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Abstract
Adaptive learning rate strategies can lead to faster convergence and better performance for deep learning models. There are 
some widely known human-designed adaptive optimizers such as Adam and RMSProp, gradient based adaptive methods 
such as hyper-descent and practical loss-based stepsize adaptation (L4), and meta learning approaches including learning to 
learn. However, the existing studies did not take into account the hierarchical structures of deep neural networks in design-
ing the adaptation strategies. Meanwhile, the issue of balancing adaptiveness and convergence is still an open question to be 
answered. In this study, we investigate novel adaptive learning rate strategies at different levels based on the hyper-gradient 
descent framework and propose a method that adaptively learns the optimizer parameters by combining adaptive informa-
tion at different levels. In addition, we show the relationship between regularizing over-parameterized learning rates and 
building combinations of adaptive learning rates at different levels. Moreover, two heuristics are introduced to guarantee the 
convergence of the proposed optimizers. The experiments on several network architectures, including feed-forward networks, 
LeNet-5 and ResNet-18/34, show that the proposed multi-level adaptive approach can significantly outperform many baseline 
adaptive methods in a variety of circumstances.

Keywords  Deep learning · Hypergradient descent · Learning rate adaptation · Hierarchical learning rate system · Adabound

1  Introduction

Deep learning has become the most powerful technique 
in modern artificial intelligence systems, changing many 
aspects of our real life and improving the efficiency of a 
variety of industrial fields [20]. The successful training of 
deep neural networks requires carefully designed optimi-
zation algorithms. Not only because these algorithms can 
determine the model performance after training, but also 
they can determine the efficiency and convergence speed of 
training. With the wide-range application of large models 

with complex structures in recent years, training models 
can be expensive and time-consuming in practice, while the 
selection of optimizers could be of great importance [15, 
21, 55].

The basic optimization algorithm for training deep neural 
networks is gradient descent method (GD), including sto-
chastic gradient descent (SGD), mini-batch gradient descent 
and batch gradient descent [3]. Model parameters are 
updated according to the first-order gradients of the objec-
tive function with respect to the parameters being optimized, 
while back-propagation is implemented for calculating the 
gradients [24, 29, 46]. Traditionally, people consider learn-
ing rate as a global hyper-parameter to be tuned. However, 
with less or no adaptiveness, the training is difficult to con-
verge and sensitive to the selection of learning rate. Train-
ing models with basic SGD algorithm usually requires a 
relatively long training time as well as carefully designed 
learning rate schedules [10, 18]. Rule-based adaptive opti-
mizers such as Adagrad, RMSProp and Adam achieve faster 
convergence speed in many scenarios, but their adaptation 
power is limited by the corresponding pre-designed updating 
rules [12, 26, 53].
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Thankfully, auto-differentiation provides a technique for 
updating hyper-parameters with gradient-descent methods [7, 
13]. This makes it possible for achieving learning rate adapta-
tion beyond manually designed methods. One example is hyper-
gradient descent [6], which introduced the global learning rate 
adaptation framework for gradient-based optimizers such as 
SGD and Adam. Their method is shown to be successful in 
improving the convergence speed for multiple optimizers, also 
it demonstrates that the way of using hyper-gradient gradient for 
learning rate adaptation is a promising technique for improving 
existing optimizers. However, their study did not further inves-
tigate the detailed structures of parameters and corresponding 
learning rates adaptation techniques in complex neural network 
architectures. This actually limits the potential of auto-differ-
entiation for learning rate adaptation. As is known, deep neural 
networks are composed of different levels of components such 
as blocks, layers and parameters, and it is reasonable to assume 
each component of the model is in favor of a specific learning 
rate in training. Thus, considering the detailed architectures of 
networks and exploring hyper-gradient descent for structured 
learning rate adaptation is a topic of interest and importance.

In this study, we propose a novel family of adaptive 
optimization algorithms based on the framework of hyper-
gradient descent. By considering the regular hierarchical 
structures of deep neural networks, we introduce hierarchical 
learning rate structures correspondingly, which enables flex-
ible and controllable learning rate adaptation. Meanwhile, to 
make the most of the gradient information from the training 
process, we apply both hyper-gradient descent method in 
multi-levels and the gradient-based updating of the combi-
nation weights of different levels. The main contribution of 
our study can be summarized as the following four points:

•	 We introduce hierarchical learning rate structures for 
neural networks and apply hyper-gradient descent to 
obtain adaptive learning rates at different levels.

•	 We introduce a set of regularization techniques for learn-
ing rates to address the balance of global and local adap-
tations and show the relationship with weighted combi-
nations.

•	 We propose an algorithm implementing trainable 
weighted combination of adaptive learning rates at mul-
tiple levels for model parameter updating.

•	 Two techniques including weighted approximation and 
clipping are introduced to guarantee the convergence of 
the proposed optimization methods in training.

•	 The experiments demonstrate that the proposed adapta-
tion method can improve the performance of correspond-
ing baseline optimizers in a variety of tasks with statisti-
cal significance.

The paper is organised as follows: Sect.  2 is a literature 
review of the related adaptive optimization algorithms in 

deep learning. Section  3 introduces the main idea of hyper-
gradient descent algorithm. Section  4 is a detailed explana-
tion of the proposed multi-level adaptation methods as well 
as a discussion on their convergence properties. Section  5 
is the main experimental part that compares the proposed 
algorithm with a set of baselines on several benchmark 
datasets. In Sect. 6 we provide a further discussion on the 
hyper-parameter settings, the learning behavior of combina-
tion weights, time and space complexity, etc. Section 7 is the 
conclusion of the whole paper.

2 � Literature review

Naïve gradient descent methods apply fixed learning rates 
without any adaptation mechanism. However, considering 
the change of available information during the learning 
process, SGD with fixed learning rates can result in slow 
convergence speed and requires a relatively large amount 
of computing resources in hyper-parameter searching. One 
solution is to introduce a learning rate adaptation rule, where 
“adaptation” means that the global or local learning rates 
or effective step sizes can be refined continuously during 
the training process in response to the change of inputs or 
other parameters. This idea can be traced back to the work 
on gain adaptation for connectionist learning methods [51] 
and related extensions for non-linear cases [48, 59]. In recent 
years, optimizers with adaptive updating rules were devel-
oped in the context of deep learning, while the hyper-param-
eter learning rates are still fixed in training. The proposed 
methods include AdaGrad [12], Adadelta [61], RMSProp 
[53], and Adam [26]. In these methods, pre-designed updat-
ing rules provide adaptive step-sizes for parameter updating. 
The most widely used one, Adam, is shown to be quite effec-
tive in speeding up the training, which computes individual 
adaptive learning rates for different parameters from esti-
mates of first and second moments of the gradients.

Convergence is an essential property for optimization 
algorithms. There are many optimizers aiming to address the 
convergence issue in Adam. For example, it is noticed that 
Adam does not converge to the optimal solution for some 
stochastic convex optimization problems, while AMSGrad 
is introduced as a substitute with a convergence garantee 
[43]. Adabound further applies dynamic bound for gradi-
ent methods and build a gradual transition between adaptive 
approach and SGD [36]. RAdam was proposed to rectify 
the variance of the adaptive learning rate [34]. Adabelief 
optimizer [64] can achieve fast convergence, good gen-
eralization and training stability by adapting the stepsize 
according to the “belief” in the current gradient direction. 
Other techniques, such as Lookahead, can also achieve vari-
ance reduction and stability improvement with negligible 
extra computational cost [62]. Some analysis of adaptive 
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optimizers in nonconvex stochastic optimization problems 
are provided in [60], which discovered that increasing mini-
batch sizes could circumvent the nonconvergence issues. In 
fact, through recent years, more studies with solid theoreti-
cal analysis are providing novel techniques and analyzing 
frameworks for the convergence of adaptive optimizers [1, 
9, 33, 54]. Moreover, to address the issue of large memory 
overheads for adaptive methods, memory-efficient adaptive 
optimization is developed, which could retains the benefits 
of standard per-parameter adaptivity [5].

Even though the adaptive optimizers with designed updat-
ing rules can converge faster than SGD in a wide range of 
tasks, the gradient information obtained during the training 
is not applied, while more hyper-parameters are introduced. 
Another idea is to use objective function information and 
update the learning rates as trainable parameters. These 
methods were introduced as automatic differentiation, where 
the hyper-parameters can be optimized with backpropaga-
tion [7, 38]. As gradient-based hyper-parameter optimization 
methods, they can be implemented as an online approach 
[16]. With the idea of auto-differentiation, learning rates can 
be updated in real-time with the corresponding derivatives 
of the empirical risk [2], which can be generated to all types 
of optimizers for deep neural networks [6]. Another step size 
adaptation approach called “L4”, is based on the linearized 
expansion of the objective functions, which rescales the 
gradient to make fixed predicted progress on the loss [45]. 
Meanwhile, layer-wise adaptation methods are also shown to 
be effective in accelerating the speed of large-batch training, 
which has been successfully applied in training large models 
or large datasets [57, 58].

Another set of approaches train an RNN (recurrent neural 
network) agent to generate the optimal learning rates in the 
next step given the historical training information, which is 
known as “learning to learn” [4]. It empirically outperforms 
hand-designed optimizers in a variety of learning tasks, but 
another study shows that it may not be effective for long 
horizon [37]. The generalization ability can be improved by 
using meta training samples and hierachical LSTMs (Long 
Short-Term Memory) [56]. Still there are studies focusing 
on incorporating domain knowledge with LSTM-based opti-
mizers to improve the performance in terms of efficacy and 
efficiency [17].

Beyond the adaptive learning rate, learning rate sched-
ules can also improve the convergence of optimizers, includ-
ing time-based decay, step decay, exponential decay [32]. 
The most fundamental and widely applied one is a piece-
wise step-decay learning rate schedule, which could vastly 
improve the convergence of SGD and even adaptive opti-
mizers [34, 36]. It can be further improved by introducing 
a statistical test to determine when to apply step-decay [28, 
63]. Also, there are works on warm-restart [35, 41], which 

could improve the performance of SGD anytime when train-
ing deep neural networks.

The limitations of existing optimization algorithms are 
mainly in the following two aspects: (a) The existing gradi-
ent or model-based learning rate adaptation methods includ-
ing hyper-gradient descent, L4 and learning to learn only 
focus on global adaptation. Meanwhile, some studies [57, 
58] show that updating rules with layer-wise adaptation is a 
promising technique for improving the convergence speed. 
Therefore, it is necessary to try to further extended adap-
tive optimizers to multi-level cases. (b) In the framework of 
hyper-gradient descent, no constraints or prior knowledge 
for learning rates are introduced, which limits its potential 
in balancing the local and global adaptiveness.

To tackle these limitations, our proposed algorithm is 
based on hyper-gradient descent but further introduce locally 
shared adaptive learning rates such as layer-wise, unit-wise 
and parameter-wise learning rates adaptation. Meanwhile, 
we introduce a set of regularization techniques for learning 
rates in order to balance the global and local adaptations.

3 � Hyper‑gradient descent

This section is dedicated to reviewing the auto-differentia-
tion and hyper-gradient descent with detailed explanation 
and math formulas. The study of hyper-gradient descent in 
[6] provides a re-discovery the work of [2], in which the gra-
dient with respect to the learning rate is calculated by using 
the updating rule of the model parameters in the last itera-
tion. The gradient descent updating rule for model parameter 
� can is given by Eq. (1):

Note that �t−1 = �t−2 − �∇f (�t−2) , the gradient of objec-
tive function with respect to the learning rate can then by 
calculated:

A whole learning rate updating rule can be written as:

In a more general prospective, assume that we have an 
updating rule for model parameters �t = u(�t−1, �t) . We need 
to update the value of �t towards the optimum value �∗

t
 that 

minimizes the expected value of the objective in the next 
iteration. The corresponding gradient can be written as:

(1)�t = �t−1 − �∇f (�t−1).

�f (�t−1)

��
= ∇f (�t−1) ⋅

�(�t−2 − �∇f (�t−2))

��
= ∇f (�t−1) ⋅ (−∇f (�t−2)).

�t = �t−1 − �
�f (�t−1)

��
= �t−1 + �∇f (�t−1) ⋅ ∇f (�t−2).

��[f (�t)]

��t
=

��[f ◦ u(�t−1, �t)]

��t
= �[∇�f (�t)

T∇�u(�t−1, �t)],
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where u(�t−1, �t) denotes the updating rule of a gradient 
descent method. Then the additive updating rule of learning 
rate �t can be written as:

where ∇̃𝜃f (𝜃t) is the noisy estimator of ∇�f (�t) . On the other 
hand, the multiplicative rule is given by:

These two types of updating rules can be implemented in 
any optimizers including SGD and Adam, denoted by cor-
responding �t = u(�t−1, �t).

4 � Multi‑level adaptation methods

Deep neural networks are composed of components in dif-
ferent levels, including blocks, layers, cell, neurons and 
parameters. It is natural to consider different parts in the 
hierarchical architectures are in favor of different learning 
rate in training. Based on hyper-gradient descent discussed 
in Sect. 3, and further motivated by the success of layer-wise 
adaptation methods in [57, 58], we further consider the hier-
archical structures of neural networks and introduce learning 
rate adaptation in different levels.

4.1 � Layer‑wise, unit‑wise and parameter‑wise 
adaptation

In the paper of hyper-descent [6], the learning rate is set 
to be a scalar. However, to make the most of learning rate 
adaptation for deep neural networks, we introduce updating 
rules in different levels of the network architectures, includ-
ing layer-wise or even parameter-wise updating rules, where 
the learning rate �t in each time step is considered to be a 
vector (layer-wise) or even a list of matrices (parameter-
wise). For the sake of simplicity, we collect all the learning 
rates in a vector: �t = (�1,… , �N)

T . Correspondingly, the 
objective f (�) is a function of � = (�1, �2,… , �N)

T , collect-
ing all the model parameters. In this case, the derivative of 
the objective function f with respect to each learning rate 
can be written as:

where N is the total number of all the model parameters. 
Eq. (2) can be generalized to group-wise updating, where 

𝛼t = 𝛼t−1 − 𝛽∇̃𝜃f (𝜃t−1)
T∇𝛼u(𝛩t−2, 𝛼t−1),

𝛼t = 𝛼t−1

(
1 − 𝛽

� ∇̃𝜃f (𝜃t−1)
T∇𝛼u(𝛩t−2, 𝛼t−1)

‖‖∇̃𝜃f (𝜃t−1)
‖‖‖‖∇𝛼u(𝛩t−2, 𝛼t−1)

‖‖

)
.

(2)

�f (�t−1)

��i,t−1
=

�f (�1,t−1,… , �i,t−1,… , �n,t−1)

��i,t−1

=

N∑

j=1

�f (�1,t−1,… , �i,t−1,… , �n,t−1)

��j,t−1

��j,t−1

��i,t−1
,

we associate a learning rate with a special group of param-
eters, and each parameter group is updated according to its 
only learning rate. Assume �t = u(� t−1, �) is the updating 
rule, where � t = {�s}

t
s=0

 and � is the learning rate, then 
the basic gradient descent method for each group i gives 
�i,t = u(� t−1, �i,t−1) = �i,t−1 − �i,t−1∇�i

f (�t−1) . Hence for 
gradient descent,

Here �i,t−1 is a scalar with index i at time step t − 1 , cor-
responding to the learning rate of the ith group, while the 
shape of ∇

�i
f (�) is the same as the shape of �i.

We particularly consider three special cases: (1) In layer-
wise adaptation, �i is the weight matrix of ith layer, and �i 
is the particular learning rate for this layer. (2) In param-
eter-wise adaptation, �i corresponds to a certain param-
eter involved in the model, which can be an element of the 
weight matrix in a certain layer. (3) We can also introduce 
unit-wise adaptation, where �i is the weight vector con-
nected to a certain neuron, corresponding to a column or 
a row of the weight matrix depending on whether it is the 
input or the output weight vector to the neuron concerned. 
[6] mentioned the case where the learning rate can be con-
sidered as a vector, which corresponds to layer-wise adapta-
tion in this paper.

4.2 � Regularization on learning rate

For the model involving a large number of learning rates for 
different groups of parameters, the updating for each learn-
ing rate only depends on a small number of examples. There-
fore, when the batch size is also not large, the updating will 
involve a lot of noise due to applying small random samples, 
while over-parameterization is an issue to be concerned.

To address this issue, our original idea is to apply regu-
larization on learning rates, where we introduce prior knowl-
edge and assume that the low level adaptive learning rates 
(e.g. parameter-wise learning rates) are distributed around 
the high-level ones (e.g. global learning rates). Different 
regularization terms can be implemented to control the flex-
ibility of learning rate adaptation and achieve the effect of 
variance reduction. First, for layer-wise adaptation, we can 
add the following regularization term to the cost function:

where l is the indices for each layer, �layer is the layer-wise 
regularization coefficient, �l and �g are the layer-wise and 
global-wise adaptive learning rates. A large �layer can push 
the learning rate of each layer towards the average learning 
rate across all the layers. In the extreme case, this will lead 

�f (�t−1)

��i,t−1
= ∇

�i
f (�t−1)

T∇�i,t−1
u(� t−1, �t) = −∇

�i
f (�t−1)

T∇
�i
f (�t−2).

Llr_reg_layer = �layer

∑

l

(�l − �g)
2,
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to very similar learning rates for all layers, and the algorithm 
will be reduced to that in [6].

In addition, we can also consider the case where three 
levels of learning rate adaptations are involved, including 
global-wise, layer-wise and parameter-wise adaptation. If 
we introduce two more regularization terms to control the 
variation of parameter-wise learning rate with respect to 
layer-wise learning rate and global learning rates, the regu-
larization loss can be written as:

where p represents the index of each parameter within each 
layer. The second and third terms are the regularization 
terms pushing each parameter-wise learning rate towards 
the layer-wise learning rate, and the term of pushing the 
parameter-wise learning rate towards the global learning 
rates, while �para_layer and �para_layer are the corresponding 
regularization coefficients.

With these regularisation terms, the flexibility and vari-
ances of learning rates at different levels can be neatly con-
trolled, while it can reduce to the basement case where a 
single learning rate for the whole model is used. In addition, 
there could still be one more regularization for improving 
the stability across different time steps, which can be used 
in the original hyper-descent algorithm where the learning 
rate in each time step is a scalar:

where �ts is the regularization coefficient to control the dif-
ference of learning rates between current step and the last 
step. With this term, the model with learning rate adaptation 
will be close to the model with fixed learning rate as large 
regularization coefficients are used. Thus, we can write the 
objective function of the full model as:

where Lmodel and Lmodel_reg are the loss and regularization 
cost of basement model. Llr_reg can be any among Llr_reg_layer , 
Llr_reg_unit and Llr_reg_para depending on the specific require-
ment of the learning task, while the corresponding regulari-
zation coefficients can be optimized with random search for 
several extra dimensions.

4.3 � Updating rules for learning rates

Considering these regularisation terms and take layer-wise 
adaptation for example, the gradient of the cost function 

(3)

Llr_reg_para = �layer

∑

l

(�l − �g)
2 + �para

∑

l

∑

p

(�pl − �g)
2

+ �para_layer

∑

l

∑

p

(�pl − �l)
2

Llr_reg_ts = �ts(�g,t − �g,t−1)
2,

Lfull = Lmodel + Lmodel_reg + Llr_reg + Llr_reg_ts,

with respect to a specific learning rate �l in layer l can be 
written as:

with the corresponding updating rule by naïve gradient 
descent:

The updating rule for other types of adaptation can be 
derived accordingly. Notice that the time step index of layer-
wise regularization term is t rather than t − 1 , which ensures 
that we push the layer-wise learning rates towards the cor-
responding global learning rates of the current step. If we 
assume

then Eq. (4) can be written as:

In Eq. (5), both sides include the term of �l,t , while the 
natural way to handle this is to solve for the close form of 
�t , which gives:

Equation (6) gives a close form solution but only applica-
ble in the two-levels case. When there are more levels, com-
ponents of learning rates at different levels can be interde-
pendent. Meanwhile, there is an extra hyper-parameter �layer 
to be tuned. To construct a workable updating scheme for 
Eq. (6), we replace �l,t and �g,t with their relevant approxi-
mations. We take the strategy of using their updated version 
without considering regularization, i.e.,

where hg,t−1 = −∇̃𝜃f (𝜃t−1)∇𝛼g,t−1
u(𝛩t−2, 𝛼g,t−1) is the global 

h for all parameters. We define 𝛼̂l,t and 𝛼̂g,t as the “virtual” 
layer-wise and global-wise learning rates, where “virtual” 
means they are calculated based on the equation without 
regularization, and we do not use them directly for model 
parameter updating. Instead, we only use them as intermedi-
ate variables for calculating the real layer-wise learning rate 
for model training.

𝜕Lfull(𝜃, 𝛼)

𝜕𝛼l,t
=

𝜕Lmodel(𝜃, 𝛼)

𝜕𝛼l,t
+

𝜕Llr_reg(𝜃, 𝛼)

𝜕𝛼l,t

= ∇̃𝜃l
f (𝜃t−1)∇𝛼l,t−1

u(𝛩t−2, 𝛼t−1) + 2𝜆layer(𝛼l,t − 𝛼g,t),

(4)�l,t = �l,t−1 − �
�Lfull

��l,t−1
.

hl,t−1 = −∇̃𝜃l
f (𝜃t−1)∇𝛼l,t−1

u(𝛩t−2, 𝛼l,t−1),

(5)�l,t = �l,t−1 − �(−hl,t−1 + 2�layer(�l,t − �g,t)).

(6)�l,t =
1

1 + 2��layer
[�l,t−1 + �(hl,t−1 + 2�layer�g,t)].

(7)𝛼̂l,t = 𝛼l,t−1 + 𝛽hl,t−1, 𝛼̂g,t = 𝛼g,t−1 + 𝛽hg,t−1

(8)
𝛼∗
l,t
= 𝛼l,t−1 + 𝛽hl,t−1 − 2𝛽𝜆layer(𝛼̂l,t − 𝛼̂g,t)

= (1 − 2𝛽𝜆layer)𝛼̂l,t + 2𝛽𝜆layer𝛼̂g,t.
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Notice that in Eq. (8), the first two terms is actually a 
weighted average of the layer-wise learning rate 𝛼̂l,t and 
global learning rate ̂̄𝛼l,t at the current time step. Since we 
hope to push the layer-wise learning rates towards the 
global one, the parameters should meet the constraint: 
0 < 2𝛽𝜆layer < 1 , and thus they can be optimized using 
hyper-parameter searching within a bounded interval. More-
over, gradient-based optimization on these hyper-parameters 
can also be applied. Hence both the layer-wise learning rates 
and the combination proportion of the local and global infor-
mation can be learned with back propagation. This can be 
done in online or mini-batch settings. The advantage is that 
the learning process may be in favor of taking more account 
of global information in some periods, and taking more local 
information in some other periods to achieve the best learn-
ing performance, which is not taken into consideration by 
existing learning adaptation approaches.

Now consider the difference between Eqs. (5) and (8):

Based on the setting of multi-level adaptation, on 
the right-hand side of Eq.  (9), global learning rate 
is updated without regularization 𝛼̂g,t = 𝛼g,t . For the 
layer-wise learning rates, the difference is given by 
𝛼̂l,t − 𝛼l,t = 2𝛽𝜆layer(𝛼l,t − 𝛼g,t) , which corresponds to the gra-
dient with respect to the regularization term. Thus, Eq. (9) 
can be rewritten as:

which is the error of the virtual approximation introduced in 
Eq.  (7). If 4𝛽2𝜆2

layer
<< 1 or �g,t

�l,t
→ 1 , this approximation 

becomes more accurate.
Another way for handling Eq. (5) is to use the learning 

rates for the last step in the regularization term.

S ince  we  have  𝛼l,t = 𝛼̂l,t − 2𝛽𝜆layer(𝛼l,t − 𝛼g,t) and 
𝛼̂l,t = 𝛼l,t−1 + 𝛽hl,t−1 , using the learning rates in the last step 
for regularization will introduce a higher variation from term 
�hl,t−1 , with respect to the true learning rates in the current 
step. Thus, we consider the proposed virtual approximation 
works better than last-step approximation.

Similar to the two-level’s case, for the three-level regu-
larization shown in Eq. (3), we have:

(9)𝛼∗
l,t
− 𝛼l,t = −2𝛽𝜆layer((𝛼̂l,t − 𝛼̂g,t) − (𝛼l,t − 𝛼g,t)).

�∗
l,t
− �l,t = −2��layer(2��layer(�l,t − �g,t)) = −4�2�2

layer

(
1 −

�g,t

�l,t

)
�l,t

�l,t ≈ �l,t−1 − �(−hl,t−1 + 2�layer(�l,t−1 − �g,t−1)).

𝜕Lfull(𝜃, 𝛼)

𝜕𝛼p,t
=

𝜕Lmodel(𝜃, 𝛼)

𝜕𝛼p,t
+

𝜕Llr_reg(𝛼)

𝜕𝛼p,t

= −∇̃𝜃l
f (𝜃t−1)∇𝜃l

u(𝛩t−2, 𝛼t−1)

+ 2𝜆2(𝛼p,t − 𝛼g,t) + 2𝜆3(𝛼p,t − 𝛼l,t)

For the sake of simple derivation, we denote �2 = �layer , 
and �3 = �para_layer for the regularization parameters in 
Eq. (3). The updating rule can be written as:

where we assume that 𝛼̂p,t , 𝛼̂l,t , 𝛼̂g,t are independent variables. 
Define

we still have � = �1�p + �2�l + �3�g with �1 + �2 + �3 = 1.
Therefore, in the case of three level learning rates adap-

tation, the regularization effect can still be considered as 
applying the weighted combination of different levels of 
learning rates. This conclusion is invariant of the signs in 
the absolute operators in Eq. (7). In general, we can organize 
all the learning rates in a tree structure. For example, in three 
level case above, �g will be the root node, while {�l} are the 
children node at level 1 of the tree and {�lp} are the children 
node of �l as leave nodes at level three of the tree. In a gen-
eral case, we assume there are L levels in the tree. Denote the 
set of all the paths from the root node to each of leave nodes 
as P and a path is denoted by p = {�1, �2,… , �L} where �1 
is the root node and �L is the leave node on the path. On this 
path, denote ancestors(i) all the acenstor nodes of �i along 
the path, i.e., ancestors(i) = {�1,… , �i−1} . We will construct 
a regularizer to push �i towards each of its parents. Then the 
regularization can be written as

Under this pair-wise L2 regularization, the updating rule 
for any leave node learning rate �L can be given by the fol-
lowing theorem

Theorem 1  Under virtual approximation, effect of adding 
pair-wise L2 regularization on different levels of adaptive 
learning rates Lreg =

∑n

i

∑n

j<i
𝜆ij‖𝛼i − 𝛼j‖22 is equal to per-

forming a weighted linear combination of virtual learning 
rates in different levels �∗ =

∑n

i
�i�i with 

∑n

i
�i = 1 , where 

each component �i is calculated by assuming there is no 
regularization.

Remarks: Theorem 1 actually suggests that the similar 
updating rule can be obtained for the learning rate at the 
any level on the path. All these have been demonstrated in 
Algorithm 1 for the three level case.

Proof  Consider the learning regularizer

𝛼p,t = 𝛼p,t−1 − 𝛽(hp + 2𝜆2(𝛼p,t − 𝛼g,t) + 2𝜆3(𝛼p,t − 𝛼l,t))

≈ 𝛼̂p,t(1 − 2𝛽𝜆2 − 2𝛽𝜆3) + 2𝛼̂l,t𝛽𝜆3 + 2𝛼̂g,t𝛽𝜆2

�1 = 1 − 2��2 − 2��3, �2 = 2��3, �3 = 2��2,

Llr_reg =
∑

p∈P

∑

�i∈p

∑

�j∈acenstors(i)

�ij(�i − �j)
2.
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To apply hyper-gradient descent method to update the 
learning rate �L at level L, we need to work the derivative of 
Llr_reg with respect to �L , the terms in (10) involving �L are 
only (�i − �j)

2 where �j is an ancestor on the path from the 
root to the leave node �L . Hence

As there are exactly L − 1 ancestors on the path, we can 
simply use the index j = 1, 2,… , L − 1 . The corresponding 
updating function for �n,t is:

where

This form satisfies 𝛼∗
L
=
∑L

j=1
𝛾j𝛼̂j with 

∑L

j=1
�j = 1 . This 

completes the proof. 	�  ◻

Therefore, by applying weighted linear combination 
of virtual learning rates in different levels as the effective 
learning rate for parameter updating, the effect of adding 
regularization on adaptive learning rates in Sect. 4.2 can 
be approximately achieved. The approximation error can be 
controlled by fixed parameters. This demonstrates that we 
can use a more convenient combination form to update the 
effective learning rates on leaves of the hierarchical model 
structures. Moreover, the combination form can be extended 
to the case of many levels.

4.4 � Prospective of learning rate combination

Motivated by the analytical derivation and corresponding 
discussion in Sect.  4.3, we can consider the combination 
of adaptive learning rates in different levels as a substitute 
of regularization on the differences of learning rates. As a 

(10)Llr_reg(�) =
∑

p∈P

∑

�i∈p

∑

�j∈parents(i)

�ij(�i − �j)
2.

𝜕Lfull(�, 𝛼)

𝜕𝛼L,t
=

𝜕Lmodel(�, 𝛼)

𝜕𝛼L,t
+

𝜕Llr_reg(𝛼)

𝜕𝛼L,t

= −∇̃
�L
f (�t−1)

T∇
�L
u(𝛩t−2, 𝛼t−1)

+
∑

𝛼j∈acenstors(L)

2𝜆Lj(𝛼L,t − 𝛼j,t).

𝛼L,t = 𝛼n,t−1 − 𝛽

(
hL +

L−1∑

j=1

2𝜆Lj(𝛼L,t − 𝛼j,t)

)

≈ 𝛼̂L,t

(
1 − 2𝛽

L−1∑

j=1

𝜆Lj𝛼n,t) +

L−1∑

j=1

(2𝛽𝜆Lj𝛼̂j,t)

)
=

L∑

j=1

𝛾j𝛼̂j,t.

�L = 1 − 2�

L−1∑

j=1

�Lj, �j = 2��Lj, for j = 1, 2,… , L − 1.

simple case, the combination of global-wise and layer-wise 
adaptive learning rates can be written as 𝛼t = 𝛾1𝛼̂l,t + 𝛾2𝛼̂g,t , 
where �1 + �2 = 1 and �1 ≥ 0 , �2 ≥ 0 . In a general form, 
assume that we have n levels, which could include global-
level, layer-level, unit-level and parameter-level, etc, we 
have:

In a more general form, we can implement non-linear 
models such as neural networks to model the final adaptive 
learning rates with respect of the learning rates in different 
levels. Then the function is given by

where � is the vector of parameters of the non-linear model. 
In this study, we treat the combination weights {�1,… , �n} 
as trainable parameters as demonstrated in Eq. (11). Figure 1 
gives an illustration of the linear combination of three-level 
hierarchical learning rates.

In fact, we only need these different levels of learn-
ing rate have a hierarchical relationship, which means the 
selection of component levels is not fixed. For example, in 
feed-forward neural networks, we can use parameter level, 
unit-level, layer level and global level. For recurrent neural 
networks, the corresponding layer level can either be the 
“layer of gate” within the cell structure such as LSTM and 
GRU, or the whole cell in a particular RNN layer. Especially, 
by “layer of gate” we mean the parameters in each gate of 
a cell structure share a same learning rate. Meanwhile, for 
convolutional neural network, we can further introduce 
“filter level” to replace layer-level if there is no clear layer 
structure, where the parameters in each filter will share a 
same learning rate.

As the real learning rates implemented in model param-
eter updating is a weighted combination, the corresponding 
Hessian matrices cannot be directly used for learning rate 
updating. If we take the gradients of the loss with respect to 
the combined learning rates, and use this to update the learn-
ing rate for each parameter, the procedure will be reduced to 
parameter-wise learning rate updating. To address this issue, 
we first break down the gradient by the combined learning 
rate to three levels, use each of them to update the learning 
rate at each level, and then calculate the combination by the 
updated learning rates. Especially, hp,t , hl,t and h(g, t) are 
calculated by the gradients of model losses without regu-
larization, as is shown in Eq.  (12).

(11)𝛼t =

n∑

i=1

𝛾i𝛼̂i,t.

𝛼t = g(𝛼̂1,t, 𝛼̂2,t ⋯ 𝛼̂n,t;𝜃)



3792	 International Journal of Machine Learning and Cybernetics (2022) 13:3785–3805

1 3

where ht =
∑

l hl,t =
∑

p hp,t and hl,t =
∑

p∈lth layer hp and 
f (�, �) corresponds to the model loss Lmodel(�, �) in 
Sect.  4.2.

Algorithm 1 is the full updating rules for the newly pro-
posed optimizer with three levels, which can be denoted as 
Combined Adaptive Multi-level Hyper-gradient Descent 
(CAM-HD).

(12)

hp,t =
�f (�, �)

��p,t
= −∇

�
f (�t−1, �)|p ⋅ ∇�u(� t−2, �)|p,

hl,t =
�f (�, �)

��l,t
= −tr(∇

�
f (�t−1, �)|Tl ∇�u(� t−2, �)|l),

hg,t =
�f (�, �)

��t
= −

n∑

l=1

tr(∇
�
f (�t−1, �)|Tl ∇�u(� t−2, �)l),

Algorithm 1: Updating rule of three-level CAM-HD
input: α0, β, δ, T
initialization: θ0, γ1,0, γ2,0, γ3,0, αp,0, αl,0,
α0, α∗

l,0 = γ1,0αp,0 + γ2,0αl,0 + γ3,0α0

for t ∈ 1, 2, ..., T do
gt = ∇θf(θ, α)
hp,t =

∂f(θ,α)
∂αp,t

= −∇θf(θt−1, α)|p · ∇αu(Θt−2, α)|p
hl,t =

∂f(θ,α)
∂αl,t

= −tr(∇θf(θt−1, α)|Tl ∇αu(Θt−2, α)|l)

hg,t =
∂f(θ,α)

∂αt
= −

∑n
l=1 tr(∇θf(θt−1, α)|Tl ∇αu(Θt−2, α))|l)

αp,t = αp,t−1 − βp
∂f(θt−1)
∂α∗

p,t−1

∂α∗
p,t−1

∂αp,t−1
= αp,t−1 − βpγ1,t−1hp,t

αl,t = αl,t−1 − βl
∑

p
∂f(θt−1)
∂α∗

p,t−1

∂α∗
p,t−1

∂αl,t−1
= αl,t−1 − βlγ2,t−1

∑
p hp,t =

αl,t−1 − βlγ2,t−1hl,t

αt = αt−1 − βg
∑

l

∑
p

∂f(θ)
∂α∗

p,t−1

∂α∗
p,t−1

∂αt−1
= αt−1 − βgγ3,t−1hg,t

α∗
p,t = γ1,t−1αp,t + γ2,t−1αl,t + γ3,t−1αt

γ1,t = γ1,t−1 − δ ∂L
∂γ1,t−1

= γ1,t−1 − δ
∑

p
∂L

∂α∗
p,t−1

∂α∗
p,t−1

∂γ1,t−1
=

γ1,t−1 − δαp,t−1
∑

p
∂L

∂α∗
p,t−1

γ2,t = γ2,t−1 − δ ∂L
∂γ2,t−1

= γ2,t−1 − δ
∑

p
∂L

∂α∗
p,t−1

∂α∗
p,t−1

∂γ2,t−1
=

γ1,t−1 − δαl,t−1
∑

p
∂L

∂α∗
p,t−1

γ3,t = γ3,t−1 − δ ∂L
∂γ3,t−1

= γ3,t−1 − δ
∑

p
∂L

∂α∗
p,t−1

∂α∗
p,t−1

∂γ3,t−1
=

γ3,t−1 − δαt−1
∑

p
∂L

∂α∗
p,t−1

γ1 = γ1/(γ1 + γ2 + γ3), γ2 = γ1/(γ1 + γ2 + γ3), γ3 = γ1/(γ1 + γ2 + γ3)
mt = φt(g1, ...gt)
Vt = ψt(g1, ...gt)
θt = θt−1 − α∗

p,tmt/
√
Vt

end
return θT , γ1,T , γ2,T , γ3,T , αp,T , αl,T , αT

�t(g1,… gt) = gt  a n d  �t(g1,… gt) = 1  ,  w h i l e 
f o r  A d a m ,  �t(g1,… gt) = (1 − �1)Σ

t
i=1

� t−1
1

gi  a n d 
�t(g1,… gt) = (1 − �2)diag(Σ

t
i=1

� t−1
2

g2
i
) . Notice that in 

each updating time step of Algorithm 1, we re-normalize 
the combination weights �1 , �2 and �3 to make sure that 
their summation is always 1 even after updating with sto-
chastic gradient-based methods. An alternative way of 
doing this is to implemented softmax, which require an 
extra set of intermediate variables cp , cl and cg following: 
�p = softmax(cp) = expcp ∕(expcp + expcl + expcg ) , etc. Then 
the updating of � s will be convert to the updating of c’s 
during training. In addition, the training of � ’s can also be 
extended to multi-level cases, which means we can have 
different combination weights in different layers. For the 

where we introduce the general form of gradient descent 
based optimizers [36, 44].

In Algorithm  1, we use the general form of gra-
dient descent based optimizers [36, 44]. For SGD, 

updating rates �p , �l and �g of the learning rates at different 
level, we set:

�p = np� = �, �l = nl�, �g = n�
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Although Algorithm 1 involves many updating steps 
with intermediate parameters, the time complexity does not 
increase in large scale, which will be further discussed in 
Sect. 6.4. In fact, the updating of intermediate variables in 
the algorithm does not involve the dimension of batch size. 
Meanwhile, only parameter-wise adaptation requires a pro-
portion of extra computational cost compared with stand-
ard back proportion, which can be avoided when layer-wise 
or cell-wise learning rates are applied as the lowest level 
adaptation.

4.5 � Convergence analysis

The proposed CMA-HD is not an independent optimiza-
tion method, which can be applied in any kinds of gradi-
ent-based updating rules. Its convergence properties highly 
depends on the base optimizer that is applied. By refer-
ring the discussion on convergence in [6], if we introduce 
�p,t = �(t)�∗

p,t
+ (1 − �(t))�∞ , where the function �(t) is 

selected to satisfy t�(t) → 0 as t → ∞ , and �∞ is a selected 
constant value. Then we demonstrate the convergence analy-
sis for the three level case in the following theorem, where 
∇p is the the gradient of target function w.r.t. a model param-
eter with index p, ∇l is the average gradient of target func-
tion w.r.t. a parameters in a layer with index l, and ∇g is the 
global average gradient of target function w.r.t. all model 
parameters.

Global

Layer-wiseparameter
-wise

Fig. 1   The diagram of a three-level learning rate combination. Here 
we consider three levels of adaptive learning rates, which are calcu-
lated by global-level, layer-level and parameter-level hyper-gradient 
descent with different grouping strategies. The final effective learn-

ing rate is a weighted combination of the three level adaptive learning 
rates, while the combination weights are also trainable during back-
propagation

where � is a shared parameter. This setting will make the 
updating steps of learning rates in different levels be in 
the same scale considering the difference in the number of 
parameters involved in hp,t , hl,t , hg,t . If we take average based 
on the number of parameters in Eq. (12) at first, this adjust-
ment is not required.

CAM-HD is a higher-level adaptation approach, which 
can be applied with any gradient-based updating rules and 
advanced adaptive optimizers. For example, if we apply 
CAM-HD for Adam optimizer, we have Adam-CAM-HD. 
Similarly, when we apply CAM-HD for SGDN, we have 
SGDN-CAM-HD. Further, it can be merged with Adabound 
by adding an element-wise clipping procedure [36]:

where �∗ is the final step-size by original CAM-HD, �l(t) and 
�u(t) are the lower and upper bounds in adabound. �t can be 
applied in replacing �∗

p,t
∕
√
Vt in our algorithm for merging 

two methods to so called “Adabound-CAM-HD”. In the 
experiment part, we will follow the original paper of Ada-
bound and related discussions to set �l(t) = 0.1 −

0.1

(1−�2)t+1
 

and �u(t) = 0.1 +
0.1

(1−�2)t
 for both Adabound and Adabound-

CAM-HD [36, 47]. As the effective parameter-wise updating 
rates and corresponding gradients may change after clipping, 
the updating rules for other variable should be adjusted 
accordingly.

(13)𝜂̂t = Clip
�
𝛼∗∕

√
Vt, 𝜂l(t), 𝜂u(t)

�
, 𝜂t = 𝜂̂t∕

√
t
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Theorem 2  (Convergence under mild assumptions about 
f) Suppose that f is convex and L-Lipschitz smooth with 
‖∇pf (𝜃)‖ < Mp , ‖∇lf (𝜃)‖ < Ml , ‖∇gf (𝜃)‖ < Mg for some 
fixed Mp , Ml , Mg and all � . Then �t → �∗ if 𝛼∞ < 1∕L 
where L is the Lipschitz constant for all the gradients and 
t ⋅ �(t) → 0 as t → ∞ , where the �t are generated according 
to (non-stochastic) gradient descent.

In the above theorem, ∇p is the gradient of target func-
tion w.r.t. a model parameter with index p, ∇l is the average 
gradient of target function w.r.t. parameters in a layer with 
index l, and ∇g is the global average gradient of target func-
tion w.r.t. all model parameters. The proof of this theorem 
is given as follows.

Proof  We take three-level’s case discussed in Sect. 4 for 
example, which includes global level, layer-level and 
parameter-level. Suppose that the target function f is con-
vex, L-Lipschitz smooth in all levels, which gives for all �1 
and �2:

and its gradient with respect to parameter-wise, layer-
wise, global-wise parameter groups satisfy ‖∇pf (𝜃)‖ < Mp , 
‖∇lf (𝜃)‖ < Ml , ‖∇gf (𝜃)‖ < Mg for some fixed Mp , Ml , Mg 
and all � . Then the effective combined learning rate for each 
parameter satisfies:

where �p,i refers to the value of parameter indexed by p at 
time step i, �l,i refers to the set/vector of parameters in layer 
with index l at time step i, and �g,i refers to the whole set of 
model parameters at time step i. In addition, np and nl are the 
total number of parameters and number of the layers, and we 

||∇p f (�1) − ∇p f (�2)|| ≤ Lp||�1 − �2||
||∇l f (�1) − ∇l f (�2)|| ≤ Ll||�1 − �2||
||∇g f (�1) − ∇g f (�2)|| ≤ Lg||�1 − �2||
L = max{Lp, Ll, Lg}

��∗
p,t
� = ��p,t−1�p,t + �l,t−1�l,t + �g,t−1�t�

≤ (�p,t−1 + �l,t−1 + �g,t−1)�0

+ �

t−1�

i=0

�
�p,t−1np max

p
{
����
∇f (�p,i+1)

T∇f (�p,i)
����
}

+�l,t−1nl max
l
{�∇f (�l,i+1)T∇f (�l,i)�} + �g,t−1�∇f (�g,i+1)T∇f (�g,i)�

�

≤ �0 + �

t−1�

i=0

�
�p,t−1np max

p
{
����
∇f (�p,i+1)‖‖∇f (�p,i)

����
}

+�l,t−1nl max
l
{‖∇f (�l,i+1)‖‖∇f (�l,i)‖} + �g,t−1‖∇f (�g,i+1)‖‖∇f (�g,i)‖

�

≤ �0 + t�(npM
2
p
+ nlM

2
l
+M2

g
)

have applied 0 < 𝛾p, 𝛾l, 𝛾g < 1 . This gives an upper bound for 
the learning rate in each particular time step, which is O(t) as 
t → ∞ . By introducing �p,t = �(t)�∗

p,t
+ (1 − �(t))�∞ , where 

the function �(t) is selected to satisfy t�(t) → 0 as t → ∞ , so 
we have �p,t → �∞ as t → ∞ . If 𝛼∞ <

1

L
 , for larger enough t, 

we have 1∕(L + 1) < 𝜅p,t < 1∕L , and the algorithm converges 
when the corresponding gradient-based optimizer converges 
for such a learning rate under our assumptions about f. This 
follows the discussion in [25, 50]. 	�  ◻

This actually provides a convergence of R(T) = O(T) 
given the assumptions and conditions, while a stronger con-
vergence can be achieved by assuming a more strict form of 
�(t) . Notice that when we introduce �p,t instead of �∗

p,t
 in 

Algorithm 1, the corresponding gradients �L(�)
��∗

p,t−1

 will also be 

replaced by �L(�)

��∗
p,t−1

��∗
p,t−1

��∗
p,t−1

=
�L(�)

��∗
p,t−1

�(t) . Beyond weighted 

approximation, clipping can also guarantee a convergence. 
One example is the Adabound-CAM-HD proposed in 
Sect.  4.4.

Theorem 3  (Convergence of Adabound-CAM-HD) Let {�t} 
and {Vt} be the sequences obtained from the modified Algo-
rithm 1 for Adabound-CAM-HD discussed in Sect. 4.4. The 
optimizer parameters in Adam satisfy �1 = �11 , �1t ≤ �1 for 
all t ∈ [T] and 𝛽1 <

√
𝛽2 . Suppose f is a convex target func-

tion on � , �l(t) and �u(t) are the lower and upper bound 
function applied in the clipping procedure, �u(t) ≤ R∞ and 
t

�l(t)
−

t−1

�u(t−1)
≤ M  fo r  a l l  t ∈ [T] .  A s sume  tha t 

||�1 − �2||∞ ≤ D∞ for all �1, �2 ∈ � and ||∇ft(�)|| ≤ G2 for 
all t ∈ [T] and � ∈ � . For �t generated using Adabound-
CA M - H D  a l g o r i t h m ,  t h e  re gre t  f u n c t i o n 

R(T) =
∑T

t=1
ft(�t) −min�∈�

∑T

t=1
ft(�) is upper bounded by 

O(
√
T) , which is given by:
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In general, the main ideas involved in the proof of con-
vergence of Adabound in [36] and [47] is also applicable 
for Adabound-CAM-HD. The main procedure can be given 
as follows.

•	 Let x∗ = argminx∈F
∑T

t−1
ft(x) , which exists since F  is 

closed and convex. Apply the projection relationship: 

 where �t is the effective updating rate at step t after clip-
ping and normalizing, while mt is the momentum at step 
t.

•	 Apply Lemma 1 in the original paper [36, 39] with 
u1 = xt+1 and u2 = x∗ to get the upper bound of 
||𝜂−1∕2 ⊙ (xt+1 − x∗)||2 , and further rearrange the 
corresponding inequality to get the upper bound of 
⟨gt, xt − x∗⟩ , with the auxiliary of Cauchy-Schwarz and 
Young’s inequality.

•	 Consider the standard approach of bounding the regret at 
each step using convexity of the functions ftTt=1 : 

•	 Find the upper bound of RT given by the summation of 
upper bounds of ⟨gt, xt − x∗⟩ with different step t, and 
further introduce the inequality relationships �1 = �11 , 
�1t ≤ �1 for all t ∈ [T] and 𝛽1 <

√
𝛽2 , bounding condi-

tions of �u(t) ≤ R∞ and t

�l(t)
−

t−1

�u(t−1)
≤ M , to get the final 

upper bound of RT in terms of R∞ , G∞ M and T.

In Adabound-CAM-HD, �t depends on the format of �∗ . If 
�∗ is a matrix for parameter-wise learning rate for a particu-
lar layer, �t should also be a matrix but clipped by a pair of 
global �u(t) and �l(t) at each time step t. Notice that in [36] 
with the code provided by github.com/Luolc/AdaBound, 
the clipping is also parameter-wise because in the clipping 
function 𝜂̂t = Clip(𝛼∕

√
Vt, 𝜂l(t), 𝜂u(t)) , the term �∕

√
Vt will 

generate a matrix with the same shape as the correspond-
ing parameter matrix in each layer, although the step size 
� is a scalar. Thus, the clipping on element-wise division 

RT ≤
D2

∞

2(1 − �1)

�
2dM

�√
T − 1

�
+

d�

i=1

�
�−1
1,i

+

T�

t=1

�1t�
−1
t,i

��

+ (2
√
T − 1)

R∞G
2
2

1 − �1
.

xt+1 = 𝛱F,diag(𝜂−1)(xt − 𝜂t ⊙ mt)

= min
x∈F

||𝜂−1∕2t ⊙ (x − (xt − 𝜂t ⊙ mt))||

RT =

T�

t=1

ft(xt) −min
x∈F

T�

t=1

ft(x)

=

T�

t=1

(ft(xt) − ft(x
∗)) ≤

T�

t=1

⟨gt, xt − x∗⟩

�∗∕
√
Vt  in Adabound-CAM-HD could achieve the same 

bounding properties. For example, if the scale is adjusted 
accordingly, the norm of �t satisfies 

√
t���t��∞ ≤ R∞ , which 

makes the Lemma 3 in [36] holds. Meanwhile, Lemma 1 
and Lemma 2 in the original paper can be directly applied 
as parameter �t , �∗ and mt have element-wise values in both 
contexts. Although in the proposed algorithm, we intro-
duced the hierarchical learning rate structure, for the model 
parameter, gradients and momentum, parameter-wise form 
has already been applied.

This ensures Adabound-CAM-HD achieves a high level 
of adaptiveness as well as a good convergence property. 
Notice that in the original version of the convergence theo-
rem of Adabound proposed in [36], the assumptions for 
upper and lower bound was given by 𝜂l(t + 1) ≥ 𝜂l(t) > 0 , 
𝜂u(t + 1) < 𝜂u(t) .  As t → ∞ ,  �l(t) → �∗ ,  �u(t) → �∗ . 
L∞ = �l(1) and R∞ = �u(1) . However, in [47], it is pointed 
out that this original assumption can only guarantee a con-
vergence of RT = O(T) , while it is recommended to suppose 
t

�l(t)
−

t−1

�u(t−1)
≤ M for all t ∈ [T] instead to guarantee a better 

convergence RT = O(
√
T).

Therefore, both weighted approximation and clipping can 
be applied to guarantee the convergence of optimizers with 
CAM. This means that CAM can safely achieve both high-
level parameter-specific adaptiveness and a good property of 
convergence, which gives it the potential of outperforming 
most of existing optimization algorithms. Meanwhile, it is 
compatible with any gradient based optimizers and network 
architectures.

5 � Experiments

We use the feed-forward neural network models and dif-
ferent types of convolutions neural networks on multiple 
benchmark datasets to compare with existing baseline opti-
mizers. For each learning task, the following optimizers will 
be applied: (a) standard baseline optimizers such as Adam 
and SGD; (b) hyper-gradient descent in [6]; (c) L4 stepsize 
adaptation for standard optimizers [45]; (d) Adabound opti-
mizer [36]; (e) RAdam optimizer [34]; and (f) the proposed 
adaptive combination of different levels of hyper-descent. 
The implementation of (b) is based on the code provided 
with the original paper. One NVIDIA Tesla V100 GPU 
with 16G Memory 61 GB RAM and two Intel Xeon 8 Core 
CPUs with 32 GB RAM are applied. The program is built 
in Python 3.5.1 and Pytorch 1.0 [49]. For each experiment, 
we provide both the average curves and standard error bars 
for ten runs.
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5.1 � Hyper‑parameter tuning

To compare the effect of CAM-HD with baseline opti-
mizers, we first do hyperparameter tuning for each learn-
ing task by referring to related papers [6, 26, 36, 45] as 
well as implementing an independent grid search [8, 13]. 
We mainly consider hyper-parameters including batch 
size, learning rate, and other optimizer parameters for 
models with different architectures. Other settings in our 
experiments follow open-source benchmark models. The 
search space for batch size is the set of {2n}n=3,…,9 , while 
the search space for learning rate, hyper-gradient updat-
ing rate and combination weight updating rate (CAM-HD-
lr) are {10−1, 10−2,… , 10−4} , {10−1, 10−2,… , 10−10} and 
{0.1, 0.03, 0.01, 0.003, 0.001, 0.0003, 0.0001} , respectively. 
The selection criterion is the 5-fold cross-validation loss 
by early-stopping at the patience of 3 [42]. The optimized 
hyper-parameters for the tasks in this paper are given in 
Table 1. For training ResNets with SGDN, we will apply 
a step-wise learning rate decay schedule as in [34, 36]. 
Notice that although the hyper-parameters are tuned, it does 
not mean that the model performance is sensitive to each 
hyper-parameter.

For training ResNets with SGDN, we will apply a step-
wise learning rate decay schedule as in [34, 36]. Notice that 
although the hyper-parameters are tuned, it does not mean 
that the model performance is sensitive to each of them.

5.2 � Combination ratio and model performances

First, we perform a study on the initialization of the combi-
nation weights different level learning rates in the framework 
of CAM-HD. The simulations are based on image classi-
fication tasks on MNIST and CIFAR10 [27, 30]. We use 
full training sets of MNIST and CIFAR10 for training and 
full test sets for validation. One feed-forward neural network 
with three hidden layers of size [100, 100, 100] and two 
convolutional network models, including LeNet-5 [31] and 
ResNet-18 [23], are implemented. In each case, two levels 
of learning rates are considered, which are the global and 
layer-wise adaptation for FFNN, and global and filter-wise 

adaptation for CNNs. For LeNet-5 and FFNN, Adam-
CAM-HD with fixed and trainable combination weights is 
implemented, while for ResNet-18, both Adam-CAM-HD 
and SGDN-CAM-HD with fixed and trainable combination 
weights are implemented in two independent simulations. 
We change the initialized combination weights of two lev-
els in each case to see the change of model performance in 
terms of test classification accuracy at epoch 30 for FFNN, 
and at epoch 10 for LeNet-5 and ResNet-18. Also we com-
pare CAM-HD methods with baseline Adam and SGDN 
methods in terms of test accuracy after the same epochs 
of training. Other hyper-parameters are optimized based on 
Sect. 5.1. We conduct 10 runs at each combination ratio and 
draw the average accuracies and corresponding error bars 
(standard errors). The result is given in Fig. 2,

which leads to the following findings: First, usually the 
optimal performance is neither at full global level nor full 
layer/filter level, but a weighted combination of two levels of 
adaptive learning rates, for both update and no-update cases. 
Second, CAM-HD methods outperform baseline Adam/
SGDN methods for most of the combination ratios initiali-
zations. Third, updating of combination weights is effective 
and helpful in achieving better performance than applying 
fixed combination weights. This supports our analysis in 
Sect. 4.3. Also, in real training processes, it is possible that 
the learning in favor of different combination weights in 
various stages and this requires the online adaptation of the 
combination weights.

5.3 � Feed forward neural network for image 
classification

This experiment is conducted with feed-forward neural net-
works for image classification on MNIST, including 60,000 
training examples and 10,000 test examples. We use the 
full training set for training and the full test set for vali-
dation. Three FFNN with three different hidden layer con-
figurations are implemented [14, 52], including [100, 100], 
[1000, 100], and [1000, 1000]. Adaptive optimizers includ-
ing Adam, Adabound, Adam-HD with two hyper-gradient 
updating rates, and proposed Adam-CAM-HD are applied. 

Table 1   Hyperparameter 
settings for experiments 
(learning rates: SGD/SGDN 
(lr1); Adam (lr2); Hyper-grad 
(SGD/SGDN): lr3; Hyper-grad 
lr (Adam): lr4; CAM-HD: lr5)

Architecture Dataset Batch size lr1 lr2 lr3 lr4 lr5

MLP 1 MNIST 32 – 0.0003 – 1.00E−07 0.01
MLP 2 64 – 0.001 – 1.00E−07 0.01
MLP 3 128 – 0.001 – 1.00E−07 0.01
LeNet-5 MNIST 256 – 0.001 1.00E−03 1.00E−08 0.03

CIFAR10 256 – 0.001 1.00E−03 1.00E−08 0.03
SVHN 128 – 0.001 1.00E−03 1.00E−08 0.03

ResNet-18 CIFAR10 256 0.1 0.001 1.00E−06 1.00E−08 0.001
ResNet-34 256 0.1 0.001 1.00E−06 1.00E−08 0.001
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For Adam-CAM-HD, we apply three-level parameter-
layer-global adaptation with initialization of �1 = �2 = 0.3 
and �3 = 0.4 , and two-level layer-global adaptation with 
�1 = �2 = 0.5 . No decay function of learning rates is applied.

Figure 3 shows the validation accuracy curves for dif-
ferent optimizers during the training process of 30 epochs. 
We can learn that both the two-level and three-level Adam-
CAM-HD outperform the baseline Adam optimizer with 
optimized hyper-parameters significantly. For Adam-HD, we 
find that the default hyper-gradient updating rate ( � = 10−7 ) 
for Adam applied in [6] is not optimal in our experiments, 
while an optimized one of 10−9 can outperform Adam but 
still worse than Adam-CAM-HD with � = 10−7.

The test accuracy of each setting and the corresponding 
standard error of the sample mean in 10 trials are given in 
Table 2.

5.4 � Lenet‑5 for image classification

The second experiment is done with LeNet-5, a classical 
convolutional neural network without involving many build-
ing and training tricks [31]. We compare a set of adaptive 
Adam optimizers including Adam, Adam-HD, Adam-CAM-
HD, Adabound, RAdam and L4 for the image classifica-
tion learning task of MNIST, CIFAR10 and SVHN [40]. 
For Adam-CAM-HD, we apply a two-level setting with 

Fig. 2   The diagram of model performances trained by Adam/SGDN-CAM-HD with different combination ratios in the case of two-level learn-
ing rates adaptation. The x-axis is the ratio of global-level adaptive learning rates. ResNet-18s are trained for 10 epochs only

Fig. 3   The comparison of learning curves of FFNN on MNIST with different adaptive optimizers

Table 2   Summary of test 
performances with FFNNs

The bold figure means the best performer

FFNN (100, 100) FFNN (1000, 100) FFNN (1000, 1000)

Test acc Test S.E Test acc Test S.E Test acc Test S.E

Adam-CAM-HD (3-level) 97.91 0.07 97.92 0.15 98.29 0.07
Adam-CAM-HD (2-level) 98.12 0.06 98.09 0.06 98.39 0.04
Adam-HD (hp-grad 1e−9) 97.86 0.07 97.19 0.26 97.83 0.12
Adam 97.93 0.09 97.48 0.14 97.49 0.11
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filter-wise and global learning rates adaptation and initialize 
�1 = 0.2 , �2 = 0.8 . We also implement an exponential decay 
function �(t) = exp(−rt) as was discussed in Sect. 4.5 with 
rate r = 0.002 for all the three datasets, while t is the number 
of iterations. For L4, we implement the recommended L4 
learning rate of 0.15. For Adabound and RAdam, we also 
apply the recommended hyper-parameters in the original 
papers. The other hyper-parameter settings are optimized 
in Sect. 5.1.

As we can see in Fig. 4, Adam-CAM-HD again shows 
the advantage over other methods in all the three sub-
experiments, except MNIST L4 that could perform better 
in a later stage. The experiment on SVHN indicates that the 
recommended hyper-parameters for L4 could fail in some 
cases with unstable accuracy curves. RAdam and Adabound 
outperform baseline Adam method on MNIST, while Adam-
HD does not show a significant advantage over Adam with 
optimized hyper-gradient updating rate that is shared with 
Adam-CAM-HD.

The corresponding summary of test performance is given 
in Table 3, in which the test accuracy of Adam-CAM-HD 
outperform other optimizers on both CIFAR10 and SVHN. 
Especially, it gives significantly better results than Adam and 
Adam-HD for all the three datasets.

5.5 � ResNet for image classification

In the third experiment, we apply ResNets for image clas-
sification task on CIFAR10 [11, 23] following the code 
provided by github.com/kuangliu/pytorch-cifar, where a 
ResNet-18 gives an accuracy of 93.02 with SGD and the 
cosine annealing learning rate schedule. We compare Adam 
and Adam-based adaptive optimizers, as well as SGD with 
Nestorov momentum (SGDN) and corresponding adaptive 
optimizers for training both ResNet-18 and ResNet-34. For 
SGDN methods, we apply a learning rate schedule, in which 
the learning rate is initialized to a default value of 0.1 and 
reduced to 0.01 or 10% (for SGDN-CAM-HD) after epoch 
150. The momentum is set to be 0.9 for all SGDN methods. 
For Adam-CAM-HD SGDN-CAM-HD, we apply two-level 
CAM-HD with the same setting as the second experiment. 
We also implement Adabound-CAM-HD discussed in 
Sect. 4.4 by sharing the common parameters with Adabound. 
In addition, we apply an exponential decay function with 
a decay rate r = 0.001 for all the CAM-HD methods. The 
learning curves for validation accuracy, training loss, and 
validation loss of ResNet-18 and ResNet-34 are shown in 
Fig. 5.

We can see that the validation accuracy of Adam-CAM-
HD reaches about 90% in 40 epochs and consistently 

Fig. 4   The comparison of learning curves of training LeNet-5 with different adaptive optimizers

Table 3   Summary of test 
performances with LeNet-5

The bold figure means the best performer

MNIST CIFAR10 SVHN

Test acc Test S.E Test acc Test S.E Test acc Test S.E

Adam-CAM-HD 98.93 0.07 65.55 0.18 87.58 0.37
Adam-HD 98.83 0.05 63.3 0.66 86.94 0.13
Adam-L4 99.19 0.05 63.76 0.26 85.44 0.42
Adabound 99.11 0.05 64.06 0.36 87.22 0.14
RAdam 98.94 0.06 63.91 0.34 87.31 0.41
Adam 98.89 0.05 63.88 0.45 86.82 0.16



3799International Journal of Machine Learning and Cybernetics (2022) 13:3785–3805	

1 3

outperforms Adam, L4 and Adam-HD optimizers in a later 
stage. The L4 optimizer with recommended hyper-parameter 
and an optimized weight-decay rate of 0.0005 (instead of 
1e-4 applied in other Adam-based optimizers) can outper-
form baseline Adam for both ResNet-18 and ResNet-34, 
while its training loss outperforms all other methods but 
with potential over-fitting. Adam-HD achieves a similar or 
better validation accuracy than Adam with an optimized 
hyper-gradient updating rate of 10−9 . RAdam performs 
slightly better than Adam-CAM-HD in terms of validation 
accuracy, but the validation cross-entropy of both RAdam 

and Adabound are outperformed by our method. Also, we 
find that in training ResNet-18/34, the validation accuracy 
and validation loss of SGDN-CAM-HD slightly outperform 
SGDN in most epochs even after the resetting of the learning 
rate at epoch 150.

The test performances (average accuracy and standard 
error) of different optimizers for ResNet-18 and ResNet-34 
after 200 epoch of training are shown in Table 4.1 We can 
learn that for both ResNet-18 and ResNet-34, the proposed 
CAM-HD methods (Adam-CAM-HD, Adabound-CAM-HD 
and SGDN-CAM-HD) can improve the corresponding base-
line methods (Adam, Adabound and SGDN) with statistical 
significance. Especially, Adabound-CAM-HD outperforms 
both Adam-CAM-HD and Adabound.

6 � Discussion

The experiments on both small models and large models 
demonstrate the advantage of the proposed method over 
baseline optimizers in terms of validation and test accu-
racy. One explanation of the performance improvement of 
our method is that it achieves a higher level of adaptation 

Fig. 5   The learning curves of training ResNet-18/34 on CIFAR10 with adaptive optimizers

Table 4   Summary of test performances with ResNet-18/34

ResNet-18 ResNet-34

Test acc. Test S.E. Test acc. Test S.E.

Adam 87.03 0.15 87.95 0.22
Adam-HD 87.26 0.35 88.48 0.48
Adabound 90.29 0.15 90.15 0.3
Radam 91.54 0.17 91.76 0.28
Adam-L4 87.81 0.22 88.02 0.15
Adam-CAM-HD 90.31 0.25 90.28 0.09
Adaboud-CAM-HD 90.49 0.31 91.12 0.23
SGDN 93.04 0.21 92.93 0.29
SGDN-CAM-HD 93.35 0.08 93.47 0.23

1  Here Adam-based methods achieve much lower test accuracies as 
we only apply learning rate schedules to SGDN and SGDN-CAM-
HD.
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by introducing hierarchical learning rate structures with 
learn-able combination weights, while the parameteriza-
tion level of adaptive learning rates is controlled by its 
intrinsic regularization effects. In addition, both weighted 
approximation and clipping can be applied to guarantee a 
convergence. In this section we discuss several aspects of 
our study, including hyper-parameter settings, learning of 
combination weights, number of parameters and space and 
time complexity.

6.1 � Performance and hyper‑parameter settings

Experiments show that the performance improvement does 
not require tuning the hyper-parameters independently if the 
task or model is similar. For example, the hyper-gradient 
updating rate for LeNet-5, ResNet-18 and ResNet-34 are all 
set to be 1e-8 in our experiments no matter the dataset being 
learned. Also, the hyper-parameter CAM-HD-lr is shared 
among each group of models (FFNNs, LeNet-5, ResNets) 
for all datasets being learned. For the combination ratio, 
�1 = 0.2 , �2 = 0.8 works for all our experiments with convo-
lutional networks. However, as the loss surface with respect 

to the combination weights may not be convex for deep 
learning models, the learning of combination weights may 
fall into local optimal. Therefore, it is possible that several 
trials are needed to find a good initialization of combination 
weights although the learning of combination weights works 
locally [13]. In general, the selected hyper-parameters are 
transferable to a similar task for an improvement from the 
corresponding baseline, while the optimal hyper-parameter 
setting may shift a bit.

The proposed CAM-HD method can also apply learning 
rate schedules in many ways to achieve further improvement. 
One example is our ResNet experiment on CIFAR10 with 
SGDN and SGDN-CAM-HD. For more advanced learning 
rate schedules [19, 28], we can apply strategies like piece-
wise adaptive scheme by re-initialize all the levels for differ-
ent steps. Another method is to replace global level learning 
rate with scheduled learning rate, while adapting the combi-
nation weights and other levels continuously.

Fig. 6   Learning curves of � s for FFNN on MNIST with Adam

Fig. 7   Learning curves of � s for LeNet-5 on MNIST with SGD, SGDN and Adam ( � = 0.002)
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6.2 � Learning of combination weights

The following figures including Figs. 6, 7, 8 and 10 give 
the learning curves of combination weights with respect to 
the number of training iterations in each experiments, in 
which each curve is averaged by 5 trials with error bars. 
Through these figures, we can compare the updating curves 
with different models, different datasets and different CAM-
HD optimizers.

Figure 6 corresponds to the experiment of FFNN on 
MNIST in Sect. 3.3 of the main paper, which is a three-
level case. We can see that for different FFNN architecture, 
the learning behaviors of � s also show different patterns, 
although trained on a same dataset. Meanwhile, the standard 
errors for multiple trials are much smaller relative to the 
changes of the average combination weight values.

Figure 7 corresponds to the learning curves of � s in 
the experiments of LeNet-5 for MNIST image classifica-
tion with SGD, SGDN and Adam, which are trained on 
10% of original training dataset. In addition, Fig. 8 corre-
sponds to the learning curves of � s in the experiments of 
LeNet-5 for CIFAR10 and SVHN image classification with 
Adam-CAM-HD.

As is shown in Fig. 7, for SGD-CAM-HD, SGDN-CAM-
HD and Adam-CAM-HD, the equilibrium values of com-
bination weights are different from each other. Although 
the initialization �1 = 0.2 , �2 = 0.8 and the updating rate 
� = 0.03 are set to be the same for the three optimizers, the 
values of �1 and �2 only change in a small proportion when 
training with Adam-CAM-HD, while the change is much 
more significant towards larger filter/layer-wise adaptation 
when SGD-CAM-HD or SGDN-CAM-HD is implemented. 
The numerical results show that for SGDN-CAM-HD, the 
average value of weight for layer-wise adaptation �1 jumps 

from 0.2 to 0.336 in the first epoch, then drop back to 0.324 
before keeping increasing till about 0.388. For Adam-
CAM-HD, the average �1 moves from 0.20 to 0.211 with 
about 5% change. In Fig. 8, both the two subplots are about 
LeNet-5 models trained with Adam-CAM-HD, while the 
exponential decay rate for weighted approximation is set to 
be � = 0.002 . For the updating curves in Fig. 8a, which is 
trained on CIFAR10 with Adam-CAM-HD, the combina-
tion weight for filter-wise adaptation moves from 0.20 to 
0.188. Meanwhile, for the updating curves in Fig. 8b, which 
is trained on SVHN, the combination weight for filter-wise 
adaptation moves from 0.20 to 0.195. Further exploration 
shows that � has an impact on the learning curves of combi-
nation weights. As is shown by Fig. 9, a smaller � = 0.001 
can result in a more significant change of combination 
weights during training with Adam-CAM-HD. The simi-
lar effect can also be observed from the learning curves of 
� s for ResNet-18, which is given in Fig. 10 and we only 
take the first 8000 iterations. Again, we find that in training 
ResNet-18 on CIFAR10, the combination weights of SGD/
SGDN-CAM-HD change much faster than that of Adam-
CAM-HD. There are several reasons for this effect: First, 
in the cases when � s do not move significantly, we apply 
Adam-CAM-HD, where the main learning rate (1e-3) is only 
about 1%-6% of the learning rate of SGD or SGDN (1e-1). 
In Algorithm 1, we can see that the updating rate of � s is 
in proportion of alpha given other terms unchanged. Thus, 
for the same tasks, if the same value of updating rate � is 
applied, the updating scale of � s for Adam-CAM-HD can be 
much smaller than that for SGDN-CAM-HD. Second, this 
does not mean that if we apply a much larger � for Adam-
CAM-HD, the combination weights will still not change 
significantly or the performance will not be improved. It 
simply means that using a small � can also achieve good 

Fig. 8   Learning curves of � s for LeNet-5 with Adam-CAM-HD on CIFAR10 and SVHN ( � = 0.002)
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performance due to the goodness of initialisation points. 
Third, it is possible that Adam requires lower level of com-
bination ratio adaptation for the same network architecture 
compared with SGD/SGDN due to the fact that Adam itself 
involves stronger adaptiveness.

6.3 � Number of parameters and space complexity

The proposed adaptive optimizer is for efficiently updating 
the model parameters, while the final model parameters will 
not be increase by introducing CMA-HD optimizer. How-
ever, during the training process, several extra intermedi-
ate variables are introduced. For example, in the discussed 
three-level’s case for feed-forward neural network with nlayer 
layers, we need to restore hp,t , hl,t and hg,t , which have the 
sizes of S(hp,t) =

∑nlayer−1

l=1
(nl + 1)nl+1 , S(hl,t) = nlayer and 

S(hg,t) = 1 , respectively, where ni is the number of units in 
ith layer. Also, learning rates �p,t , �l,t , �g,t and take the sizes 
of S(ap,t) =

∑nlayer−1

l=1
(nl + 1)nl+1 , S(al,t) = nlayer , S(ag,t) = 1 , 

S(ag,t) = 1 , and S(a∗
p,t
) =

∑nlayer−1

l=1
(nl + 1)nl+1 , respectively. 

Also we need a small set of scalar parameters to restore �1 , 
�2 and �3 and other coefficients.

Consider the fact that the training the baseline models, 
we need to restore model parameters, corresponding gradi-
ents, as well as the intermediate gradients during the imple-
mentation of chain rule, CAM-HD will take twice of the 
space for storing intermediate variables in the worst case. 
For two-level learning rate adaptation considering global 
and layer-wise learning rates, the extra space complexity 

Fig. 9   Learning curves of � s for LeNet-5 with Adam-CAM-HD on CIFAR10 and SVHN ( � = 0.001)

Fig. 10   Learning curves of � s for ResNet-18 with SGDN-CAM-HD and Adam-CAM-HD ( � = 0.001)
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by CAM-HD will be one to two orders’ smaller than that of 
baseline model during training.

6.4 � Time complexity

In CMA-HD, we need to calculate gradient of loss with 
respect to the learning rates in each level, which are hp,t , hl,t 
and hg,t in three-level’s case. However, the gradient of each 
parameter is already known during normal model training, 
the extra computational cost comes from taking summations 
and updating the lowest-level learning rates. In general, this 
cost is in linear relation with the number of differentiable 
parameters in the original models. Here we discuss the case 
of feed-forward networks and convolutional networks.

Recall that for feed-forward neural network the whole 
computational complexity is:

where m is the number of training examples, niter is the itera-
tions of training, nl is the number of units in the l-th layer. 
On the other hand, when using three-level CAM-HD with, 
where the lowest level is parameter-wise, we need nlayer ele-
ment products to calculate hp,t for all layers, one nlayer matrix 
element summations to calculate hl,t for all layers, as well as 
a list summation to calculate hg,t . In addition, two element-
wise summations will also be implemented for calculating 
�p,t and �∗

p
 . Therefore, the extra computational cost of using 

CAM-HD is ΔT(n) = O(mb ⋅ niter
∑nlayer

l=2
(nl ⋅ nl−1 + nl)) , 

where mb is the number of mini-batches for training. Notice 
that m∕mb is the batch size, which is usually larger than 
100. This extra cost is more than one-order smaller than the 
computation complexity of training a model without learn-
ing rate adaptation. For the cases when the lowest level is 
layer-wise, only one element-wise matrix product is needed 
in each layer to calculate hl,t . For convolutional neural net-
works, we have learned that the total time complexity of all 
convolutional layers is [22]:

where l is the index of a convolutional layer, and nconv_layer 
is the depth (number of convolutional layers). nl is the num-
ber of filters in the l-th layer, while nl−1 is known as the 
number of input channels of the l-th layer. sl is the spatial 
size of the filter. ml is the spatial size of the output fea-
ture map. If we consider convolutional filters as layers, 
the extra computational cost for CAM-HD in this case is 
ΔT(n) = O(mb ⋅ niter

∑nconv_layer

l=1
((nl−1 ⋅ s

2
l
+ 1) ⋅ nl)) , which is 

still more than one order smaller than the cost of model 
without learning rate adaptation.

(14)T(n) = O

(
m ⋅ niter ⋅

nlayer∑

l=2

nl ⋅ nl−1 ⋅ nl−2

)

(15)O

(
m ⋅ niter ⋅

nconv_layer∑

l=1

(nl−1 ⋅ s
2
l
⋅ nl ⋅ m

2
l
)

)

Therefore, for large networks, applying CMA-HD will 
not significantly increase the computational cost from the 
theoretical prospective.

7 � Conclusion

In this study, we propose a gradient-based learning rate 
adaptation strategy by introducing hierarchical learning 
rate structures in deep neural networks. By considering the 
relationship between regularization and the combination of 
adaptive learning rates in multiple levels, we further pro-
pose a joint algorithm for adaptively learning each level’s 
combination weight (CAM). It increases the adaptiveness 
of the hyper-gradient descent method in any single level, 
while over-parameterization involved in optimizers can be 
controlled by adaptive regularization effect. In addition, 
both weighted approximation and clipping can be applied 
to guarantee the convergence. The proposed CAM algorithm 
is compatible with any gradient based optimizers, learning 
rate schedules and network architectures. Experiments on 
FFNN, LeNet-5, and ResNet-18/34 show that the proposed 
methods can outperform the standard ADAM/SGDN and 
other baseline methods with statistical significance.
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