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Abstract
Heterogeneous ensembles consist of predictors of different types, which are likely to have different biases. If these biases 
are complementary, the combination of their decisions is beneficial and could be superior to homogeneous ensembles. In 
this paper, a family of heterogeneous ensembles is built by pooling classifiers from M homogeneous ensembles of differ-
ent types of size T. Depending on the fraction of base classifiers of each type, a particular heterogeneous combination in 
this family is represented by a point in a regular simplex in M dimensions. The M vertices of this simplex represent the 
different homogeneous ensembles. A displacement away from one of these vertices effects a smooth transformation of the 
corresponding homogeneous ensemble into a heterogeneous one. The optimal composition of such heterogeneous ensem-
ble can be determined using cross-validation or, if bootstrap samples are used to build the individual classifiers, out-of-bag 
data. The proposed heterogeneous ensemble building strategy, composed of neural networks, SVMs, and random trees (i.e. 
from a standard random forest), is analyzed in a comprehensive empirical analysis and compared to a benchmark of other 
heterogeneous and homogeneous ensembles. The achieved results illustrate the gains that can be achieved by the proposed 
ensemble creation method with respect to both homogeneous ensembles and to the tested heterogeneous building strategy 
at a fraction of the training cost.
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1  Introduction

Building an effective classifier for a specific problem is a 
difficult task. To be successful, a variety of aspects need to 
be taken into account: the data structure, the information that 
can be used for prediction, the number of the labeled exam-
ples available for induction, the noise level, among others. 
Another crucial choice is the type of predictor to be used. 
The strategies implemented by the different classifiers are 
diverse. Another crucial choice is the type of predictor to be 
used. The strategies implemented by the different classifiers 
are diverse. For instance, decision trees [1] adopt a divide-
and-conquer approach in which the original prediction task 

is recursively divided by partitioning the attribute space into 
disjoint regions. Within each of these regions, the prediction 
problem is simpler than the original. A neural network [2] 
provides a global sub-symbolic representation of the deci-
sion problem in terms of the set of synaptic weights. Another 
illustration is the strategy adopted in kernel methods, such 
as Suppor Vector Machines (SVM) [3]. In SVMs the origi-
nal problem is embedded into an extended feature space. In 
this extended space, the discrimination problem is solved by 
finding the widest margin hyperplane that separates classes, 
except for, possibly, a few instances. In practice, combining 
the outputs of individual classifiers often leads to more accu-
rate predictions, whence the popularity of ensemble methods 
[4–8]. A necessary condition to obtain such improvements is 
that the ensemble members be diverse. In addition, the indi-
vidual predictors should be complementary, in the sense that 
each of them tends to make errors on different test instances 
[4, 9].

Ensembles can be categorized into two groups based 
on the homogeneity of their base learners. Homogeneous 
ensembles are composed of classifiers of the same type, 
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whereas ensembles composed of classifiers of different 
types are known as heterogeneous. The strategies to gen-
erate diversity among the base classifiers are different for 
homogeneous and heterogeneous ensembles. In homogene-
ous ensembles, the main difficulty is to generate diversity, 
in despite of using the same learning algorithm. To this 
end, one can use bootstrap techniques (e.g. bagging [10]), 
randomized steps in the base learning algorithm (e.g. the 
random subspace method used random forest [11]), noise 
injection in the class labels (e.g. class-swithcing [12]) or 
adaptive emphasis protocols (e.g. boosting [13]). These tech-
niques, which have been exploited mainly in the context of 
homogeneous ensembles, can also be used to achieve further 
diversity in heterogeneous ensembles [14]. However, since 
different learning algorithms are used to generate the base 
learners, heterogeneous ensembles are intrinsically diverse. 
In this case, the main difficulty resides in determining the 
optimal way to combine the predictions of the different mod-
els in the ensemble.

Broadly speaking, the methods to build heterogeneous 
ensemble can be grouped into two categories. In the first 
family of methods a fixed number of different models are 
combined. A second strategy is to build a collection of mod-
els with different parametrizations and then select the best 
subset to include in the final ensemble. In ref. [15] a static 
heterogeneous ensemble is proposed. In this study 5 differ-
ent base classifiers are combined: a Support Vector Machine 
(SVM), a multilayer perceptron (MLP), logistic regression, 
K nearest neighbors and decision tree. The parameters and 
architecture of the individual classifiers are determined using 
10-fold cross-validation. The proposed approach shows good 
results in the specific application of lithofacies classifica-
tion. In ref. [16], a combination of several carefully opti-
mized strong learners, such as deep neural networks, SVM, 
adaboosts, and gaussian processes, is proposed. The study 
shows a good performance of the proposed combination over 
several image classification and UCI tasks with respect to 
any of its constituents. The authors generate an ensemble 
using a simple fusion by the sum rule of different classifiers. 
However, the problem of determining the number of classifi-
ers of each type that need to be used has not been addressed. 
Furthermore, the optimal composition of the ensemble is 
problem-dependent. A possible way to overcome this dif-
ficulty is to create a library of classifiers and then select a 
subset for the final ensemble [17–19]. For instance in ref. 
[17] a library of 2000 different methods trained with a wide 
range of different parametrizations is build. From that library 
of models, an iterative greedy selection algorithm is applied 
to build the final ensemble. The procedure starts with empty 
ensemble. Then, at each iteration the model that maximizes 
a performance measure (such as AUC or accuracy on a vali-
dation set) is included into the ensemble until all models 
in the library have been aggregated. Finally, the ensemble 

with the best performance in the validation set is selected as 
the final combination. Tsoumakas et al. have made several 
interesting contribution in this line of research [18, 20]. For 
instance, in ref. [18] the authors propose a greedy selection 
method from a library composed of 200 classifiers: 40 neu-
ral networks, 60 nearest neighbor classifers, 80 SVMs and 
20 decision trees). For each type of classifier, a parameter 
grid was defined and a single model was trained for each 
node in the grid. In their proposal, the ensemble is grown 
incrementally by selecting from the library one classifier at 
a time. At each step, the selection is made in terms of both 
individual accuracy and complementarity with the rest of 
the classifiers in the ensemble. In the problems investigated, 
such heterogeneous ensembles were found to be more accu-
rate that their constituents. In ref. [19] a genetic algorithm 
has been proposed to select the optimum structure of a het-
erogeneous ensemble from 20 different base models. These 
selection techniques, also known as ensemble pruning, have 
been also extensively applied to homogeneous ensembles 
[21, 22]. In a recent study [23], to build an effective het-
erogeneous combination, the authors trim the base learners 
with poor performance so that only optimal classifiers will 
be preserved in the ensemble. The effectiveness of a clas-
sifier is identified by means of Area Under the ROC Curve 
(AUC) measurement.

In another study [24], which to the best of our knowl-
edge is one of the most related works to ours, the authors 
used a differential evolution algorithm to optimize the 
weighting votes of diverse base learns in a heterogene-
ous ensemble. They used the average Matthews Corre-
lation Coefficient (MCC), calculated over 10-fold cross-
validation, to evaluate each combination and obtain the 
base learners’ optimal voting weights. We compared this 
approach against (more details in Sect. 3) the proposed 
strategy in this study to assess the proposed approach’s 
effectiveness.

In this work we propose to analyze heterogeneous ensem-
bles in which the individual classifiers are selected from 
homogeneous ensembles. The goal is to build a family of 
heterogeneous ensembles that can be smoothly transformed 
into each other another. We aimed to show that carefully 
selecting the distribution of base classifiers can be beneficial 
to outperform both homogeneous and fixed heterogeneous 
ensembles. To this end, a family of heterogeneous ensembles 
of size T are built by pooling different fractions of base clas-
sifiers from M homogeneous ensembles of different types. 
Depending on the proportion of classifiers of each type, a 
particular heterogeneous combination in created. This family 
of heterogeneous ensembles can be represented in a regular 
simplex in M dimensions. The M vertices of this simplex 
represent the different homogeneous ensembles. The optimal 
fraction of each type of classifiers for the final ensemble is 
found by searching in this simplex.
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The main contributions of this study can be summarized 
as follows:

–	 A systematic heterogeneous ensemble creation method 
is proposed that pools base classifiers from the already 
built homogeneous ensembles.

–	 A tool for the visualization of the search space is pro-
posed that gives insights of the process of finding the 
optimal proportion of base classifiers.

–	 Experimental comparison of the proposed technique with 
homogeneous ensembles and state-of-the-art heterogene-
ous ensemble creation method is carried out. This com-
parison shows the benefits of the proposed heterogeneous 
ensemble creation method. In addition, the efficiency of 
partially optimize ensembles of MLPs and SVMs, against 
their fully optimized single base learners (i.e. MLP and 
SVM) is tested.

The paper is organized as follows: In Sect. 2, the design pro-
cess to build optimal heterogeneous ensembles by pooling 
from homogeneous ensembles is described; Sect. 3, presents 
a comprehensive empirical evaluation of the proposed meth-
odology and a comparison with the corresponding homoge-
neous ensembles, individual classifiers and a benchmark of 
other heterogeneous ensemble. Finally, the conclusions of 
the present work are summarized.

2 � From homogeneous to heterogeneous 
ensembles

In this study we analyze in a systematic manner the con-
struction of heterogeneous ensembles by pooling individu-
als from different homogeneous ensembles. This problem 
is related to the Matrix Cover problem (MC) [25], in which 
the rows and columns correspond to the decisions made by 
each base learners hi ∈ T  for each data point n of a training 
set D = {xn, yn}

Ntrain

l=1
 , respectively. Specifically, the elements 

of MC are defined as:

where it is assumed that MC satisfies the positive column-
sum property, that is:

which corresponds to the scenario in which for every train-
ing instance, the number of base classifiers with correct deci-
sions is greater than the wrong ones. That is, the ensemble 
achieves perfect classification on the training set, which is 

(1)MCi,l =

{

1, if hi(xn) = yn,

−1, otherwise.

(2)
T
∑

i=1

MCi,n > 0 ∀n ∈ D,

often the case for ensembles [13]. Assuming that minimizing 
training error minimizes the generalization error, the idea 
is to find the smallest subset of rows from the matrix cover 
MC, so that the positive column-sum property holds. It can 
be seen that this problem reduces to the Set Cover NP-com-
plete problem and that its approximation is intractable [25].

In this study we propose an alternative heuristic to solve 
this problem as the cost of selecting individual base classi-

fiers is intractable with a cost of 
(

M × T

T

)

 . We pose the 

problem of finding optimum heterogeneous ensemble out of 
homogeneous ones as the problem of choosing the right per-
centage of the base classifiers from each type. The hetero-
geneous ensemble of size T is created by pooling 
(t1, t2,… , tM) classifiers from the M ensembles, where tj is 
the number of base classifiers pooled from the jth homogene-
ous ensemble and 

∑M

j=1
tj = T  . We are assuming that, on 

average, base learners of a given type are equivalent and in 
consequence we focus on selecting the right distribution of 
base classifiers rather than selecting specific base classifiers 
as in ref. [25]. This reduces the search space to 
(

T +M − 1

M − 1

)

 different heterogeneous ensembles that can 

be built in this manner. The problem remains intractable on 
the number of types of ensembles, M. The optimum percent-
age of each type of base classifier can be obtained by cross-
validation or out-of-bag error in a grid search in the space 
given by (t1, t2,… , tM) . In any case, the search space can be 
rather large even for small values of M and T. For instance, 
for M = 3 and T = 101 , 5253 different heterogeneous can be 
built. In order to additionally reduce the search space, the 
ensembles can be evaluated using intervals of i base classi-
fiers of each type. For instance for M = 3 , the followings 
configurations of the generated ensembles could be tested:

This reduces the search space to 
(

T∕i +M − 1

M − 1

)

 possible 

ensemble configurations. Finally, the ensemble composition 
with minimum validation error is determined as the optimal 
ensemble. In the case that more than one ensemble configu-
ration has the same minimum validation error, the average 
ensemble compositions for all minima with the same valida-
tion error is selected as the optimal heterogeneous ensemble. 
For instance, if there are three ensemble compositions, 
(a, b, c), (a�, b�, c�), (a��, b��, c��) , with the same validation 
minimum, then the final distr ibution would be 
((a + a� + a��)∕3, (b + b� + b��)∕3, (c + c� + c��)∕3)  .  T h e 
pseudocode of the method is detailed in Algorithm 1.

For this study, we have used three homogeneous ensembles: 
random forests (RF), ensembles of support vector machines 

(0, 0, T), (0, i,T − i), (i, 0, T − i), (0, 2 ∗ i,T

− (2 ∗ i)), (2 ∗ i, 0, T − (2 ∗ i)),⋯ .
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(SVMs) and of multilayer perceptrons (MLPs). All base clas-
sifiers of these ensembles are created using random samples 
from the training set to allow for a fast validation of the optimum 
heterogeneous ensemble by means of out-of-bag [26]. In order 
to generate ensembles of SVMs the following randomized pro-
cedure is used. First, B sets of partially optimized parameters for 
the SVMs, �b with b = 1,… ,B , are obtained. More details on 
how these sets of partially optimized parameters are obtained 
are given below. Then, the ensemble is built in B batches of T/B 
SVMs. Each batch uses a different set of parameters �b and each 
individual SVMs is trained on a different random bootstrap sam-
ple without replacement of size 50% (i.e. subbagging) from the 
original training set. In this way the variability among the SVMs 
can be increased. Using subbagging has the advantage with 
respect to using standard bootstrap samples that the base models 
can be trained faster. This speedup is approximately 4 times, con-
sidering the near quadratic training times of SVMs. In addition, 
the performance of both sampling strategies, bootstrapping and 
subbagging, has been demonstrated to be equivalent [27, 28]. To 
obtain the B sets of partially optimized parameters, we first define 
a parameter grid. Next, a subbagging sample is generated. One 
SVMs is trained for each combination of parameters and vali-
dated on the left-out set. Finally, the set of parameter with lower 
error is kept for building the ensemble. This process is repeated B 
times to obtain the �b with b = 1,… ,B sets of parameters. The 
same procedure is used to generate the ensembles of MLPs. The 
training time complexity of the ensemble depends on the size of 
the parameter grid, B, on the sampling rate and on the complexity 
of the base classifier. In spite of creating an ensemble of SVMs 
(or MLPs), this procedure can be faster to train than training a 
single SVM by grid search and cross-validation, which is the 
most common way of training an SVM [29, 30]. This procedure 
for building ensembles can be over 2 times faster than training a 
single carefully tuned model SVM [31]. In the next section we 
will show the validity of this procedure to generate homogene-
ous ensembles of SVMs and MLPs, and also of the procedure to 
obtain heterogeneous ensembles from them. 

Algorithm 1: Construction of heterogeneous ensemble by pooling
from homogeneous ensembles
Input: Dtrain = {(xn, yn)}Ntrain

n=1 % Training set
Dtest = {(xm, ym)}Ntest

m=1 % Test set
build homogeneous ensemble % obtain the votes of individuals in a
homogeneous ensemble
T % Ensemble size
M = 3 % number of homogeneou ensemble type (
[”SVM”, ”MLP”, ”RF”] in this study)

Output: SIM % build hetergenous ensemble on test data, using the
optimal configuration obtained on training set

1 for type = 1 : M do
2 Htype ← build homogeneous ensemble(type,Dtrain, T )

3 ss ← search space(T,M, i, ) %generate T/i+M−1
M−1

)
possible combinations of M

type of learners to form heterogeneous ensembles of size T with intervals i that is
(0, 0, T ), (0, i, T − i), (i, 0, T − i), (0, 2 ∗ i, T − (2 ∗ i)), (2 ∗ i, 0, T − (2 ∗ i)), ...

4 min error ← ∞ % determine optimal heterogeneous configuration
5 foreach conf in ss do
6 error ← compute oob error(Dtrain, conf,H1:M )
7 if error < min error then
8 min error ← error
9 opt conf ← conf

10 SIM = opt hetergenous ensemble(Dtest, opt conf,H1:M )

3 � Experimental results

In this section we present the empirical analysis of hetero-
geneous ensembles as the combination of homogeneous 
base classifiers. Furthermore, we validate the procedure to 
obtain SVM and MLP ensembles by partial optimization of 
their training parameters. We carried out the analysis on 21 
datasets from the UCI repository [32]. In all tested datasets, 
except of the synthetic problems, the training and test sets 
were generated using random stratified sampling with sizes 
2/3 and 1/3 of the original sets respectively. In the synthetic 
classification problems, which are Ringnorm, Threenorm 
and Twonorm, 300 examples are sampled at random for 
training and 2000 for testing using independent realizations. 
The results reported are averages over 100 executions.

Primarily, we trained M = 3 homogeneous ensembles of 
size T = 1001 . Specifically, the ensembles used are: standard 
random forest [11], partially optimized ensemble of support 
vector machines [33] and of multi layer perceptrons [34]. 
We have used e1071, RSNNS and randomForest R packages 
for creating SVMs, MLPs and RF respectively. Under these 
setting the possible configurations of the heterogeneous 
ensemble are 1003 × 1002∕2 . To reduce the computational 
burden to identify the optimum combination of base clas-
sifiers, we evaluated the heterogeneous ensembles in inter-
vals of i = 13 base learners, which reduces the optimization 
to 78 × 77∕2 evaluations. Given that all three ensembles 
were generated using random subsamples from the training 
set to train each base classifier, the optimum heterogene-
ous configuration is obtained by out-of-bag validation. The 
values of the hyperparameters for SVM with a RBF kernel 
are selected from a grid with C = 2q with q = −5,… , 15 
and � = 2p with p = −15,… , 3 . For MLP, the number of 
neurons in the hidden layer was optimized from the values 
{3, 4, 5, 6, 7, 8, 9, 10} . For building the partially optimized 
ensemble, B = 10 sets of hyperparameter were obtained 
using out-of-bag. For random forest, the default parameters 
were used.

3.1 � Homogeneous ensemble of SVMs and MLPs

In order to validate the procedure to generate the partially 
optimized ensembles, a comprehensive comparison with 
respect to an optimized single base learner was carried out. 
For this purpose, a single SVM and a single MLP were 
trained using within-train 10-fold cross-validation and grid 
search over the same sets of parameters given above. The 
average errors for this experiments are shown in Table 1 for 
a single SVM and MLP, and for the homogeneous ensem-
bles composed of SVMs (shown as E-SVM in the table) 
and of MLPs (shown as E-MLP). In addition, an overall 
comparison of the methods is shown in Fig. 1 by mean of 
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the procedure proposed by Demšar in ref. [35]. In this dia-
gram, the average ranks for each method are shown. Meth-
ods connected by a horizontal solid line indicate that their 
differences in average rank are not statistically significant 
according to a Nemenyi test (p-value < 0.05).

From Table 1, it can be observed that the ensemble of 
MLPs clearly outperforms the single MLP. The ensemble of 
MLPs outperforms a single MLP in all tested datasets except 
for Ionosphere and Parkinsons. The differences between the 
single SVM and its ensemble counterpart are not so pro-
nounced as the ones observed for MLPs. The ensemble of 
SVM obtains a better result than a single SVM in 11 out of 
19 datasets. This same result can be observed in Fig. 1 where 
the average rank of E-SVM is slightly better than a single 
SVM. However, the difference is not statistically significant. 
Even thought the differences are not statistically significant, 
this analysis shows that this procedure to build ensembles 
of SVMs is not detrimental. When using MLP as base clas-
sifiers, we observe that the differences are statistically sig-
nificant with respect to a single MLP. In addition, with these 
setting, we have observed that the training time for E-SVM 
is over 2 times faster than training a single SVM using grid 
search and 10-fold cross-validation. For ensembles of MLP, 
the speedup is over 1.5 with respect to the single MLP.

3.2 � Heterogeneous ensemble pooled 
from homogeneous ensembles

In this section the performance of the proposed procedure to 
built heterogeneous ensembles by pooling from homogene-
ous ensembles is analyzed. The objective is to find the opti-
mum proportion of each of the possible base classifiers to 
build the final heterogeneous ensemble. Each of the possible 
selected proportions, which correspond to a different hetero-
geneous ensemble, can be represented by a point in a regular 
simplex in M dimensions. This is shown in Fig. 2 for three 
representative datasets: Heart, Colic and Tic-tac-toe. Each 
plot in Fig. 2 shows in a 3 dimensional simplex, the average 
test error for the different combinations of base classifiers 
in intervals of i = 13 classifiers using a grey scale scheme. 
Darker colors indicate higher average error as indicated by 
the color legend at the right of each plot. The three verti-
ces in the plots correspond to the three tested homogeneous 
ensembles. The vertices in the upper left, right and bottom 
left of the plot correspond to E-SVM, E-MLP and random 
forest respectively. A displacement away from one of these 
vertices smoothly transforms the corresponding homogene-
ous ensembles into a heterogeneous one. The horizontal axis 
shows the number of selected MLPs in the heterogeneous 
ensemble, while the vertical axis indicates the number of 
SVMs minus the number of random trees. In addition, all 
plots show the average selected position using out-of-bag 
validation (marked with a ’o’ sign) and the average position 
for the best test errors (marked with a ’T’ sign).

In the plots of Fig. 2 different behaviours of the combina-
tion of base classifiers can be observed. In Heart (left plot), 
the best position is observed quite centered, showing that a 
heterogeneous ensemble composed of base classifiers from 
different types is beneficial to improve the generalization 
performance of the ensemble. However, this is not a general 
trend as it can be observed in the center plot (Colic). In this 
case, the best result is clearly located at one of the vertices of 
the simplex that correspond to a homogeneous ensemble—
random forest in this case. Finally, it is important to note that 
the optimum location need not be close to the best homo-
geneous ensemble. For instance, in Tic-tac-toe, the location 
of the minimum error is very close to the random forest 

Table 1   Test errors for a single optimized SVM and MLP, also their 
homogeneous ensembles as it is proposed in Sect. 3.1

Dataset SVM E-SVM MLP E-MLP

Australian 14.4 ± 2.3 13.7 ± 2.1 15.6 ± 2.2 14.2 ± 1.9

Boston 12.2 ± 2.4 12.2 ± 2.3 12.7 ± 2.1 12.3 ± 2.0

Breast 3.5 ± 1.1 3.4 ± 1.1 9.1 ± 12.1 3.2 ± 1.1

Bupa 29.1 ± 3.7 27.9 ± 3.4 30.3 ± 4.0 28.3 ± 3.7

Chess 0.8 ± 0.4 0.8 ± 0.3 1.0 ± 0.2 0.9 ± 0.3

Colic 31.8 ± 3.4 33.2 ± 1.4 32.4 ± 3.4 31.3 ± 3.3

German 25.1 ± 1.8 24.6 ± 1.6 28.0 ± 2.0 24.7 ± 1.9

Heart 16.0 ± 3.5 15.4 ± 3.0 18.2 ± 3.7 16.3 ± 3.1

Hepatitis 16.6 ± 3.6 15.8 ± 3.0 17.5 ± 4.3 15.4 ± 4.3

Ionosphere 6.3 ± 1.8 5.7 ± 1.7 10.6 ± 2.9 11.3 ± 2.5

Ozone 5.6 ± 0.4 5.6 ± 0.3 6.8 ± 0.5 5.5 ± 0.5

Parkinsons 8.7 ± 4.1 10.7 ± 3.7 11.3 ± 4.1 13.7 ± 3.9

Pima 23.1 ± 2.0 22.7 ± 1.8 24.7 ± 2.4 23.1 ± 2.1

Ringnorm 1.7 ± 0.6 1.6 ± 0.4 17.0 ± 1.5 16.4 ± 1.5

Spambase 6.4 ± 0.4 6.6 ± 0.4 7.0 ± 0.4 5.9 ± 0.4

Sonar 15.0 ± 4.3 17.8 ± 4.9 21.0 ± 4.2 20.7 ± 4.6

Threenorm 14.5 ± 1.3 14.1 ± 0.7 17.7 ± 2.0 16.9 ± 0.9

Tictactoe 1.0 ± 1.3 1.8 ± 0.7 4.4 ± 7.4 1.8 ± 0.7

Twonorm 2.6 ± 0.5 2.4 ± 0.3 2.4 ± 0.9 2.9 ± 0.4

Magic 14.2 ± 1.1 14.5 ± 0.9 16.0 ± 1.6 15.2 ± 0.8

Adult 14.6 ± 1.5 13.7 ± 1.3 14.8 ± 1.8 13.1 ± 1.1

�

1.0 1.5 2.0 2.5 3.0 3.5 4.0

MLP
E−MLP

E−SVM
SVM

CD

Fig. 1   Average ranks for SVM, E-SVM, MLP and E-MLP (more 
details in the text)
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vertex in spite of the fact that this homogeneous ensem-
ble presents the worst average performance. Finally, we can 
observe that the average location of the minima identified 
using out-of-bag is quite close to the location in test. We 
have also observed, however, that for the smaller datasets the 
identification of the optimum point is less accurate.

We implemented the Differential Evolution (DE) 
approach proposed in ref. [24], as a comparison method 
against the proposed strategy in this study. This method lev-
erages on a specific evolutionary algorithm called differen-
tial evolution to optimize 20 heterogeneous base classifiers’ 
voting weights in an ensemble. The procedure starts with a 
randomly generated population of N vector-valued individu-
als, where each one corresponds to a particular weighing 
vote configuration of an ensemble. The randomly initial-
ized population will be evolved through some mutation, 
crossover, and selection procedures. Namely, for mutation a 
DE/rand/1 procedure is used for which 3 exclusive individu-
als x

1
 , x

2
 and x

3
 are taken at random from the population 

and the first is perturbed using the weighted difference of the 
other two individuals ( x

1
+ F ⋅ (x

2
− x

3
) ). In the crossover 

stage, the resulting member from the mutation stage plays 
a donor role. A certain percentage of the original elements 
in x

1
 will be substituted with the donor elements based on a 

user-defined crossover probability. The newly built x
1
 will 

be replaced with the original one when it has a higher fitness 
value. The fitness is evaluated using the average Matthews 
Correlation Coefficient (MCC), calculated over 10-fold 
cross-validation, as the ensemble’s quality measure. The 
described procedure continues until the stopping condi-
tion is satisfied. As a comparison approach to the proposed 
strategy in this study, instead of using 20 base classifiers 
mentioned in the original publication [24], we have used the 
three homogeneous ensembles (E-SVM, E-MLP, and RF). 
Hence, each vector in the population has three weights that 

translate into a number of base classifiers that are selected 
from the mentioned homogeneous ensembles. Moreover, 
for evaluating a member in the population, instead of using 
10-folds cross-validation, we have used the related out-of-
bag set.

In the Table 2, the average test errors for the homoge-
neous ensembles of SVMs (E-SVM) and MLPs (E-MLP), 
random forest (RF), Differential Evolution (DE) and the 
proposed strategy (SIM) over the investigated problems are 
reported. The best and second best results for each dataset 
are highlighted in boldface and underlined respectively. In 
addition, the best result is marked with an asterisk (*) if 
the improvement over to the second best is statistically sig-
nificant, at a significance level � = 0.05 . The significance 
is determined using a paired resampled t-test for synthetic 
problems, and a corrected resampled paired t-test [36] when 
train/test partitions are randomly taken. In addition, the 
table shows the average percentage of classifiers of each 
type selected by out-of-bag validation for the heterogeneous 
ensembles. The percentages are shown in the same order that 
the ensembles are shown, that is, % of SVMs, % of MLP and 
% of random trees.

As shown in Table 2, the proposed method is the best 
or the second best method for all datasets except in Adult. 
DE and E-SVM also achieve rather good results but it is 
somehow less consistent. This results are summarized using 
a Demšar plot [35] in Fig. 3. From this diagram, it can be 
observed that the proposed procedure is significantly better 
than random forest and E-MLP (as given by a Nemenyi test 
with p-value < 0.05). The proposed methodology has an 
average rank better than DE and E-SVM but their difference 
is not statistically significant.

In terms of time complexity, the problem of selecting a set 
of base classifiers whose combination is best, is an NP prob-
lem [25]. In our case, we are selecting T models from a pool 

Fig. 2   Test error rate of the heterogenous ensembles in the simplex for different classification problems. Darker colors correspond to higher 
errors
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of M × T  heterogeneous models. This problem involves 
(

MT

T

)

 possible subsets. Our assumption is that, on average, 

individual models of the same type are equivalent on average 
and the proposed method focuses on selecting the right distri-
bution of base classifiers rather than selecting specific base 
classifiers. Hence, our approach to find the optimal heteroge-

neous ensemble searches in a space of size 
(

T∕i +M − 1

M − 1

)

 , 

which is polynomic in M. In the studied setup, we have con-
sidered T = 1001 , size of the ensemble, M = 3 , learners types 
and i = 13 for the grid interval. In total, for each out-of-bag set 
we built 3081 heterogeneous ensembles. On the other hand, 
for DE approach, within each generation of size 100 (random 
configurations of different heterogeneous ensembles), we per-
formed mutation, cross-over and fitness evaluation for each 
member. We repeat this process 100 times for the evolution of 

the generations. In total, 10000 heterogeneous ensembles are 
built using this approach. The proposed approach, despite 
computing three times less ensemble evaluations than DE, 
obtains favorable results.

4 � Conclusions

In this study, we propose a systematic method for creating 
heterogeneous ensembles optimizing the propositions of 
base classifiers of different types. To this end, we first gen-
erate M different homogeneous ensembles. Diversification in 
these ensembles is obtained by using both subsampling and 
randomization techniques. Then a heterogenous ensemble is 
built by pooling classifiers from these homogeneous ensem-
bles. The proportions of classifiers of different types in the 
heterogeneous combination can be represented with a point 
in a simplex in M dimensions. Each of the M vertices in this 
simplex corresponds to one of the homogeneous ensembles. 
We have observed that the optimal proportion of base clas-
sifiers in the final ensemble is strongly problem-dependent.

A comprehensive empirical evaluation is carried out 
to compare the proposed creation strategy with respect to 
homogeneous ensembles and other state-of-the-art technique 
for creating heterogeneous ensembles. This analysis shows 
that the proposed strategy exhibits excellent performance. 
In all the problems investigated except one, it is either the 
first or second most accurate method. The results show that 

Table 2   Test errors of single 
classifiers, homogeneous 
ensembles and optimal 
heterogeneous ensemble

Dataset E-SVM E-MLP RF DE SIM [% SVM, % MLP, % trees]

Australian 13.7 ± 2.1 14.2 ± 1.9 ��.0 ± �.1* 13.7 ± 2.1 13.5 ± 2.0 [ 24.5 , 16.7 , 58.8 ]
Boston 12.2 ± 2.3 12.3 ± 2.0 12.9 ± 2.1 ��.9 ± �.1 12.2 ± 2.0 [ 39.2 , 23.1 , 37.7 ]
Breast 3.4 ± 1.1 �.2 ± �.1 3.3 ± 1.1 3.3 ± 1.1 3.3 ± 1.0 [ 27.6 , 29.0 , 43.4 ]
Bupa 27.9 ± 3.4 28.3 ± 3.7 ��.2 ± �.6 27.5 ± 3.4 27.3 ± 3.5 [ 21.4 , 15.6 , 63.0 ]
Chess 0.8 ± 0.3 0.9 ± 0.3 1.7 ± 0.4 �.8 ± �.2 �.8 ± �.2 [ 34.7 , 22.7 , 42.6 ]
Colic 33.2 ± 1.4 31.3 ± 3.3 ��.5 ± �.9* 27.6 ± 3.4 17.2 ± 3.0 [  3.7 ,  4.4 , 91.9 ]
German 24.6 ± 1.6 24.7 ± 1.9 ��.9 ± �.8 24.0 ± 1.9 24.3 ± 1.9 [ 15.9 , 28.3 , 55.7 ]
Heart ��.4 ± �.0 16.3 ± 3.1 16.6 ± 2.9 15.5 ± 3.1 15.5 ± 3.1 [ 33.5 , 23.8 , 42.7 ]
Hepatitis 15.8 ± 3.0 15.4 ± 4.3 ��.1 ± �.6 15.1 ± 3.6 15.2 ± 3.6 [ 25.6 , 28.7 , 45.7 ]
Ionosphere �.7 ± �.7 11.3 ± 2.5 6.7 ± 1.7 6.3 ± 2.1 5.8 ± 1.7 [ 64.4 , 13.7 , 21.9 ]
Ozone 5.6 ± 0.3 5.5 ± 0.5 5.7 ± 0.3 �.4 ± �.3 �.4 ± �.4 [ 16.7 , 53.6 , 29.7 ]
Parkinsons ��.7 ± �.7 13.7 ± 3.9 11.1 ± 4.0 10.8 ± 3.7 ��.7 ± �.9 [ 44.1 , 12.9 , 43.0 ]
Pima ��.7 ± �.8* 23.1 ± 2.1 23.1 ± 2.0 23.0 ± 1.9 22.9 ± 1.8 [ 44.5 , 18.1 , 37.4 ]
Ringnorm �.6 ± �.4* 16.4 ± 1.5 5.9 ± 1.0 2.6 ± 1.9 1.7 ± 0.5 [ 62.2 , 11.2 , 26.6 ]
Spambase 6.6 ± 0.4 5.9 ± 0.4 5.1 ± 0.4 5.8 ± 0.4 �.0 ± �.3 [ 12.2 , 11.1 , 76.8 ]
Sonar ��.8 ± �.9 20.7 ± 4.6 18.9 ± 4.8 18.5 ± 4.6 18.0 ± 4.4 [ 39.1 , 16.9 , 44.0 ]
Threenorm ��.1 ± �.7* 16.9 ± 0.9 16.7 ± 1.0 14.7 ± 1.0 14.4 ± 0.8 [ 52.1 , 10.8 , 37.1 ]
Tictactoe 1.8 ± 0.7 1.8 ± 0.7 2.4 ± 1.1 1.8 ± 0.6 �.5 ± �.7* [ 12.5 , 11.2 , 76.3 ]
Twonorm �.4 ± �.3* 2.9 ± 0.4 3.9 ± 0.5 2.6 ± 0.3 2.5 ± 0.4 [ 42.5 , 22.7 , 34.8 ]
Magic 14.5 ± 0.9 15.2 ± 0.8 ��.5 ± �.0 13.8 ± 0.4 13.6 ± 0.5 [ 25.2 , 23.8 , 50.9 ]
Adult 13.7 ± 1.3 13.1 ± 1.1 ��.7 ± �.6 13.3 ± 1.2 13.4 ± 0.9 [ 32.9 , 28.2 , 38.8 ]

�

1 2 3 4 5

E−MLP
RF

SIM
DE

E−SVM

CD

Fig. 3   Average ranks for E-SVM, E-MLP, RF, the optimal estimated 
heterogeneous ensemble (SIM) and Differential Evolution (DE)
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the proposed combination is better than the implemented 
benchmark heterogeneous ensemble (DE) and also any of 
the homogeneous ensembles; i.e. random forest, ensembles 
of MLPs and ensembles of SVMs.
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