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Abstract
Multi-classifier systems (MCSs) are some kind of predictive models that classify instances by combining the output of an 
ensemble of classifiers given in a pool. With the aim of enhancing the performance of MCSs, dynamic selection (DS) tech-
niques have been introduced and applied to MCSs. Dealing with each test sample classification, DS methods seek to perform 
the task of classifier selection so that only the most competent classifiers are selected. The principal subject regarding DS 
techniques is how the competence of classifiers corresponding to every new test sample classification task can be estimated. 
In traditional dynamic selection methods, for classifying an unknown test sample x, first, a local region of data that is similar 
to x is detected. Then, those classifiers that efficiently classify the data in the local region are also selected so as to perform 
the classification task for x. Therefore, the main effort of these methods is focused on one of the two following tasks: (i) to 
provide a measure for identifying a local region, or (ii) to provide a criterion for measuring the efficiency of classifiers in 
the local region (competence measure). This paper proposes a new version of dynamic selection techniques that does not 
follow the aforementioned approach. Our proposed method uses a multi-label classifier in the training phase to determine the 
appropriate set of classifiers directly (without applying any criterion such as a competence measure). In the generalization 
phase, the suggested method is employed efficiently so as to predict the appropriate set of classifiers for classifying the test 
sample x. It is remarkable that the suggested multi-label-based framework is the first method that uses multi-label classifica-
tion concepts for dynamic classifier selection. Unlike the existing meta-learning methods for dynamic ensemble selection 
in the literature, our proposed method is very simple to implement and does not need meta-features. As the experimental 
results indicate, the suggested technique produces a good performance in terms of both classification accuracy and simplicity 
which is fairly comparable with that of the benchmark DS techniques. The results of conducting the Quade non-parametric 
statistical test corroborate the clear dominance of the proposed method over the other benchmark methods.

Keywords  Multi-classifier systems (MCSs) · Dynamic selection (DS) · Competence measure · Multi-label classifiers

1  Introduction

Over the past decades, Multiple Classifier Systems (MCSs) 
that are essential tools to handle the task of combin-
ing diverse classifiers have been assessed and employed 
as powerful and applicable techniques to deal with chal-
lenges raised in diverse classification subjects [42]. In [18], 
an extensive and in-depth review of MCS-based methods 
was carried out in which quite a large number of ensemble 
learning techniques were closely and carefully examined in 
terms of their synthesis, variety, and dynamic updates. So 
far, by applying these systems, a large number of practical 
issues have been addressed [8], such as problems in face rec-
ognition [37], anomaly detection [21, 22], credit scoring [3], 
speech recognition [45, 47], recommender system [35, 36], 
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software bug prediction [1, 29], intrusion detection [2, 25, 
32] and remote sensing [14, 27, 31] as well as having been 
successfully used to tackle problems on changing environ-
ments [24]. In very recent years, new applications of MCSs 
have been explored regarding imbalanced data problems [6, 
16, 19, 43] and related biological datasets to handle disease 
detection problems such as COVID-19 diagnosis [10].

A greater number of DS methods are established based 
on the standard MCS mechanism. As shown in Fig. 1, the 
standard MCSs are composed of two major phases including 
training and generalization phases. In the training phase, a 
pool of classifiers is generated during the Generation step. 
The generalization phase consists of four steps as follows: 
local region definition (LR definition), competence level 
calculation (CL calculation), Selection, and Prediction. 
First, the local region is defined, and following this, the 
competence level of classifiers in the local region is com-
puted. Next, the classifiers with the high competence level 
are selected. Finally, a label is assigned to the input data 
based on the label predicted by the selected classifiers in the 
Selection step. Some DS methods focus on enhancing the 
performance corresponding to the standard steps of MCS 
mechanism. Overall Local Accuracy (OLA) [39], Dynamic 
Ensemble Selection Performance (DES-P) [39], K-Nearest 
Oracles Union (KNORA-U) and K-Nearest Oracles Elimi-
nate (KNORA-E) [23] are notable techniques that fall into 
this category. However, some other dynamic selection tech-
niques develop a deeper and more precise mechanism by 
adding new steps to Multiple-Classifier Behavior (MCB). As 
such, Dynamic ensemble selection-based metadata (META-
DES) [9] and Dynamic ensemble selection based on hesitant 
(DES-Hesitant) [13] are typical benchmark examples of such 
methods. A brief description of these techniques is presented 
in the Sect. 2.

The major focus of this paper is to investigate a general 
rule on which a selector is rested. In addition, a study of 
the customized rule of the most popular DS techniques 
is also included. A question then arises, “among all the 

possible rules, which one is the most appropriate to be 
applied to selectors”? This is the main question this paper 
tries to address. Apparently, it is a particularly complex 
issue to determine the proper rule for selectors. It is worth 
noting that many studies and researches have been con-
ducted on DS techniques to resolve this problem and in 
fact, each of the previously presented rules is set through 
trial and error or by performing experiments on different 
datasets.

This paper offers a novel perspective on the aforemen-
tioned question that is not based on conducting search opera-
tions and enacting strict rules. Moreover, it proposes that no 
rule should be considered the most proper one for selectors. 
In specific, the following procedure is set out in this paper 
to achieve an effective and practical solution to the aforesaid 
question:

–	 the selector is a black box whose output is a list of appro-
priate classifiers for each input data x;

–	 theoretically, a classifier c is appropriate for the datapoint 
x if it can classify x correctly;

–	 considering the previous item, a list of appropriate clas-
sifiers for each training data is available;

–	 therefore, the mentioned black box is a “classifier” and 
its output is specified on the training data;

–	 specifically, it is apparent that many DES methods obey 
the general Rule 1. 

Rule 1:	 “If a classifier c is efficient in classifying 
the data positioned in a local region (i.e., the data 
that are similar to x), then c is an appropriate selec-
tion to perform the classification task for x.”

	    For instance, the three techniques KNORA-E, 
KNORA-U, and OLA have customized this rule as fol-
lows.

	   KNORA-E: If the classifier c is able to classify 
at least one of the K data points that are nearest to x 
correctly, then it is a proper selection to carry out the 
classification task for x.
KNORA-U: If the classifier c is able to classify all the 
K data points that are the closest ones to x correctly, 
then it is an appropriate selection to perform the clas-
sification task for x.
OLA: The classifier which achieves the highest accu-
racy at the K data points that are closest to x is a proper 
selection to carry out the classification task for x.

–	 The mechanism of the proposed method is free of using 
the above rule since DES-ML interprets the classifier 
selection step as a multi-label problem in which multi-
label classifiers are employed to select the appropriate 
classifiers.

Fig. 1   The main stages of a typical sector in a multiple-classifier sys-
tem
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Specifically, this article introduces a new DS technique, 
DES-ML, that employs the potential of a multi-label classi-
fier so as to determine the appropriate classifiers for ensem-
ble problems. The advantages and contributions of “DES-
ML” are as follows.

–	 The key idea is an unprecedented DS technique formed 
on the multi-label classification technique suggested for 
ensemble problems.

–	 The suggested framework can perform the classifier 
selection task during the testing phase in a dynamic man-
ner by employing a multi-label classifier trained in the 
training phase.

–	 The trained multi-label classifier focuses on the pool and 
directly picks the proper classifiers from it so that there 
is no need to define the local region and the competence 
measure as it is required to use these concepts in some 
other approaches such as traditional dynamic selection 
methods.

–	 Despite meta-learning techniques that use meta-features 
for training a traditional classifier, the process of training 
a multi-label classifier is performed directly via training 
samples.

–	 DES-ML is simple in implementation and its generaliza-
tion phase is very fast and inexpensive.

This paper is structured as follows. Section 2 includes a 
stigmatization of the research background including a brief 
review of multi-classifier systems. Section 3 provides a 
detailed review of the works that form a background of the 
proposed method. In Sect. 4, the proposed DS technique and 
its mechanism are discussed. A number of experiments are 
performed in Sect. 5. Section 6 presents the conclusions.

2 � Related works

Generally, there are two frameworks to perform classifi-
cation tasks, Single Classifier System (SCS) and Multiple 
Classifier System (MCS). In the following, these frameworks 
are reviewed and their steps are described in detail.

2.1 � The framework of Single Classifier Systems 
(SCSs) and Multiple Classifier Systems (MCSs)

Figure 2 shows the preparation process and some parts of 
an SCS. It can be seen from this figure that the classifier c is 
trained in the generation stage, then it is applied to predict 
the label of the input data of SCS.

Moving to Fig. 3, it is crystal clear that an MCS is com-
posed of two parts, a pool, and a predictor. Typically, the 
pool contains several classifiers, and the label provided by 
every element in the pool is passed to the predictor as its 

input. Normally, the predictor is a decision fusion function 
such as majority voting.

Similar to SCSs, the preparing process in MCSs consists 
of the generation stage, however, instead of producing a 
single classifier, MCSs generate more than one classifier 
as illustrated in Fig. 3. In order to create a pool including 
accurate and diverse classifiers to achieve high MCS perfor-
mance, various techniques such as different training sets, dif-
ferent feature sets, and different classifier models are utilized 
in the generation stage [8].

–	 Different training sets: In this method, the training data is 
divided into several subsets and each classifier is trained 
on one of these subsets. It is a powerful and popular 
method and many MCSs such as bagging [33] and Ada-
Boost [15] have used this method.

–	 Different feature sets: In this method, a number of dis-
tinct representations of the data are prepared and each 
classifier is trained on one of these representations. In 

Fig. 2   Diagrammatic scheme of some parts of single classifier sys-
tems including the preparing stage

Fig. 3   Diagrammatic scheme of some parts of multiple classifier sys-
tems including the preparing stage
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other words, each classifier is trained on a different fea-
ture set. Gupta et al. have recently employed this method 
[11].

–	 Different classifier models: In this method, the training 
data is the same for all classifiers, however, varied types 
of classifiers, such as decision trees and SVM, are gener-
ated. Those MCSs that use this method are called hetero-
geneous. Recently, Tewari and Dwivedi [38] conducted 
a comparative study on such systems.

Figure 4 shows a more advanced type of MCSs. In such 
types of systems, the outputs of the generation stage are 
pruned. The techniques that are used in the pruning step 
are known as static selection techniques. Margineantu et al. 
proposed this method in [28].

A more complete version of the MCS, illustrated in 
Fig. 5, includes another key part called a selector. A selec-
tor is responsible for the task through which the appropriate 
classifiers are selected. Dynamic selection (DS) techniques 
on which the selectors’ mechanism is based normally select 
the appropriate classifiers in three steps: local region defini-
tion, competence level calculation, and selection. To be more 

specific, in the local region definition step, those pieces of 
data that are much the same as the original data are deter-
mined. In the next step, the classifiers’ performance is com-
puted in the local region. Finally, in the last step, the best 
classifiers are picked as the selector’s output. Typically, two 
approaches are commonplace in the selection step, dynamic 
classifier selection (DCS) and dynamic ensemble selection 
(DES). In particular, DCS techniques select a single clas-
sifier only, which is the most proper classifier among the 
nominated ones, while DES methods determine a set of 
well-suited classifiers rather than choosing only a single one. 
It should be noted that from the perspective of the selection 
procedure, DS methods can be grouped into DCS and DES 
categories.

Since DS techniques have shown a favorable performance 
in classification problems, a variety of these techniques have 
been utilized by very many researchers in recent years. As 
such, K-Nearest Oracles Union (KNORA-U) [23], K-Near-
est Oracles Eliminate (KNORA-E) [23], DES Performance 
(DES-P) [39], Overall Local Accuracy (OLA) [39] and 
Multiple-Classifier Behavior (MCB) [17] can be mentioned.

In the following, a detailed description of MCSs and the 
mechanism of selectors are provided and some applications 
of MCSs are described.

–	 Original pool: This pool consists of those classifiers 
that have been provided during the preparation process. 
For the sake of brevity, the MCS preparation process in 
Fig. 5 is supposed to be the same as that of typical MCSs. 
Nonetheless, it can have a pruning stage similar to the 
system illustrated in Fig. 4.

–	 Selector: The selector has two inputs: a set of classifi-
ers and the input data. The selector has a duty to select 
the appropriate classifiers to classify the input data. The 
techniques used in the selector are known as dynamic 
selection techniques. It should be noted that a selector is 
the major part of an MCS.

–	 Dynamic pool: The selected classifiers are placed in the 
dynamic pool. The elements of this pool are changed for 
each input data. For this reason, it is called the “dynamic 
pool”.

–	 Predictor: Similar to what is done in the other types of 
MCSs, a function such as a majority voting is employed 
to determine the final label of the input data.

Then, the task of the appropriate classifiers selection is 
carried out by making use of a DS technique. In general, 
given a new sample x in the testing phase, the mechanism 
of DS techniques to perform the classification task for x is 
based on Rule 1. Therefore, each DS technique consists of 
three basic steps. Step 1: To find the data similar to the test 
sample. This step is known as defining the local region in 
the literature. Step 2: To use criteria such as accuracy so 

Fig. 4   Diagrammatic scheme of some parts of multiple classifier sys-
tems including the preparing stage when the static selection technique 
is applied

Fig. 5   Diagrammatic scheme of some parts of multiple classifier sys-
tems including the preparing stage when the dynamic selection tech-
nique is used
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as to compute the competence level for each classifier with 
respect to the local region. More details on these two steps 
are provided in Sects. 2.2 and 2.3. Step 3: Lastly, among all 
classifiers, the ones whose performance is favorable and sat-
isfying are selected. To be more specific, the selected clas-
sifiers are the ones whose competence level is high enough.

Finally, in the prediction stage, the selected classifiers’ 
outputs are combined by an aggregation function such as the 
majority voting. In the majority voting method, the predic-
tion of each classifier is considered as a vote, then the one 
whose number of votes is greater than that of all the other 
ones is selected as the final output prediction.

2.2 � Local region definition step

The purpose of the Local Region (LR) definition step is to 
find those data from the DVal dataset that are much the same 
as sample x given in the testing phase. The DVal , denoted by 
DSEL in some research papers, is a validation dataset that is 
usually composed of 25% of the original dataset. In sum-
mary, this step includes the process of determining a local 
region Rx around the sample x. It should be noted that the 
main techniques for dealing with the LR definition task are: 
KNN, clustering, and potential function. These methods are 
briefly described in the following.

The local region elements, determined by the KNN tech-
nique, have the smallest Euclidean distance from the sam-
ple x. However, the clustering method specifies the nearest 
cluster to the test sample x as the local region. The poten-
tial function is designed so that Rx includes all the items of 
data given in DVal , however, the competence level is mostly 
affected by those data instances whose distance to x is less 
than that of the others. That is to say that a potential func-
tion is applied to model the effect of every data element on 
xj ∈ DVal by the Euclidean distance between xj and x. One 
of the most prevalent choices is the Gaussian potential pre-
sented in Eq. (1) [8].

We need to address the fact that the local region Rx can be 
defined on either the feature space (FS) or the decision space 
(DS). In specific, a local region in FS is composed of those 
data whose attributes are similar, while in DS, it includes 
those data points whose output profiles are much the same 
[13]. For a sample x, x̃ = {x̃1, x̃2,… , x̃M} indicates its output 
profile in which for i = 1, 2,… ,M , x̃i denotes the decision 
that the classifier ci takes about x [5, 8]. Figure 6 displays 
both Rx and R̃x determined via FS and DS, respectively.

2.3 � Competence level calculation and selection 
steps

It should be pointed out that given a classifier c, its com-
petence level with respect to an instance x is equal to the 
performance of c in the local region Rx . In order to deal with 
measuring the competence level in such cases, some crite-
ria, called competence measures, are applied. Normally, the 
competence measures are of two categories, the individual-
based category which includes those measures for which 
the major information source is classifiers’ individual per-
formance, e.g., accuracy [40], and the group-based category 
which contains all measures whose mechanism includes the 
interplay of all pool members [4]. As a notable example, in 
order to determine the appropriate classifiers, the DS method 
proposed in [34] employs the diversity criterion as well as 
the accuracy index.

3 � Background

It is noticeable that the classification task in the proposed 
MCS method is handled by employing multi-label classifi-
ers and related conceptions. For this reason, before describ-
ing the proposed method, let us take a look at dynamic 

(1)G(x, xj) = exp(−d(x, xj)
2), where, d(x, xj) =

‖‖‖x − xj
‖‖‖2.

Fig. 6   The differences between 
feature space (FS) and deci-
sion space (DS): (a) the KNN 
technique (with K=2) is used 
in FS to select neighbors of the 
input instance, and (b) the KNN 
technique (with K=2) is utilized 
in DS to select neighbors of the 
input instance [13]
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selection-based MCSs from a novel viewpoint and conduct 
a quick review of the essential problems considered in a 
multi-label mode that are closely related to the current work.

In MCSs, the main dataset is divided into three sections, 
DTR , DSEL , and DTE which are applied in the generation stage 
to train a pool of classifiers, select the appropriate classifiers 
in the selection stage, and check the ability of generaliza-
tion, respectively. Each dynamic selection method can also 
be assumed as a function, f ∶ x → Lx , in which x and Lx 
are respectively the input data point and the list of indices 
associated with those classifiers that classify the input data 
correctly. On the other hand, for each x ∈ DTR or x ∈ DSEL , 
the elements of Lx are clearly specified thereby a dataset, 
presented in Table 2, can be formed. As Sect. 5 specifies, 
the dataset, presented in Table 2, is a multi-label dataset. 
Therefore, the function f is a multi-label classifier and any 
multi-label classifier such as ML-RBF can be used in order 
to model it.

Unlike the single-label mode, in multi-label problems, 
each sample is allowed to have more than a single label at 
the same time, which means that they are permitted to have 
multiple labels. To be more specific, let Rd be the input 
space, (i.e., X ∈ Rd ), and the set I = {1, 2,… , L} is com-
posed of the class labels. A training set in multi-label mode, 
DML , is defined as DML = {(xi, Yi)|xi ∈ Rd, Yi ⊆ I} in which 
xi and Yi denote a sample and the collection of labels cor-
responding to it, respectively [41].

Example 1  Suppose  tha t  I = {even, multiples of 3,
multiples of 5} . Then, Table 1 presents a multi-label dataset.

It is worth noting that the learning process in multi-label 
mode can be described as the process of inducing a function 
that has the ability to make predictions of a sub-collection 
of all possible labels associated with a new sample, and this 
problem is subjected to the collection of the original labels 
[46]. To achieve this goal, in this paper, four multi-label 
methods were examined including Radial Basis Function 
(RBF), Extreme Learning Machine (ELM) [20], Regular-
ized Multi-label Learning method via Feature Manifold 

Learning (RMLFM-ELM), and K-Nearest Neighbor Multi-
label Learning problem (ML-KNN) [44].

The ML-KNN classifier is a multi-label learning method 
introduced in [44] that is derived from the traditional K-near-
est neighbor (KNN) algorithm. In this algorithm, for each 
testing sample, first, its K-nearest neighbors in the training 
set are identified, and then, based on the statistical informa-
tion gain obtained from the label set of these neighbors, the 
label set for the given testing sample is determined utilizing 
the maximum a posteriori principle.

The RMLFM framework [30] is composed of two major 
stages, including a regularized multi-label classification task 
and local feature structure preservation. In the feature mani-
fold technique, it is assumed that for two features that are 
close to each other in the original feature space, the weight 
vectors corresponding to these features are also close to each 
other. Normally, a feature graph is constructed to measure 
the features’ local geometry. In this graph, the vertices and 
the weight of the edges represent the features and the affinity 
between the features, respectively. Next, a multi-layer ELM 
framework is used which consists of two learning phases 
including the unsupervised phase which stacks the ELM-AE 
technique to extract an effective feature representation, and 
the supervised phase which utilizes ELM as a classification 
task. Since the size of the data used in this paper is small, 
we merely utilize the supervised phase [30].

As shown in Fig. 7, the ML-RBF is a two-layer neural 
network whose settings are given by Statements 3 to 3 [41]. 

1.	 Input: the input is an attribute vector of dimension d.
2.	 Hidden layer: the hidden layer includes L collections 

containing prototype vectors, that is ∪L
l=1

Cl , where 
Cl = {cl

1
, cl

2
,… , cl

kl
} . For the lth class, cl

j
 is the centroid 

of the jth cluster of the set Ul = {xi|(xi, Yi) ∈ D, l ∈ Yi} , 

Table 1   An example of a multi-
label dataset DML

i X Y

1 3 {multiples of 3}
2 20 {even, multiples of 5}
3 60 {even, multiples of 3, 

multiples of 5}
4 75 {multiples of 5}
5 99 {multiples of 3}

Fig. 7   The architecture of Ml-RBF neural network [41]
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where 1 ≤ j ≤ kl and kl = � × |Ul| in which � is a propor-
tional coefficient and |Ul| is the number of instances in 
Ul.

3.	 Output layer: the last layer of the Ml-RBF neural net-
work includes L neurons and in this layer, the output of 
the lth neuron, (i.e., yl) corresponds to the lth label, (i.e., 
class).

4.	 Weights: to induce the weight matrix W = [wjl](K+1)×L , 
the mapping presented in Eq. (2) is minimized. 

 where ti
l
 and yl(xi) are respectively the desired and the 

actual output of xi associated with the lth class whose 
value is +1 in case l ∈ Yi , otherwise, it is −1.

The ELM technique is a basic and productive single-layer 
feed-forward neural network (SLFN) learning algorithm 
that was introduced by Huang et. al [20]. Based on ELM 
theory, the input parameter is generated in a random manner 
and the output weights of the ELM method are calculated 
by the generalized inverse transformation. The ELM tech-
nique is a one-time learning method that provides a sin-
gle optimal solution only. Major benefits of ELM are its 
high training rate and its strong generalization ability. It is 
chiefly considered a learning method proper to pattern clus-
tering, regression, and multi-class classification. Over the 
last recent years, few improvements have been made to the 
ELM robustness. For example, Deng et al. [12] developed 
a regularized version of ELM (RELM) based on structural 
risk minimization. Notice that in the literature, the notation 
ELM is usually used rather than RELM. This convention is 
adopted throughout this paper.

In the last part of this section, some benchmark DES tech-
niques that are compared against the proposed method in 
Sect. 5 are reviewed.

In OLA [39], first, the KNN technique is employed to 
define the local region in the feature space. Then, the accu-
racy of classifiers is measured in the local region. Finally, 
the most accurate classifier is selected. It should be noted 
that if there are several classifiers with the highest accuracy, 
one of them is selected randomly.

In the first step of the KNORA-U method [23], the local 
region is determined in the feature space making use of the 
KNN technique. Following this step, the accuracy of classi-
fiers is measured in the local region. In the end, those clas-
sifiers are selected that correctly classify at least one data 
point in the local region.

The KNORA-E method [23] also applies the KNN tech-
nique first, to specify the local region in the space of attrib-
utes. Next, the accuracy criterion is employed to compute the 
competence level of classifiers. Eventually, those classifiers 

(2)E =
1

2

m∑

i=1

L∑

l=1

(yl(xi) − ti
l
)2,

that correctly classified all the elements of the local region 
are selected. It is worth noting that if there is no perfect 
classifier (i.e. the accuracy of all classifiers is less than one), 
the value of K decreases. In this case, the local region needs 
to be redefined. In the special case where K is decreased to 
0, the classifier(s) with the best accuracy is (are) selected. 
In DES-P [39], after defining the local region in the feature 
space by KNN, those classifiers whose accuracy is greater 
than 1

m
 are selected, where m is the number of classes.

The MCB [17] method first determines the region R′ in 
the feature space by KNN technique. Next, the output profile 
is calculated for both the input data and x ∈ R� . Then, the 
similarity between the output profile of the input data and 
the output profile of x ∈ R� is measured. Finally, for each 
x ∈ R� , it is considered as a member of the local region Rx 
if the similarity is greater than the threshold T. Following 
this step, the accuracy of classifiers is computed in Rx . In 
the end, the most accurate classifier is selected as the one 
whose accuracy is significantly better than that of the other 
classifiers. It should be pointed out that in case there is no 
classifier with accuracy far better than the accuracy of other 
classifiers, all elements of the pool are selected. Note that 
the output profile of x is a vector of labels that are predicted 
by all classifiers of the pool.

The META-DES [9] technique utilizes five different 
meta-feature groups so that every group corresponds to a 
varied competence measuring index that is applied in the 
task of classifying the input data. Figure 8 illustrates the 
main steps of this technique. The generation, selection, and 
prediction steps are the same as the standard MCS. The 
extraction step determines the values of meta-features with 
respect to the training data. Consequently, a meta-dataset 
is generated in this step and it is used in the meta-training 
step to train a meta-classifier in a way that this classifier can 
make predictions if the level of competency corresponding 
to a base classifier is sufficient to perform the task of the 
input sample classification in a satisfying manner. The query 
instance is utilized in the generalization phase in order to 
carry out the meta-features extraction process in the extrac-
tion step. Then, the extracted meta-features are used in the 
role of the meta-classifier’s input to initiate the classifica-
tion step. To be more specific, for each base classifier, the 
meta-classifier takes its level of competency into considera-
tion to decide whether it can be included in the ensemble. 
In particular, META-DES considers if, for an instance, the 
number of votes from the winning class is close or even 
equal to the number of votes from the second class. To this 
aim, it employs a threshold hc by which it is able to deter-
mine whether the given instance should be included in a 
specific class.

The DES-Hesitant technique [13] aims to create a fuzzy 
set Ã of classifiers for which the whole pool of classifiers 
is considered as the universe of discourse, and the 
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membership degrees show the competence level of classi-
fiers, e.g., Ã =

{
0.9

c1
,
0.8

c2
,…

}
 . Specifically, so as to specify 

the amount of the classifiers’ competency level alterations, 
DES-Hesitant applies a number of selection rules. Next, 
it determines the appropriate classifiers by means of a 
hesitant fuzzy multiple criteria decision-making 
(HMCDM) technique. As seen in Fig. 9, this system uses 
HFDM-construction, HFS-construction, and FS-construc-
tion steps in addition to the generation, selection, and pre-
diction steps. In the HFDM construction step, the compe-
tence level of each classifier is calculated by using a 
variety of criteria in different local regions, and as a result, 
a hesitant fuzzy decision matrix (HFDM) is constructed. 
Then, a fuzzy aggregation operator is applied in the HFS-
construction step so that a hesitant fuzzy set (HFS) is cre-
ated with respect to this decision matrix. Finally, employ-
ing a score function as well as this hesitant fuzzy set, a 
fuzzy set (FS) is made in the FS-construction step. In sum-
mary, DES-Hesitant performs two major tasks. First, it 
calculates the competence level of each classifier in differ-
ent ways. Then, it creates the fuzzy set Ã composed of all 
classifiers so that the membership degree of each classifier 
is its final aggregated competence level value. 

4 � Proposed method

Figure 10 illustrates the principal phases of the proposed 
method. In what follows, a detailed description of DES-
ML phases and steps is presented, then an example is pro-
vided to develop a deeper understanding of the suggested 
idea. The major steps of DES-ML are as follows.

–	 Generation. So as to perform the task of generating a 
pool, the bagging method is employed.

–	 ML training. The ML training step aims to train 
a multi-label classifier CML by using the dataset 
DML = {(xi, Yi)|i ∈ {1, 2,… , |D|}} , where xi is the input 
part of the dataset D = DSEL ∪ DTR and Yi is a subset com-
posed of the indices of those classifiers that classify xi 
correctly, for example, Yi = {5, 20} means that the clas-

Fig. 8   The main steps of 
META-DES

Fig. 9   The main steps of DES-Hesitant

Fig. 10   The major steps of the proposed DES-ML algorithm

Table 2   The multi-label dataset 
DML , where xi ∈ DTR ∪ DSEL 
and Lxi is composed of indices 
of those classifiers which 
classify the instance xi correctly

Instance ( xi) Label ( Yi)

x1 Lx1
x2 Lx2
x3 Lx3
x4 Lx4
x5 Lx5
⋮ ⋮

xn Lxn
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sifiers c5 and c20 could classify the sample xi in a correct 
manner.

–	 Classification. In the classification step, the vector 
v = CML(x) is calculated, where v(i) ∈ [0, 1] denotes the 
competence level corresponding to the classifier ci.

–	 Selection. During this step, the Probability-Based (PB) 
method is employed so as to do the task of selecting 
the appropriate classifiers. Performing this selection 
process based on the PB method includes two steps. 
First, Eq. (3) is applied so as to assign to each classi-
fier a selection probability according to its competence 
level. 

 where � is a threshold that is used to ignore the classi-
fiers whose competence level is low. This means that a 
classifier whose competence level is less than � is not 
considered an appropriate one. Then in the second step, 
the Roulette wheel selection technique [26] is utilized to 
select the appropriate classifiers based on their selection 
probability.

–	 Prediction. The majority voting method is applied to 
aggregate the votes associated with the selected clas-
sifiers. The parameters of the Roulette wheel technique 
are set as follows.

–	 The probability vector, P, is taken as the output of 
the multi-label classifier CML.

–	 The number of iterations = W ×M , where W =
7n

2M
 , 

M indicates the pool length and n denotes the num-
ber of non-zero elements in P.

For the sake of describing the DES-ML method in an 
accurate and detailed manner, a notable example is given 
in the following.

Example 2  Generation. Suppose that a set of five classifiers 
{c1, c2, c3, c4, c5} , displayed in Fig. 11, are generated based 
on the bagging technique.

ML training. Consider dataset D which is composed of 14 
elements, represented in Fig. 11 by blue triangular and red 
circular shapes. The blue triangular samples display class 
0 (or -1) and the red circular ones characterize class 1. The 
multi-label dataset DML , presented in Table 3, is constructed 
according to the dataset D and the classifiers c1 , c2 , c3 , c4 and 
c5 which are illustrated in Fig. 11. In this figure, there are 
two types of arrows, blue ones, and red ones, for the lines 
(classifiers). The colors indicate the class that is predicted by 
the corresponding side of the classifier. For instance, consid-
ering x1 , the classifiers that predict its label correctly are c1 , 
c3 and c4 , thereby Y1 = [+1,−1,+1,+1,−1] . In this step, it 

(3)P =

{
0 if CML(x) < 𝛽

CML(x) otherwise
,

is supposed that the multi-classifier CML is trained over the 
examples given in Table 3.

S e l e c t i o n .  A s s u m e  t h a t  � = 0.3  a n d 
CML(x) = [0.6, 0.2, 0, 0.8, 0.5] . As a result, the probability 
vector is calculated as P = [0.6, 0, 0, 0.8, 0.5] . It should be 
noted that since the competence level of the classifier c2 is 
less than the threshold � , P(2) is set to zero. The probability 
vector P is passed down to the Roulette wheel method which 
is employed to handle the selection task according to the 
mechanism described in the following.

Fig. 11   The dataset D and the classifiers c1 , c2 , c3 , c4 and c5 are gener-
ated by the bagging technique in the generation step. The samples are 
represented by numbers 1 to 14

Table 3   The multi-label dataset 
DML is constructed based on 
Fig. 11 and is used for training 
the classifier cML

xi Yi

x1 [+1,−1,+1,+1,−1]

x2 [−1,+1,−1,−1,+1]

x3 [+1,+1,+1,+1,+1]

x4 [+1,+1,+1,+1,+1]

x5 [+1,+1,+1,+1,+1]

x6 [+1,+1,+1,+1,+1]

x7 [+1,+1,−1,+1,+1]

x8 [−1,+1,−1,+1,+1]

x9 [+1,+1,+1,+1,−1]

x10 [+1,+1,+1,+1,+1]

x11 [−1,−1,+1,−1,−1]

x12 [+1,+1,−1,+1,+1]

x13 [+1,+1,−1,+1,+1]

x14 [+1,+1,−1,+1,+1]
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–	 The selection probability P′ is calculated based on P by 
the formula given in Eq. (4). 

 where S =
∑Length(P)

i=1
P(i) . Using Eq.  (4), the selec-

tion probability, P′ , for this example is calculated as 
P′ =

[ 0.6
1.9
, 0.6
1.9
, 0.6
1.9
, 1.4
1.9
, 1.9
1.9

]

= [0.31, 0.31, 0.31, 0.73, 1].
–	 K random numbers are generated in the interval 

[0,  1] . In this example, it is assumed that K = 8 
and the associated eight random numbers are 
rnd = [0.4, 0.5, 0.6, 0.7, 0.8, 0.5, 0.9, 0.4].

–	 It is supposed that I is the empty list. For each r ∈ rnd , 
the following conditions are checked:

–	 if r < P�(1) , append the index 1 to I;
	   else if r < P�(2) , append the index 2 to I;
	   else if r < P�(3) , append the index 3 to I;
	   else if r < P�(4) , append the index 4 to I;
	   else if r < P�(5) , append the index 5 to I.

	    As a result, I is calculated as I = [4, 4, 4, 4, 5, 4, 5, 4].
–	 Finally, in case i ∈ I , the classifier ci is selected. There-

fore, the classifiers c4 and c5 are selected in order to per-
form the task of predicting the testing example label dur-
ing the prediction step.

Prediction: Consider the test sample x indicated by a 
black star in Fig. 11. At a glance, it is crystal clear that 
c4(x) = c5(x) = +1 since the star sample is located in the red 
side of the classifiers c4(x) and c5(x) . Hence, for the testing 
instance x, the label +1 is predicted.

In summary, the proposed method deals with the DES 
problem by turning it into a multi-label classification prob-
lem, where the given data plays a substantial role in the 
proposed solution. It should be noted that one of the main 
challenges which many DES methods encounter is to define 
a criterion for measuring the competence level of classi-
fiers. In this respect, first, a local region is normally defined 
around the input data. Then, the performance of classifiers in 
this region is considered as their competence level. However, 
the proposed method is not dependent on such a constraint 
and determines the competence level of classifiers by formu-
lating it as a new classification problem. This new problem 
use neither the local region nor the criteria to measure the 
level of classifiers’ competence. In other words, the proposed 
algorithm passes the input data directly to the multi label 
and uses the corresponding output to select the classifiers. 
Therefore, the progress in the field of multi-label-classifiers 
help tackles the task of finding the optimal solution for DES 
problems.

(4)P�(i) =

∑i

j=1
P(j)

S
,

5 � Experimental results and discussion

The current section presents the numerical results of 
experiments performed over 34 datasets for justifying the 
performance of the suggested technique. In order to carry 
out the simulations and to perform experiments on the 
datasets, the python programming language and DESlib 
[7] library are employed. This library gives implemen-
tations of several benchmark DS methods so as to draw 
comparisons between them and the DES-ML technique. 
These methods are introduced in Sect. 5.2.

5.1 � Datasets

The proposed method is examined on thirty-four bench-
mark datasets whose characteristics including their name, 
dimension, source repository, and numbers of classes and 
instances can be found in Table 4.

As mentioned earlier, in DS techniques, each dataset 
is divided into three parts, training, selection, and testing 
which are denoted by DTr , DVal and DTe , respectively. In 
this paper, the policy for dividing datasets is as follows:

–	 DTr : 50%;
–	 DVal : 25%;
–	 DTe : 25%.

5.2 � Comparison methods

The benchmark techniques applied to numerical experi-
ments include the nine following methods. 

1.	 Overall Local Accuracy (OLA) [39]: This method 
selects the most accurate classifiers. In case the differ-
ence between the competence level of the base classi-
fiers is less than the threshold Tdif  , their performances 
are considered equivalent. In this technique, the KNN 
and accuracy criteria are used respectively to define the 
local region in the feature space and to measure the com-
petence level of classifiers.

2.	 K-Nearest Oracles Union (KNORA-U) [23]: In this 
method, those classifiers are selected whose accuracy 
is equal to or more than the selection threshold Tsel . It 
employs KNN to determine the local region in the fea-
ture space.

3.	 K-Nearest Oracles Eliminate (KNORA-E) [23]: In this 
technique, KNN is utilized to specify the competence 
level of classifiers. It only selects the perfect classifiers 
that are the ones for which Tsel = 1.
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4.	 DES Performance (DES-P) [39]: In DES-P, the local 
region is created in the feature space by means of KNN. 
Then, classifiers whose accuracy is greater than the 
selection threshold Tsel are selected.

5.	 Multiple-Classifier Behavior (MCB) [17]: In MCB, 
making use of KNN, first a region is defined in the fea-
ture space. Next, this region is pruned in the decision 
space. Finally, the most accurate classifier is selected. 
The performances of the two base classifiers are con-
sidered equivalent, in case the difference between their 
competence level is less than the difference threshold 
Tdif .

6.	 META-DES [9]: This method applies the competence 
level criteria in two local regions. These regions are 
specified by KNN with K and Kp elements in the feature 
space and the decision space, respectively. The META-
DES uses two main thresholds, the sample selection 
threshold hc which is utilized to select samples for meta-
feature extraction, and the classifier selection threshold 
Tsel which is employed to determine the appropriate clas-
sifiers.

7.	 DES-Hesitant [13]: In this technique, the competence 
of classifiers is calculated in two local regions with K 
and Kp elements in the feature space and the decision 

Table 4   Characteristics of the 
datasets used in the experiments

Dataset ID Dataset Names Instances Dimension Classes Source

D1 Seeds 210 8 3 UCI 
https://​archi​ve.​ics.​uci.​

edu/​ml/​index.​php
D2 Waveform 5000 41 3 UCI
D3 Wall-Robot 5456 25 4 UCI
D4 Wine 178 13 3 UCI
D5 Synthetic-Control 600 62 6 UCI
D6 CMC 1473 10 3 UCI
D7 Segment 2310 20 7 UCI
D8 Balance-Scale 625 5 3 UCI
D9 Vehicle 846 19 4 UCI
D10 Cnae 1080 857 9 UCI
D11 Glass 214 9 6 UCI
D12 Cardiotocography 2126 36 10 UCI
D13 Semeion 1593 257 10 UCI
D14 Mfeat-Pixel 2000 241 10 UCI
D15 Mfeat-Karhunen 2000 65 10 UCI
D16 Mfeat-Fourier 2000 77 10 UCI
D17 Mfeat-Zernike 2000 48 10 UCI
D18 Mfeat-Factors 2000 217 10 UCI
D19 Mfeat-Morphological 2000 7 10 UCI
D20 Optdigits 5620 65 10 UCI
D21 Breast-Cancer 863 10 2 UCI
D22 Liver Disorders 345 6 2 UCI
D23 Vertebral Column 310 6 2 UCI
D24 Haberman’s Survival 306 3 2 UCI
D25 Heart 270 13 2 UCI
D26 Ionosphere 351 34 2 UCI
D27 Pima 768 8 2 UCI
D28 Sonar 208 60 2 UCI
D29 Transfusion 748 4 2 UCI
D30 Boston-Corrected 506 21 2 OPENML 

https://​www.​openml.​org/
D31 Car-Evaluation 1728 22 4 OPENML
D32 Teaching-Assistant 151 7 3 OPENML
D33 Australian 690 14 2 OPENML
D34 KC2 522 22 2 OPENML

https://archive.ics.uci.edu/ml/index.php
https://archive.ics.uci.edu/ml/index.php
https://www.openml.org/
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space, respectively. Then, a fuzzy set composed of the 
appropriate classifiers is created. Finally, a classifier c 
is selected if its membership degree is greater than the 
selection threshold Tsel.

8.	 “Bagging+”: This method is the so-called bagging algo-
rithm which is trained using Dtrain + Dval.

9.	 “Bagging”: This method is also the bagging algorithm, 
but it is trained only on Dtrain.

5.3 � Parameters settings

The process of setting parameters in this paper was per-
formed in a straightforward manner since the proposed 
method required no parameter that is prevalent in dynamic 
selection techniques, such as the number of local regions, 
the number of elements in each region, the local region defi-
nition space and the competence level criterion. In the fol-
lowing, the best values of parameters and configurations for 
various parts of the comparison methods are given as well 
as those of the proposed method. Some datasets have been 
used to tune the parameters and to determine their values.

Generation and prediction stages setups: One of 
the key issues in the Generation phase is the diversity of 
the pool. The major reason is that the diversity of the pool 
is a chief cause of increasing the generalization of DES 
algorithms. The bagging technique that is usually used 
in the Generation phase is based on the following policy: 
”Train each classifier using a separate dataset to guaran-
tee the diversity of the pool”. Specifically, the bagging 
technique randomly divides the training data into M folds 
with replacement, where M is the number of the classifiers 
included in the pool. Then, each of the classifiers is trained 
by making use of one of these folds. In this paper, the 
bagging algorithm is used to generate a pool of classifiers 
(weak classifiers). This pool consists of 100 single-layer 
perceptrons. A single-layer Perceptron is a linear neural 
network for which the number of the input neurons equals 
the number of the features, and the number of the output 
neurons equals one and n for the two-class and multi-class 
datasets, respectively, where n is the number of classes. 
This NN predicts the label of the instance x according to 
the number of the classes. Specifically, the data class in 
a two-class dataset will be one if the output of the NN is 
greater than zero, otherwise, it will be zero.

where x is the input data, yx is the predicted label and NN(x) 
is the output of the NN. In multi-class datasets, the label of 
the input data, yx , is calculated by Eq. (5).

yx =

{
1 if NN(x) ≥ 0

0 otherwise
,

(5)yx = argmax(NN(x)).

ML training and DS selection setups: In the ML training 
step, the dataset DML is utilized to produce CML by train-
ing an ML-RBF network. So as to select the appropriate 
classifiers in the selection step, the Probability-Based (PB) 
method is employed.

General Settings: For all the DS techniques except for 
the proposed method, the number of the nearest neighbors 
in the feature space, K, is fixed as seven on all the datasets. 
In MCB, META-DES, and DES-Hesitant techniques, the 
number of the nearest neighbors in the decision space, Kp , is 
set to five on all the datasets. The difference threshold, Tdiff  , 
is fixed as 0.1 in OLA and MCB. The classifier selection 
threshold, Tsel , is set to 1

K
 , 1, 1

m
 , 0.5, and 0.8 for KNORA-

U, KNORA-E, DES-P, META-DES, and DES-Hesitant, 
respectively, in which K is the local region size and m is the 
number of the classes. The sample selection threshold, hc , 
is set to 0.7 in the META-DES method.

The proposed method uses hyper-parameters � and W. 
The efforts to provide a proper setting for these parameters 
were initiated by assigning a fixed number to them as fol-
lows: � = 0.4, 0.8 and W = 1, 0.6 . Checking the output of 
DES-ML on some datasets, it appeared that the fixed param-
eters could not be appropriate for all the datasets. There-
fore, the authors made attempts to heuristically investigate 
how these parameters could depend on the numbers of the 
instances and classes corresponding to each dataset or on 
the output of CML (e.g. mean and standard deviation). For 
example, a typical formula that was examined to calculate 
� is given in Eq. (6).

where n is the number of the classes.
Eventually, the hyper-parameters were suggested as 

� = �P + �P in which �P and �P denote the mean and stand-
ard deviation associated with the probability vector, P, 
respectively. The number of the generated random numbers, 
W, was determined as W =

7n

2M
 for which M indicates the 

pool length and n denotes the number of non-zero elements 
in P. It is noticeable that the proposed method does not use 
the local region and competence measure conceptions. For 
this reason, parameters such as K or Kp , relevant to these 
notions, are not included in this method.

In the following, the framework of the proposed method, 
DES-ML, is described. Generally, the output of the multi-
label classifier CML is a vector P = [p1, p2,… , pM] , where M 
is the size of the pool and pi corresponds to the competence 
level of the classifier ci and indicates the chance to select 
ci . In other words, those classifiers for which pi is higher 
are selected. This issue makes the DES-ML method capable 
of predicting the label of most input instances correctly. In 
specific, more than 50% of the classifiers selected by DES-
ML are highly appropriate. According to the experimental 

(6)
� = 0.7 × (n − 1) and � = min(P) + 0.5 × (max(P) − min(P)),
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Fig. 12   The mean ratio of the 
number of classifiers that are 
selected correctly by CML to the 
total number of the selected 
classifiers

Fig. 13   The mean ratio of the 
number of classifiers that are 
selected correctly by CML to the 
total number of the selected 
classifiers
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results given in Tables 5 and 6, the DES-ML method showed 
a strong performance compared to the benchmark methods. 
This means that the CML classifier is highly effective.

Figures 12 and 13 illustrate the mean ratio of the classifi-
ers that are correctly selected by CML . In this figure, the x and 
y axis indicate the iteration and the mean ratio, respectively. 
The mean ratio is calculated by Eq. (7).

where Sx
true

 is the number of those classifiers that are selected 
correctly, Sx

all
 is the total number of the classifiers selected 

to classify the instance x, Di
j
 is the testing data corresponding 

to the jth dataset in the ith iteration and |Di
j
| is the size of Di

j
 . 

The mean of yDi
j
 is calculated using Eq. (8), where rep indi-

cates the number of iterations for each algorithm. Similar to 
[9], in this paper, rep is set to 20. Table 5 presents the accu-
racy of all the algorithms. This quantity is calculated by 
averaging over all 20 iterations. 

In Fig. 14, the vertical axis, yDj
 , represents the mean yDi

j
 

given by Eq. (8).

Note: All the parameters of the methods discussed in this 
paper depend on the vector P which is the output of the 
multi-label classifier CML that is produced based on each 
testing data. Hence, �P , �P , and n which denote the standard 
deviation, the mean, and the number of non-zero elements 
of P, respectively, are changing concerning the testing data. 
Since � depends on both �P and �P , and W relies on n thereby 
these parameters take different values for each input data.

5.4 � Results and comparisons

For the sake of justifying the performance of DES-ML 
in comparison to that of the benchmark methods, many 

(7)yDi
j
=

1

|Di
j
|

∑

x∈D

Sx
true

Sx
all

,

(8)yDj
=

1

rep

∑

i∈{1,2,…,rep}

yDi
j
.

experiments were performed. In this section, the results of 
these experiments are discussed.

To perform the experiments, first, each dataset is divided 
into three disjoint parts in a random manner including Dte , 
Dtr , and Dsel . Next, the bagging method (the bagging mecha-
nism is similar to the k-fold cross-validation except for the 
fact that the folds are randomly selected with replacement) 
is utilized to select a number of the data from Dtr to train the 
base classifiers. Therefore, the two above steps are repeated 
20 times where the same partitions are used for all methods. 
The average accuracy is reported in Table 5. According to 
Table 5, the proposed method achieves the highest accuracy 
over datasets D1, D2, D6, D9, D12, D14, D15, D21, D22, 
D23, D24, D29, D31, D32, D33, and D34. Normally, the 
accuracy of this method is close to that of the state-of-the-art 
techniques on the other datasets.

To have a scientific conclusion and comparison, the statis-
tical non-parametric Quade test is conducted over the results 
of Table 5. The average rank values of all the methods given 
by the Quade test are presented in Table 6. According to 
the results of this table, our proposed method (DES-ML) 
has the best rank. Notice that in Quade test ranking, lower 
values present better ranks. To demonstrate the superiority 
of the DES-ML technique, a rampant type of post hoc pro-
cedure is conducted for comparing the methods according 
to their rank values. Consequently, Li procedure is utilized 
for this purpose and the corresponding results are given in 
Table 7. The p values of the Li procedure are given in the last 
column of Table 7. The control method is DES-ML so that 
the rest of the techniques are compared with it in a pairwise 
manner. In each of the pair-wise comparisons, the default 
hypothesis (null hypothesis) is that the compared methods 
are considered equal in a statistical manner, while the alter-
native hypothesis is that the compared approaches are dif-
ferent significantly. Therefore, the two compared methods 
will have a significant difference if the default hypothesis 
is rejected. According to the last column of Table 7, the 
default hypotheses are rejected when pLi ≤ 0.028758 . It is 
concluded that DES-ML outperforms the other methods 
except for DES-Hesitant.  

6 � Concluding remarks

Far as we know, the DES-ML technique can be considered 
the first and the only approach that uses multi-label clas-
sification concepts so as to select appropriate classifiers for 
the testing data. In spite of traditional dynamic selection 
methods that apply local regions and competence measures 
for selecting appropriate classifiers, the proposed approach 
selects the classifiers by employing a multi-label classifier, 
thereby a novel framework is established for the evaluation 
of dynamic selection techniques. Regularly, DS techniques Fig. 14   Mean of yDi

j
 over the datasets used
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work based on the intuition that “a classifier c which can 
efficiently classify the data located in a local region (i.e., the 
data that is similar to a datapoint x) is an appropriate clas-
sifier to do the classification task for x”. This rule imposes 
some constraints on the mechanism of dynamic selection 
techniques such as the necessity of defining local regions 
and employing competence measures. Therefore, two major 
limitations of dynamic selection techniques are to adopt a 
proper approach to determine a local region and to select 
well-suited criteria to measure the competence level of clas-
sifiers in the local region. To tackle these issues in a satis-
fying manner, this paper proposed an innovative dynamic 
selection technique resting on the idea that multi-label con-
ceptions can develop the capacity to relax the above rule and 
its constraints so that dynamic selection problems are solved 
without the need to define a local region and to apply criteria 
for measuring the competence level of classifiers. In this 

paper, 34 datasets have been used to compare the proposed 
method with other popular dynamic selection techniques. At 
the start point of this research, the authors’ conjecture was 
formulated as the hypothesis that the problem of selecting 
different classifiers for classifying a pattern through dynamic 
selection approaches is more likely to be put into a multi-
label classification framework in an inherent manner. The 
conducted experiments and their outcomes strongly con-
firmed this hypothesis. The numerical results corresponding 
to the experimental study clearly demonstrate the efficiency 
of the proposed approach. Considering the widespread usage 
of MCS, the proposed method can be utilized in such sys-
tems to enhance their efficiency in applications. It is remark-
able that the proposed method can be simply implemented 
since its only requirements are to train a multi-label classifier 
CML in the training phase and to apply CML to classify the 
input data in the generation phase.

A potential direction for future works is to research meth-
ods that have the ability to produce efficient multi-label data-
sets so as to train the multi-label classifiers applied in the 
training phase. It is also worth studying multi-label classi-
fiers to find those ones that can be used efficiently for the 
purpose of handling the training phase. Furthermore, when 
it comes to training CML , it is particularly significant to find 
a feature set that produces incredibly strong performance. 
Thus, making use of feature selection techniques to deter-
mine the best feature set according to the set of labels is 
an interesting problem to be dealt with. Another forward-
looking idea is to utilize the capacity of deep neural net-
works to solve dynamic selection problems without using 
local regions and competence level criteria. Moreover, it is 
noteworthy that the application of the proposed approach 
to the ensemble learning problem in deep neural networks 
is a prospective question that can be pondered. It is also 
interesting to study the proposed method in case the same 
percentage is given for the full ensemble (Figs. 12, 13, and 
14) and to investigate if this issue can improve the proposed 
method in terms of better integration of the selected classi-
fiers in the prediction step of MCS.
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