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Abstract
COVID-19 has resulted in a significant impact on individual lives, bringing a unique challenge for face retrieval under 
occlusion. In this paper, an occluded face retrieval method which consists of generator, discriminator, and deep hashing 
retrieval network is proposed for face retrieval in a large-scale face image dataset under variety of occlusion situations. In 
the proposed method, occluded face images are firstly reconstructed using a face inpainting model, in which the adversarial 
loss, reconstruction loss and hash bits loss are combined for training. With the trained model, hash codes of real face images 
and corresponding reconstructed face images are aimed to be as similar as possible. Then, a deep hashing retrieval network 
is used to generate compact similarity-preserving hashing codes using reconstructed face images for a better retrieval perfor-
mance. Experimental results show that the proposed method can successfully generate the reconstructed face images under 
occlusion. Meanwhile, the proposed deep hashing retrieval network achieves better retrieval performance for occluded face 
retrieval than existing state-of-the-art deep hashing retrieval methods.

Keywords Occlusion · Face retrieval · Inpainting · Generative adversarial

1 Introduction

As of this article date, because of the communicable disease 
(such as COVID-19) or other reasons, people always wear a 
mask, hat, or glasses outside. These items block most of the 
face information including eyes, nose, and mouth. Existing 

face retrieval and face recognition systems cannot perform 
well when encountering challenges such as large-pose vari-
ation, varying illumination, low resolution, different facial 
expressions, and occlusion [1]. Therefore, how to retrieve 
large-scale face images efficiently and accurately under 
occlusion has become a key problem in current human life 
and scientific research.

The previous work to improve the performance of face 
recognition under occlusion can be generally partitioned into 
three categories, i.e., occlusion robust feature extraction, 
occlusion aware face recognition, and occlusion reconstruct 
based face recognition. The occlusion robust feature extrac-
tion methods [2, 3] adopt the data augmentation method to 
expand the datasets, which alleviate the effect of face occlu-
sion. However, these methods are limited to some special 
occlusion situations in recognition, which means that they 
may not perform well under different occlusions. Another 
possible approach is to add a MaskNet [4] branch in the deep 
networks to better learn the facial feature representation of 
the unoccluded region. The MaskNet is used to assign higher 
weights to hidden units activated by the unoccluded regions. 
However, there is not enough supervision information to 
train the MaskNet and the outputs discriminability of middle 
convolutional layer is not enough. Similarly, a mask learn-
ing strategy [5] is proposed to build a mask dictionary that 

 * Xing Tian 
 shawntian123@gmail.com

 * Wing W. Y. Ng 
 wingng@ieee.org

 Yuxiang Yang 
 fotonyoung@gmail.com

 Ran Wang 
 wangran@szu.edu.cn

 Ying Gao 
 gaoying@scut.edu.cn

 Sam Kwong 
 cssamk@cityu.edu.hk

1 School of Computer Science and Engineering, South China 
University of Technology, Guangzhou 510006, China

2 College of Mathematics and Statistics, Shenzhen University, 
Shenzhen 518060, China

3 Department of Computer Science, City University of Hong 
Kong, Hongkong 999077, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s13042-022-01723-3&domain=pdf
http://orcid.org/0000-0003-0783-3585


1726 International Journal of Machine Learning and Cybernetics (2023) 14:1725–1738

1 3

corresponds between occluded regions and missing feature 
representation. The occlusion reconstruct based face recog-
nition method intends to recover a face without occlusion [6, 
7] to improve the performance of face recognition systems.

Face retrieval has been widely used in many application 
areas, such as surveillance, forensics and security. Given 
a query face image, the target of face retrieval task is to 
retrieve face images that are similar to it from a large-scale 
face image dataset. Hashing technique, as an advanced 
indexing technique, has been widely researched to handle 
this task due to its high retrieval efficiency and low space 
cost [8–13]. With compact hash codes generated for face 
images, similarities between face images can be evaluated 
efficiently based on the Hamming distances, which can be 
computed quickly by computers. Generally, feature extrac-
tion plays an importance role in the performance of most 
existing hashing methods. Traditionally, hand-craft visual 
features are employed for face images, such as HOG [14], 
LBP [15], GIST [16] and SIFT [17]. With the development 
of deep learning techniques for feature learning [18–20], 
some deep hashing methods are proposed to improve the 
efficiency and retrieval accuracy of hash learning, such as 
CNNH [21], DH [22], DSH [23], DSHSD [24], DPSH [25], 
Hashnet [26], and CSQ [27]. Because the retrieval perfor-
mance could be greatly improved by facial feature learning 
with deep neural network, many deep hashing networks have 
been proposed for face retrieval such as DDQH [28], DHCQ 
[29], DCBH [30], and DFH-GAN [31]. These methods 
achieve encouraging performance for face image retrieval. 
However, the retrieval performance has been greatly reduced 
because some of the face components are blocked under 
occlusions, which makes them fail to adapt to face retrieval 
problems in occlusion environments.

In this paper, we propose an effective occluded face 
retrieval method based on a deep generative model and 
hashing retrieval network, which decomposes the problem 
of face retrieval under partial occlusion into two stages: 
face inpainting and generated face retrieval. The occluded 
face images are reconstructed using a face inpainting model 
trained with a combination of adversarial loss, reconstruc-
tion loss and hash bits loss, which encourages the hash codes 
of the real face image and the reconstructed face image to 
be as close as possible. Major contributions of this work are 
summarized as follows: 

1. An occluded face retrieval framework is proposed for 
face retrieval under several occlusion situations, named 
Generative Face Inpainting Hashing (GFIH). To the best 
of our knowledge, GFIH is the first approach combining 
generative adversarial network and deep hashing net-
work to learn the hash codes for occluded face retrieval.

2. A joint loss function consisting of adversarial loss, 
reconstruction loss, and hash bits loss is proposed to 

encourage the generative model to reconstruct a similar-
ity-preserving face image without occlusion. This facili-
tates the hashing retrieval network to generate compact 
similarity-preserving hashing codes.

3. Six face occlusion image datasets are created to simu-
late six different face occlusion situations with different 
occlusion regions for face retrieval performance evalu-
ation. Quantitative experimental results show that GFIH 
obtains outstanding occluded face retrieval performance 
than other comparative methods.

The rest of this paper is organized as follows: Sect. 2 intro-
duces related works on existing face inpainting models and 
hashing-based face retrieval models. The proposed GFIH is 
introduced in Sect. 3. Experimental results are discussed in 
Sect. 4. Section 5 concludes our work in this paper.

2  Related work

In this section, two most related works to the proposed 
method are described briefly. Section 2.1 introduces the 
existing face inpainting models. The hashing-based retrieval 
models are introduced in Sect. 2.2.

2.1  Existing face inpainting models

Previous face inpainting models can generally be divided 
into two categories: Non-learning inpainting methods and 
Learning inpainting methods. The non-learning inpainting 
methods [32, 33] is traditional diffusion-based or patch-
based models with low-level features. The learning inpaint-
ing methods [34–36] reconstruct a face without occlusion 
by using deep learning and generative adversarial networks. 
Some previous face inpainting models use an autoencoder 
architecture to generate the occluded face region [6, 7]. Con-
text Encoders [6] firstly propose a deep learning method for 
image inpainting tasks, which employs a generative adver-
sarial network. The input occluded images are created by 
adding some masked region on the original normal images. 
This method can learn the feature representation of the 
occluded image and generate the coherent contents by opti-
mizing the adversarial loss. However, this method focuses 
more on unsupervised feature learning rather than image 
inpainting. It is no clear if the generated content can help 
improve the image retrieval network to learn the compact 
similarity-preserving hashing codes sufficiently.

An effective object completion algorithm is proposed in 
[7] using a deep generative model and a face parsing net-
work. Two adversarial loss functions are used to jointly 
train the autoencoder and discriminator. The first adversarial 
loss tried to help improve the generated content of occluded 
region more realistic. The second adversarial loss tries to 
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help improve the entire reconstructed image which consist of 
the generated content and unoccluded region of the original 
image more realistic. A face parsing network is proposed as 
an additional loss to regularize the generation procedure, 
which facilitates the generator to generate more reasonable 
and consistent face inpainting images. However, the perfor-
mance to generate a fine-detailed content is not well enough.

A high-resolution image inpainting method is proposed 
in [34] using a multi-scale neural patch synthesis approach, 
which jointly optimize the image contents and texture 
constraints. The output of context encoder is employed to 
generate a high-resolution image by gradually increasing 
texture details. However, the optimization in this method 
significantly increases computational costs. Partial convo-
lutions are used in [35] to help the convolution filters focus 
on the unoccluded regions. This approach renormalizes the 
convolution filter to be conditioned on only valid pixels by 
assigning the convolution weights with mask value. Edge-
Connect [36] decomposes the image inpainting problem into 
two stages: structure prediction and image completion. The 
image structure of the occluded regions is predicted to guide 
the image inpainting process. However, the EdgeConnect 
method tend to perform unsatisfactorily in generating con-
tents from highly textured areas and large occluded images. 
MAT [40] proposed a novel transformer-based model for 
large hole inpainting to efficiently process high-resolution 
images.

With the goal of achieving higher retrieval performance 
for occluded face retrieval by employing the reconstructed 
face images, an additional hash bits loss is proposed to 
encourage the hashing retrieval network to generate compact 
similarity-preserving hashing codes.

2.2  Hashing‑based retrieval models

Generally, deep hashing retrieval methods construct a hash 
function by incorporating a convolution neural network 
(CNN) model to learn the similarity-preserving feature rep-
resentation. Deep Supervised Hashing (DSH) [23] learns 
compact similarity-preserving hashing codes by using the 
deep feature representation extracted by convolution network 
of image pairs (similar/dissimilar) and the pairwise similar-
ity. Deep supervised hashing based on stable distribution 
(DSHSD) [24] is proposed to solve the problem of feature 
distribution changes caused by the quantization regularizer. 
A smooth projection is used to help improve the efficiency 
of the training convergence and make the output binary code 
preserve more similarity. Deep pairwise-supervised hash-
ing (DPSH) [25] proposes an end-to-end architecture which 
performs feature learning and hash-code learning simulta-
neously based on pairwise labels. Hashnet [26] proposes 
a novel deep architecture for hash code learning by con-
tinuation method with convergence guaranteed. It can learn 

exactly binary hash codes from imbalanced similarity data. 
The ill-posed gradient problem is solved by optimizing deep 
networks with non-smooth binary activations. In addition, 
a new global similarity metric, named as central similarity, 
is proposed in Central Similarity Quantization (CSQ) [27]. 
This metric is used to encourage hash codes of similar image 
pairs to approach a common center and encourage the dis-
similar image pairs to converge to different centers.

Many deep hashing networks have been proposed for 
face retrieval. DDQH [28] is proposed to capture the mul-
tiscale feature of face images for hashing codes learning. 
The feature representation is learned by fusing the output 
of the last convolutional layer and the last pooling layer. 
Another deep hashing face retrieval method, DHCQ [29] is 
proposed to retrieve scalable face images. A loss function 
consists of quantization error and prediction error is used to 
optimize the by capturing discriminative facial representa-
tions retrieve the discriminative facial feature learning. To 
solve the problems of inter-class similarities and intra-class 
variations, DCBH [30] is proposed to learn the robust and 
multi-scale feature representations. The center-clustering 
loss is used to encourage the face images of intra-class to 
approach a common center. Besides, a block hashing layer is 
used to reduce the number of parameters but also can gener-
ate the compact similarity-preserving hashing codes. DFH-
GAN [31] proposes a deep face hashing retrieval method 
combined with generative adversarial network. GAN is 
employed to generate fake images to augment the training 
dataset, so the hashing network can be trained from both real 
images and diverse synthesized images to learns compact 
binary hash codes. However, these hashing methods focus 
on normal images, which are not effective to handle the 
occluded face retrieval problem. Hence, we are motivated 
to propose the GFIH to combining generative adversarial 
network and deep hashing network to learn the hash codes 
for occluded face retrieval.

3  Generative face inpainting hashing

The proposed Generative Face Inpainting Hashing (GFIH) 
decomposes the problem of face retrieval under partial 
occlusion into two stages: face inpainting and hashing 
retrieval stages. The occluded face images are reconstructed 
using a face inpainting model firstly which consists of a loss 
function and two inpainting networks: generator and dis-
criminator. Then, a deep hashing retrieval network is used 
to perform the face retrieval using reconstructed face images 
from the previous stage for a better retrieval performance. 
Figure 1 shows an overview of the GFIH. The face inpaint-
ing network, the loss function, and the hashing retrieval net-
work of the GFIH will be described in Sects. 3.1, 3.2, and 
3.3 respectively.
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3.1  Face inpainting networks of GFIH

The generator in the face inpainting model is designed to 
inpaint the masked region in the occluded face image. The 
overall structure of the generator is an encoder-decoder pipe-
line, as shown in Fig. 1. Different from the original GAN 
model [37], the latent feature representation is used to gen-
erate new content instead of a random noise vector. The 
latent feature representation is extracted by the encoder with 
the input occluded face images. Then, the decoder recon-
structs the masked region using aforementioned feature 
representation.

Architectures of the discriminator and the encoder in the 
generator are similar to the architecture of discriminator in 
[6, 38], which is a series of four fractionally-stride convolu-
tional layers. Stride convolutional layers allow the network 
to learn its spatial upsampling by replacing the deterministic 
spatial pooling functions (such as maxpooling). The encoder 
features are projected to a small spatial extent convolution 
representation with many feature maps. Then, five upcon-
volution layers are employed to reconstruct the occluded 
region of face image from aforementioned high-level fea-
ture representation. The upconvolution layers is a series of 
transposed convolution which can be consider as upsampling 
followed by fractionally strided convolutions to reconstruct 
a higher resolution image. The rectified linear unit (ReLU) 
activation function is employed in the decoder, while leaky 
ReLU is employed in the encoder and discriminator. Batch 
normalization is employed to normalize the input of each 
unit to zero mean and variance.

Generally, there is an explosion problem of the number of 
network parameters when using the fully connected layers 
to connect the high-level feature representation and decoder. 
To solve this problem, channel-wise fully connected lay-
ers [6] are employed to propagate the information across 

feature maps by replacing the fully connected layers. Unlike 
fully connected layers, there are no parameters to connecting 
each feature map in the channel-wise fully connected lay-
ers, which is followed by a stride 1 convolution. Therefore, 
the number of parameters in a channel-wise fully connected 
layer is mn4 form feature maps of size n × n . Because of all 
the activations are directly connected to each other in the 
fully connected layers, the number of parameters in a fully 
connected layer is m2n4 form feature maps of size n × n . The 
number of parameters is significantly reduced, which help 
improve the efficiency of training model.

The occluded region of face image can be filled using 
the generator by minimizing the reconstruction errors, but 
the generator may only learn the rough shape of the unoc-
cluded region of face image, which will result in a fuzzy 
and rough generated content. To encourage the reconstructed 
face images to look realistic and coherent, a discriminator is 
employed to help improve the quality of generated details. 
The discriminator can be trained to distinguish the real face 
images and inpainting face images, while help improve the 
ability of generator to generate a face images that can fool 
the discriminator. This facilitates the face inpainting model 
to generate a more realistic face image without occlusion.

3.2  Loss function of inpainting networks

A joint loss consisting of adversarial loss, reconstruction 
loss and hash bits loss is proposed to learn parameters of 
both the generator and the discriminator in the inpainting 
model. The adversarial loss tries to make the reconstructed 
image more realistic and has the effect of matching the dis-
tribution of the reconstructed image with the distribution 
of the original face image. The reconstruction loss tries 
to help the generator learn the knowledge of the overall 
structure of the unoccluded region and keep the generated 

Fig. 1  Overview of the GFIH
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content consistent. The hash bits loss is a reflection of the 
Hamming distance between the hash codes of the recon-
structed face image and real face image. By optimizing 
the hash bits loss, it facilitates the network to generate a 
reconstructed face image whose hash code is similar to 
the real face image.

By using the discriminator, the adversarial loss is 
employed to measure the ability of the generator to fool 
the discriminator, and the ability of the discriminator to 
distinguish the real and fake face images. The adversarial 
loss of the proposed model is based on generative adver-
sarial networks. A generator G and a discriminator D are 
jointly trained in the GAN model. The discriminator D 
can provides loss gradients to generator G. The training 
process is a two-player game. The discriminator can be 
trained to distinguish the ground truth samples and the 
generated samples of generator G, while help improve the 
ability of generator G to generate the data pixels that can 
fool the discriminator D. The objective function for dis-
criminator is logistic likelihood, which indicates whether 
the input face image is real face or generated one:

where p data (x) and pz(z) denote distributions of real image 
and noise, respectively.

By employing this method, this face inpainting model is 
adopted for face inpainting by modeling generator. Let M 
be a binary mask corresponding to the occluded region of 
face image with a value of 1 for the occluded region and 0 
for unoccluded region. For each face image, the occluded 
region M ⊙ x is automatically generated for each face 
image to simulate face occlusion situations. The adver-
sarial loss Ladv is defined as:

where ⊙ and (1 −M)⊙ x denote the element-wise product 
operation and the distribution of face image with masked 
regions, respectively. During training, generator G and dis-
criminator D are optimized jointly using alternating SGD. 
This objective encourages the reconstructed face images to 
look realistic and coherent.

A reconstruction loss Lrec is another component of the 
joint loss function for generator, which is the L2 distance 
between the reconstructed face images and real face images:

Hash bits loss is employed to encourage the generator to 
generate a reconstructed face image xg = G((1 −M)⊙ x) 
whose hash code is close to the real face image. It is defined 
as:

(1)
min
G

max
D

Ex∼pdata(x)
[logD(x)] + Ez∼pz(z)

[log(1 − D(G(z)))]

(2)
Ladv = min

G
max
D

Ex∼p data (x)
[logD(x) + log(1 − D(G((1 −M)⊙ x)))]

(3)Lrec = ‖M ⊙ (x − G((1 −M)⊙ x))‖2
2

where h(⋅) and � denote the hash binary code of the images, 
and a weighting parameter that controls the strength of the 
regularizer, respectively. h(⋅) is generated by using a scaled 
tanh function tanh �z to binarized the feature representation 
into a K-bit binary hash code, which will be described in 
detail in Sect. 3.3. The first term encourages the hash codes 
of the reconstructed face image and corresponding original 
face image to be as close as possible. The second term is 
an additional regularizer to replace the binary constraints. 
Generally, a sigmoid or tanh function is used as a relaxation 
method to approximate the thresholding procedure. How-
ever, optimizing the generative network with these non-lin-
ear functions would cause the convergence of the network 
become difficult and slow [23]. To alleviate this problem, 
an additional regularizer is adopted to encourage the output 
values to approach the binary code in the hash bit loss.

The overall loss function, a combination of adversarial 
loss, reconstruction loss and hash bits loss, is defined as:

where �1, �2 and �3 are weights to balance the effects of 
different loss.

3.3  Hashing retrieval network

The proposed occluded face retrieval method focuses on the 
occluded face inpainting learning. By employing the recon-
structed face images, the deep hashing retrieval network is 
expected to achieve higher precision for face retrieval under 
occlusion. So, the original hash codes of the real face images 
directly influence the performance of the proposed occluded 
face retrieval method. Note that there are no limits on the 
method for learning the original hash codes of the real face 
images, which means that all existing hashing methods can 
be used. In this paper, Hashnet [26] is selected for binary 
hash codes learning in GFIH. Our proposed method first 
trains the Hashnet using real face image pairs and pairwise 
similarity to learn the similarity-preserving hash codes of 
real face images. Then, the trained Hashnet generates binary 
hash codes for newly coming inpainting face query images. 
By employing the computation of Hamming distances 
among hash codes of query images and real face images, 
GFIH return top k face images yielding the smallest Ham-
ming distance.

The architecture of Hashnet consists of a convolutional 
neural network and a fully connected hash layer, which 
accepts the pairwise input faces 

{(
xi, xj, sij

)}
 . The con-

volutional neural network is used to learn discriminative 
feature representations of each face image xi , and the fea-
ture representations are transformed into K dimensional 

(4)
Lh = ‖h(G((1 −M)⊙ x)) − h(x)‖2

2
+ 𝛼

�
‖h(G((1 −M)⊙ x)) − 1‖1

�

(5)L = �1Ladv + �2Lrec + �3Lh
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representation zi ∈ ℝ
k by the fully connected hash layer. 

Then the K dimensional representation zi is binarized into 
a K-bits binary hash code hi ∈ {−1, 1}k by an activation 
function hi = sign

(
zi
)
 . For a pair of face images xi and xj , 

let dist H
(
hi, hj

)
 be the Hamming distance between a pair 

of binary hash codes hi and hj , which is expected to pre-
serve the similarity among image pairs. Note that, there 
exists a relationship between distH

(
hi, hj

)
 and inner prod-

uct, distH
(
hi, hj

)
=

1

2

(
K −

⟨
hi, hj

⟩)
 . Therefore, inner product 

can be adopted to represent the similarity. Given the set of 
pairwise similarity S =

{
sij
}
 , the Weighted Maximum Like-

lihood (WML) estimation of the hash codes H = 
[
h1,… , hN

]
 

for all training points is defined as:

where P(S ∣ H) and wij denote the weighted likelihood func-
tion and the weight for each training pair 

(
xi, xj, sij

)
 , respec-

tively. To solve the data imbalance problem caused by the 
difference in the number of similar image pairs and dissimi-
lar image pairs, the wij is employed to assign the weights of 
the image pairs according to the importance of misclassify-
ing that pair. For a pair of hash codes hi and hj , P

(
sij ∣ hi, hj

)
 

is the conditional probability of pairwise similarity sij . The 
optimization problem of Hashnet is derived as:

where � and � denote the parameter of the feature learning 
model and the hyper-parameter of adaptive sigmoid func-
tion to control its bandwidth, respectively. By optimizing 
the WML estimation, the hashing network can learn exactly 
binary hash codes from imbalanced image pairs.

However, optimizing deep networks with sign activation 
may cause the gradient vanishing problem, which makes it 
difficult to optimize the network using the standard back-
propagation. There exists a relationship between the sign 

(6)logP(S ∣ H) =
∑

sij∈S

wij logP
(
sij ∣ hi, hj

)

(7)min
�

∑

sij∈S

wij

(
log

(
1 + exp

(
�
⟨
hi, hj

⟩))
− �sij

⟨
hi, hj

⟩)

function and the scaled tanh function in the concept of limit 
in mathematics: lim�→∞ tanh �z = sign(z) . According to this 
relationship, the scaled tanh function can be used to replace 
sign function to optimize the Hashnet. The learning proce-
dure starts with a smoothed activation function y = tanh �z . 
Then, increase the value of � to make the scaled tanh func-
tion approach to the original sign function. For face retrieval, 
there is a big difference in the number of intra-class face 
pairs and inter-class face pairs, so Hashnet is adopted to gen-
erate the compact similarity-preserving hashing codes using 
reconstructed face images for a better retrieval performance 
in the proposed method.

4  Experiments

4.1  Dataset and performance metric

Experiments are conducted on two datasets to evaluate the 
retrieval performance of the proposed method. The input to 
the face inpainting generator is an image with one or more 
masked regions. A masked region in the input occluded 
face image is filled with constant mean value. The masked 
region could be of any shape. Six different strategies are 
proposed here to simulate six different face occlusion situ-
ations in the actual environment, which consist of people 
wearing hat, glasses, mask, hat + glasses , glasses + mask 
and hat + mask . Among these situations, different key com-
ponents (e.g., eyes, nose, and mouth) that play an important 
role in retrieval performance are masked. The samples of six 
different occlusion situations in two datasets are shown in 
the second row of Fig. 2.

The CelebA [39] dataset is used to generate two datasets 
CelebA-1H and CelebA-1K. Each face image in CelebA 
dataset is cropped, roughly aligned by the position of two 
eyes, and rescaled to 128 × 128 × 3 pixels. The CelebA-1H 
dataset contains 2752 face images of 97 people, 1541 face 
images for training, 602 for validation and 609 for testing. 

Fig. 2  The face inpainting result of six different face occlusion situations on two datasets
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The CelebA-1K dataset contains 26963 face images of 954 
people, 15104 face images for training, 5921 for validation 
and 5938 for testing. The MFRD dataset contains 90,000 
face images without masks, 2203 face images with masks 
of 525 people. Different from CelebA-1H and CelebA-1K 
datasets, most of occluded face images in MFRD for test are 
real images in the wild.

The quality of generated face images plays an impor-
tant role in improving retrieval performance. Peak Signal 
to Noise Ratio (PSNR), Structural Similarity Index (SSIM) 
are used in this work to evaluate the quality of generated 
face images. We can well measure the similarity between the 
generated face and the original face at different levels using 
these quality metrics, the PSNR measure the pixel-level dif-
ference well, and SSIM measures the structure similarity of 
generated images to original ones.

The performance metric of face retrieval employed in this 
work is mean average precision (mAP). mAP is the mean 
of average precision (AP) of all query data, which amounts 
to the area under the precision-recall (PR) curve. An image 
retrieval network with higher mAP corresponds to a larger 
area under its PR curve, which means that it has a better 
retrieval performance. For an image dataset, the AP of every 
images are average to output a value to evaluate the retrieval 
performance of the entire dataset. Therefore, mAP is used to 
evaluate occluded face retrieval performance on the CelebA-
1h and CelebA-1k datasets.

The AP of n query data is defined as:

where F, k, Tk , and ΔTk denote the total number of samples 
in the database that have the same label with the query, the 
total number of returned samples, the number of returned 
samples which have the same label with the query among k 
returned samples, and the change in recall from item k − 1 
to k, respectively.

4.2  Performance for face inpainting

The generator of the proposed method is trained with the 
joint loss function defined in Equation 5 for the task of face 
inpainting under partial occlusion. By employing the recon-
structed face images, the deep hashing retrieval network 
is expected to achieve higher precision for occluded face 
retrieval. The deep hashing retrieval network is learned by 
exploiting a deep CNN model to extract appropriate feature 
representation for the real face images and then generate the 
hashing codes using the supervised information (similarity 
and dissimilarity) of image pairs. While the parameters of 
the hashing retrieval network are already learned and the 
binary hash codes for the real face images are already given, 

(8)AP =
1

F

n∑

k=1

Tk

k
ΔTk

they remain unchanged during the whole generator learning 
process. The default solver hyper-parameters �1, �2 and �3 
are set to be 0.8325, 0.1665 and 0,001 , respectively. And a 
higher learning rate is used for generator (10 times) to that 
of adversarial discriminator.

The face inpainting result of six different face occlusion 
situations on two datasets are shown in Fig. 2. The first row 
is the real face image in two datasets. In the second row, 
six different face occlusion situations are presented, which 
can simulate most of the face occlusion situations in the 
actual environment. The second row of each panel shows 
some results of the proposed method which are visually real-
istic and pleasing. The third row presents the correspond-
ing reconstructed face images using the proposed genera-
tive model. It can be seen that the inpainting face images 
look realistic and coherent. The occluded region is filled 
with generated content that fit well within the context. It 
shows that the inpainting results of the proposed method are 
encouraging regardless of the mask locations.

The quantitative evaluation results of the generated 
images are given in Table 1. PNSR and SSIM are calculated 
to evaluate the quality of generated face images. To evalu-
ate the effectiveness of our proposed inpainting method, the 
inpainting method Context Encoder (CE) [6] and MAT [40] 
are employed as a comparison method. As shown in Table 1, 
the proposed generative model in GFIH achieves a better 

Table 1  PSNR and SSIM comparisons of inpaining methods for Cel-
ebA-1H and CelebA-1K dataset

The bold font indicate the largest values in the corresponding column

Methods CELEBA-1H CELEBA-1K

PNSR SSIM PNSR SSIM

Hat CE [6] 24.056 0.851 24.207 0.858
MAT [40] 22.785 �.��� 24.719 �.���

GFIH ��.��� 0.863 ��.��� 0.866
Glasses CE [6] 29.581 0.945 29.719 0.949

MAT [40] 26.045 0.926 27.320 �.���

GFIH ��.��� �.��� ��.��� 0.950
Mask CE [6] 27.552 0.916 27.692 0.919

MAT [40] 25.102 0.905 27.301 �.���

GFIH ��.��� �.��� ��.��� 0.927
Hat + Glasses CE [6] 24.059 0.849 23.938 0.847

MAT [40] 23.287 �.��� 23.09 �.���

GFIH ��.��� 0.856 ��.��� 0.858
Glasses +Mask CE [6] 24.778 0.859 25.186 0.866

MAT [40] 24.503 �.��� 24.787 �.���

GFIH ��.��� 0.862 ��.��� 0.870
Hat +Mask CE [6] 24.052 0.838 24.535 0.845

MAT [40] 23.780 �.��� 23.926 �.���

GFIH ��.��� 0.849 ��.��� 0.855
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PNSR and SSIM results against CE in most of the compared 
experiments on both two datasets. However, compared to 
MAT, the SSIM results of MAT are better than GFIH, but 
GFIH achieves a better PNSR. In this paper, our goal is to 
retrieve face images under several occlusion situations, so 
further retrieval experimental result are given in Sect. 4.4 to 
compare the performance of these two inpainting methods 
for occluded face retrieval.

4.3  Comparison with state‑of‑the‑art hashing 
retrieval methods

To evaluate the retrieval performance of the proposed 
method, several deep hashing methods are compared 
including DSH [23], DSHSD [24], DPSH [25], Hashnet 
[26] and CSQ [27]. The mAP is calculated to evaluate the 
retrieval accuracy of the proposed method and these several 

Table 2  mAP comparisons 
of deep hashing methods for 
CelebA-1H and CelebA-1K 
dataset

The bold font indicate the largest values in the corresponding column

Methods CELEBA-1H CELEBA-1K

16bits 32bits 64bits 16bits 32bits 64bits 128bits

Hat DSH [23] 0.138 0.168 0.294 0.011 0.014 0.028 0.033
DSHSD [24] 0.152 0.288 0.352 0.005 0.013 0.013 −
DPSH [25] 0.143 0.150 0.172 0.013 0.021 0.040 0.045
CSQ [27] 0.076 0.163 0.185 − − 0.026 0.030
Hashnet [26] 0.087 0.138 0.210 0.023 0.040 0.071 0.090
GFIH �.��� �.��� �.��� �.��� �.��� �.��� �.���

Glasses DSH [23] 0.110 0.201 0.294 0.014 0.012 0.020 0.025
DSHSD [24] 0.173 0.198 0.209 0.004 0.010 0.007 −
DPSH [25] 0.141 0.290 0.311 0.028 0.045 0.103 0.105
CSQ [27] 0.119 0.286 0.358 − − 0.015 0.020
Hashnet [26] 0.195 0.257 0.350 0.027 0.060 0.106 0.149
GFIH �.��� �.��� �.��� �.��� �.��� �.��� �.���

Mask DSH [23] 0.117 0.142 0.409 0.026 0.020 0.029 0.035
DSHSD [24] 0.254 0.350 0.435 0.011 0.023 0.024 −
DPSH [25] 0.147 0.280 0.327 0.027 0.040 0.109 0.112
CSQ [27] 0.122 0.293 0.415 − − 0.017 0.160
Hashnet [26] 0.183 0.311 0.435 0.041 0.081 0.141 0.189
GFIH �.��� �.��� �.��� �.��� �.��� �.��� �.���

Hat + Glasses DSH [23] 0.0782 0.139 0.157 0.006 0.008 0.011 0.012
DSHSD [24] 0.086 0.135 0.150 0.003 0.005 0.006 −
DPSH [25] 0.083 0.141 0.160 0.015 0.021 0.053 0.055
CSQ [27] 0.067 0.133 0.166 − − 0.012 0.015
Hashnet [26] 0.084 0.127 0.162 0.017 0.026 0.046 0.056
GFIH �.��� �.��� �.��� �.��� �.��� �.��� �.���

Glasses +Mask DSH [23] 0.099 0.143 0.240 0.006 0.007 0.008 0.007
DSHSD [24] 0.136 0.169 0.179 0.005 0.009 0.009 −
DPSH [25] 0.121 0.210 0.254 0.022 0.031 0.079 0.071
CSQ [27] 0.083 0.252 0.317 − − 0.017 0.033
Hashnet [26] 0.171 0.214 0.281 0.025 0.043 0.065 0.079
GFIH �.��� �.��� �.��� �.��� �.��� �.��� �.���

Hat +Mask DSH [23] 0.0762 0.153 0.218 0.011 0.007 0.012 0.013
DSHSD [24] 0.085 0.139 0.150 0.002 0.004 0.006 −
DPSH [25] 0.065 0.082 0.158 0.011 0.012 0.031 0.036
CSQ [27] 0.097 0.151 0.163 − − 0.019 0.022
Hashnet [26] 0.080 0.128 0.164 0.019 0.020 0.032 0.042
GFIH �.��� �.��� �.��� �.��� �.��� �.��� �.���
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competitors. A set of experiments is conducted to confirm 
the effectiveness of the proposed method in six different 
occlusion situations. The results of the proposed method 
compared with existing hashing methods on two datasets 
are given in Table 2.

The third column of Table 2 reports the mAP results of 
the proposed method (labeled as GFIH) and existing hash-
ing methods using different hash bits length for CelebA-1H 
dataset, while the fourth column of Table 2 is for CelebaA-
1K dataset. It can be seen from Table 2 that the proposed 
method yields the best results against the state-of-the-art 
hashing retrieval methods in all occlusion situations, which 
means that the proposed method can achieve higher pre-
cision for occluded face retrieval by employing the recon-
structed face images. A combination of inpainting model and 
the Hashnet retrieval model enables the face retrieval model 
to perform better under different occlusion situations. More-
over, it can be seen that the mAP of the proposed method 
remains in a relatively stable and acceptable range under 
six different occlusion situations. This proves the effective-
ness of the proposed method under different occlusion situ-
ations, which can simulate most of the face occlusion situa-
tions in the actual environment. It also should be noted that 

the proposed method achieves a best retrieval performance 
under the occlusion situation that people wearing a mask 
among these six different occlusion situations. This may 
imply that the eyes and forehead region play an important 
role in face inpainting than other regions.

4.4  Comparison with other inpainting methods

For the same occlusion situation and deep hashing retrieval 
network, the occluded face and face reconstructed by the 
Context Encoder (CE) [6] and MAT [40] are compared to 
confirm the effectiveness of the proposed generative model. 
The proposed generative model architecture is similar to the 
CE model except the loss functions. Thus, the effectiveness 
of the joint loss can be evaluated by using the same deep 
hashing retrieval network.

The results of the proposed method compared with 
CE and MAT inpainting model on two datasets are given 
in Table 3. The third column of Table 3 reports the mAP 
results of combination of Hashnet and non-inpainting 
model, CE inpainting model, MAT inpainting model or 
GFIH inpainting model (labeled as Hashnet, CE+Hashnet, 
MAT+Hashnet and GFIH) using different hash bits length 

Table 3  mAP comparisons 
of inpainting methods for 
CelebA-1H and CelebA-1K 
dataset

The bold font indicate the largest values in the corresponding column

Methods CELEBA-1H CELEBA-1K

16bits 32bits 64bits 16bits 32bits 64bits 128bits

Hat Hashnet [26] 0.087 0.138 0.210 0.023 0.040 0.071 0.090
CE+Hashnet 0.219 0.334 0.415 0.036 0.093 0.162 0.226
MAT+Hashnet 0.222 0.348 0.409 0.033 0.086 0.159 0.225
GFIH �.��� �.��� �.��� �.��� �.��� �.��� �.���

Glasses Hashnet [26] 0.195 0.257 0.350 0.027 0.060 0.106 0.149
CE+Hashnet 0.267 0.414 0.519 0.043 0.115 0.184 0.258
MAT+Hashnet 0.239 0.395 0.500 0.039 0.108 0.173 0.252
GFIH �.��� �.��� �.��� �.��� �.��� �.��� �.���

Mask Hashnet [26] 0.183 0.311 0.435 0.041 0.081 0.141 0.189
CE+Hashnet 0.251 0.442 0.570 0.054 0.155 0.257 0.368
MAT+Hashnet 0.256 0.458 0.523 0.040 0.123 0.251 0.356
GFIH �.��� �.��� �.��� �.��� �.��� �.��� �.���

Hat + Glasses Hashnet [26] 0.084 0.127 0.162 0.017 0.026 0.046 0.056
CE+Hashnet 0.196 0.267 0.332 0.033 0.063 0.093 0.132
MAT+Hashnet 0.191 0.331 0.402 0.028 0.065 0.107 0.135
GFIH �.��� �.��� �.��� �.��� �.��� �.��� �.���

Glasses +Mask Hashnet [26] 0.171 0.214 0.281 0.025 0.043 0.065 0.079
CE+Hashnet 0.212 0.315 0.420 0.037 0.098 0.129 0.185
MAT+Hashnet 0.228 0.337 0.471 0.032 0.086 0.135 0.181
GFIH �.��� �.��� �.��� �.��� �.��� �.��� �.���

Hat +Mask Hashnet [26] 0.080 0.128 0.164 0.019 0.020 0.032 0.042
CE+Hashnet 0.179 0.283 0.383 0.038 0.097 0.172 0.248
MAT+Hashnet 0.213 0.351 0.430 0.030 0.083 0.163 0.232
GFIH �.��� �.��� �.��� �.��� �.��� �.��� �.���
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for Celeba-1h dataset, while the fourth column of Table 3 
is for Celeba-1k dataset. It can be seen from Table 3 that 
the proposed generative model achieves a better mAP in 
most of the compared experiments on both two datasets, 
which demonstrate the good performance of the proposed 
generative model in GFIH. This proves that the combina-
tion of adversarial loss, reconstruction loss and hash bits 
loss enable the GFIH to perform better than other inpainting 
model. The possible reason for this superior performance is 
that the proposed generative model help generate the recon-
structed face images whose hash code is closer to the real 
face image against other inpainting methods, so the deep 
hashing retrieval network can generate the compact simi-
larity-preserving hashing codes and achieve higher mAP by 
employing these reconstructed face images.

4.5  Comparison with other hashing methods 
adopted in GFIH

Note that there are no limits on the method for learning the 
original hash codes of the real face images, which means that 
existing hashing methods can also be employed. Therefore, sev-
eral deep hashing methods including DSH, DSHSD, DPSH, 
CSQ and Hashnet are adopted for illustration. The results of 
the models combining the proposed inpainting model and sev-
eral hashing methods (labeled as GFIH-DSH, GFIH-DSHSD, 
GFIH-DPSH, GFIH-CSQ, and GFIH) on two datasets are given 
in Table 4. It can be seen from Table 4 that the mAP of all com-
bined models remains in a relatively stable and acceptable range 
under six different occlusion situations, which proves that the 
proposed framework can achieve a better retrieval performance 
against occluded image using different hash retrieval models 

Table 4  mAP comparisons 
of combination of generator 
and deep hashing methods for 
CelebA-1H and CelebA-1K 
dataset

The bold font indicate the largest values in the corresponding column

Methods CELEBA-1H CELEBA-1K

16bits 32bits 64bits 16bits 32bits 64bits 128bits

Hat GFIH-DSH 0.194 0.356 0.443 0.023 0.031 0.043 0.050
GFIH-DSHSD 0.262 �.��� 0.408 0.015 0.025 0.034 −
GFIH-DPSH �.��� 0.280 0.306 0.031 0.06 0.101 0.107
GFIH-CSQ 0.160 0.286 0.416 − − 0.041 0.131
GFIH 0.242 0.351 0.431 �.��� �.��� �.��� �.���

Glasses GFIH-DSH 0.229 0.385 0.443 0.031 0.049 0.032 0.081
GFIH-DSHSD 0.302 0.385 0.457 0.014 0.028 0.035 −
GFIH-DPSH 0.211 0.349 0.458 0.039 0.072 0.130 0.142
GFIH-CSQ 0.232 0.355 0.529 − − 0.040 0.046
GFIH �.��� �.��� �.��� �.��� �.��� �.��� �.���

Mask GFIH-DSH 0.267 0.358 0.455 0.038 0.051 0.093 0.132
GFIH-DSHSD �.��� �.��� �.��� 0.023 0.052 0.060 −
GFIH-DPSH 0.213 0.361 0.472 0.037 0.069 0.137 0.151
GFIH-CSQ 0.228 0.396 0.551 − − 0.054 0.216
GFIH 0.276 0.489 0.579 �.��� �.��� �.��� �.���

Hat + Glasses GFIH-DSH 0.177 0.283 0.377 0.017 0.018 0.025 0.030
GFIH-DSHSD 0.187 0.243 0.270 0.007 0.011 0.017 −
GFIH-DPSH 0.189 0.260 0.316 0.033 0.057 0.105 0.103
GFIH-CSQ 0.152 0.263 �.��� − 0.031 0.038
GFIH �.��� �.��� 0.345 �.��� �.��� �.��� �.���

Glasses +Mask GFIH-DSH 0.210 0.325 0.410 0.019 0.020 0.024 0.029
GFIH-DSHSD 0.245 0.288 0.331 0.011 0.013 0.017 −
GFIH-DPSH 0.201 0.315 0.394 0.039 0.070 0.122 0.126
GFIH-CSQ 0.198 0.323 �.��� − − 0.031 0.039
GFIH �.��� �.��� 0.436 �.��� �.��� �.��� �.���

Hat +Mask GFIH-DSH �.��� 0.306 0.431 0.024 0.026 0.041 0.045
GFIH-DSHSD 0.193 0.302 0.321 0.009 0.017 0.022 −
GFIH-DPSH 0.168 0.268 0.361 0.033 0.058 0.118 0.118
GFIH-CSQ 0.161 0.303 0.415 − − 0.033 0.090
GFIH 0.198 �.��� �.��� �.��� �.��� �.��� �.���
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and is general enough to adopt other deep hashing retrieval 
model to replace the Hashnet for binary hash codes learning. 
Figure 3 presents the recall-precision curve of the proposed 
method, existing hashing methods, the combinations of the 
proposed inpainting model and several hashing methods with 
64-bit length hash codes under six different face occlusion 
situations on CelebA-1H dataset and Fig. 4 presents the recall-
precision curve of the above methods with 128-bit length hash 
codes under six different face occlusion situations on CelebA-
1K dataset. Compared to other methods, GFIH is proved to be 
efficient to balance the recall and precision while achieving 
higher recall and precision with the same code length under 
most of the occlusion situations in two datasets.

It can be concluded from Table  4 that the proposed 
method yields the best results against other combined 
retrieval methods in most occlusion situations of CelebA-
1H dataset and yields the best results against other combined 
retrieval methods in all occlusion situations of CelebA-1K 
dataset. This proves the effectiveness of the hashing retrieval 
methods selected in this paper.

The results in Table 4 also imply that the other combined 
method such as the combination of GFIH and DSH, DSHSD 

or CSQ achieves a much lower retrieval performance than the 
proposed method under most occlusion situations on CelebA-
1H dataset. The possible reason for this may be due to the 
increase of face categories, the amount of similar image pairs 
is much smaller than the amount of dissimilar image pairs 
in CelebA-1K dataset, which brings an imbalance problem 
between similar and dissimilar pairs in the face dataset. The 
data imbalance problem makes the similarity-preserving 
learning ineffective in these hashing methods. Because Hash-
net is designed to learn similarity from imbalanced similar-
ity relationships with a weighted pairwise cross-entropy loss 
function, GFIH can generate exactly binary hash codes and 
yield best retrieval performance on CelebA-1K dataset.

In summary, the proposed occluded face retrieval method 
achieves a superior performance comparing to other face 
inpainting models and non-inpainting models for face 
retrieval under occlusion. The proposed method employs a 
novel joint loss, which consists of adversarial loss, recon-
struction loss and hash bits loss. It encourages the genera-
tive model to reconstruct a reconstructed face image, which 
helps the hashing retrieval network generate the compact 
similarity-preserving hashing codes.

Fig. 3  The Recall-Precision curve under six different face occlusion situations on Celeba-1H dataset



1736 International Journal of Machine Learning and Cybernetics (2023) 14:1725–1738

1 3

4.6  Comparison with other methods on MFRD 
dataset

To validate the effectiveness of knowledge distillation under 
real occluded face situation, another dataset MFRD is con-
ducted to validate the effectiveness of GFIH against real 
mask face images. Most of occluded face images in MFRD 
for test are real images in the wild. Experimental results 
of the proposed GFIH in comparison to other methods on 

MFRD are given in Table 5. This proves the effectiveness of 
the proposed KDH for real occluded face retrieval.

The MAP comparison in Table 5 shows that face inpaint-
ing methods is effective to improves retrieval performance 
for real occluded faces retrieval. The occlusion reconstructed 
based face learning methods GFIH-DSH, GFIH-CSQ and 
GFIH yields superior results against the original DSH, CSQ, 
Hashnet models. Moreover, our proposed method outper-
forms other inpaing methods, which proves the effectiveness 
of the proposed GFIH for real occluded face retrieval.

5  Conclusion

In this paper, an occluded face hash retrieval method 
is proposed for face retrieval under several occlusion 
situations. The proposed model consists of generator, 
discriminator, and deep hashing retrieval network. By 
optimizing the objective function defined over adver-
sarial loss, reconstruction loss and hash bits loss, the 
learned generator model can generate the face images 
under occlusion and enhance the retrieval performance 
of occluded face retrieval by employing the recon-
structed face images.

Fig. 4  The Recall-Precision curve under six different face occlusion situations on Celeba-1K dataset

Table 5  mAP comparison on MFRD dataset

The bold font indicate the largest values in the corresponding column

Methods MFRD

32bits 64bits 128bits

DSH [23] 0.035 0.052 0.057
DSHSD [24] 0.008 0.010 0.010
DPSH [25] 0.003 0.003 0.004
CSQ [27] 0.007 0.008 0.015
Hashnet [26] 0.036 0.061 0.083
CE+Hashnet 0.115 0.259 0.351
MAT+Hashnet 0.135 0.226 0.359
GFIH-DSH 0.109 0.228 0.227
GFIH-CSQ 0.023 0.105 0.157
GFIH �.��� �.��� �.���
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Because the dataset of six different face occlusion situ-
ations is established by artificially adding masked region, 
it cannot fully simulate all the possible situations of face 
occlusion in the natural environment. Moreover, the 
position of occluded region in the nature is unknown in 
advance. In future work, the GFIH may be extended to an 
effective retrieval method for different occluded face situ-
ations in the wild, so the GFIH is capable of improving 
the occluded face retrieval performance in the practical 
environment.
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