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Abstract

We address the task of automatically scoring the competency
of candidates based on textual features, from the automatic
speech recognition (ASR) transcriptions in the asynchronous
video job interview (AVI). The key challenge is how to con-
struct the dependency relation between questions and an-
swers, and conduct the semantic level interaction for each
question-answer (QA) pair. However, most of the recent stud-
ies in AVI focus on how to represent questions and answers
better, but ignore the dependency information and interaction
between them, which is critical for QA evaluation. In this
work, we propose a Hierarchical Reasoning Graph Neural
Network (HRGNN) for the automatic assessment of question-
answer pairs. Specifically, we construct a sentence-level rela-
tional graph neural network to capture the dependency infor-
mation of sentences in or between the question and the an-
swer. Based on these graphs, we employ a semantic-level rea-
soning graph attention network to model the interaction states
of the current QA session. Finally, we propose a gated recur-
rent unit encoder to represent the temporal question-answer
pairs for the final prediction. Empirical results conducted
on CHNAT (a real-world dataset) validate that our proposed
model significantly outperforms text-matching based bench-
mark models. Ablation studies and experimental results with
10 random seeds also show the effectiveness and stability of
our models.

Introduction
Recent years have witnessed the rapid advancement of on-
line recruitment platforms. With the increasing amount of
online recruitment data, more and more interview related
studies have emerged such as person-job (or talent-job)
fit (Shen et al. 2018; Qin et al. 2018; Luo et al. 2019b; Bian
et al. 2019) and automatic analysis of asynchronous video
interviews (AVIs) (Hemamou et al. 2019b,a; Suen, Hung,
and Lin 2019), which aim to enable automated job recom-
mendation and candidate assessment. Among these studies,
person-job fit is to casting the task as a supervised text match
problem. Given a set of labeled data (i.e., person-job match
records), it aims to predict the matching label between the
candidate resumes and job description. More recently, deep
learning has enhanced person-job fit methods by training
more effective text match or text representations models (Xu
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et al. 2017; Jiang et al. 2019). AVI is to determine whether
the candidate is hirable by evaluating the answers of inter-
view questions. In AVIs, an interview is usually considered
as a sequence of questions and answers containing salient
socials signals. To evaluate the candidates more comprehen-
sively, AVI models will extract the features of video (or im-
age), text, and voice in the process of answering questions.
In this work, we focus on the scoring of multiple QA pairs,
we only extract the features of text modality and define this
task as the scoring competency of candidates rather than
the score of whether or not to be employed. Based on the
anatomy of the human interviewers’ evaluation process, the
solutions consist of two stages: (1) analyzing and evaluating
individual QA pair one by one, then acquiring the evalua-
tion status, and (2) grading the competency of the candidate
based on the evaluation status of multiple QA pairs.

For the first stage, existing methods tend to employ text
matching or attentional text matching algorithms to evalu-
ate QA pairs (Hemamou et al. 2019b; Suen, Hung, and Lin
2019), which feeds the concatenated representation of the
question and the answer to the subsequent classifier. As we
all know, questions in an asynchronous video interview are
not limited to specific domains. That is to say, candidates
can answer questions according to their work or study ex-
perience. In this way, the candidates’ answers will be var-
ied and it is difficult to evaluate the answer accurately only
by text matching. Intuitively, it is more reasonable to evalu-
ate QA pairs through the semantic interaction between ques-
tions and answers. A critical challenge along this line is how
to reveal the latent relationships between each question and
answer.

Graph neural networks (GNNs, (Dai, Dai, and Song
2016; Yao, Mao, and Luo 2019; Ghosal et al. 2019)) can
learn effective representation of nodes by encoding local
graph structures and node attributes. Due to the compactness
of model and the capability of inductive learning, GNNs
are widely used in modeling relational data (Battaglia et al.
2018; Schlichtkrull et al. 2018; Pan et al. 2020) and logical
reasoning (Luo et al. 2019a; Jiang and Han 2020). Recently,
Zhang et al. (2020a) proposed a GNN variant, Named Ex-
pressGNN, to strike a nice balance between the representa-
tion power and the simplicity of the model in probabilis-
tic logic reasoning. Ghosal et al. (2019) constructed the
DialogeGCN to address context propagation issues present
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in the RNN-based methods. Specifically, they leverage self
and inter-speaker dependency of the interlocutors to model
conversational context for emotion recognition. Inspired
by (Ghosal et al. 2019), we present a sentence-level rela-
tional GCN to represent the internal temporal and QA inter-
action dependency in the process of answering questions.

For the second stage of grading the candidate, based on
the representation of QA pairs, exists methods (Hemamou
et al. 2019b,a) prefer to encoder question-answer pairs as
a sequence directly. However, this kind of approaches lead
to insufficient interaction between the semantic information
of question and answer pairs. Therefore, it is difficult to en-
sure the rationality and explainability of the evaluation. To
mitigate this issue, in the first stage, we present a semantic-
level graph attention network (GAT) to model the interaction
states of each QA session.

To this end, we propose a Hierarchical Reasoning Graph
Neural Network (HRGNN) for the automatic scoring of an-
swer transcriptions (ASAT) in job interviews. Specifically,
the proposed sentence-level relational graph convolutional
neural network (RGCN) is used to capture the contextual de-
pendency, and the semantic-level Reasoning graph attention
network (RGAT) is applied to acquire the latent interaction
states. And the contribution of our work can be summarized
as follows:
• We propose a relational graph neural network to rem-

edy the lack of QA interaction in previous assessment
methods. Specifically, the relation of internal temporal
dependency in each question/answer is helpful for con-
text understanding. And the relation of QA interaction de-
pendency can establish the latent semantic interaction of
question-to-answer and answer-to-question.

• To our knowledge, we are the first one to construct a hi-
erarchical graph neural network for ASAT to model the
relation between sentences in the question and its homol-
ogous answer, and interact and infer at the semantic level.
Although we just evaluate the competence of candidates
on textual features, it greatly improves the rationality and
accuracy of the evaluation.

• Our model can outperform all existing benchmark ap-
proaches on a Chinese real-world dataset. Ablation stud-
ies and experimental results with 10 random seeds show
the effectiveness and stability of our models.

Related Work
Asynchronous Video Interviews The asynchronous video
interview is considered as one of the most essential tasks
in talent recruitment, which forms a bridge between em-
ployers and candidates in fitting the eligible person for the
right job (Shen et al. 2018; Hemamou et al. 2019a,b). Shen
et al. (2018) developed a joint learning system to model job
description, candidate resume, and interview assessment. It
can effectively learn the representation perspectives of the
different job interview process from the successful job in-
terview records and then applied in person-job fit and inter-
view question recommendation. Hemamou et al. (2019b)
takes an interview process as a sequence of questions and
answers and proposed a hierarchical attention model named

HireNet to predict the hireability of the candidates. As far
as we know, these approaches ignore the deep dependency
between interview questions and answers.
Short Answer Scoring Automatic short answer scoring
(ASAS) (CLAUDIA and CC-rater 2003; Sultan, Salazar,
and Sumner 2016; Lun et al. 2020; Goenka et al. 2020)
is a research subject of intelligent education, which is a
hot field of natural language understanding. Methods for
ASAS are driven with the help of deep learning tech-
niques (Mueller and Thyagarajan 2016; Zhao et al. 2017)
and domain-specific knowledge (Conneau et al. 2017;
Goenka et al. 2020). Recently, Saha et al. (2019) have used
InferSent (Conneau et al. 2017) and neural domain adapta-
tion to obtain state-of-the-art results in the ASAS task. Lun
et al. (2020) proposed multiple data augmentation strategies
to learn language representation and achieved a significant
gain over benchmark models. It should be emphasized that,
in ASAS tasks, the answer text is short and the domain is
specific. For the ASAT task which contains several open-
domain interview questions, the scoring of long-text answers
is much more challenging.
Graph Neural Network Graph neural networks have been
successfully applied to several natural language processing
tasks, such as text classification (Veličković et al. 2017; Yao,
Mao, and Luo 2019; Zhang, Liu, and Song 2018; Zhang
et al. 2020b), machine translation (Marcheggiani, Bastings,
and Titov 2018), question generation (Pan et al. 2020; Chen,
Wu, and Zaki 2020) and fact verification (Zhou et al. 2019).
Zhou et al. (2019) propose a graph-based evidence aggregat-
ing and reasoning (GEAR) framework which enables infor-
mation to transfer on a fully-connected evidence graph and
then utilize different aggregators to collect multi evidence
information. Pan et al. (2020) constructed a semantic-level
graph for content selection and improved the performance
over questions requiring reasoning over multiple facts. In-
spired by previous researches, we proposed a hierarchical
reasoning graph neural network to alleviate the issues of
lacking interaction and semantic reasoning between ques-
tions and answers in the video job interview.

Methods
We now introduce the proposed Hierarchical Reasoning
Graph Neural Network (HRGNN) for the automatic scor-
ing of answer transcriptions in the job interview. HRGNN
consists of four integral components — Gated Recurrent
Unit Encoder, Sentence-level GCN Encoder, Semantic-level
GAT Encoder, and Competency Classifier. An overview of
HRGNN is shown in Fig. 1. We first give some detailed ex-
planation about Problem Formalization.

Problem Formalization
We represent the automatic scoring of answer transcriptions
in video job interview as an object composed of n question-
answer pairs {{Q1, A1}, {Q2, A2}, ..., {Qn, An}}. In our
model, the ith question Qi is a sequence of cQi sen-
tences (sub-questions) {qi1, qi2, ..., qicQi

}, where cQi
repre-

sents the count of sentences in question i. Subsequently, the
j-th sentence qj in the question Qi can be formulated as



Figure 1: An overview of the proposed HRGNN. As an example, upon a QA session in the interview, every sentence node
updates itself from its neighbors. In the sentence-level GCN, each updated node contains dependency information and will be
aggregate by the subsequent GAT encoder on the semantic-level. Finally, a GRU network is employed to represent the global
interview for competency prediction.

{wqj
1 , w

qj
2 , ..., w

qj
lqj
}. Here lqj is the number of words in sen-

tence j. Ai denotes the sequence of words {ai1, ai2, ..., aicAi
}

describing the ith answer. And cAi denotes the number
of sentences in the ith answer. In a same way, the j-th
sentence aj in the answer Ai is a sequence of laj

words
{xaj

1 , x
aj

2 , ..., x
aj

laj
}. And laj

denotes the length of the j-th
sentence aj in the answer Ai.

Gated Recurrent Unit Encoder
For the sentence in the question and the answer, we follow
previous work (Jang et al. 2019; Wang et al. 2020) and rep-
resent each word as a vector using the pre-trained GloVe
word embedding denoted as E = {ei : i ≤ lq, ei ∈ R300}
and F = {ej : j ≤ la, ej ∈ R300}, where lq and la indicate
the number of embedded words in the sentence of question
or answer.

To obtain contextual representations to aggregate tempo-
ral information and enhance reasoning ability, we employ
two independent Gated Recurrent Unit (GRU) (Chung et al.
2014) to each sentence in the questions and the answers sep-
arately. To reduce the cost of information in the longer an-
swer, we set the encoder of the answer to bidirectional. The
generated question sentence features Vq ∈ Rlq×d and an-
swer sentence features Va ∈ Rla×d denote as:

Vq, vlq =
−−−→
GRU(E, θGRU ), (1)

Va, vla =
←−−→
GRU(F, θGRU ), (2)

where vlq and vla are the outputs of the last hidden units
which represent the global features of the two sentences in
the question and the answer.

Sentence-level GCN Encoder
We propose the Sentence-level GCN Encoder module to
capture the dependency information in the process of an-

swering questions. Effectively modeling the context of the
long-text answer requires capturing the inter-dependency
and self-dependency among sentences in the question and
the answer. Therefore, we construct a directed graph from
the sequentially encoded sentences to capture the depen-
dency between the question and the answer. Furthermore,
we propose a neighborhood-based convolutional feature
transformation process to create contextually features. The
framework is detailed here.

First, we introduce the following notation: a single QA
session is represented as a directed graph G = (V, E ,R,W),
with vertices vi ∈ V , labeld edges (relations) rij ∈ E where
r ∈ R is the relation type of the edge between vi and vj , and
αij is the weight of the labeled edge rij , with 0 ≤ αij ≤ 1,
where αij ∈ W and i, j ∈ [1, 2, ..., cQ] and [1, 2, ..., cA],
respectively.

Graph Construction The graph is constructed from the
sentences in the following way.

Vertices: Each sentences in the question or answer is rep-
resent as a vertex vi ∈ V in G. Each vertex vi is initialized
with the corresponding sequentially encoded feature vector
hi, for all i in [1, 2, ..., cQ] or [1, 2, ..., cA]. We denote this
representation vector as the vertex feature. Here, vertex fea-
tures are subject to update downstream, when the transfor-
mation process is used to encode the context of QA pair.

Edges: Construction of the edges E depends on the con-
text of the current question and answer to be modeled. As
mentioned, in this scenario, we need to evaluate several
QA pairs in the interview session. And to acquire the ideal
job opportunity, candidates would like to answer each sub-
question more clearly, which leads to the answer text con-
tains many sentences. It will be computationally quite ex-
pensive to construct the graph neural network through a full
connection. Therefore, inspired by Ghosal et al. (2019), we
employ a more efficient way to construct the edges by keep-



ing a past context window size of p and a future context
window size of f . Hence, each vertex vi has an edge with
the immediate p sentences of the past: vi−1, vi−2, ..., vi−p,
f sentences of the future: vi+1, vi+2, ..., vi+f and itself: vi.

Meanwhile, as the graph is directed, vertices from the
question or the answer or both can have edges in both di-
rections with different relations.

Edge Weights: We apply a similarity based attention
module to acquire the edge weights. The attention function
is computed in a way such that, for each vertex, the total
weight of the incoming edges is 1. Considering the past and
future context window size of p and f , respectively, we cal-
culated the weights as below,

αij = softmax(gTi We[gi−p, ..., gi+f ]),

for j = i− p, ..., i+ f.
(3)

where We represents the parameter to be learned. In this
way, it can be ensured that the incoming edges of vertex vi
receives a total weight contribution of 1.

Relations: The relation r of an edge rij is designed in
two aspects:

Internal temporal dependency In the i-th question/answer,
especially, the i-th answer, the relation depends on the rel-
ative position of occurrence of ui and uj in the ques-
tion/answer: whether ui is appeared before uj or after.
Therefore, there can be cQi

(sentences in Qi) * cQi
+ cAi

(sentences in Ai) * cAi = cQi
2 + cAi

2 relation types r in the
graph G for context understanding.

Question-Answer interaction dependency The relations
also depends upon the interaction dependency between the
question and answer in the QA session. To establish the la-
tent semantic interaction relationships of question-to-answer
and answer-to-question, we define the relation of Question-
Answer interaction. There will be cQi * cAi +cAi * cQi =
2cQicAi relation types r in the graph G for reasoning. Thus,
the total number of distinct relation types in the graph G is
cQi

2 + cAi
2 + 2cQicAi = (cQi + cAi)

2.

Relation Q(ui), A(uj) i < j (i, j)

1 Q,Q Yes (1,2)
2 Q,Q No (1,1),(2,1),(2,2)
3 Q,A - (1,3),(1,4),(1,5),(2,3),(2,4),(2,5)
4 A,Q - (3,1),(3,2),(4,1),(4,2),(5,1),(5,2)
5 A,A Yes (3,4),(3,5),(4,5)
6 A,A No (3,3),(4,3),(4,4),(5,3),(5,4),(5,5)

Table 1: Q(ui) andA(uj) indicate the source of sentence ui
and uj . The question and the answer in the current session
imply (2 + 3)2 = 25 distinct relation types. ’-’ means the
connection between the question and the answer is indepen-
dent of the index. The rightmost column denotes the indices
of the vertices of the constituting edge which has the relation
type indicated by the leftmost column.

As we all know, the total assessment in an interview is
affected by each QA session, and the evaluation of a sin-
gle QA session should be based on the semantic interaction

state between the question and the answer. Therefore, we hy-
pothesize that explicit declaration of such relational edges
in the graph would benefit in capturing the latent Relation
of Question-Question (RQQ), Answer-Answer (RAA), and
Question-Answer (RQA) among the QA session, which in
succession would facilitate the total assessment of the whole
interview.

As an illustration, let the question Q and the answer A in
a QA session have 5 sentences, where u1, u2 are two sub-
questions in Q, and u3, u4, u5 are sentences in A. Then the
edges and relations will be constructed as shown in Table 1.

Feature Transformation The additive attention based sen-
tence encoder mentioned the previous subsection provides
effective sentence-level features h0i for initialing the i-th
node. Beyond that, the graph provides more dependency
information between sentences in questions and answers.
A more desirable way is to aggregate these information at
the graph-level to get semantic status. A new feature vector
h
(l+1)
i is computed for vertex vi by aggregating local neigh-

bourhood information through the relation specific transfor-
mation inspired from (Schlichtkrull et al. 2018; Ghosal et al.
2019):

h
(l+1)
i = σ(

∑
r∈R

∑
j∈Nr

i

αij

ci,r
W (l)

r gj + αiiW
(l)
0 gi)

for i = 1, 2, ..., N.

(4)

where σ is an activation function, and W
(1)
0 and W 1

r are
learnable parameters of the transformation. αii and αij are
the weights of the edges,Nr

i represents the neighbouring in-
dices of vertex i under relation r ∈ R. ci,r is the normalizer
equal to |Nr

i |.

Semantic-level GAT Encoder
In order to reason on the semantic level, we employ a graph
attention network to gather information from the nodes of
the sentence-level graph and obtain the final hidden state h′

of each sentence. With the feature vector h(l+1)
i for initialing

the i-th node in reasoning GAT, we can get the updated node
representation h̃(l+1)

i :

h̃
(l+1)
i =

∑
j∈N(i)

α̃i,jW̃
(l)h

(l)
i (5)

where α̃i,j is the attention score between node i and node j:

α̃i,j = softmax(eij), (6)

eij = σ̃(aT [W̃ h̃i||W̃ h̃j ]) (7)

where σ̃ is the LeakyReLu activation function and W̃ de-
notes a learnable hyperparameter. After the sentence nodes
are sufficiently updated on the semantic level, they are ag-
gregated to a graph-level represention for the QA pair, Based
on which the global representation of the interview can be
obtained by a GRU encoder. We define the readout function
as:

hG =
1

|Ṽ|

∑
i∈Ṽ

h̃i (8)



Competency classifier
Once the graph representation hG of each QA pair is ob-
tained, we feed it into a GRU encoder to capture the global
representation Vfinal of the interview. Then we feed it into
a softmax layer to classify candidates:

ŷG = softmax(WfinalVfinal + bfinal), (9)
where Wfinal is a weight matrix and bfinal is the bias. As
the problem we focused on the a binary classification, we
apply the binary cross-entropy as our loss function.

Experiments
Data and Metrics
We evaluate our method on a real-world Chinese answer
transcription (CHNAT) in the video job interview . The type
of job is sales positions. And the answer transcriptions are
obtained from an automatic speech recognition algorithm.
Three experts are invited to annotate the same candidates,
and we proceed with a majority vote to obtain the golden
category. The CHNAT dataset split contains 2,313/289/290
candidates for training, validation, and test. To simplify the
ASAT task, we set up a binary classification: based on the
understanding of the textual answer, candidates who have
been liked are considered part of the competent class and
others part of the incompetent class. Some statistics of the
dataset are listed in Table 2. Although we are authorized by
the candidates to use their interviews, the dataset will not be
released to the public due to high privacy constraints.

Dataset CHNAT
Training set 2,313
Validation set 289
Test set 290
Questions per Candidate (mean) 5.45
Hireable label propotion 63.30%
Total length 507M
Length per question (mean) 64
Length per answer (mean) 256
Vocab size 21,128

Table 2: Descriptive table of CHNAT: number of candidates
in each set and overall statistics of the dataset

Besides traditional evaluation metrics such as precision,
recall, F1-score, and accuracy (ACC), we use the concor-
dance correlation coefficient (CCC) proposed by (Lawrence
and Lin 1989) to evaluate our model. In statistics, the con-
cordance correlation coefficient measures the correlation
and agreement between the predicted results of the model
and the ground-truth distribution (Deyo, Diehr, and Patrick
1991; Tzirakis et al. 2017).

Settings and Hyper-parameters
For fair comparisons with other methods, we take a con-
sistent hyper-parameters to train our proposed model. We
trained our baseline models for about 20 epochs - this is sim-
ilar to the proposed HRGNN model. We limit the vocabulary

to 21,128 and initialize tokens with 300-dimensional GloVe
embeddings (Pennington, Socher, and Manning 2014).
While training, we set the word embeddings to be trainable.
We filter stop words and punctuations when creating sen-
tence nodes and truncate the input sentence in the question
and its corresponding answer to a maximum length of 50 and
295 separately. We set the batch size to 128, and initialize the
GRU size with 50 and the attention size with 100. In RGCN
and RGAT the sentence nodes with ds=256 and edge fea-
tures with de = 50. We set the RGCN and RGAT layer to 1.
And each RGAT layer is 16 heads. We applied dropout with
a rate of 0.1. With the initial learning rate 0.001, learning
rate decay 0.97, Adam optimizer (Kingma and Ba 2014) was
used. Hyperparameters were optimized using grid search.

For all the experiments with HRGNN and our benchmark
models, the scores (precision, recall, F1-score, ACC, and
CCC) we present on the validation set and test set are mean
values with 10 runs initialized by different random seeds.

Baselines
In this section, we describe the baseline models in our
experiments. 1) Non-sequential methods: Similar to the
state-of-the-art model–HireNet (Hemamou et al. 2019b) in
AVIs, for the ASAT task, we first employ a non-sequential
(Non-seq, for abbreviation) model based on Doc2vec (Le
and Mikolov 2014) to represent the questions and answers,
with three classic learning approaches (namely Ridge re-
gression, Random Forest, and SVM) for classification. Best
of the three approaches is shown. 2) Sequential methods:
Then two conventional neural network based models named
AGRU+FC and HireNet (Hemamou et al. 2019b) are em-
ployed for comparison. AGRU+FC is an intuitive baseline
for ASAT. To obtain a better representation of the candi-
date’s answer, An attention mechanism is utilized to extract
the importance of each moment in the sequence represent-
ing the answer. Then, in the comparison with the known
HireNet, to explore whether it is reasonable to encode
question-answer pairs as a sequence, we employ a fully-
connected classifier to make the final prediction. HireNet
is built relying on a hierarchical architecture. The low-level
layer is constructed with an additive attention mechanism
based GRU to encoder the local QA context, and the high-
level layer consists of a global context encoder driven by
another additive attention. With the hypothesis of the job
titles are important for the job interview, HireNet includes
vectors that encoder this contextual information. Due to we
focus on the scoring of QA pairs in this work, we imple-
ment a variant of HireNet without the encoder for job titles.
3) BERT+GRU As BERT (Devlin et al. 2018) has achieved
promising performance on several NLP tasks, we also im-
plement one baseline method via fine-tuning BERT in the
claim verification task. The GRU encoder in the low-level
layer of HierNet is replaced by a BERT encoder. And in
the high-level layer, we also employ GRU to encoder the
question-answer pairs.

Compared with Baseline Models
We evaluated our proposed HRGNN on the validation and
test set of CHNAT. To reduce the impact of random-



Model Validation Set Test Set
P R F1 ACC CCC P R F1 ACC CCC

Non-seq (Le and Mikolov 2014) 76.00 83.06 79.37 72.66 39.10 76.60 78.69 77.63 71.38 37.94
AGRU+FC 75.12 88.68 81.23 74.12 42.50 75.22 87.65 80.84 73.91 43.90
HireNet (Hemamou et al. 2019b) 75.86 91.39 82.88 76.08 44.31 75.77 91.09 82.69 75.96 44.38
BERT+GRU 77.04 91.11 83.36 76.99 46.73 76.31 90.99 82.87 76.38 45.43
HRGNN 76.87 91.82 83.55 77.12 46.82 78.25 91.47 84.25 78.49 50.78

Table 3: Automatic evaluation on CHNAT validation and test sets using precision (P), recall (R), F1, Accuracy (ACC) and CCC
(Concordance Correlation Coefficien).

ness on HRGNN and baseline models, for all the exper-
iments, the scores (precision, recall, F1-score, ACC, and
CCC) we present are mean values with 10 runs initial-
ized by different random seeds. Table 3 presents the per-
formance of our model as well as the baselines. We observe
that conventional neural network based sequential methods
(AGRU+FC, HireNet) generally outperform Non-sequential
models, suggesting that the sequential model benefits to the
representation of questions and answers. Further, on the val-
idation set and test test, HierNet with sequential GRU based
classifier achieves (1.89%, 2.14%, and 1.91% ) and (1.85%,
2.05%, and 0.48%) of improvement in F1-score, ACC and
CCC, respectively, compared to AGRU+FC model which
employs fully-connected based classifier in the second stage
of grading candidates. It indicates that it is reasonable to
encode question-answer pairs as a sequence. Comparing
the performance of HireNet and BERT+GRU, we can find
that the pre-training based BERT+GRU model outperforms
HireNet about (0.24%, 0.73%, and 2.32% on the validation
set) and (0.18%, 0.42%, and 1.03% on the test set) in F1-
score, ACC, and CCC, respectively. Intuitively, it shows that
BERT has a stronger ability to represent text.

Besides, based on the results of all benchmark models, we
can see that compared with the validation set, most of the
performance of the non-sequential model, sequential model,
and the fine-tuned BERT have variable degrees of decline
in the test set. It may indicate that even if the model has
a strong ability of text/context representation, it is difficult
to transfer the ability to evaluate candidates from the val-
idation set to the test set, without the deep interaction be-
tween questions and answers. On the test set, Compared
to models which only driven by a sequential encoder, our
model employs sentence-level GCN for constructing rela-
tional dependency and semantic-level GAT for QA reason-
ing, which brings (3.41%, 4.58%, and 6.88%) and (1.56%,
2.53%, and 6.40%) gains over AGRU+FC and HireNet in
F1, ACC, and CCC, respectively. Although, the proposed
HRGNN only outperforms pre-training based BERT+GRU
about 0.11%, 0.13%, and 0.09% in F1, ACC, and CCC sep-
arately. HRGNN achieves promising improvement against
BERT+GRU on the test set. It indicates that the proposed
model based relational dependency and QA reasoning has
higher discrimination ability for unseen data. It further veri-
fies the effectiveness of HRGNN.

Figure 2 illustrates the F1-score and accuracy of differ-
ent models with different random seeds. We can see that the
most affected by random seed is AGRU+FC, followed by

Figure 2: F1-score and accuracy of different models with
different random seeds on the test set. To analysis the trans-
ferability of HRGNN, we additionally plot a polyline of
HRGNN on the validation set. ”A/val” or ”A/test” represents
the performance of model A on the validation set or test set,
respectively.

HireNet. On the test set, in most cases, HRGNN performs
best and achieves the highest performance. Empirically, our
proposed HRGNN was least affected by random seeds. As
far as we know, it is almost impossible for the training set
to contain all variable samples, models on the validation
set tend to perform better than the test set. However, com-
pared to the performance of HRGNN on the validation set
(HRGNN/Val) and the test set (HRGNN/Test), we can ob-
serve that HRGNN/Test is higher than HRGNN/Val 7 times
and 8 times in the F1-score and accuracy separately. It re-
veals that the semantic interaction and reasoning between
questions and answers can improve the generalization abil-
ity of the evaluation model.

Ablation Study
We also perform ablation studies to assess the impact of dif-
ferent modules and different relation types on the model per-
formance against text matching based model. Experimental
results on the CHNAT dataset are shown in Table 4 and 5,
respectively.

• Impact of sentence-level RGCN. When we add the
sentence-level relational GCN to the baseline model
(HireNet, (Hemamou et al. 2019b)), with the promotion of
precision and recall, the F1-score of our model increases
to 83.22% (on the validation set) and 83.81% (on the test
set), which indicates the necessity of building relational
graph to model the dependency between questions and
answers. Particularly, on the test set, the CCC increased
from 44.38% to 48.70%, which shows that the proposed



Model P R F1 ACC CCC
Baseline (Hemamou et al. 2019b) 75.86 91.39 82.88 76.08 44.31
+RGCN 76.17 92.01 83.22 76.51 45.10
+RGAT 77.30 90.40 83.30 77.02 47.20
HRGNN 76.87 91.82 83.55 77.12 46.82
Baseline (Hemamou et al. 2019b) 75.77 91.09 82.69 75.96 44.38
+RGCN 77.51 91.63 83.81 77.72 48.70
+RGAT 77.78 90.72 83.72 77.72 49.10
HRGNN 78.25 91.47 84.25 78.49 50.78

Table 4: Ablation studies on the validation set and the test
set of CHNAT using precision (P), recall (R), F1, Accuracy
(ACC) and CCC (Concordance Correlation Coefficien). The
upper and lower parts of the table correspond to the results
of the validation set and the test set, respectively. We add
each module separately and explore their influence on our
model. ’+’ means we add the module to the baseline model.

RGCN has a stronger capability to learn the logic of hu-
man scoring.

• Impact of semantic-level RGAT. Using a reasoning
graph attention network to encode the semantic-level in-
formation of the QA pair, performance in F1, ACC, and
CCC increase to (83.30%, 77.02%, and 47.20% on the
validation set) and ( 83.72%, 77.72%, and 49.10% on the
test set), respectively, showing the contribution of seman-
tic interaction over the QA pair.

• Impact of integration of two Graphs When we employ
the RGCN and RGAT on the top of the baseline method,
HRGNN achieves the best performance in F1 and ACC.
Meanwhile, we find that the improvement brought by the
integration of RGCN and RGAT is not as high as that by
a single module. We suspect that sometimes the relational
dependency of the QA pair plays a similar role with the
semantic interaction.

Realtion Type P R F1 ACC CCC
HRGNN 76.87 91.82 83.55 77.12 46.82
-RQQ 76.89 91.42 83.38 76.92 46.39
-RAA 77.53 89.78 83.02 76.75 46.59
-RQA 74.89 92.84 82.80 75.57 42.16
HRGNN 78.25 91.47 84.25 78.49 50.78
-RQQ 77.91 91.37 84.00 78.07 49.75
-RAA 78.34 90.27 83.73 77.93 49.80
-RQA 76.46 92.35 83.53 77.04 46.56

Table 5: Ablation studies of relation types on the validation
set and the test set of CHNAT using precision (P), recall (R),
F1, Accuracy (ACC), and CCC (Concordance Correlation
Coefficient). We remove different relation types and explore
their influence on our model. ’-’ means we remove the cor-
responding relation type from the original HRGNN.

• Impact of relation types. To investigate the influence of
relation types during the update process, we analyzed the
performance of HRGNN under different relation types in
Table 5. First, we can observe that when we remove the
relation connection of sentences in the question, the re-
sults drop about (0.17% and 0.2% on the validation set)

and (0.25% and 0.42% on the test set) in F1 and ACC, re-
spectively. When we remove the relation type of RAA, the
performance drops about (0.53% and 0.37%) and (0.52%
and 0.56%) in F1 and ACC, which is invariably larger
than the drop on -RQQ. The reason is that the answer con-
tains more sentences and more semantic information. Fur-
ther, when we remove the relation type of RQA, the per-
formance drops more than that on -RAA. It suggests that
the dependency between sentences in the question and the
answer is more critical than that between the answer sen-
tences for QA evaluation.

Conclusion
In this paper, we propose a hierarchical reasoning graph neu-
ral network (HRGNN) for the automatic scoring of answer
transcriptions (ASAT) in the video job interview. The ASAT
task is to score the competency of candidates based on sev-
eral textual question-answer pairs. Unlike other matching
based methods or frameworks, HRGNN can utilize the rela-
tional dependency of sentences in the questions and answers,
and aggregate them in the semantic level with reasoning
flow between different graph layers. Particularly, the pro-
posed relational graph convolutional network (RGCN) mod-
ule constructs internal temporal dependency and question-
answer interaction dependency to represent the relations be-
tween sentences in the question and the answer. And in
the graph-based reasoning part, we propose a graph atten-
tion network to further aggregate semantic interactions be-
tween the question and the answer. Finally, we apply a GRU-
based classifier to discriminate the candidate is competent
or not. Empirical results with 10 random seeds show that
our model achieves state-of-the-art on a Chinese real-world
dataset (CHNAT).
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