
Vol.:(0123456789)1 3

International Journal of Machine Learning and Cybernetics (2022) 13:3785–3805
https://doi.org/10.1007/s13042-022-01625-4

ORIGINAL ARTICLE

Adaptive hierarchical hyper‑gradient descent

Renlong Jie1 · Junbin Gao1  · Andrey Vasnev1 · Minh‑Ngoc Tran1

Received: 26 October 2021 / Accepted: 22 July 2022 / Published online: 13 August 2022
© The Author(s) 2022, corrected publication 2022

Abstract
Adaptive learning rate strategies can lead to faster convergence and better performance for deep learning models. There are
some widely known human-designed adaptive optimizers such as Adam and RMSProp, gradient based adaptive methods
such as hyper-descent and practical loss-based stepsize adaptation (L4), and meta learning approaches including learning to
learn. However, the existing studies did not take into account the hierarchical structures of deep neural networks in design-
ing the adaptation strategies. Meanwhile, the issue of balancing adaptiveness and convergence is still an open question to be
answered. In this study, we investigate novel adaptive learning rate strategies at different levels based on the hyper-gradient
descent framework and propose a method that adaptively learns the optimizer parameters by combining adaptive informa-
tion at different levels. In addition, we show the relationship between regularizing over-parameterized learning rates and
building combinations of adaptive learning rates at different levels. Moreover, two heuristics are introduced to guarantee the
convergence of the proposed optimizers. The experiments on several network architectures, including feed-forward networks,
LeNet-5 and ResNet-18/34, show that the proposed multi-level adaptive approach can significantly outperform many baseline
adaptive methods in a variety of circumstances.

Keywords  Deep learning · Hypergradient descent · Learning rate adaptation · Hierarchical learning rate system · Adabound

1  Introduction

Deep learning has become the most powerful technique
in modern artificial intelligence systems, changing many
aspects of our real life and improving the efficiency of a
variety of industrial fields [20]. The successful training of
deep neural networks requires carefully designed optimi-
zation algorithms. Not only because these algorithms can
determine the model performance after training, but also
they can determine the efficiency and convergence speed of
training. With the wide-range application of large models

with complex structures in recent years, training models
can be expensive and time-consuming in practice, while the
selection of optimizers could be of great importance [15,
21, 55].

The basic optimization algorithm for training deep neural
networks is gradient descent method (GD), including sto-
chastic gradient descent (SGD), mini-batch gradient descent
and batch gradient descent [3]. Model parameters are
updated according to the first-order gradients of the objec-
tive function with respect to the parameters being optimized,
while back-propagation is implemented for calculating the
gradients [24, 29, 46]. Traditionally, people consider learn-
ing rate as a global hyper-parameter to be tuned. However,
with less or no adaptiveness, the training is difficult to con-
verge and sensitive to the selection of learning rate. Train-
ing models with basic SGD algorithm usually requires a
relatively long training time as well as carefully designed
learning rate schedules [10, 18]. Rule-based adaptive opti-
mizers such as Adagrad, RMSProp and Adam achieve faster
convergence speed in many scenarios, but their adaptation
power is limited by the corresponding pre-designed updating
rules [12, 26, 53].

 *	 Junbin Gao
	 junbin.gao@sydney.edu.au

	 Renlong Jie
	 renlong.jie@sydney.edu.au

	 Andrey Vasnev
	 andrey.vasnev@sydney.edu.au

	 Minh‑Ngoc Tran
	 minh-ngoc.tran@sydney.edu.au

1	 Discipline of Business Analytics, The University of Sydney
Business School, The University of Sydney, Camperdown,
NSW 2006, Australia

http://orcid.org/0000-0001-9803-0256
http://crossmark.crossref.org/dialog/?doi=10.1007/s13042-022-01625-4&domain=pdf

3786	 International Journal of Machine Learning and Cybernetics (2022) 13:3785–3805

1 3

Thankfully, auto-differentiation provides a technique for
updating hyper-parameters with gradient-descent methods [7,
13]. This makes it possible for achieving learning rate adapta-
tion beyond manually designed methods. One example is hyper-
gradient descent [6], which introduced the global learning rate
adaptation framework for gradient-based optimizers such as
SGD and Adam. Their method is shown to be successful in
improving the convergence speed for multiple optimizers, also
it demonstrates that the way of using hyper-gradient gradient for
learning rate adaptation is a promising technique for improving
existing optimizers. However, their study did not further inves-
tigate the detailed structures of parameters and corresponding
learning rates adaptation techniques in complex neural network
architectures. This actually limits the potential of auto-differ-
entiation for learning rate adaptation. As is known, deep neural
networks are composed of different levels of components such
as blocks, layers and parameters, and it is reasonable to assume
each component of the model is in favor of a specific learning
rate in training. Thus, considering the detailed architectures of
networks and exploring hyper-gradient descent for structured
learning rate adaptation is a topic of interest and importance.

In this study, we propose a novel family of adaptive
optimization algorithms based on the framework of hyper-
gradient descent. By considering the regular hierarchical
structures of deep neural networks, we introduce hierarchical
learning rate structures correspondingly, which enables flex-
ible and controllable learning rate adaptation. Meanwhile, to
make the most of the gradient information from the training
process, we apply both hyper-gradient descent method in
multi-levels and the gradient-based updating of the combi-
nation weights of different levels. The main contribution of
our study can be summarized as the following four points:

•	 We introduce hierarchical learning rate structures for
neural networks and apply hyper-gradient descent to
obtain adaptive learning rates at different levels.

•	 We introduce a set of regularization techniques for learn-
ing rates to address the balance of global and local adap-
tations and show the relationship with weighted combi-
nations.

•	 We propose an algorithm implementing trainable
weighted combination of adaptive learning rates at mul-
tiple levels for model parameter updating.

•	 Two techniques including weighted approximation and
clipping are introduced to guarantee the convergence of
the proposed optimization methods in training.

•	 The experiments demonstrate that the proposed adapta-
tion method can improve the performance of correspond-
ing baseline optimizers in a variety of tasks with statisti-
cal significance.

The paper is organised as follows: Sect. 2 is a literature
review of the related adaptive optimization algorithms in

deep learning. Section 3 introduces the main idea of hyper-
gradient descent algorithm. Section 4 is a detailed explana-
tion of the proposed multi-level adaptation methods as well
as a discussion on their convergence properties. Section 5
is the main experimental part that compares the proposed
algorithm with a set of baselines on several benchmark
datasets. In Sect. 6 we provide a further discussion on the
hyper-parameter settings, the learning behavior of combina-
tion weights, time and space complexity, etc. Section 7 is the
conclusion of the whole paper.

2 � Literature review

Naïve gradient descent methods apply fixed learning rates
without any adaptation mechanism. However, considering
the change of available information during the learning
process, SGD with fixed learning rates can result in slow
convergence speed and requires a relatively large amount
of computing resources in hyper-parameter searching. One
solution is to introduce a learning rate adaptation rule, where
“adaptation” means that the global or local learning rates
or effective step sizes can be refined continuously during
the training process in response to the change of inputs or
other parameters. This idea can be traced back to the work
on gain adaptation for connectionist learning methods [51]
and related extensions for non-linear cases [48, 59]. In recent
years, optimizers with adaptive updating rules were devel-
oped in the context of deep learning, while the hyper-param-
eter learning rates are still fixed in training. The proposed
methods include AdaGrad [12], Adadelta [61], RMSProp
[53], and Adam [26]. In these methods, pre-designed updat-
ing rules provide adaptive step-sizes for parameter updating.
The most widely used one, Adam, is shown to be quite effec-
tive in speeding up the training, which computes individual
adaptive learning rates for different parameters from esti-
mates of first and second moments of the gradients.

Convergence is an essential property for optimization
algorithms. There are many optimizers aiming to address the
convergence issue in Adam. For example, it is noticed that
Adam does not converge to the optimal solution for some
stochastic convex optimization problems, while AMSGrad
is introduced as a substitute with a convergence garantee
[43]. Adabound further applies dynamic bound for gradi-
ent methods and build a gradual transition between adaptive
approach and SGD [36]. RAdam was proposed to rectify
the variance of the adaptive learning rate [34]. Adabelief
optimizer [64] can achieve fast convergence, good gen-
eralization and training stability by adapting the stepsize
according to the “belief” in the current gradient direction.
Other techniques, such as Lookahead, can also achieve vari-
ance reduction and stability improvement with negligible
extra computational cost [62]. Some analysis of adaptive

3787International Journal of Machine Learning and Cybernetics (2022) 13:3785–3805	

1 3

optimizers in nonconvex stochastic optimization problems
are provided in [60], which discovered that increasing mini-
batch sizes could circumvent the nonconvergence issues. In
fact, through recent years, more studies with solid theoreti-
cal analysis are providing novel techniques and analyzing
frameworks for the convergence of adaptive optimizers [1,
9, 33, 54]. Moreover, to address the issue of large memory
overheads for adaptive methods, memory-efficient adaptive
optimization is developed, which could retains the benefits
of standard per-parameter adaptivity [5].

Even though the adaptive optimizers with designed updat-
ing rules can converge faster than SGD in a wide range of
tasks, the gradient information obtained during the training
is not applied, while more hyper-parameters are introduced.
Another idea is to use objective function information and
update the learning rates as trainable parameters. These
methods were introduced as automatic differentiation, where
the hyper-parameters can be optimized with backpropaga-
tion [7, 38]. As gradient-based hyper-parameter optimization
methods, they can be implemented as an online approach
[16]. With the idea of auto-differentiation, learning rates can
be updated in real-time with the corresponding derivatives
of the empirical risk [2], which can be generated to all types
of optimizers for deep neural networks [6]. Another step size
adaptation approach called “L4”, is based on the linearized
expansion of the objective functions, which rescales the
gradient to make fixed predicted progress on the loss [45].
Meanwhile, layer-wise adaptation methods are also shown to
be effective in accelerating the speed of large-batch training,
which has been successfully applied in training large models
or large datasets [57, 58].

Another set of approaches train an RNN (recurrent neural
network) agent to generate the optimal learning rates in the
next step given the historical training information, which is
known as “learning to learn” [4]. It empirically outperforms
hand-designed optimizers in a variety of learning tasks, but
another study shows that it may not be effective for long
horizon [37]. The generalization ability can be improved by
using meta training samples and hierachical LSTMs (Long
Short-Term Memory) [56]. Still there are studies focusing
on incorporating domain knowledge with LSTM-based opti-
mizers to improve the performance in terms of efficacy and
efficiency [17].

Beyond the adaptive learning rate, learning rate sched-
ules can also improve the convergence of optimizers, includ-
ing time-based decay, step decay, exponential decay [32].
The most fundamental and widely applied one is a piece-
wise step-decay learning rate schedule, which could vastly
improve the convergence of SGD and even adaptive opti-
mizers [34, 36]. It can be further improved by introducing
a statistical test to determine when to apply step-decay [28,
63]. Also, there are works on warm-restart [35, 41], which

could improve the performance of SGD anytime when train-
ing deep neural networks.

The limitations of existing optimization algorithms are
mainly in the following two aspects: (a) The existing gradi-
ent or model-based learning rate adaptation methods includ-
ing hyper-gradient descent, L4 and learning to learn only
focus on global adaptation. Meanwhile, some studies [57,
58] show that updating rules with layer-wise adaptation is a
promising technique for improving the convergence speed.
Therefore, it is necessary to try to further extended adap-
tive optimizers to multi-level cases. (b) In the framework of
hyper-gradient descent, no constraints or prior knowledge
for learning rates are introduced, which limits its potential
in balancing the local and global adaptiveness.

To tackle these limitations, our proposed algorithm is
based on hyper-gradient descent but further introduce locally
shared adaptive learning rates such as layer-wise, unit-wise
and parameter-wise learning rates adaptation. Meanwhile,
we introduce a set of regularization techniques for learning
rates in order to balance the global and local adaptations.

3 � Hyper‑gradient descent

This section is dedicated to reviewing the auto-differentia-
tion and hyper-gradient descent with detailed explanation
and math formulas. The study of hyper-gradient descent in
[6] provides a re-discovery the work of [2], in which the gra-
dient with respect to the learning rate is calculated by using
the updating rule of the model parameters in the last itera-
tion. The gradient descent updating rule for model parameter
� can is given by Eq. (1):

Note that �t−1 = �t−2 − �∇f (�t−2) , the gradient of objec-
tive function with respect to the learning rate can then by
calculated:

A whole learning rate updating rule can be written as:

In a more general prospective, assume that we have an
updating rule for model parameters �t = u(�t−1, �t) . We need
to update the value of �t towards the optimum value �∗

t
 that

minimizes the expected value of the objective in the next
iteration. The corresponding gradient can be written as:

(1)�t = �t−1 − �∇f (�t−1).

�f (�t−1)

��
= ∇f (�t−1) ⋅

�(�t−2 − �∇f (�t−2))

��
= ∇f (�t−1) ⋅ (−∇f (�t−2)).

�t = �t−1 − �
�f (�t−1)

��
= �t−1 + �∇f (�t−1) ⋅ ∇f (�t−2).

��[f (�t)]

��t
=

��[f ◦ u(�t−1, �t)]

��t
= �[∇�f (�t)

T∇�u(�t−1, �t)],

3788	 International Journal of Machine Learning and Cybernetics (2022) 13:3785–3805

1 3

where u(�t−1, �t) denotes the updating rule of a gradient
descent method. Then the additive updating rule of learning
rate �t can be written as:

where ∇̃𝜃f (𝜃t) is the noisy estimator of ∇�f (�t) . On the other
hand, the multiplicative rule is given by:

These two types of updating rules can be implemented in
any optimizers including SGD and Adam, denoted by cor-
responding �t = u(�t−1, �t).

4 � Multi‑level adaptation methods

Deep neural networks are composed of components in dif-
ferent levels, including blocks, layers, cell, neurons and
parameters. It is natural to consider different parts in the
hierarchical architectures are in favor of different learning
rate in training. Based on hyper-gradient descent discussed
in Sect. 3, and further motivated by the success of layer-wise
adaptation methods in [57, 58], we further consider the hier-
archical structures of neural networks and introduce learning
rate adaptation in different levels.

4.1 � Layer‑wise, unit‑wise and parameter‑wise
adaptation

In the paper of hyper-descent [6], the learning rate is set
to be a scalar. However, to make the most of learning rate
adaptation for deep neural networks, we introduce updating
rules in different levels of the network architectures, includ-
ing layer-wise or even parameter-wise updating rules, where
the learning rate �t in each time step is considered to be a
vector (layer-wise) or even a list of matrices (parameter-
wise). For the sake of simplicity, we collect all the learning
rates in a vector: �t = (�1,… , �N)

T . Correspondingly, the
objective f (�) is a function of � = (�1, �2,… , �N)

T , collect-
ing all the model parameters. In this case, the derivative of
the objective function f with respect to each learning rate
can be written as:

where N is the total number of all the model parameters.
Eq. (2) can be generalized to group-wise updating, where

𝛼t = 𝛼t−1 − 𝛽∇̃𝜃f (𝜃t−1)
T∇𝛼u(𝛩t−2, 𝛼t−1),

𝛼t = 𝛼t−1

(
1 − 𝛽

� ∇̃𝜃f (𝜃t−1)
T∇𝛼u(𝛩t−2, 𝛼t−1)

‖‖∇̃𝜃f (𝜃t−1)
‖‖‖‖∇𝛼u(𝛩t−2, 𝛼t−1)

‖‖

)
.

(2)

�f (�t−1)

��i,t−1
=

�f (�1,t−1,… , �i,t−1,… , �n,t−1)

��i,t−1

=

N∑

j=1

�f (�1,t−1,… , �i,t−1,… , �n,t−1)

��j,t−1

��j,t−1

��i,t−1
,

we associate a learning rate with a special group of param-
eters, and each parameter group is updated according to its
only learning rate. Assume �t = u(� t−1, �) is the updating
rule, where � t = {�s}

t
s=0

 and � is the learning rate, then
the basic gradient descent method for each group i gives
�i,t = u(� t−1, �i,t−1) = �i,t−1 − �i,t−1∇�i

f (�t−1) . Hence for
gradient descent,

Here �i,t−1 is a scalar with index i at time step t − 1 , cor-
responding to the learning rate of the ith group, while the
shape of ∇

�i
f (�) is the same as the shape of �i.

We particularly consider three special cases: (1) In layer-
wise adaptation, �i is the weight matrix of ith layer, and �i
is the particular learning rate for this layer. (2) In param-
eter-wise adaptation, �i corresponds to a certain param-
eter involved in the model, which can be an element of the
weight matrix in a certain layer. (3) We can also introduce
unit-wise adaptation, where �i is the weight vector con-
nected to a certain neuron, corresponding to a column or
a row of the weight matrix depending on whether it is the
input or the output weight vector to the neuron concerned.
[6] mentioned the case where the learning rate can be con-
sidered as a vector, which corresponds to layer-wise adapta-
tion in this paper.

4.2 � Regularization on learning rate

For the model involving a large number of learning rates for
different groups of parameters, the updating for each learn-
ing rate only depends on a small number of examples. There-
fore, when the batch size is also not large, the updating will
involve a lot of noise due to applying small random samples,
while over-parameterization is an issue to be concerned.

To address this issue, our original idea is to apply regu-
larization on learning rates, where we introduce prior knowl-
edge and assume that the low level adaptive learning rates
(e.g. parameter-wise learning rates) are distributed around
the high-level ones (e.g. global learning rates). Different
regularization terms can be implemented to control the flex-
ibility of learning rate adaptation and achieve the effect of
variance reduction. First, for layer-wise adaptation, we can
add the following regularization term to the cost function:

where l is the indices for each layer, �layer is the layer-wise
regularization coefficient, �l and �g are the layer-wise and
global-wise adaptive learning rates. A large �layer can push
the learning rate of each layer towards the average learning
rate across all the layers. In the extreme case, this will lead

�f (�t−1)

��i,t−1
= ∇

�i
f (�t−1)

T∇�i,t−1
u(� t−1, �t) = −∇

�i
f (�t−1)

T∇
�i
f (�t−2).

Llr_reg_layer = �layer

∑

l

(�l − �g)
2,

3789International Journal of Machine Learning and Cybernetics (2022) 13:3785–3805	

1 3

to very similar learning rates for all layers, and the algorithm
will be reduced to that in [6].

In addition, we can also consider the case where three
levels of learning rate adaptations are involved, including
global-wise, layer-wise and parameter-wise adaptation. If
we introduce two more regularization terms to control the
variation of parameter-wise learning rate with respect to
layer-wise learning rate and global learning rates, the regu-
larization loss can be written as:

where p represents the index of each parameter within each
layer. The second and third terms are the regularization
terms pushing each parameter-wise learning rate towards
the layer-wise learning rate, and the term of pushing the
parameter-wise learning rate towards the global learning
rates, while �para_layer and �para_layer are the corresponding
regularization coefficients.

With these regularisation terms, the flexibility and vari-
ances of learning rates at different levels can be neatly con-
trolled, while it can reduce to the basement case where a
single learning rate for the whole model is used. In addition,
there could still be one more regularization for improving
the stability across different time steps, which can be used
in the original hyper-descent algorithm where the learning
rate in each time step is a scalar:

where �ts is the regularization coefficient to control the dif-
ference of learning rates between current step and the last
step. With this term, the model with learning rate adaptation
will be close to the model with fixed learning rate as large
regularization coefficients are used. Thus, we can write the
objective function of the full model as:

where Lmodel and Lmodel_reg are the loss and regularization
cost of basement model. Llr_reg can be any among Llr_reg_layer ,
Llr_reg_unit and Llr_reg_para depending on the specific require-
ment of the learning task, while the corresponding regulari-
zation coefficients can be optimized with random search for
several extra dimensions.

4.3 � Updating rules for learning rates

Considering these regularisation terms and take layer-wise
adaptation for example, the gradient of the cost function

(3)

Llr_reg_para = �layer

∑

l

(�l − �g)
2 + �para

∑

l

∑

p

(�pl − �g)
2

+ �para_layer

∑

l

∑

p

(�pl − �l)
2

Llr_reg_ts = �ts(�g,t − �g,t−1)
2,

Lfull = Lmodel + Lmodel_reg + Llr_reg + Llr_reg_ts,

with respect to a specific learning rate �l in layer l can be
written as:

with the corresponding updating rule by naïve gradient
descent:

The updating rule for other types of adaptation can be
derived accordingly. Notice that the time step index of layer-
wise regularization term is t rather than t − 1 , which ensures
that we push the layer-wise learning rates towards the cor-
responding global learning rates of the current step. If we
assume

then Eq. (4) can be written as:

In Eq. (5), both sides include the term of �l,t , while the
natural way to handle this is to solve for the close form of
�t , which gives:

Equation (6) gives a close form solution but only applica-
ble in the two-levels case. When there are more levels, com-
ponents of learning rates at different levels can be interde-
pendent. Meanwhile, there is an extra hyper-parameter �layer
to be tuned. To construct a workable updating scheme for
Eq. (6), we replace �l,t and �g,t with their relevant approxi-
mations. We take the strategy of using their updated version
without considering regularization, i.e.,

where hg,t−1 = −∇̃𝜃f (𝜃t−1)∇𝛼g,t−1
u(𝛩t−2, 𝛼g,t−1) is the global

h for all parameters. We define 𝛼̂l,t and 𝛼̂g,t as the “virtual”
layer-wise and global-wise learning rates, where “virtual”
means they are calculated based on the equation without
regularization, and we do not use them directly for model
parameter updating. Instead, we only use them as intermedi-
ate variables for calculating the real layer-wise learning rate
for model training.

𝜕Lfull(𝜃, 𝛼)

𝜕𝛼l,t
=

𝜕Lmodel(𝜃, 𝛼)

𝜕𝛼l,t
+

𝜕Llr_reg(𝜃, 𝛼)

𝜕𝛼l,t

= ∇̃𝜃l
f (𝜃t−1)∇𝛼l,t−1

u(𝛩t−2, 𝛼t−1) + 2𝜆layer(𝛼l,t − 𝛼g,t),

(4)�l,t = �l,t−1 − �
�Lfull

��l,t−1
.

hl,t−1 = −∇̃𝜃l
f (𝜃t−1)∇𝛼l,t−1

u(𝛩t−2, 𝛼l,t−1),

(5)�l,t = �l,t−1 − �(−hl,t−1 + 2�layer(�l,t − �g,t)).

(6)�l,t =
1

1 + 2��layer
[�l,t−1 + �(hl,t−1 + 2�layer�g,t)].

(7)𝛼̂l,t = 𝛼l,t−1 + 𝛽hl,t−1, 𝛼̂g,t = 𝛼g,t−1 + 𝛽hg,t−1

(8)
𝛼∗
l,t
= 𝛼l,t−1 + 𝛽hl,t−1 − 2𝛽𝜆layer(𝛼̂l,t − 𝛼̂g,t)

= (1 − 2𝛽𝜆layer)𝛼̂l,t + 2𝛽𝜆layer𝛼̂g,t.

3790	 International Journal of Machine Learning and Cybernetics (2022) 13:3785–3805

1 3

Notice that in Eq. (8), the first two terms is actually a
weighted average of the layer-wise learning rate 𝛼̂l,t and
global learning rate ̂̄𝛼l,t at the current time step. Since we
hope to push the layer-wise learning rates towards the
global one, the parameters should meet the constraint:
0 < 2𝛽𝜆layer < 1 , and thus they can be optimized using
hyper-parameter searching within a bounded interval. More-
over, gradient-based optimization on these hyper-parameters
can also be applied. Hence both the layer-wise learning rates
and the combination proportion of the local and global infor-
mation can be learned with back propagation. This can be
done in online or mini-batch settings. The advantage is that
the learning process may be in favor of taking more account
of global information in some periods, and taking more local
information in some other periods to achieve the best learn-
ing performance, which is not taken into consideration by
existing learning adaptation approaches.

Now consider the difference between Eqs. (5) and (8):

Based on the setting of multi-level adaptation, on
the right-hand side of Eq. (9), global learning rate
is updated without regularization 𝛼̂g,t = 𝛼g,t . For the
layer-wise learning rates, the difference is given by
𝛼̂l,t − 𝛼l,t = 2𝛽𝜆layer(𝛼l,t − 𝛼g,t) , which corresponds to the gra-
dient with respect to the regularization term. Thus, Eq. (9)
can be rewritten as:

which is the error of the virtual approximation introduced in
Eq. (7). If 4𝛽2𝜆2

layer
<< 1 or �g,t

�l,t
→ 1 , this approximation

becomes more accurate.
Another way for handling Eq. (5) is to use the learning

rates for the last step in the regularization term.

S ince we have 𝛼l,t = 𝛼̂l,t − 2𝛽𝜆layer(𝛼l,t − 𝛼g,t) and
𝛼̂l,t = 𝛼l,t−1 + 𝛽hl,t−1 , using the learning rates in the last step
for regularization will introduce a higher variation from term
�hl,t−1 , with respect to the true learning rates in the current
step. Thus, we consider the proposed virtual approximation
works better than last-step approximation.

Similar to the two-level’s case, for the three-level regu-
larization shown in Eq. (3), we have:

(9)𝛼∗
l,t
− 𝛼l,t = −2𝛽𝜆layer((𝛼̂l,t − 𝛼̂g,t) − (𝛼l,t − 𝛼g,t)).

�∗
l,t
− �l,t = −2��layer(2��layer(�l,t − �g,t)) = −4�2�2

layer

(
1 −

�g,t

�l,t

)
�l,t

�l,t ≈ �l,t−1 − �(−hl,t−1 + 2�layer(�l,t−1 − �g,t−1)).

𝜕Lfull(𝜃, 𝛼)

𝜕𝛼p,t
=

𝜕Lmodel(𝜃, 𝛼)

𝜕𝛼p,t
+

𝜕Llr_reg(𝛼)

𝜕𝛼p,t

= −∇̃𝜃l
f (𝜃t−1)∇𝜃l

u(𝛩t−2, 𝛼t−1)

+ 2𝜆2(𝛼p,t − 𝛼g,t) + 2𝜆3(𝛼p,t − 𝛼l,t)

For the sake of simple derivation, we denote �2 = �layer ,
and �3 = �para_layer for the regularization parameters in
Eq. (3). The updating rule can be written as:

where we assume that 𝛼̂p,t , 𝛼̂l,t , 𝛼̂g,t are independent variables.
Define

we still have � = �1�p + �2�l + �3�g with �1 + �2 + �3 = 1.
Therefore, in the case of three level learning rates adap-

tation, the regularization effect can still be considered as
applying the weighted combination of different levels of
learning rates. This conclusion is invariant of the signs in
the absolute operators in Eq. (7). In general, we can organize
all the learning rates in a tree structure. For example, in three
level case above, �g will be the root node, while {�l} are the
children node at level 1 of the tree and {�lp} are the children
node of �l as leave nodes at level three of the tree. In a gen-
eral case, we assume there are L levels in the tree. Denote the
set of all the paths from the root node to each of leave nodes
as P and a path is denoted by p = {�1, �2,… , �L} where �1
is the root node and �L is the leave node on the path. On this
path, denote ancestors(i) all the acenstor nodes of �i along
the path, i.e., ancestors(i) = {�1,… , �i−1} . We will construct
a regularizer to push �i towards each of its parents. Then the
regularization can be written as

Under this pair-wise L2 regularization, the updating rule
for any leave node learning rate �L can be given by the fol-
lowing theorem

Theorem 1  Under virtual approximation, effect of adding
pair-wise L2 regularization on different levels of adaptive
learning rates Lreg =

∑n

i

∑n

j<i
𝜆ij‖𝛼i − 𝛼j‖22 is equal to per-

forming a weighted linear combination of virtual learning
rates in different levels �∗ =

∑n

i
�i�i with

∑n

i
�i = 1 , where

each component �i is calculated by assuming there is no
regularization.

Remarks: Theorem 1 actually suggests that the similar
updating rule can be obtained for the learning rate at the
any level on the path. All these have been demonstrated in
Algorithm 1 for the three level case.

Proof  Consider the learning regularizer

𝛼p,t = 𝛼p,t−1 − 𝛽(hp + 2𝜆2(𝛼p,t − 𝛼g,t) + 2𝜆3(𝛼p,t − 𝛼l,t))

≈ 𝛼̂p,t(1 − 2𝛽𝜆2 − 2𝛽𝜆3) + 2𝛼̂l,t𝛽𝜆3 + 2𝛼̂g,t𝛽𝜆2

�1 = 1 − 2��2 − 2��3, �2 = 2��3, �3 = 2��2,

Llr_reg =
∑

p∈P

∑

�i∈p

∑

�j∈acenstors(i)

�ij(�i − �j)
2.

3791International Journal of Machine Learning and Cybernetics (2022) 13:3785–3805	

1 3

To apply hyper-gradient descent method to update the
learning rate �L at level L, we need to work the derivative of
Llr_reg with respect to �L , the terms in (10) involving �L are
only (�i − �j)

2 where �j is an ancestor on the path from the
root to the leave node �L . Hence

As there are exactly L − 1 ancestors on the path, we can
simply use the index j = 1, 2,… , L − 1 . The corresponding
updating function for �n,t is:

where

This form satisfies 𝛼∗
L
=
∑L

j=1
𝛾j𝛼̂j with

∑L

j=1
�j = 1 . This

completes the proof. 	� ◻

Therefore, by applying weighted linear combination
of virtual learning rates in different levels as the effective
learning rate for parameter updating, the effect of adding
regularization on adaptive learning rates in Sect. 4.2 can
be approximately achieved. The approximation error can be
controlled by fixed parameters. This demonstrates that we
can use a more convenient combination form to update the
effective learning rates on leaves of the hierarchical model
structures. Moreover, the combination form can be extended
to the case of many levels.

4.4 � Prospective of learning rate combination

Motivated by the analytical derivation and corresponding
discussion in Sect. 4.3, we can consider the combination
of adaptive learning rates in different levels as a substitute
of regularization on the differences of learning rates. As a

(10)Llr_reg(�) =
∑

p∈P

∑

�i∈p

∑

�j∈parents(i)

�ij(�i − �j)
2.

𝜕Lfull(�, 𝛼)

𝜕𝛼L,t
=

𝜕Lmodel(�, 𝛼)

𝜕𝛼L,t
+

𝜕Llr_reg(𝛼)

𝜕𝛼L,t

= −∇̃
�L
f (�t−1)

T∇
�L
u(𝛩t−2, 𝛼t−1)

+
∑

𝛼j∈acenstors(L)

2𝜆Lj(𝛼L,t − 𝛼j,t).

𝛼L,t = 𝛼n,t−1 − 𝛽

(
hL +

L−1∑

j=1

2𝜆Lj(𝛼L,t − 𝛼j,t)

)

≈ 𝛼̂L,t

(
1 − 2𝛽

L−1∑

j=1

𝜆Lj𝛼n,t) +

L−1∑

j=1

(2𝛽𝜆Lj𝛼̂j,t)

)
=

L∑

j=1

𝛾j𝛼̂j,t.

�L = 1 − 2�

L−1∑

j=1

�Lj, �j = 2��Lj, for j = 1, 2,… , L − 1.

simple case, the combination of global-wise and layer-wise
adaptive learning rates can be written as 𝛼t = 𝛾1𝛼̂l,t + 𝛾2𝛼̂g,t ,
where �1 + �2 = 1 and �1 ≥ 0 , �2 ≥ 0 . In a general form,
assume that we have n levels, which could include global-
level, layer-level, unit-level and parameter-level, etc, we
have:

In a more general form, we can implement non-linear
models such as neural networks to model the final adaptive
learning rates with respect of the learning rates in different
levels. Then the function is given by

where � is the vector of parameters of the non-linear model.
In this study, we treat the combination weights {�1,… , �n}
as trainable parameters as demonstrated in Eq. (11). Figure 1
gives an illustration of the linear combination of three-level
hierarchical learning rates.

In fact, we only need these different levels of learn-
ing rate have a hierarchical relationship, which means the
selection of component levels is not fixed. For example, in
feed-forward neural networks, we can use parameter level,
unit-level, layer level and global level. For recurrent neural
networks, the corresponding layer level can either be the
“layer of gate” within the cell structure such as LSTM and
GRU, or the whole cell in a particular RNN layer. Especially,
by “layer of gate” we mean the parameters in each gate of
a cell structure share a same learning rate. Meanwhile, for
convolutional neural network, we can further introduce
“filter level” to replace layer-level if there is no clear layer
structure, where the parameters in each filter will share a
same learning rate.

As the real learning rates implemented in model param-
eter updating is a weighted combination, the corresponding
Hessian matrices cannot be directly used for learning rate
updating. If we take the gradients of the loss with respect to
the combined learning rates, and use this to update the learn-
ing rate for each parameter, the procedure will be reduced to
parameter-wise learning rate updating. To address this issue,
we first break down the gradient by the combined learning
rate to three levels, use each of them to update the learning
rate at each level, and then calculate the combination by the
updated learning rates. Especially, hp,t , hl,t and h(g, t) are
calculated by the gradients of model losses without regu-
larization, as is shown in Eq. (12).

(11)𝛼t =

n∑

i=1

𝛾i𝛼̂i,t.

𝛼t = g(𝛼̂1,t, 𝛼̂2,t ⋯ 𝛼̂n,t;𝜃)

3792	 International Journal of Machine Learning and Cybernetics (2022) 13:3785–3805

1 3

where ht =
∑

l hl,t =
∑

p hp,t and hl,t =
∑

p∈lth layer hp and
f (�, �) corresponds to the model loss Lmodel(�, �) in
Sect. 4.2.

Algorithm 1 is the full updating rules for the newly pro-
posed optimizer with three levels, which can be denoted as
Combined Adaptive Multi-level Hyper-gradient Descent
(CAM-HD).

(12)

hp,t =
�f (�, �)

��p,t
= −∇

�
f (�t−1, �)|p ⋅ ∇�u(� t−2, �)|p,

hl,t =
�f (�, �)

��l,t
= −tr(∇

�
f (�t−1, �)|Tl ∇�u(� t−2, �)|l),

hg,t =
�f (�, �)

��t
= −

n∑

l=1

tr(∇
�
f (�t−1, �)|Tl ∇�u(� t−2, �)l),

Algorithm 1: Updating rule of three-level CAM-HD
input: α0, β, δ, T
initialization: θ0, γ1,0, γ2,0, γ3,0, αp,0, αl,0,
α0, α∗

l,0 = γ1,0αp,0 + γ2,0αl,0 + γ3,0α0

for t ∈ 1, 2, ..., T do
gt = ∇θf(θ, α)
hp,t =

∂f(θ,α)
∂αp,t

= −∇θf(θt−1, α)|p · ∇αu(Θt−2, α)|p
hl,t =

∂f(θ,α)
∂αl,t

= −tr(∇θf(θt−1, α)|Tl ∇αu(Θt−2, α)|l)

hg,t =
∂f(θ,α)

∂αt
= −

∑n
l=1 tr(∇θf(θt−1, α)|Tl ∇αu(Θt−2, α))|l)

αp,t = αp,t−1 − βp
∂f(θt−1)
∂α∗

p,t−1

∂α∗
p,t−1

∂αp,t−1
= αp,t−1 − βpγ1,t−1hp,t

αl,t = αl,t−1 − βl
∑

p
∂f(θt−1)
∂α∗

p,t−1

∂α∗
p,t−1

∂αl,t−1
= αl,t−1 − βlγ2,t−1

∑
p hp,t =

αl,t−1 − βlγ2,t−1hl,t

αt = αt−1 − βg
∑

l

∑
p

∂f(θ)
∂α∗

p,t−1

∂α∗
p,t−1

∂αt−1
= αt−1 − βgγ3,t−1hg,t

α∗
p,t = γ1,t−1αp,t + γ2,t−1αl,t + γ3,t−1αt

γ1,t = γ1,t−1 − δ ∂L
∂γ1,t−1

= γ1,t−1 − δ
∑

p
∂L

∂α∗
p,t−1

∂α∗
p,t−1

∂γ1,t−1
=

γ1,t−1 − δαp,t−1
∑

p
∂L

∂α∗
p,t−1

γ2,t = γ2,t−1 − δ ∂L
∂γ2,t−1

= γ2,t−1 − δ
∑

p
∂L

∂α∗
p,t−1

∂α∗
p,t−1

∂γ2,t−1
=

γ1,t−1 − δαl,t−1
∑

p
∂L

∂α∗
p,t−1

γ3,t = γ3,t−1 − δ ∂L
∂γ3,t−1

= γ3,t−1 − δ
∑

p
∂L

∂α∗
p,t−1

∂α∗
p,t−1

∂γ3,t−1
=

γ3,t−1 − δαt−1
∑

p
∂L

∂α∗
p,t−1

γ1 = γ1/(γ1 + γ2 + γ3), γ2 = γ1/(γ1 + γ2 + γ3), γ3 = γ1/(γ1 + γ2 + γ3)
mt = φt(g1, ...gt)
Vt = ψt(g1, ...gt)
θt = θt−1 − α∗

p,tmt/
√
Vt

end
return θT , γ1,T , γ2,T , γ3,T , αp,T , αl,T , αT

�t(g1,… gt) = gt a n d �t(g1,… gt) = 1  , w h i l e
f o r A d a m , �t(g1,… gt) = (1 − �1)Σ

t
i=1

� t−1
1

gi a n d
�t(g1,… gt) = (1 − �2)diag(Σ

t
i=1

� t−1
2

g2
i
) . Notice that in

each updating time step of Algorithm 1, we re-normalize
the combination weights �1 , �2 and �3 to make sure that
their summation is always 1 even after updating with sto-
chastic gradient-based methods. An alternative way of
doing this is to implemented softmax, which require an
extra set of intermediate variables cp , cl and cg following:
�p = softmax(cp) = expcp ∕(expcp + expcl + expcg) , etc. Then
the updating of � s will be convert to the updating of c’s
during training. In addition, the training of � ’s can also be
extended to multi-level cases, which means we can have
different combination weights in different layers. For the

where we introduce the general form of gradient descent
based optimizers [36, 44].

In Algorithm 1, we use the general form of gra-
dient descent based optimizers [36, 44]. For SGD,

updating rates �p , �l and �g of the learning rates at different
level, we set:

�p = np� = �, �l = nl�, �g = n�

3793International Journal of Machine Learning and Cybernetics (2022) 13:3785–3805	

1 3

Although Algorithm 1 involves many updating steps
with intermediate parameters, the time complexity does not
increase in large scale, which will be further discussed in
Sect. 6.4. In fact, the updating of intermediate variables in
the algorithm does not involve the dimension of batch size.
Meanwhile, only parameter-wise adaptation requires a pro-
portion of extra computational cost compared with stand-
ard back proportion, which can be avoided when layer-wise
or cell-wise learning rates are applied as the lowest level
adaptation.

4.5 � Convergence analysis

The proposed CMA-HD is not an independent optimiza-
tion method, which can be applied in any kinds of gradi-
ent-based updating rules. Its convergence properties highly
depends on the base optimizer that is applied. By refer-
ring the discussion on convergence in [6], if we introduce
�p,t = �(t)�∗

p,t
+ (1 − �(t))�∞ , where the function �(t) is

selected to satisfy t�(t) → 0 as t → ∞ , and �∞ is a selected
constant value. Then we demonstrate the convergence analy-
sis for the three level case in the following theorem, where
∇p is the the gradient of target function w.r.t. a model param-
eter with index p, ∇l is the average gradient of target func-
tion w.r.t. a parameters in a layer with index l, and ∇g is the
global average gradient of target function w.r.t. all model
parameters.

Global

Layer-wiseparameter
-wise

Fig. 1   The diagram of a three-level learning rate combination. Here
we consider three levels of adaptive learning rates, which are calcu-
lated by global-level, layer-level and parameter-level hyper-gradient
descent with different grouping strategies. The final effective learn-

ing rate is a weighted combination of the three level adaptive learning
rates, while the combination weights are also trainable during back-
propagation

where � is a shared parameter. This setting will make the
updating steps of learning rates in different levels be in
the same scale considering the difference in the number of
parameters involved in hp,t , hl,t , hg,t . If we take average based
on the number of parameters in Eq. (12) at first, this adjust-
ment is not required.

CAM-HD is a higher-level adaptation approach, which
can be applied with any gradient-based updating rules and
advanced adaptive optimizers. For example, if we apply
CAM-HD for Adam optimizer, we have Adam-CAM-HD.
Similarly, when we apply CAM-HD for SGDN, we have
SGDN-CAM-HD. Further, it can be merged with Adabound
by adding an element-wise clipping procedure [36]:

where �∗ is the final step-size by original CAM-HD, �l(t) and
�u(t) are the lower and upper bounds in adabound. �t can be
applied in replacing �∗

p,t
∕
√
Vt in our algorithm for merging

two methods to so called “Adabound-CAM-HD”. In the
experiment part, we will follow the original paper of Ada-
bound and related discussions to set �l(t) = 0.1 −

0.1

(1−�2)t+1

and �u(t) = 0.1 +
0.1

(1−�2)t
 for both Adabound and Adabound-

CAM-HD [36, 47]. As the effective parameter-wise updating
rates and corresponding gradients may change after clipping,
the updating rules for other variable should be adjusted
accordingly.

(13)𝜂̂t = Clip
�
𝛼∗∕

√
Vt, 𝜂l(t), 𝜂u(t)

�
, 𝜂t = 𝜂̂t∕

√
t

3794	 International Journal of Machine Learning and Cybernetics (2022) 13:3785–3805

1 3

Theorem 2  (Convergence under mild assumptions about
f) Suppose that f is convex and L-Lipschitz smooth with
‖∇pf (𝜃)‖ < Mp , ‖∇lf (𝜃)‖ < Ml , ‖∇gf (𝜃)‖ < Mg for some
fixed Mp , Ml , Mg and all � . Then �t → �∗ if 𝛼∞ < 1∕L
where L is the Lipschitz constant for all the gradients and
t ⋅ �(t) → 0 as t → ∞ , where the �t are generated according
to (non-stochastic) gradient descent.

In the above theorem, ∇p is the gradient of target func-
tion w.r.t. a model parameter with index p, ∇l is the average
gradient of target function w.r.t. parameters in a layer with
index l, and ∇g is the global average gradient of target func-
tion w.r.t. all model parameters. The proof of this theorem
is given as follows.

Proof  We take three-level’s case discussed in Sect. 4 for
example, which includes global level, layer-level and
parameter-level. Suppose that the target function f is con-
vex, L-Lipschitz smooth in all levels, which gives for all �1
and �2:

and its gradient with respect to parameter-wise, layer-
wise, global-wise parameter groups satisfy ‖∇pf (𝜃)‖ < Mp ,
‖∇lf (𝜃)‖ < Ml , ‖∇gf (𝜃)‖ < Mg for some fixed Mp , Ml , Mg
and all � . Then the effective combined learning rate for each
parameter satisfies:

where �p,i refers to the value of parameter indexed by p at
time step i, �l,i refers to the set/vector of parameters in layer
with index l at time step i, and �g,i refers to the whole set of
model parameters at time step i. In addition, np and nl are the
total number of parameters and number of the layers, and we

	∇p f (�1) − ∇p f (�2)		≤ Lp		�1 − �2	
	∇l f (�1) − ∇l f (�2)		≤ Ll		�1 − �2	
	∇g f (�1) − ∇g f (�2)		≤ Lg		�1 − �2	
L = max{Lp, Ll, Lg}

��∗
p,t
� = ��p,t−1�p,t + �l,t−1�l,t + �g,t−1�t�

≤ (�p,t−1 + �l,t−1 + �g,t−1)�0

+ �

t−1�

i=0

�
�p,t−1np max

p
{
����
∇f (�p,i+1)

T∇f (�p,i)
����
}

+�l,t−1nl max
l
{�∇f (�l,i+1)T∇f (�l,i)�} + �g,t−1�∇f (�g,i+1)T∇f (�g,i)�

�

≤ �0 + �

t−1�

i=0

�
�p,t−1np max

p
{
����
∇f (�p,i+1)‖‖∇f (�p,i)

����
}

+�l,t−1nl max
l
{‖∇f (�l,i+1)‖‖∇f (�l,i)‖} + �g,t−1‖∇f (�g,i+1)‖‖∇f (�g,i)‖

�

≤ �0 + t�(npM
2
p
+ nlM

2
l
+M2

g
)

have applied 0 < 𝛾p, 𝛾l, 𝛾g < 1 . This gives an upper bound for
the learning rate in each particular time step, which is O(t) as
t → ∞ . By introducing �p,t = �(t)�∗

p,t
+ (1 − �(t))�∞ , where

the function �(t) is selected to satisfy t�(t) → 0 as t → ∞ , so
we have �p,t → �∞ as t → ∞ . If 𝛼∞ <

1

L
 , for larger enough t,

we have 1∕(L + 1) < 𝜅p,t < 1∕L , and the algorithm converges
when the corresponding gradient-based optimizer converges
for such a learning rate under our assumptions about f. This
follows the discussion in [25, 50]. 	� ◻

This actually provides a convergence of R(T) = O(T)
given the assumptions and conditions, while a stronger con-
vergence can be achieved by assuming a more strict form of
�(t) . Notice that when we introduce �p,t instead of �∗

p,t
 in

Algorithm 1, the corresponding gradients �L(�)
��∗

p,t−1

 will also be

replaced by �L(�)

��∗
p,t−1

��∗
p,t−1

��∗
p,t−1

=
�L(�)

��∗
p,t−1

�(t) . Beyond weighted

approximation, clipping can also guarantee a convergence.
One example is the Adabound-CAM-HD proposed in
Sect. 4.4.

Theorem 3  (Convergence of Adabound-CAM-HD) Let {�t}
and {Vt} be the sequences obtained from the modified Algo-
rithm 1 for Adabound-CAM-HD discussed in Sect. 4.4. The
optimizer parameters in Adam satisfy �1 = �11 , �1t ≤ �1 for
all t ∈ [T] and 𝛽1 <

√
𝛽2 . Suppose f is a convex target func-

tion on � , �l(t) and �u(t) are the lower and upper bound
function applied in the clipping procedure, �u(t) ≤ R∞ and
t

�l(t)
−

t−1

�u(t−1)
≤ M fo r a l l t ∈ [T] . A s sume tha t

||�1 − �2||∞ ≤ D∞ for all �1, �2 ∈ � and ||∇ft(�)|| ≤ G2 for
all t ∈ [T] and � ∈ � . For �t generated using Adabound-
CA M - H D a l g o r i t h m , t h e re gre t f u n c t i o n

R(T) =
∑T

t=1
ft(�t) −min�∈�

∑T

t=1
ft(�) is upper bounded by

O(
√
T) , which is given by:

3795International Journal of Machine Learning and Cybernetics (2022) 13:3785–3805	

1 3

In general, the main ideas involved in the proof of con-
vergence of Adabound in [36] and [47] is also applicable
for Adabound-CAM-HD. The main procedure can be given
as follows.

•	 Let x∗ = argminx∈F
∑T

t−1
ft(x) , which exists since F is

closed and convex. Apply the projection relationship:

 where �t is the effective updating rate at step t after clip-
ping and normalizing, while mt is the momentum at step
t.

•	 Apply Lemma 1 in the original paper [36, 39] with
u1 = xt+1 and u2 = x∗ to get the upper bound of
||𝜂−1∕2 ⊙ (xt+1 − x∗)||2 , and further rearrange the
corresponding inequality to get the upper bound of
⟨gt, xt − x∗⟩ , with the auxiliary of Cauchy-Schwarz and
Young’s inequality.

•	 Consider the standard approach of bounding the regret at
each step using convexity of the functions ftTt=1 :

•	 Find the upper bound of RT given by the summation of
upper bounds of ⟨gt, xt − x∗⟩ with different step t, and
further introduce the inequality relationships �1 = �11 ,
�1t ≤ �1 for all t ∈ [T] and 𝛽1 <

√
𝛽2 , bounding condi-

tions of �u(t) ≤ R∞ and t

�l(t)
−

t−1

�u(t−1)
≤ M , to get the final

upper bound of RT in terms of R∞ , G∞ M and T.

In Adabound-CAM-HD, �t depends on the format of �∗ . If
�∗ is a matrix for parameter-wise learning rate for a particu-
lar layer, �t should also be a matrix but clipped by a pair of
global �u(t) and �l(t) at each time step t. Notice that in [36]
with the code provided by github.com/Luolc/AdaBound,
the clipping is also parameter-wise because in the clipping
function 𝜂̂t = Clip(𝛼∕

√
Vt, 𝜂l(t), 𝜂u(t)) , the term �∕

√
Vt will

generate a matrix with the same shape as the correspond-
ing parameter matrix in each layer, although the step size
� is a scalar. Thus, the clipping on element-wise division

RT ≤
D2

∞

2(1 − �1)

�
2dM

�√
T − 1

�
+

d�

i=1

�
�−1
1,i

+

T�

t=1

�1t�
−1
t,i

��

+ (2
√
T − 1)

R∞G
2
2

1 − �1
.

xt+1 = 𝛱F,diag(𝜂−1)(xt − 𝜂t ⊙ mt)

= min
x∈F

||𝜂−1∕2t ⊙ (x − (xt − 𝜂t ⊙ mt))||

RT =

T�

t=1

ft(xt) −min
x∈F

T�

t=1

ft(x)

=

T�

t=1

(ft(xt) − ft(x
∗)) ≤

T�

t=1

⟨gt, xt − x∗⟩

�∗∕
√
Vt in Adabound-CAM-HD could achieve the same

bounding properties. For example, if the scale is adjusted
accordingly, the norm of �t satisfies

√
t���t��∞ ≤ R∞ , which

makes the Lemma 3 in [36] holds. Meanwhile, Lemma 1
and Lemma 2 in the original paper can be directly applied
as parameter �t , �∗ and mt have element-wise values in both
contexts. Although in the proposed algorithm, we intro-
duced the hierarchical learning rate structure, for the model
parameter, gradients and momentum, parameter-wise form
has already been applied.

This ensures Adabound-CAM-HD achieves a high level
of adaptiveness as well as a good convergence property.
Notice that in the original version of the convergence theo-
rem of Adabound proposed in [36], the assumptions for
upper and lower bound was given by 𝜂l(t + 1) ≥ 𝜂l(t) > 0 ,
𝜂u(t + 1) < 𝜂u(t) . As t → ∞ , �l(t) → �∗ , �u(t) → �∗ .
L∞ = �l(1) and R∞ = �u(1) . However, in [47], it is pointed
out that this original assumption can only guarantee a con-
vergence of RT = O(T) , while it is recommended to suppose
t

�l(t)
−

t−1

�u(t−1)
≤ M for all t ∈ [T] instead to guarantee a better

convergence RT = O(
√
T).

Therefore, both weighted approximation and clipping can
be applied to guarantee the convergence of optimizers with
CAM. This means that CAM can safely achieve both high-
level parameter-specific adaptiveness and a good property of
convergence, which gives it the potential of outperforming
most of existing optimization algorithms. Meanwhile, it is
compatible with any gradient based optimizers and network
architectures.

5 � Experiments

We use the feed-forward neural network models and dif-
ferent types of convolutions neural networks on multiple
benchmark datasets to compare with existing baseline opti-
mizers. For each learning task, the following optimizers will
be applied: (a) standard baseline optimizers such as Adam
and SGD; (b) hyper-gradient descent in [6]; (c) L4 stepsize
adaptation for standard optimizers [45]; (d) Adabound opti-
mizer [36]; (e) RAdam optimizer [34]; and (f) the proposed
adaptive combination of different levels of hyper-descent.
The implementation of (b) is based on the code provided
with the original paper. One NVIDIA Tesla V100 GPU
with 16G Memory 61 GB RAM and two Intel Xeon 8 Core
CPUs with 32 GB RAM are applied. The program is built
in Python 3.5.1 and Pytorch 1.0 [49]. For each experiment,
we provide both the average curves and standard error bars
for ten runs.

3796	 International Journal of Machine Learning and Cybernetics (2022) 13:3785–3805

1 3

5.1 � Hyper‑parameter tuning

To compare the effect of CAM-HD with baseline opti-
mizers, we first do hyperparameter tuning for each learn-
ing task by referring to related papers [6, 26, 36, 45] as
well as implementing an independent grid search [8, 13].
We mainly consider hyper-parameters including batch
size, learning rate, and other optimizer parameters for
models with different architectures. Other settings in our
experiments follow open-source benchmark models. The
search space for batch size is the set of {2n}n=3,…,9 , while
the search space for learning rate, hyper-gradient updat-
ing rate and combination weight updating rate (CAM-HD-
lr) are {10−1, 10−2,… , 10−4} , {10−1, 10−2,… , 10−10} and
{0.1, 0.03, 0.01, 0.003, 0.001, 0.0003, 0.0001} , respectively.
The selection criterion is the 5-fold cross-validation loss
by early-stopping at the patience of 3 [42]. The optimized
hyper-parameters for the tasks in this paper are given in
Table 1. For training ResNets with SGDN, we will apply
a step-wise learning rate decay schedule as in [34, 36].
Notice that although the hyper-parameters are tuned, it does
not mean that the model performance is sensitive to each
hyper-parameter.

For training ResNets with SGDN, we will apply a step-
wise learning rate decay schedule as in [34, 36]. Notice that
although the hyper-parameters are tuned, it does not mean
that the model performance is sensitive to each of them.

5.2 � Combination ratio and model performances

First, we perform a study on the initialization of the combi-
nation weights different level learning rates in the framework
of CAM-HD. The simulations are based on image classi-
fication tasks on MNIST and CIFAR10 [27, 30]. We use
full training sets of MNIST and CIFAR10 for training and
full test sets for validation. One feed-forward neural network
with three hidden layers of size [100, 100, 100] and two
convolutional network models, including LeNet-5 [31] and
ResNet-18 [23], are implemented. In each case, two levels
of learning rates are considered, which are the global and
layer-wise adaptation for FFNN, and global and filter-wise

adaptation for CNNs. For LeNet-5 and FFNN, Adam-
CAM-HD with fixed and trainable combination weights is
implemented, while for ResNet-18, both Adam-CAM-HD
and SGDN-CAM-HD with fixed and trainable combination
weights are implemented in two independent simulations.
We change the initialized combination weights of two lev-
els in each case to see the change of model performance in
terms of test classification accuracy at epoch 30 for FFNN,
and at epoch 10 for LeNet-5 and ResNet-18. Also we com-
pare CAM-HD methods with baseline Adam and SGDN
methods in terms of test accuracy after the same epochs
of training. Other hyper-parameters are optimized based on
Sect. 5.1. We conduct 10 runs at each combination ratio and
draw the average accuracies and corresponding error bars
(standard errors). The result is given in Fig. 2,

which leads to the following findings: First, usually the
optimal performance is neither at full global level nor full
layer/filter level, but a weighted combination of two levels of
adaptive learning rates, for both update and no-update cases.
Second, CAM-HD methods outperform baseline Adam/
SGDN methods for most of the combination ratios initiali-
zations. Third, updating of combination weights is effective
and helpful in achieving better performance than applying
fixed combination weights. This supports our analysis in
Sect. 4.3. Also, in real training processes, it is possible that
the learning in favor of different combination weights in
various stages and this requires the online adaptation of the
combination weights.

5.3 � Feed forward neural network for image
classification

This experiment is conducted with feed-forward neural net-
works for image classification on MNIST, including 60,000
training examples and 10,000 test examples. We use the
full training set for training and the full test set for vali-
dation. Three FFNN with three different hidden layer con-
figurations are implemented [14, 52], including [100, 100],
[1000, 100], and [1000, 1000]. Adaptive optimizers includ-
ing Adam, Adabound, Adam-HD with two hyper-gradient
updating rates, and proposed Adam-CAM-HD are applied.

Table 1   Hyperparameter
settings for experiments
(learning rates: SGD/SGDN
(lr1); Adam (lr2); Hyper-grad
(SGD/SGDN): lr3; Hyper-grad
lr (Adam): lr4; CAM-HD: lr5)

Architecture Dataset Batch size lr1 lr2 lr3 lr4 lr5

MLP 1 MNIST 32 – 0.0003 – 1.00E−07 0.01
MLP 2 64 – 0.001 – 1.00E−07 0.01
MLP 3 128 – 0.001 – 1.00E−07 0.01
LeNet-5 MNIST 256 – 0.001 1.00E−03 1.00E−08 0.03

CIFAR10 256 – 0.001 1.00E−03 1.00E−08 0.03
SVHN 128 – 0.001 1.00E−03 1.00E−08 0.03

ResNet-18 CIFAR10 256 0.1 0.001 1.00E−06 1.00E−08 0.001
ResNet-34 256 0.1 0.001 1.00E−06 1.00E−08 0.001

3797International Journal of Machine Learning and Cybernetics (2022) 13:3785–3805	

1 3

For Adam-CAM-HD, we apply three-level parameter-
layer-global adaptation with initialization of �1 = �2 = 0.3
and �3 = 0.4 , and two-level layer-global adaptation with
�1 = �2 = 0.5 . No decay function of learning rates is applied.

Figure 3 shows the validation accuracy curves for dif-
ferent optimizers during the training process of 30 epochs.
We can learn that both the two-level and three-level Adam-
CAM-HD outperform the baseline Adam optimizer with
optimized hyper-parameters significantly. For Adam-HD, we
find that the default hyper-gradient updating rate ( � = 10−7 )
for Adam applied in [6] is not optimal in our experiments,
while an optimized one of 10−9 can outperform Adam but
still worse than Adam-CAM-HD with � = 10−7.

The test accuracy of each setting and the corresponding
standard error of the sample mean in 10 trials are given in
Table 2.

5.4 � Lenet‑5 for image classification

The second experiment is done with LeNet-5, a classical
convolutional neural network without involving many build-
ing and training tricks [31]. We compare a set of adaptive
Adam optimizers including Adam, Adam-HD, Adam-CAM-
HD, Adabound, RAdam and L4 for the image classifica-
tion learning task of MNIST, CIFAR10 and SVHN [40].
For Adam-CAM-HD, we apply a two-level setting with

Fig. 2   The diagram of model performances trained by Adam/SGDN-CAM-HD with different combination ratios in the case of two-level learn-
ing rates adaptation. The x-axis is the ratio of global-level adaptive learning rates. ResNet-18s are trained for 10 epochs only

Fig. 3   The comparison of learning curves of FFNN on MNIST with different adaptive optimizers

Table 2   Summary of test
performances with FFNNs

The bold figure means the best performer

FFNN (100, 100) FFNN (1000, 100) FFNN (1000, 1000)

Test acc Test S.E Test acc Test S.E Test acc Test S.E

Adam-CAM-HD (3-level) 97.91 0.07 97.92 0.15 98.29 0.07
Adam-CAM-HD (2-level) 98.12 0.06 98.09 0.06 98.39 0.04
Adam-HD (hp-grad 1e−9) 97.86 0.07 97.19 0.26 97.83 0.12
Adam 97.93 0.09 97.48 0.14 97.49 0.11

3798	 International Journal of Machine Learning and Cybernetics (2022) 13:3785–3805

1 3

filter-wise and global learning rates adaptation and initialize
�1 = 0.2 , �2 = 0.8 . We also implement an exponential decay
function �(t) = exp(−rt) as was discussed in Sect. 4.5 with
rate r = 0.002 for all the three datasets, while t is the number
of iterations. For L4, we implement the recommended L4
learning rate of 0.15. For Adabound and RAdam, we also
apply the recommended hyper-parameters in the original
papers. The other hyper-parameter settings are optimized
in Sect. 5.1.

As we can see in Fig. 4, Adam-CAM-HD again shows
the advantage over other methods in all the three sub-
experiments, except MNIST L4 that could perform better
in a later stage. The experiment on SVHN indicates that the
recommended hyper-parameters for L4 could fail in some
cases with unstable accuracy curves. RAdam and Adabound
outperform baseline Adam method on MNIST, while Adam-
HD does not show a significant advantage over Adam with
optimized hyper-gradient updating rate that is shared with
Adam-CAM-HD.

The corresponding summary of test performance is given
in Table 3, in which the test accuracy of Adam-CAM-HD
outperform other optimizers on both CIFAR10 and SVHN.
Especially, it gives significantly better results than Adam and
Adam-HD for all the three datasets.

5.5 � ResNet for image classification

In the third experiment, we apply ResNets for image clas-
sification task on CIFAR10 [11, 23] following the code
provided by github.com/kuangliu/pytorch-cifar, where a
ResNet-18 gives an accuracy of 93.02 with SGD and the
cosine annealing learning rate schedule. We compare Adam
and Adam-based adaptive optimizers, as well as SGD with
Nestorov momentum (SGDN) and corresponding adaptive
optimizers for training both ResNet-18 and ResNet-34. For
SGDN methods, we apply a learning rate schedule, in which
the learning rate is initialized to a default value of 0.1 and
reduced to 0.01 or 10% (for SGDN-CAM-HD) after epoch
150. The momentum is set to be 0.9 for all SGDN methods.
For Adam-CAM-HD SGDN-CAM-HD, we apply two-level
CAM-HD with the same setting as the second experiment.
We also implement Adabound-CAM-HD discussed in
Sect. 4.4 by sharing the common parameters with Adabound.
In addition, we apply an exponential decay function with
a decay rate r = 0.001 for all the CAM-HD methods. The
learning curves for validation accuracy, training loss, and
validation loss of ResNet-18 and ResNet-34 are shown in
Fig. 5.

We can see that the validation accuracy of Adam-CAM-
HD reaches about 90% in 40 epochs and consistently

Fig. 4   The comparison of learning curves of training LeNet-5 with different adaptive optimizers

Table 3   Summary of test
performances with LeNet-5

The bold figure means the best performer

MNIST CIFAR10 SVHN

Test acc Test S.E Test acc Test S.E Test acc Test S.E

Adam-CAM-HD 98.93 0.07 65.55 0.18 87.58 0.37
Adam-HD 98.83 0.05 63.3 0.66 86.94 0.13
Adam-L4 99.19 0.05 63.76 0.26 85.44 0.42
Adabound 99.11 0.05 64.06 0.36 87.22 0.14
RAdam 98.94 0.06 63.91 0.34 87.31 0.41
Adam 98.89 0.05 63.88 0.45 86.82 0.16

3799International Journal of Machine Learning and Cybernetics (2022) 13:3785–3805	

1 3

outperforms Adam, L4 and Adam-HD optimizers in a later
stage. The L4 optimizer with recommended hyper-parameter
and an optimized weight-decay rate of 0.0005 (instead of
1e-4 applied in other Adam-based optimizers) can outper-
form baseline Adam for both ResNet-18 and ResNet-34,
while its training loss outperforms all other methods but
with potential over-fitting. Adam-HD achieves a similar or
better validation accuracy than Adam with an optimized
hyper-gradient updating rate of 10−9 . RAdam performs
slightly better than Adam-CAM-HD in terms of validation
accuracy, but the validation cross-entropy of both RAdam

and Adabound are outperformed by our method. Also, we
find that in training ResNet-18/34, the validation accuracy
and validation loss of SGDN-CAM-HD slightly outperform
SGDN in most epochs even after the resetting of the learning
rate at epoch 150.

The test performances (average accuracy and standard
error) of different optimizers for ResNet-18 and ResNet-34
after 200 epoch of training are shown in Table 4.1 We can
learn that for both ResNet-18 and ResNet-34, the proposed
CAM-HD methods (Adam-CAM-HD, Adabound-CAM-HD
and SGDN-CAM-HD) can improve the corresponding base-
line methods (Adam, Adabound and SGDN) with statistical
significance. Especially, Adabound-CAM-HD outperforms
both Adam-CAM-HD and Adabound.

6 � Discussion

The experiments on both small models and large models
demonstrate the advantage of the proposed method over
baseline optimizers in terms of validation and test accu-
racy. One explanation of the performance improvement of
our method is that it achieves a higher level of adaptation

Fig. 5   The learning curves of training ResNet-18/34 on CIFAR10 with adaptive optimizers

Table 4   Summary of test performances with ResNet-18/34

ResNet-18 ResNet-34

Test acc. Test S.E. Test acc. Test S.E.

Adam 87.03 0.15 87.95 0.22
Adam-HD 87.26 0.35 88.48 0.48
Adabound 90.29 0.15 90.15 0.3
Radam 91.54 0.17 91.76 0.28
Adam-L4 87.81 0.22 88.02 0.15
Adam-CAM-HD 90.31 0.25 90.28 0.09
Adaboud-CAM-HD 90.49 0.31 91.12 0.23
SGDN 93.04 0.21 92.93 0.29
SGDN-CAM-HD 93.35 0.08 93.47 0.23

1  Here Adam-based methods achieve much lower test accuracies as
we only apply learning rate schedules to SGDN and SGDN-CAM-
HD.

3800	 International Journal of Machine Learning and Cybernetics (2022) 13:3785–3805

1 3

by introducing hierarchical learning rate structures with
learn-able combination weights, while the parameteriza-
tion level of adaptive learning rates is controlled by its
intrinsic regularization effects. In addition, both weighted
approximation and clipping can be applied to guarantee a
convergence. In this section we discuss several aspects of
our study, including hyper-parameter settings, learning of
combination weights, number of parameters and space and
time complexity.

6.1 � Performance and hyper‑parameter settings

Experiments show that the performance improvement does
not require tuning the hyper-parameters independently if the
task or model is similar. For example, the hyper-gradient
updating rate for LeNet-5, ResNet-18 and ResNet-34 are all
set to be 1e-8 in our experiments no matter the dataset being
learned. Also, the hyper-parameter CAM-HD-lr is shared
among each group of models (FFNNs, LeNet-5, ResNets)
for all datasets being learned. For the combination ratio,
�1 = 0.2 , �2 = 0.8 works for all our experiments with convo-
lutional networks. However, as the loss surface with respect

to the combination weights may not be convex for deep
learning models, the learning of combination weights may
fall into local optimal. Therefore, it is possible that several
trials are needed to find a good initialization of combination
weights although the learning of combination weights works
locally [13]. In general, the selected hyper-parameters are
transferable to a similar task for an improvement from the
corresponding baseline, while the optimal hyper-parameter
setting may shift a bit.

The proposed CAM-HD method can also apply learning
rate schedules in many ways to achieve further improvement.
One example is our ResNet experiment on CIFAR10 with
SGDN and SGDN-CAM-HD. For more advanced learning
rate schedules [19, 28], we can apply strategies like piece-
wise adaptive scheme by re-initialize all the levels for differ-
ent steps. Another method is to replace global level learning
rate with scheduled learning rate, while adapting the combi-
nation weights and other levels continuously.

Fig. 6   Learning curves of � s for FFNN on MNIST with Adam

Fig. 7   Learning curves of � s for LeNet-5 on MNIST with SGD, SGDN and Adam ( � = 0.002)

3801International Journal of Machine Learning and Cybernetics (2022) 13:3785–3805	

1 3

6.2 � Learning of combination weights

The following figures including Figs. 6, 7, 8 and 10 give
the learning curves of combination weights with respect to
the number of training iterations in each experiments, in
which each curve is averaged by 5 trials with error bars.
Through these figures, we can compare the updating curves
with different models, different datasets and different CAM-
HD optimizers.

Figure 6 corresponds to the experiment of FFNN on
MNIST in Sect. 3.3 of the main paper, which is a three-
level case. We can see that for different FFNN architecture,
the learning behaviors of � s also show different patterns,
although trained on a same dataset. Meanwhile, the standard
errors for multiple trials are much smaller relative to the
changes of the average combination weight values.

Figure 7 corresponds to the learning curves of � s in
the experiments of LeNet-5 for MNIST image classifica-
tion with SGD, SGDN and Adam, which are trained on
10% of original training dataset. In addition, Fig. 8 corre-
sponds to the learning curves of � s in the experiments of
LeNet-5 for CIFAR10 and SVHN image classification with
Adam-CAM-HD.

As is shown in Fig. 7, for SGD-CAM-HD, SGDN-CAM-
HD and Adam-CAM-HD, the equilibrium values of com-
bination weights are different from each other. Although
the initialization �1 = 0.2 , �2 = 0.8 and the updating rate
� = 0.03 are set to be the same for the three optimizers, the
values of �1 and �2 only change in a small proportion when
training with Adam-CAM-HD, while the change is much
more significant towards larger filter/layer-wise adaptation
when SGD-CAM-HD or SGDN-CAM-HD is implemented.
The numerical results show that for SGDN-CAM-HD, the
average value of weight for layer-wise adaptation �1 jumps

from 0.2 to 0.336 in the first epoch, then drop back to 0.324
before keeping increasing till about 0.388. For Adam-
CAM-HD, the average �1 moves from 0.20 to 0.211 with
about 5% change. In Fig. 8, both the two subplots are about
LeNet-5 models trained with Adam-CAM-HD, while the
exponential decay rate for weighted approximation is set to
be � = 0.002 . For the updating curves in Fig. 8a, which is
trained on CIFAR10 with Adam-CAM-HD, the combina-
tion weight for filter-wise adaptation moves from 0.20 to
0.188. Meanwhile, for the updating curves in Fig. 8b, which
is trained on SVHN, the combination weight for filter-wise
adaptation moves from 0.20 to 0.195. Further exploration
shows that � has an impact on the learning curves of combi-
nation weights. As is shown by Fig. 9, a smaller � = 0.001
can result in a more significant change of combination
weights during training with Adam-CAM-HD. The simi-
lar effect can also be observed from the learning curves of
� s for ResNet-18, which is given in Fig. 10 and we only
take the first 8000 iterations. Again, we find that in training
ResNet-18 on CIFAR10, the combination weights of SGD/
SGDN-CAM-HD change much faster than that of Adam-
CAM-HD. There are several reasons for this effect: First,
in the cases when � s do not move significantly, we apply
Adam-CAM-HD, where the main learning rate (1e-3) is only
about 1%-6% of the learning rate of SGD or SGDN (1e-1).
In Algorithm 1, we can see that the updating rate of � s is
in proportion of alpha given other terms unchanged. Thus,
for the same tasks, if the same value of updating rate � is
applied, the updating scale of � s for Adam-CAM-HD can be
much smaller than that for SGDN-CAM-HD. Second, this
does not mean that if we apply a much larger � for Adam-
CAM-HD, the combination weights will still not change
significantly or the performance will not be improved. It
simply means that using a small � can also achieve good

Fig. 8   Learning curves of � s for LeNet-5 with Adam-CAM-HD on CIFAR10 and SVHN ( � = 0.002)

3802	 International Journal of Machine Learning and Cybernetics (2022) 13:3785–3805

1 3

performance due to the goodness of initialisation points.
Third, it is possible that Adam requires lower level of com-
bination ratio adaptation for the same network architecture
compared with SGD/SGDN due to the fact that Adam itself
involves stronger adaptiveness.

6.3 � Number of parameters and space complexity

The proposed adaptive optimizer is for efficiently updating
the model parameters, while the final model parameters will
not be increase by introducing CMA-HD optimizer. How-
ever, during the training process, several extra intermedi-
ate variables are introduced. For example, in the discussed
three-level’s case for feed-forward neural network with nlayer
layers, we need to restore hp,t , hl,t and hg,t , which have the
sizes of S(hp,t) =

∑nlayer−1

l=1
(nl + 1)nl+1 , S(hl,t) = nlayer and

S(hg,t) = 1 , respectively, where ni is the number of units in
ith layer. Also, learning rates �p,t , �l,t , �g,t and take the sizes
of S(ap,t) =

∑nlayer−1

l=1
(nl + 1)nl+1 , S(al,t) = nlayer , S(ag,t) = 1 ,

S(ag,t) = 1 , and S(a∗
p,t
) =

∑nlayer−1

l=1
(nl + 1)nl+1 , respectively.

Also we need a small set of scalar parameters to restore �1 ,
�2 and �3 and other coefficients.

Consider the fact that the training the baseline models,
we need to restore model parameters, corresponding gradi-
ents, as well as the intermediate gradients during the imple-
mentation of chain rule, CAM-HD will take twice of the
space for storing intermediate variables in the worst case.
For two-level learning rate adaptation considering global
and layer-wise learning rates, the extra space complexity

Fig. 9   Learning curves of � s for LeNet-5 with Adam-CAM-HD on CIFAR10 and SVHN ( � = 0.001)

Fig. 10   Learning curves of � s for ResNet-18 with SGDN-CAM-HD and Adam-CAM-HD ( � = 0.001)

3803International Journal of Machine Learning and Cybernetics (2022) 13:3785–3805	

1 3

by CAM-HD will be one to two orders’ smaller than that of
baseline model during training.

6.4 � Time complexity

In CMA-HD, we need to calculate gradient of loss with
respect to the learning rates in each level, which are hp,t , hl,t
and hg,t in three-level’s case. However, the gradient of each
parameter is already known during normal model training,
the extra computational cost comes from taking summations
and updating the lowest-level learning rates. In general, this
cost is in linear relation with the number of differentiable
parameters in the original models. Here we discuss the case
of feed-forward networks and convolutional networks.

Recall that for feed-forward neural network the whole
computational complexity is:

where m is the number of training examples, niter is the itera-
tions of training, nl is the number of units in the l-th layer.
On the other hand, when using three-level CAM-HD with,
where the lowest level is parameter-wise, we need nlayer ele-
ment products to calculate hp,t for all layers, one nlayer matrix
element summations to calculate hl,t for all layers, as well as
a list summation to calculate hg,t . In addition, two element-
wise summations will also be implemented for calculating
�p,t and �∗

p
 . Therefore, the extra computational cost of using

CAM-HD is ΔT(n) = O(mb ⋅ niter
∑nlayer

l=2
(nl ⋅ nl−1 + nl)) ,

where mb is the number of mini-batches for training. Notice
that m∕mb is the batch size, which is usually larger than
100. This extra cost is more than one-order smaller than the
computation complexity of training a model without learn-
ing rate adaptation. For the cases when the lowest level is
layer-wise, only one element-wise matrix product is needed
in each layer to calculate hl,t . For convolutional neural net-
works, we have learned that the total time complexity of all
convolutional layers is [22]:

where l is the index of a convolutional layer, and nconv_layer
is the depth (number of convolutional layers). nl is the num-
ber of filters in the l-th layer, while nl−1 is known as the
number of input channels of the l-th layer. sl is the spatial
size of the filter. ml is the spatial size of the output fea-
ture map. If we consider convolutional filters as layers,
the extra computational cost for CAM-HD in this case is
ΔT(n) = O(mb ⋅ niter

∑nconv_layer

l=1
((nl−1 ⋅ s

2
l
+ 1) ⋅ nl)) , which is

still more than one order smaller than the cost of model
without learning rate adaptation.

(14)T(n) = O

(
m ⋅ niter ⋅

nlayer∑

l=2

nl ⋅ nl−1 ⋅ nl−2

)

(15)O

(
m ⋅ niter ⋅

nconv_layer∑

l=1

(nl−1 ⋅ s
2
l
⋅ nl ⋅ m

2
l
)

)

Therefore, for large networks, applying CMA-HD will
not significantly increase the computational cost from the
theoretical prospective.

7 � Conclusion

In this study, we propose a gradient-based learning rate
adaptation strategy by introducing hierarchical learning
rate structures in deep neural networks. By considering the
relationship between regularization and the combination of
adaptive learning rates in multiple levels, we further pro-
pose a joint algorithm for adaptively learning each level’s
combination weight (CAM). It increases the adaptiveness
of the hyper-gradient descent method in any single level,
while over-parameterization involved in optimizers can be
controlled by adaptive regularization effect. In addition,
both weighted approximation and clipping can be applied
to guarantee the convergence. The proposed CAM algorithm
is compatible with any gradient based optimizers, learning
rate schedules and network architectures. Experiments on
FFNN, LeNet-5, and ResNet-18/34 show that the proposed
methods can outperform the standard ADAM/SGDN and
other baseline methods with statistical significance.

Acknowledgements  The authors acknowledge the Sydney Informatics
Hub and the University of Sydney’s high performance computing clus-
ter Artemis for providing the high performance computing resources
that have contributed to the research results reported within this paper.

Funding  Open Access funding enabled and organized by CAUL and
its Member Institutions.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Alacaoglu A, Malitsky Y, Mertikopoulos P, Cevher V (2020) A
new regret analysis for adam-type algorithms. In: International
conference on machine learning, PMLR, pp 202–210

	 2.	 Almeida LB, Langlois T, Amaral JD, Plakhov A (1998) Parameter
adaptation in stochastic optimization. On-line learning in neural
networks, Publications of the Newton Institute, pp 111–134

	 3.	 Amari S (1993) Backpropagation and stochastic gradient descent
method. Neurocomputing 5(4–5):185–196

http://creativecommons.org/licenses/by/4.0/

3804	 International Journal of Machine Learning and Cybernetics (2022) 13:3785–3805

1 3

	 4.	 Andrychowicz M, Denil M, Gomez S, Hoffman MW, Pfau D,
Schaul T, Shillingford B, De Freitas N (2016) Learning to learn by
gradient descent by gradient descent. In: NeurIPS, pp 3981–3989

	 5.	 Anil R, Gupta V, Koren T, Singer Y (2019) Memory efficient
adaptive optimization. Adv Neural Inf Process Syst 32

	 6.	 Baydin AG, Cornish R, Rubio DM, Schmidt M, Wood F (2017)
Online learning rate adaptation with hypergradient descent. ICLR

	 7.	 Baydin AG, Pearlmutter BA, Radul AA, Siskind JM (2018) Auto-
matic differentiation in machine learning: a survey. J Mach Learn
Res 18:1–43

	 8.	 Bergstra J, Bardenet R, Bengio Y, Kégl B (2011) Algorithms for
hyper-parameter optimization. In: NeurIPS, neural information
processing systems foundation, vol 24

	 9.	 Chen Z, Xu Y, Chen E, Yang T (2018) Sadagrad: strongly adap-
tive stochastic gradient methods. In: International conference on
machine learning, PMLR, pp 913–921

	10.	 Darken C, Moody J (1990) Note on learning rate schedules for
stochastic optimization. Adv Neural Inf Process Syst 3

	11.	 DeVries T, Taylor GW (2017) Improved regularization of convo-
lutional neural networks with cutout. arXiv:​1708.​04552

	12.	 Duchi J, Hazan E, Singer Y (2011) Adaptive subgradient meth-
ods for online learning and stochastic optimization. JMLR
12:2121–2159

	13.	 Feurer M, Hutter F (2019) Hyperparameter optimization. Auto-
mated machine learning. Springer, Cham, pp 3–33

	14.	 Fine TL (2006) Feedforward neural network methodology.
Springer, Berlin

	15.	 Floridi L, Chiriatti M (2020) Gpt-3: its nature, scope, limits, and
consequences. Mind Mach 30(4):681–694

	16.	 Franceschi L, Donini M, Frasconi P, Pontil M (2017) Forward and
reverse gradient-based hyperparameter optimization. In: ICML,
JMLR. org, pp 1165–1173

	17.	 Fu J, Ng R, Chen D, Ilievski I, Pal C, Chua TS (2017) Neural
optimizers with hypergradients for tuning parameter-wise learning
rates. In: JMLR: workshop and conference proceedings, vol 1, pp
1–8

	18.	 Ge R, Kakade SM, Kidambi R, Netrapalli P (2018) Rethinking
learning rate schedules for stochastic optimization. In: Submission
to ICLR, pp 1842–1850

	19.	 Ge R, Kakade SM, Kidambi R, Netrapalli P (2019) The step decay
schedule: a near optimal, geometrically decaying learning rate
procedure for least squares. In: Advances in neural information
processing systems, pp 14977–14988

	20.	 Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT
press, Cambridge

	21.	 Gusak J, Cherniuk D, Shilova A, Katrutsa A, Bershatsky D,
Zhao X, Eyraud-Dubois L, Shlyazhko O, Dimitrov D, Oseledets
I, Beaumont O (2022) Survey on large scale neural network train-
ing. arXiv:​ 2202.​10435

	22.	 He K, Sun J (2015) Convolutional neural networks at constrained
time cost. In: CVPR, pp 5353–5360

	23.	 He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for
image recognition. In: CVPR, pp 770–778

	24.	 Hecht-Nielsen R (1992) Theory of the backpropagation neural
network. Neural networks for perception. Elsevier, Oxford, pp
65–93

	25.	 Karimi H, Nutini J, Schmidt M (2016) Linear convergence of gra-
dient and proximal-gradient methods under the polyak-łojasiewicz
condition. In: Joint European conference on machine learning and
knowledge discovery in databases. Springer, pp 795–811

	26.	 Kingma DP, Ba J (2015) Adam: a method for stochastic optimiza-
tion. ICLR

	27.	 Krizhevsky A, Hinton G (2012) Learning multiple layers of fea-
tures from tiny images. University of Toronto

	28.	 Lang H, Xiao L, Zhang P (2019) Using statistics to automate
stochastic optimization. In: Advances in neural information pro-
cessing systems, pp 9540–9550

	29.	 LeCun Y, Touresky D, Hinton G, Sejnowski T (1988) A theoreti-
cal framework for back-propagation. In: Proceedings of the 1988
connectionist models summer school, vol 1, pp 21–28

	30.	 LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-
based learning applied to document recognition. Proc IEEE
86(11):2278–2324

	31.	 LeCun Y et al (2015) Lenet-5, convolutional neural networks.
http://yannlecuncom/exdb/lenet20:5

	32.	 Li Z, Arora S (2019) An exponential learning rate sched-
ule for deep learning. In: International conference on learning
representations

	33.	 Li X, Orabona F (2019) On the convergence of stochastic gradient
descent with adaptive stepsizes. In: The 22nd International confer-
ence on artificial intelligence and statistics, PMLR, pp 983–992

	34.	 Liu L, Jiang H, He P, Chen W, Liu X, Gao J, Han J (2019) On the
variance of the adaptive learning rate and beyond. In: ICLR

	35.	 Loshchilov I, Hutter F (2017) Sgdr: stochastic gradient descent
with warm restarts. In: ICLR

	36.	 Luo L, Xiong Y, Liu Y, Sun X (2018) Adaptive gradient methods
with dynamic bound of learning rate. In: ICLR

	37.	 Lv K, Jiang S, Li J (2017) Learning gradient descent: better
generalization and longer horizons. In: ICML, JMLR. org, pp
2247–2255

	38.	 Maclaurin D, Duvenaud D, Adams R (2015) Gradient-based
hyperparameter optimization through reversible learning. In:
ICML, pp 2113–2122

	39.	 McMahan HB, Streeter M (2010) Adaptive bound optimization
for online convex optimization. arXiv:​1002.​4908

	40.	 Netzer Y, Wang T, Coates A, Bissacco A, Wu B, Ng AY (2011)
Reading digits in natural images with unsupervised feature learn-
ing. In: NIPS workshop on deep learning and unsupervised feature
learning 2011

	41.	 O’donoghue B, Candes E (2015) Adaptive restart for accelerated
gradient schemes. Found Comput Math 15(3):715–732

	42.	 Prechelt L (1998) Early stopping-but when? Neural networks:
tricks of the trade. Springer, Berlin, pp 55–69

	43.	 Reddi SJ, Kale S, Kumar S (2018) On the convergence of adam
and beyond. In: ICLR

	44.	 Reddi SJ, Kale S, Kumar S (2019) On the convergence of
adam and beyond. In: International conference on learning
representations

	45.	 Rolinek M, Martius G (2018) L4: Practical loss-based stepsize
adaptation for deep learning. In: NeurIPS, pp 6433–6443

	46.	 Ruder S (2016) An overview of gradient descent optimization
algorithms. arXiv:​1609.​04747

	47.	 Savarese P (2019) On the convergence of adabound and its con-
nection to sgd. arXiv:​1908.​04457

	48.	 Schraudolph NN (1999) Local gain adaptation in stochastic gra-
dient descent. In: 1999 Ninth international conference on artifi-
cial neural networks ICANN 99. (Conf. Publ. No. 470), vol 2, pp
569–574

	49.	 Subramanian V (2018) Deep Learning with PyTorch: a practical
approach to building neural network models using PyTorch. Packt
Publishing Ltd

	50.	 Sun R (2019) Optimization for deep learning: theory and algo-
rithms. arXiv:​1912.​08957

	51.	 Sutton RS (1992) Gain adaptation beats least squares. In: Proceed-
ings of the 7th Yale workshop on adaptive and learning systems,
vol 161168

	52.	 Svozil D, Kvasnicka V, Pospichal J (1997) Introduction to multi-
layer feed-forward neural networks. Chemom Intell Lab Syst
39(1):43–62

http://arxiv.org/abs/1708.04552
http://arxiv.org/abs/2202.10435
http://arxiv.org/abs/1002.4908
http://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1908.04457
http://arxiv.org/abs/1912.08957

3805International Journal of Machine Learning and Cybernetics (2022) 13:3785–3805	

1 3

	53.	 Tieleman T, Hinton G (2012) Rmsprop: Divide the gradient by
a running average of its recent magnitude. coursera: Neural net-
works for machine learning. Tech Rep, Technical report p 31

	54.	 Wang G, Lu S, Cheng Q, Tu Ww, Zhang L (2019) Sadam: A
variant of adam for strongly convex functions. In: International
conference on learning representations

	55.	 Wang M, Fu W, He X, Hao S, Wu X (2020) A survey on large-
scale machine learning. IEEE Trans Knowl Data Eng:1–1

	56.	 Wichrowska O, Maheswaranathan N, Hoffman MW, Colmenarejo
SG, Denil M, de Freitas N, Sohl-Dickstein J (2017) Learned
optimizers that scale and generalize. In: ICML, JMLR. org, pp
3751–3760

	57.	 You Y, Gitman I, Ginsburg B (2017) Scaling sgd batch size to 32k
for imagenet training. arXiv:​1708.​03888

	58.	 You Y, Li J, Reddi S, Hseu J, Kumar S, Bhojanapalli S, Song X,
Demmel J, Keutzer K, Hsieh CJ (2019) Large batch optimization
for deep learning: training bert in 76 minutes. In: ICLR

	59.	 Yu J, Aberdeen D, Schraudolph NN (2006) Fast online policy
gradient learning with smd gain vector adaptation. In: NeurIPS,
pp 1185–1192

	60.	 Zaheer M, Reddi S, Sachan D, Kale S, Kumar S (2018) Adaptive
methods for nonconvex optimization. Adv Neural Inf Process Syst
31

	61.	 Zeiler MD (2012) Adadelta: an adaptive learning rate method.
arXiv:​1212.​5701

	62.	 Zhang M, Lucas J, Ba J, Hinton GE (2019) Lookahead optimizer:
k steps forward, 1 step back. In: NeurIPS, pp 9593–9604

	63.	 Zhang P, Lang H, Liu Q, Xiao L (2020) Statistical adaptive sto-
chastic gradient methods. arXiv:​2002.​10597

	64.	 Zhuang J, Tang T, Ding Y, Tatikonda SC, Dvornek N, Papadem-
etris X, Duncan J (2020) Adabelief optimizer: adapting stepsizes
by the belief in observed gradients. Adv Neural Inf Process Syst
33:18795–18806

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/1708.03888
http://arxiv.org/abs/1212.5701
http://arxiv.org/abs/2002.10597

	Adaptive hierarchical hyper-gradient descent
	Abstract
	1 Introduction
	2 Literature review
	3 Hyper-gradient descent
	4 Multi-level adaptation methods
	4.1 Layer-wise, unit-wise and parameter-wise adaptation
	4.2 Regularization on learning rate
	4.3 Updating rules for learning rates
	4.4 Prospective of learning rate combination
	4.5 Convergence analysis

	5 Experiments
	5.1 Hyper-parameter tuning
	5.2 Combination ratio and model performances
	5.3 Feed forward neural network for image classification
	5.4 Lenet-5 for image classification
	5.5 ResNet for image classification

	6 Discussion
	6.1 Performance and hyper-parameter settings
	6.2 Learning of combination weights
	6.3 Number of parameters and space complexity
	6.4 Time complexity

	7 Conclusion
	Acknowledgements
	References

