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Abstract
In recent years, more attention paid to the spine caused by related diseases, spinal parsing (the multi-class segmentation of 
vertebrae and intervertebral disc) is an important part of the diagnosis and treatment of various spinal diseases. The more 
accurate the segmentation of medical images, the more convenient and quick the clinicians can evaluate and diagnose 
spinal diseases. Traditional medical image segmentation is often time consuming and energy consuming. In this paper, an 
efficient and novel automatic segmentation network model for MR spine images is designed. The proposed Inception-CBAM 
Unet++ (ICUnet++) model replaces the initial module with the Inception structure in the encoder-decoder stage base on 
Unet++ , which uses the parallel connection of multiple convolution kernels to obtain the features of different receptive 
fields during in the feature extraction. According to the characteristics of the attention mechanism, Attention Gate module 
and CBAM module are used in the network to make the attention coefficient highlight the characteristics of the local area. 
To evaluate the segmentation performance of network model, four evaluation metrics, namely intersection over union (IoU), 
dice similarity coefficient(DSC), true positive rate(TPR), positive predictive value(PPV) are used in the study. The published 
SpineSagT2Wdataset3 spinal MRI dataset is used during the experiments. In the experiment results, IoU reaches 83.16%, 
DSC is 90.32%, TPR is 90.40%, and PPV is 90.52%. It can be seen that the segmentation indicators have been significantly 
improved, which reflects the effectiveness of the model.
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1  Introduction

As an important part of the human body, the spine is the 
axial skeleton of the human body and the pillar of the human 
body. In recent years, various of diseases caused by spinal 
cord are very common in today's world, affecting about 80% 
of the world's population. The consequences are not only 
physical pain and economic loss, but even a large number 
of people are disabled due to spinal cord diseases [1]. As 
the global population ages, spinal disorders are expected to 
show a significant increase in the next decade [2]. Medical 
image technology is commonly used in the treatment and 
diagnosis of spine-related diseases. Medical image works by 

interacting with the body in ways like X-rays, electromag-
netic fields, and ultrasound, the body's internal tissues and 
organs morphology, density, function be expressed in the 
form of images, so that doctors can make health judgments 
based on their own knowledge and experience of the infor-
mation provided in medical images. Magnetic resonance 
(MR) imaging and computed tomography (CT) are two 
common computer imaging techniques. Compared with CT 
technology, MR technology has clear imaging, no radiation 
damage, and no bone artifacts [3, 4]. MR image segmen-
tation has become a better method for the prevention and 
diagnosis of spinal diseases. At first, the vertebral body is 
divided manually by doctors. However, this method is very 
time-consuming and laborious.

In recent years, researchers have paid more and more 
attention to the segmentation of intervertebral discs in MR 
spinal images. The number of related research projects have 
also increased. Michopoulou et al. [5] proposed to use prob-
abilistic atlas of IVD for atlas-based segmentation. Ayed 
et al. [6] studied the graph cutting algorithm to segment 
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the intervertebral disc. Law et al. [7] proposed an approach 
for intervertebral disc detection and segmentation using ani-
sotropic directional fluxe. Rabia et al. [8] innovated a 3D 
intervertebral disc segmentation algorithm that that exploits 
weak shape priors encoded in simplex mesh active surface 
models. Although the above methods yielded segmentation 
results, they still encountered challenges and limitations of 
disc segmentation in MR spine images, such as distortion 
and rotation of the object shape, low contrast between the 
object and its surroundings resulting in unclear boundaries, 
and non-uniform intensities within the object.

Nowadays, machine learning has made significant 
development, especially, image segmentation based on 
deep learning has become a common and effective method. 
Convolutional neural networks (CNN) can extract features 
in images and perform classification, segmentation and 
recognition based on the obtained features [9–12]. Long 
et al. [13] proposed a fully convolutional network (FCN), 
which is the first end-to-end image semantic segmentation 
network for pixel-level prediction. It takes an image of any 
size as input, and after a series of convolution operations, 
its output is a high-resolution segmentation mask of the 
same size as the input image. Ronneberger et  al. [14] 
proposes a U-shaped network Unet with symmetric 
structure, which is also composed of pure convolution. 
Unet has two symmetric paths, one is the encoder and the 
other is the decoder. In addition, skip connection is used 
for feature fusion between the encoder and decoder. Unet 
provides high-resolution feature mapping for decoder 
blocks, which makes the segmentation accuracy of medical 
images to reach a high level. Zhou et al. [15] proposed a 
whole new medical segmentation network based on Unet, 
called Unet++ . Because Unet imposes an restrictive fusion 
scheme on skip connection, it forces fusion only on feature 
graphs of the same proportion of the encoder and decoder 
subnets. Unet++ alleviates this problem by redesigning 
skip connections to aggregate different semantic scales 
on decoder subnetworks, thus, a more sensitive feature 
fusion scheme is produced and the performance of network 
segmentation is improved. Machine learning and deep 
learning methods can resolve multifaceted complications 
by gaining insight knowledge from simple representations. 
Yogesh H. Bhosale et al. [16] retrieved up to 64 published 
works related to deep learning-based Covid-19 detection 
systems for comparative analysis and discuss the challenges 
faced in current development. It mainly provides directions 
for future research to further develop effective and reliable 
Covid-19 detection systems. In deep learning detection 
systems, appropriate parameter tuning facilitates fast model 
tuning. Yogesh H. Bhosale et al. [17] also proposed an SSE 
strategy with the awareness of varied class-level accuracies 
for different DL models. SSE models achieve superior 
performance by minimizing the variance of prediction errors 

to the competing base learners. Several hyperparameters 
were also studied for the optimization model, including 
batch size, early stopping, epochs, and optimization 
strategies. There are some difficulties in the segmentation 
of MR spine images, such as the unclear edges between the 
spine and surrounding soft tissues in the image. In addition, 
MR image low contrast, noise, artifact and local volume 
effect usually reduce the performance of spine segmentation. 
Therefore, the image segmentation of the spine has always 
been a very difficult task.

For the segmentation problem of occlusion and unclear 
vertebral body edges in MR spine images, this paper 
proposes a new Inception-CBAM Unet++ (ICUnet++) 
network model for spine image segmentation to achieve 
more prominent segmentation performance. The main 
contribution of this paper can be divided into the following 
three points:

(1)	 Replace the convolutional layer of Unet++ encoder-
decoder with Inception stucture. Inception increases 
the receptive field of convolutional through parallel 
convolutional connections, enabling ICUnet++ to 
obtain different scale features in the feature extraction 
stage and improving the segmentation ability of the 
network.

(2)	 Add Attention Gate (AG) module before each skip 
connection in the network. The attention mechanism 
can extract accurate shallow features more effectively. 
It helps the network more accurately locate the edges 
of the spine.

(3)	 The CBAM module joins into the ICUnet++ network. It 
can effectively capture region of interest(ROI) features 
and suppress non-ROI features, so as to strengthen the 
edge feature extraction ability of the network.

After the introduction, the main content of the second 
section is the description of related work, and the third 
section gives the proposed network model. The fourth 
section is a detailed experimental description. The fifth 
section is the discussion of experimental results. The sixth 
section is the conclusion.

2 � Related work

In the past, medical image segmentation often uses hand-
made features for segmentation [18–20]. With the rapid 
progress of DCNN, in particular, Unet with its encoder-
decoder framework has come to the fore, revolutionizing 
deep semantic segmentation of medical images. SPRNet 
[21] used the convolution with dilation rates of different 
sizes to realize the fusion of multi-scale inputs to enhance 
the receptive field. Fu et al. [22] used the method of average 
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pooling to carry out down-sampling operation on images 
and constructed multi-scale inputs to achieve image 
segmentation. Fu et al. [23] used shallow deconvolution to 
carry out layer upon layer superposition to extract features to 
the maximum extent and fully preserve position positioning. 
Alex Krizhevsky et al. [24] explored CNN more extensively, 
increased its depth and width, and greatly improved 
the network performance. AlexNet used two GPUs for 
computing, which greatly improved the compute efficiency. 
Since Alexnet, the breakthrough direction of convolutional 
neural network is to expand the depth and width of the 
network. However, the increase of the depth and width of the 
network will lead to a sharp increase in parameters, resulting 
in overfitting and higher computational complexity. On the 
other hand, the deeper the network, the more prone it is 
to gradient disappearance (gradient dispersion), making it 
difficult to train and optimize the model. Inception [25] was 
born out of such circumstances. The Inception model has 
two main advantages. First of all, 1 × 1 convolution is used to 
carry out lifting and lowering dimensions, by stacking more 
convolution in modules of the same size, richer features can 
be extracted. The second is convolution reaggregation on 
multiple dimensions simultaneously. Intuitively, convolution 
at multiple scales can extract features of different scales, 
richer features also mean that the final classification 
judgment is more accurate. Inspired by the Inception-
ResNet model, Gu et  al. [26] designed a novel dense 
atrous convolution (DAC), which used the 33 continuous 
convolution layers and pooling layers to capture multi-scale 
features within a limited scale range in the coding stage. Rad 
et al. [27] conducted a study in the multi-scale directions and 
found that a larger receptive field could obtain information 
at any position in the input image. And Zhang et al. [28] 
designed an Inception-RES module in the network, which 
can not only fuse multi-scale features but also solve the 
gradient problem through residual connection. Li et  al. 
[29] designed a novel Dilated-Inception convolutional 
network to extract and locate features in images. Oktay 
et al. [30] proposed an Attention U-net structure with an 
attention mechanism to segment the pancreas. Xiao et al. 
[31] designed a convolutional network with a weighted 
attention mechanism and added skip connections to segment 
high-resolution retinal vessels. Zhang et al. [32] designed 
a network structure called AG-Net with "attention-guided 
filter", which has an excellent function for preserving feature 
information. Guo et al. [33] designed the lightweight SAU-
Net model based on AG-Net, which can largely eliminate 
the overfitting problem by using the special mechanism of 
DropBlock [34]. SAU-Net can be well trained even with 
small sample datasets. SeNet proposed by Hu et al. [35] 
is also designed by using the characteristics of attention 
in the network. The squeeze-and-excitation structure is 
that the contraction operation for the features generated 

after convolution gets the overall feature information at the 
channel level, and then the excitation operation is applied. 
The network learns the nonlinear relationship between 
each channel and obtains the feature weights of different 
channels. The advantage of this attention mechanism is 
that it can make the network prefer the relevant channel 
information in the training process, while suppressing the 
irrelevant information. However, its disadvantage lies in that 
it only focuses on the relationship between feature channels 
and lacks the information linkage between contexts. Woo 
et al. [36] proposed CBAM. Compared with SeNet structure, 
CBAM adds spatial attention after channel attention. The 
max-pooling operation is added after the channel attention 
in SeNet structure, aiming to take the features extracted 
from the channel attention as the input of the following 
spatial attention module. This method saves the number 
of parameters and computational complexity, and brings 
a more powerful improvement in network performance. 
Table 1 summarizes the advantages and disadvantages of 
some existing networks in this section.

According to the relevant work mentioned above, this 
paper proposed an ICUnet++ model with a redesigned 
Inception-CBAM for MR spine image segmentation. In 
the proposed ICUnet++ , the AG and CBAM block have 
been added to better focus on edge feature information. In 
addition, ICUnet++ uses Inception structure to supersede 
the two layers of 3 × 3 convolution in the original network, 
which aims to increase the receptive field by using the 
multi-scale feature fusion method to achieve performance 
improvement.

3 � Method

This section mainly introduces the proposed ICUnet++ 
. It elaborates the proposed ICUnet++ network model, 
Inception structure, and CBAM module respectively.

3.1 � Network model framework

The proposed ICUnet++ network model for spine image 
segmentation is derived from the encoder-decoder archi-
tecture Unet++ model with dense skip connections. As 
shown in Fig. 1, the network replaces the two layers 3 × 3 
convolution in the encoder-decoder stage with the designed 
Inception structure. The Inception structure uses multiple 
convolutional kernels of different sizes to obtain features at 
different scales and enhance the feature extraction capability 
of the network. The network uses a 2 × 2 maximum pooling 
for downsampling, doubling the number of feature chan-
nels downsampled at each layer. Accordingly, the upsam-
pling is required in the decoder stage to restore the features 
extracted in the encoding stage to their original size, and 



3674	 International Journal of Machine Learning and Cybernetics (2023) 14:3671–3683

1 3

up-sampling is performed by means of adjacent interpola-
tion. During the upsampling process, the number of feature 
channels is halved. In order to obtain more useful global 
information, CBAM module is added in the decoder stage 
of the network. In the skip connection stage, dense nested 
connections are used to increase the depth and width of the 
network and integrate image features at different levels. The 
attention mechanism is used to focus on relevant information 
and ignore irrelevant information, so AG and CBAM are 
added to the skip connection of ICUnet++ .

3.2 � Inception structure

ICUnet++ network model is encoder-decoder architecture. 
The encoder stage tries to capture more high-level semantic 
features in the input image while gradually reducing its 
spatial dimensionality. And the decoder stage is to recover 
the original resolution and spatial dimensionality of the 
image. To obtain more contextual information, features can 
be extracted in the encoder-decoder using convolutional 
kernels of different scales. Therefore, Inception is used to 
replace the convolution block in the encoder-decoder in 
Unet++ . The Inception structure is shown in Fig. 2, where 
(a) is the initial structure, and (b) is modified structure. 
The structure replaces Max_pool in the original module 
with 3 × 3 convolution and the number of input channels 
remains constant. The stride is set to 1 in the network, which 
increases the number of extracted features. Then batch 
normalization (BN) [37] is added after each convolution 
to reduce the gradient disappearance or explosion. In the 
proposed network, two 3 × 3 convolutions in Unet++ are 
replaced by the designed Inception block. Compared with 
the original Unet++ structure, ICUnet++ obtains features at 
different scales from convolutional kernels of different sizes, 
increasing the receptive field for feature extraction. Define 
that yl  is the lth  layer output. The hn×n()  denotes a n × n 
convolutional layer and hb() represents the BN layer. And 
fr() denotes the ReLU activation function, concatenation 
function is denoted by ◦. The output of each modified 
Inception structure can be expressed as formula (1):

3.3 � CBAM and AG module

Convolution Block Attention Module (CBAM) contains 2 
independent submodules, Channel Attention module and 
Spatial Attention module. As a lightweight general structure, 
CBAM is used in feedforward convolutional networks, which 

(1)

yl+1 = fr
[
(hb(h3×3(yl)))

]

◦fr
[
hb(h3×3(fr(hb(h3×3(fr(hb(h1×1(yl))))))))

]

◦fr
[
(hb(h3×3(yl)))

]
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Fig. 1   The proposed ICUnet++ 
model
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Fig. 2   Inception structure a Initial structure, b  Modified structure
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can be seamlessly integrated into other CNN networks, and 
it brings a negligible number of parameters.

The CBAM module inputs the intermediate feature 
map, first calculates a one-dimensional channel attention 
map, multiplies it with the intermediate feature map, then 
calculates a 2D spatial attention map, and multiplies it with 
the feature map of the previous layer for adaptive feature 
refinement. During multiplication, the attention values 
are broadcasted accordingly: channel attention values are 
broadcasted along the spatial dimension, and vice versa. 
The.

CBAM is shown in Fig. 3. The calculation process of 
CBAM is expressed as follows:

where � ∈ RC×H×W  is the intermediate feature map, 
�

�
∈ RC×1×1 calculates the one-dimensional channel atten-

tion map, and �
�
∈ R1×H×W calculates the 2D spatial atten-

tion map. The ⊗ denotes element-wise multiplication. �′′ is 
the refined feature map.

(2)

{
�
� = �

�
(�)⊗ �

�
�� = �

�
(��)⊗ �

�

Figure 4 shows the AG module. It’s inputs are the upsam-
pled features in the extended path and the corresponding 
features of the encoder. The former is used as a gating signal 
to enhance the learning of target regions relevant for the 
segmentation task, while suppressing task-irrelevant regions. 
Thus, attention gating can improve the efficiency of seman-
tic information propagation through skip connections. The 
s-shaped activation function sigmoid is chosen to train the 
convergence of the parameters within the gate and to obtain 
the attention coefficient �i . The refined features are obtained 
by multiplying the encoder features by the coefficient �i.

3.4 � Loss function

The loss function in deep learning is a way to evaluate the 
gap between the actual value and the predicted value of the 
neural network output. The network selects the appropriate 
loss function to help improve the accuracy of image 
segmentation. The network uses the combined loss function 
of dice loss and binary cross-entropy loss, and applies it to 
the output of each different level. The expressions are shown 
in formula (3):

Fig. 3   Convolution Block 
Attention Module
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×
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×

+
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Encoder
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ReLU Conv&
BatchNorm Sigmoid ReSample

Attention
Coefficient

×

Refined Feature

iα

Fig. 4   Attention Gate module
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where Ŷb represents the prediction probability and Yb 
represents the basic authenticity of the image. N indicates 
the batch size.

4 � Experiments and results

In this section, the data set, evaluation metrics, experimental 
and results are presented in detail to demonstrate the reliability 
of this model.

4.1 � Experimental Data

The publicly available SpineSagT2WDataset3 is used to train 
and evaluate the segmentation performance of ICUnet++ 
. All data are collected with the same equipment, and the 
magnetic field strength is 3.0 T. The dataset contains sagittal 
T2-weighted volume data from 195 spinal patients, such as 
lumbar disc herniation and lumbar disc degeneration. The 
ground truth (GT) of the dataset is manually drawn by the 
medical imaging expert with a vertebral label of 1 and a 
background label of 0. The 3D volume data are converted into 
2460 slice 2D images of 880 × 880 pixels. Each spinal slice 
2D image contains at least eight vertebrae. The preprocessing 
operation is to adjust the image pixels, and the pixel size after 
adjustment is 256 × 256.

4.2 � Evaluation metrics

In this study, intersection over union (IoU), dice similarity 
coefficient (DSC), true positive rate (TPR), and positive 
predictive value (PPV) are selected to evaluate the 
performance of the network model. IoU and DSC are used 
to evaluate the similarity. TPR describes the proportion of 
true positive samples to all positive samples. The larger the 
TPR indicates the less missed identification, and the smaller 
the TPR indicates the more missed identification. PPV is the 

(3)L
(
Y , Ŷ

)
= −

1

N

N∑

b=1

1

2

(

log Ŷb +
2 ⋅ Yb ⋅ Ŷb

Yb + Ŷb

) proportion of true positive samples to all predicted positive 
samples. The larger PPV indicates fewer false detections, and 
the smaller PPV indicates more false detections. The above 
four metrics are defined as follows.

where TP, FP and FN denote true positives, false positives 
and false negatives, respectively. Rgt and Rpred are ground 
truth and predicted segmentation results respectively.

4.3 � Training details

During model training, the dataset is divided in 4:1 ratio. 
80% of the sliced 2D images are used for training the net-
work and adjusting the network parameters, and the remain-
ing 20% are used to evaluate the performance of the model. 
Each patient's MRI data consiste of 12 to 18 binary slices, 
with a total of 2460 slices for 195 patients, of which 1968 
are used for training and 492 for validation. Figure 5 shows 
a set of MRI slice images of a patient and the corresponding 
GT in dataset SpineSagT2WDataset3.

In addition, the code is implemented in Python 3.8 and 
Pytorch 1.12.0 enviroment. The objective function is opti-
mized using the Adam optimizer. The learning rate is 0.001. 
The batch size is 3. The training epochs are 150 in total. The 
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Fig. 5   The 12 slices and the 
corresponding GTs converted 
from MRI volume data
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proposed model is trained and evaluated on a workstation 
with NVIDIA GeForce RTX 3090 GPU.

4.4 � Experimental results

This experiment improves the performance by modifying the 
basic module of Unet++ and adding the attention module. 
Four evaluation metrics, IoU, DSC, TPR, and PPV are used 
to evaluate the performance of the model. All experiments 
in this study were repeated three times to demonstrate the 
stability of the model, and the best value was taken as the 
experimental result. Finally, the mean and standard devia-
tion of the proposed ICUnet++ and the other network model 
is calculated to show the stability of the model. First, five 
sets of comparative experiments are conducted in this paper 
based on Unet++ to demonstrate the effect of the attention 
position on performance. (1). Put the spine dataset into the 
original Unet++ for training. (2). Add CBAM in skip con-
nection stage, named Unet++ C1. (3). Add CBAM in the 

encoder stage and skip connection stage, named Unet++ C2. 
(4). Add CBAM in the decoder stage and skip connection 
stage, named Unet++ C3. (5). Add CBAM in the encoder-
decoder and skip connection stage, named Unet++ C4. 
(6). Add CBAM in decoder stage, and add AG module and 
CBAM in skip connection stage, named Unet++ C5. As 
shown in Table 2, adding the attention mechanism to the 
Unet++ network can effectively improve the performance 
of spine image segmentation. IoU, DSC, and TPR achieve 
the best results in Unet++ C5. with 82.03%, 89.50%, and 
90.00%, respectively. Figure 6 shows the segmentation 
results and error plots of six different Unet++ models.

Further experiment attempts are made to modify the 
encoder-decoder of Unet++ . The modified Inception struc-
ture is used to improve the segmentation performance of 
the network. A total of 4 groups of related experiments 
have been done. (1). Replace the convolutional layer of 
Unet++ encoder-decoder with Inception structure, and 
add AG module and CBAM in skip connection, named 

Table 2   Comparison of IoU, 
DSC, TPR, and PPV of different 
Unet++ models

Bold values represent the best value for each evaluation indicator in each table

Model Encoder Decoder Skip-connection IoU DSC TPR PPV

CBAM CBAM AG CBAM

Unet++  0.8170 0.8925 0.8913 0.8927
Unet++ C1 √ 0.8177 0.8933 0.8925 0.8978
Unet++ C2 √ √ 0.8168 0.8924 0.8929 0.8940
Unet++ C3 √ √ 0.8188 0.8936 0.8921 0.8962
Unet++ C4 √ √ √ 0.8195 0.8945 0.8922 0.8988
Unet++ C5 √ √ √ 0.8203 0.8950 0.9000 0.8921

Fig. 6   Segmentation results of 6 
different Unet++ models
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ICUnet++ 1. (2). Replace the convolutional layer of 
Unet++ encoder-decoder with the Inception structure, add 
CBAM after the Inception structure in the encoder stage, and 
add AG module and CBAM to skip connection, named ICU-
net++ 2. (3). Replace the convolutional layer of encoder-
decoder of Unet++ with Inception structure, add CBAM 
after Inception of encoder-decoder stage, and add AG 
module and CBAM in skip connection, named ICUnet++ 
3. (4). Replace the convolutional layer of Unet++ encoder-
decoder with Inception structure, add CBAM after Incep-
tion in the decoder stage, and add AG module and CBAM 
in the skip connection, named ICUnet++ . Table 3 shows 
the experimental data comparison. ICUnet++ has achieved 
the best results. IoU, DSC, TPR, and PPV, are 83.16%, 
90.32%, 90.40%, and 90.52% respectively. Figure 7 shows 
the segmentation results and error plots of these four models. 
As shown by experimental data, the segmentation perfor-
mance has been effectively improved after adding the Incep-
tion structure. Figure 8 shows the comparison of Unet++ , 
Unet++ C5 and ICUnet++ segmentation results and error 
plots. Figure 8d illustrates that increasing the attention can 
better segment the vertebral edges in MR spine images com-
pared to Fig. 8c, but there is still the problem of missing 

vertebrae during the segmentation process. Figure 8e illus-
trates that the use of multi-scale feature extraction based on 
Fig. 8d makes the model obtain better segmentation perfor-
mance, which is closer to the ground truth. The proposed 

Table 3   Comparison of IoU, 
DSC, TPR, and PPV of 5 
different ICUnet++ models

Bold values represent the best value for eachevaluation indicator in each table

Model Encoder Decoder Skip-connection IoU DSC TPR PPV

CBAM CBAM AG CBAM

ICUnet++ 1 √ √ 0.8227 0.8973 0.8972 0.8988
ICUnet++ 2 √ √ √ 0.8216 0.8963 0.8954 0.8991
ICUnet++ 3 √ √ √ √ 0.8268 0.8989 0.9028 0.8988
ICUnet++ (Ours) √ √ √ 0.8316 0.9032 0.9040 0.9052
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Fig. 7   Segmentation results of 4 different ICUnet++ models
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Fig. 8   Comparison of Unet++ , Unet++ C5, and ICUnet++ segmen-
tation

Table 4   Comparison of Unet, Unet++ , ResUnet, DenseUnet, RAR-
Unet, mRR-Unet, and ICUnet++ 

Bold values represent the best value for eachevaluation indicator in 
each table

Model IoU DSC TPR PPV Time(s)/epoch

Unet[14] 0.8142 0.8920 0.8925 0.8916 25 s
Unet++ [15] 0.8170 0.8925 0.8913 0.8927 40 s
ResUnet[38] 0.8169 0.8930 0.8956 0.8926 32 s
DenseUnet[39] 0.8137 0.8909 0.8913 0.8928 37 s
RARUnet[40] 0.8215 0.8950 0.8972 0.8946 43 s
mRRUnet[41] 0.8212 0.8945 0.8977 0.8950 50 s
ICUnet++ (Ours) 0.8316 0.9032 0.9040 0.9052 152 s
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ICUnet++ can better segment MR spine image occlusion 
and unclear vertebral body edges. Table 4 shows the experi-
mental results comparison of the ICUnet++ and other five 
network models on SpineSagT2WDataset3, where ICU-
net++ has better segmentation performance. Figure 9 shows 
the segmentation results and error plots of Unet, Unet++ , 
ResUnet, DenseUnet, RAR-Unet, and ICUnet++ , it can be 
seen that ICUnet++ has better segmentation performance. 
In order to demonstrate the stability and robustness of the 
ICUnet++ model, relevant experiments are done in this 

study. Table 5 shows the mean and standard deviation of 
each metric for ICUnet++ and the other network structure. 
It can be seen that ICUnet++ achieves better values in IoU, 
DSC, and TPR, while only the standard deviation of PPV 
is higher than that of Unet. To explain the robustness of 
the model, the open dataset is randomly partitioned so that 
each training and validation images are different, simulating 
a different data source. Five separate training and valida-
tion experiments were conducted, namely the correspond-
ing ICUnet++ a, ICUnet++ b, ICUnet++ c, ICUnet++ d, 
and ICUnet++ . Table 6 shows the experimental results to 
illustrate the robustness of ICUnet++ .

5 � Discussion

The results of spine medical image analysis serve as an 
important clinical indicator that helps doctors to better 
diagnose and treat patients. Since the traditional Unet and 
Unet++ are performed on a relatively single convolution 
kernel, there are limitations in feature extraction 

Fig. 9   The proposed ICUnet++ 
is compared with other five 
network models
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Table 5   Mean and standard 
deviation of Unet, Unet++ , 
ResUnet, DenseUnet, 
RAR-Unet, mRR-Unet, and 
ICUnet++ 

Bold values represent the best value for each evaluation indicator in each table

Model IoU DSC TPR PPV

Unet[14] 0.8138 + 0.00039 0.8917 + 0.00041 0.8919 + 0.00058 0.8912 + 0.00037
Unet++ [15] 0.8165 + 0.00041 0.8921 + 0.00056 0.8922 + 0.00070 0.8920 + 0.00050
ResUnet[38] 0.8165 + 0.00037 0.8924 + 0.00069 0.8957 + 0.00070 0.8925 + 0.00041
DenseUnet[39] 0.8132 + 0.00039 0.8915 + 0.00054 0.8921 + 0.00068 0.8934 + 0.00045
RAR-Unet[40] 0.8210 + 0.00045 0.8945 + 0.00058 0.8966 + 0.00059 0.8945 + 0.00086
mRR-Unet[41] 0.8207 + 0.00037 0.8950 + 0.00056 0.8983 + 0.00058 0.8957 + 0.00057
ICUnet++ (Ours) 0.8313 + 0.00029 0.9028 + 0.00040 0.9035 + 0.00041 0.9046 + 0.00049

Table 6   Metric comparison for different dataset divisions

Dataset for different 
divisions

IoU DSC TPR PPV

ICUnet++ a 0.8304 0.9013 0.9035 0.9041
ICUnet++ b 0.8285 0.9001 0.8999 0.9004
ICUnet++ c 0.8279 0.8994 0.8984 0.8995
ICUnet++ d 0.8310 0.9020 0.9028 0.9033
ICUnet++  0.8316 0.9032 0.9040 0.9052
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at different scales. Therefore, based on multi-scale 
convolution and attention mechanism, the ICUnet++ for 
automatic segmentation of MR spine images is proposed. 
The modified Inception structure allows the network to 
obtain multi-scale feature information and perform fusion. 
In addition, according to the characteristics of attention 
mechanism, AG module and CBAM are added to make 
the network more focused on the extraction of important 
features. In Tables 2 and 3, the same conclusion can be 
drawn that there are differences in the result of adding 
CBAM in different locations. For both Unet++ and 
ICUnet++ , adding CBAM only in the encoder stage 
lead to the reduction of segmentation performance. On 
the contrary, adding CBAM only in the decoder stage 
will have a better effect, this is due to the fact that the 
spatial feature map at the beginning of the encoder stage 
is too large and the number of channels is too small. 
The extracted channel weights are too generalized 
without falling into some specific features, and the 
extracted spatial weights is not generalized enough due 
to the small number of channels. The spatial attention is 
sensitive and difficult to learn, which is more likely to 
cause negative effects. The designed ICUnet++ model 
uses the Inception structure in the encoder-decoder 
stage, adds CBAM after the convolution in the decoding 
stage, and adds the AG module and CBAM in the skip 
connection stage. Figure 8 shows that the segmentation 
of Unet++ C5 at the vertebral edges is better compared 
to Unet++ after adding attention. The segmentation 
performance of ICUnet++ is even better after replacing 
the convolutional layer in the encoding–decoding stage of 
Unet++ C5 using the Inception structure. And according 
to the experimental data in Table 4 and the segmentation 
maps in Fig. 9, it can be seen that ICUnet++ has better 
segmentation performance compared to Unet, Unet++ , 
ResUnet, DenseUnet, RAR-Unet and mRR-Unet. 
ICUnet++ is trained and validated on the public spine 
dataset SpineSagT2Wdataset3. The experimental results 
show that ICUnet++ has better segmentation performance 
compared to the original network and the other network 
models, which is helpful for automatic analysis and 
intelligent diagnosis of spine MRI images.

Furthermore, due to the limitations of the dataset, this 
study still needs to be optimized. In future research, the 
main task is to find more medical image datasets to validate 
the proposed model. ICUnet++ has a good optimization in 
model performance, however, the training time is relatively 
long as shown in Table 4. So a lightweight model will be 
designed in future work.

6 � Conclusion

Various diseases caused by the spine have a significant 
negative impact on our daily life, and the inaccurate 
segmentation of MR spine images with occlusion and 
unclear vertebral body edges can easily lead to medical 
misdiagnosis with serious consequences. Therefore, this 
study proposes the ICUnet++ model to implement the 
segmentation of spine images. The attention mechanism 
is introduced into the ICUnet++ model, which enhances 
the feature extraction for the edge details of spine images. 
ICUnet++ also introduces the modified Inception structure 
into Unet++ to replace the original VGG module. It uses 
multi-scale feature extraction of spine images and improve 
the model segmentation performance. The robustness 
of the model is experimentally verified by randomly 
dividing the dataset and simulating different data sources. 
The comparison of various experimental data with other 
existing network models proves that ICUnet++ has better 
segmentation performance, which is beneficial for automatic 
analysis of spine images and intelligent diagnosis of spine 
diseases.
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