 and 
0.4086, as derived by the fuzzy BWM. These results show 
that there are some differences among each of the weights 
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between the ITL-BWM and fuzzy BWM even when the pref-
erence orders of individual criteria are the same. For col-
laborative criteria, their crisp average weights obtained by 
the fuzzy BWM are 0.3918, 0.2080 and 0.4002. It is obvious 
that the preference orders of collaborative criteria are differ-
ent between the ITL-BWM and fuzzy BWM. Through the 
ITL-BWM, the preference order places CC1 ahead of CC3; 
however, the order is reversed by the fuzzy BWM. In fact, 
as shown in Table A2, CC1 is considered the most impor-
tant collaborative criterion by two DMs with larger weights, 
whereas CC3 is taken as the most important criterion by only 
one decision maker with a smaller weight and as the least 
important criterion by a decision maker with a larger weight. 
From this point of view, the preference order obtained by 
the proposed ITL-BWM is more reasonable. On the other 
hand, the different characteristics of the ranking methods 
used in the proposed method and Method-III may also cause 
the difference in ranking results. The fundamental of fuzzy 
TOPSIS is that the best solution should have the shortest 
distance from the positive ideal solution and the farthest 
distance from the negative ideal solution. In contrast, ITL-
TODIM method is based on the principle that the optimal 
solution should possess the greatest dominance over oth-
ers determined by the gain and loss degrees of one solution 
relative to another. The latter takes the DMs’ psychologi-
cal behaviours into consideration and can reflect the DMs’ 
bounded rationality, which is more veritable and reasonable.

To further demonstrate the advantages of the proposed 
method, closer comparisons are presented from the aspects 
of evaluation information modelling, criteria weight deter-
mination, and decision making and ranking.

In regard to evaluation information modelling, interval 
2-tuple linguistic representation model is adopted to flexibly 
represent and accurately process the evaluation information 
expressed by DMs in the proposed method, which allows 
DMs to provide some imprecise and uncertain linguistic 
assessments from multi-granularity linguistic term sets. 
However, for example, Method-I and Method-II used crisp 
numbers to model the assessments supplied by DMs in the 
whole and partial decision procedures, respectively. Thus, 
the vagueness and uncertainty involved in the EDM are not 
addressed. In Method-III, DMs were restricted to provide 
evaluation information with only one linguistic term from 
the pre-defined linguistic term set, which cannot reflect the 
uncertainty and diversity of assessments. Moreover, linguis-
tic assessments were converted into triangular fuzzy num-
bers, and the loss or distortion of information may occur, as 
pointed out by Wan et al. [59].

Regarding criteria weight determination, a new extension 
of BWM, namely, the ITL-BWM, on the basis of the interval 
preference degree and group decision making, is suggested 

to derive the criteria weights in this study. Each decision 
maker determines the best and worst criteria from his/her 
opinion and expresses the interval linguistic preference 
degrees. Then, an interval fuzzy mathematical programming 
model is established to incorporate the group decisions and 
produce a single set of weights. Nevertheless, group deci-
sion making is not considered in the three compared existing 
methods; thus, only one decision maker makes decisions, 
which is not enough to cope effectively with the decision 
problem. This is particularly true in EDM, which is fraught 
with complexity and uncertainty and usually requires mul-
tiple perspectives of different DMs.

For decision making and ranking, the ITL-TODIM 
method is proposed to rank the solutions in this paper that 
considers DMs’ bounded cognition and psychological 
behaviours under interval linguistic information environ-
ment. However, the fuzzy TOPSIS used in Method-III fails 
to capture the DMs’ psychological behaviours, which does 
not conform with the actual decision making under risk and 
uncertainty. In the ITL-TODIM method, both the gain and 
loss degrees of one solution relative to another are simulta-
neously computed. This is because the relationship between 
two interval 2-tuple linguistic evaluations causes difficulty 
in calculating the gain degree or loss degree. Therefore, to 
avoid information loss and inaccurate decisions, both the 
gain and loss degrees should be considered. However, the 
existing methods, such as the multi-granularity interval 
2-tuple linguistic TODIM developed in Method-III, only 
computed the gain degree or loss degree individually.

Based on the above comparative analysis, the advantages 
of the proposed method for addressing the collaborative 
emergency decision making problem in this study are as 
follows:

(1)	 The proposed method offers a natural and flexible man-
ner for DMs to express their evaluation information 
within the interval 2-tuple linguistic environment, by 
which the assessments can be precisely processed and 
the diversity and uncertainty of the assessments can be 
well reflected and modelled.

(2)	 The developed ITL-BWM considers group decision 
making, which can more effectively deal with the emer-
gency decision making problem and has wider applica-
bility in decision making.

(3)	 The suggested method takes into account DMs’ psycho-
logical behaviours under risk and uncertainty, which 
can better reflect DMs’ way of thinking in practical 
decision making situations. Besides, the proposed ITL-
TODIM method simultaneously calculates the gain and 
loss degrees that can avoid information loss and pro-
duce more accurate ranking results.
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7 � Conclusions

Due to the urgency and complexity of emergencies, emer-
gency response usually requires the participation of multiple 
emergency departments. In this study, a CEDM approach 
considering the synergy between different department 
alternatives is proposed based on the BWM and TODIM 
methods with interval 2-tuple linguistic information. To 
select the optimal solution to an emergency response, both 
the individual performance of each alternative and the col-
laborative performance between different department alter-
natives are considered, which is helpful in obtaining more 
practical emergency decision results. The proposed approach 
represents DMs’ assessments by virtue of interval 2-tuple 
linguistic model, and diversified and uncertain linguistic 
evaluations can be well captured and exactly processed. The 
developed ITL-BWM offers a simple and reliable way to 
determine the weights of criteria and has a wider range of 
applications in group decision making. Additionally, with 
the suggested ITL-TODIM method, the bounded rational-
ity of DMs in risky and uncertain EDM processes is con-
sidered, and both the gain and loss degrees are calculated, 
which enables more practical and accurate decision results. 

A numerical example of a landslide accident rescue is given 
to demonstrate the effectiveness and practicability of the 
proposed CEDM approach. It was shown that the suggested 
method is a useful tool for flexibly modelling ambiguous 
and uncertain assessment information and finding the best 
emergency rescue solution in dealing with CEDM issues.

Future studies will focus on the following aspects. First, only 
the DMs of departments involved in emergency disposal are con-
sidered. However, in the real world, senior DMs from superior 
departments often participate in and lead a decision group to 
ensure appropriate decision results. Thus, a significant future 
work is to incorporate the participation of senior DMs into the 
proposed method. Second, the current approach is static; in the 
future, it will be modified to achieve a dynamic approach to deter-
mine the best solution with the evolution of emergency events. 
Finally, for the convenience of practical application and fast deci-
sion making in emergency situations, a computer-based decision 
support system will be developed based on the proposed method.

Appendix A

See Tables A1 and A2.

Table A1   Interval 2-tuple 
linguistic evaluations on the 
performances of alternative 
pairs regarding collaborative 
criteria

Pair of alternatives Decision maker Collaborative criteria

CC1 CC2 CC3

(A
D1

1
,A

D2

1
) DM1 [(a1,0),(a2,0)] [(a2,0),(a2,0)] [(a1,0),(a2,0)]

DM2 [(b3,0),(b3,0)] [(b3,0),(b4,0)] [(b1,0),(b3,0)]

(A
D1

1
,A

D2

2
) DM1 [(a2,0),(a3,0)] [(a3,0),(a3,0)] [(a2,0),(a2,0)]

DM2 [(b3,0),(b4,0)] [(b3,0),(b5,0)] [(b3,0),(b3,0)]

(A
D1

1
,A

D3

1
) DM1 [(a0,0),(a0,0)] [(a1,0),(a1,0)] [(a0,0),(a1,0)]

DM3 [(a0,0),(a1,0)] [(a1,0),(a2,0)] [(a1,0),(a1,0)]

(A
D1

1
,A

D3

2
) DM1 [(a2,0),(a2,0)] [(a2,0),(a3,0)] [(a1,0),(a2,0)]

DM3 [(a1,0),(a2,0)] [(a2,0),(a2,0)] [(a1,0),(a2,0)]

(A
D1

2
,A

D2

1
) DM1 [(a3,0),(a3,0)] [(a2,0),(a3,0)] [(a2,0),(a2,0)]

DM2 [(b3,0),(b4,0)] [(b4,0),(b4,0)] [(b3,0),(b3,0)]

(A
D1

2
,A

D2

2
) DM1 [(a3,0),(a4,0)] [(a3,0),(a3,0)] [(a3,0),(a4,0)]

DM2 [(b3,0),(b4,0)] [(b5,0),(b5,0)] [(b4,0),(b4,0)]

(A
D1

2
,A

D3

1
) DM1 [(a2,0),(a3,0)] [(a2,0),(a2,0)] [(a2,0),(a2,0)]

DM3 [(a3,0),(a3,0)] [(a2,0),(a2,0)] [(a1,0),(a2,0)]

(A
D1

2
,A

D3

2
) DM1 [(a3,0),(a4,0)] [(a2,0),(a3,0)] [(a2,0),(a3,0)]

DM3 [(a3,0),(a3,0)] [(a3,0),(a3,0)] [(a2,0),(a2,0)]

(A
D2

1
,A

D3

1
) DM2 [(b4,0),(b4,0)] [(b3,0),(b5,0)] [(b1,0),(b3,0)]

DM3 [(a3,0),(a4,0)] [(a3,0),(a3,0)] [(a1,0),(a1,0)]

(A
D2

1
,A

D3

2
) DM2 [(b3,0),(b4,0)] [(b3,0),(b4,0)] [(b2,0),(b3,0)]

DM3 [(a3,0),(a3,0)] [(a3,0),(a3,0)] [(a2,0),(a3,0)]

(A
D2

2
,A

D3

1
) DM2 [(b3,0),(b3,0)] [(b3,0),(b4,0)] [(b3,0),(b3,0)]

DM3 [(a2,0),(a4,0)] [(a2,0),(a3,0)] [(a2,0),(a4,0)]

(A
D2

2
,A

D3

2
) DM2 [(b2,0),(b4,0)] [(b3,0),(b3,0)] [(b3,0),(b4,0)]

DM3 [(a2,0),(a3,0)] [(a2,0),(a3,0)] [(a3,0),(a4,0)]
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