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We previously reported on an obstacle detection method using a stereovision system. The system generated disparity 
images that include three-dimensional spatial information. Using these images, obstacles could be detected, but some 

false positives were generated. In this paper, we attempt to eliminate this problem and propose a method that generates 
Occupancy Grid Maps based on measurements from a stereovision system which leads to robust obstacle detection. 

Furthermore, it is confirmed that high distance accuracy can be achieved by using our method. 
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1. Introduction 
 

Recently, in order to tackle such problems as traffic 
accidents and traffic jams, much research has been 
carried out into the development of Intelligent Transport 
System (ITS). In the field of ITS research, driving 
support systems are among the most important research 
and development fields. 

To realize a driving support system, it is necessary to 
recognize the surrounding environment. It is well known 
that stereovision systems are among the most practical 
approaches to this problem. For example, Sekiguchi et al. 
[1] proposed a method to extract object information, such 
as preceding vehicles, lane markings, and guardrails, by 
using disparity images computed from individual images 
from two cameras. In this method, the objects are 
extracted by adopting some models to enhance the 
robustness. Broggi et al. [2], for the purpose of 
developing an autonomous vehicle, proposed a method 
to identify near and far obstacles by adaptively switching 
between three cameras. Kubota et al. [3] proposed a 
method to identify obstacles based on subtraction of 
geometrically transformed stereo images. This method 
has the advantage that the computational cost becomes 
low, because it is based on simple image subtraction. 
However, almost all of these methods analyze the 
environment using a long baseline stereovision system. 
For example, Sekiguchi et al. adopted a 350 mm baseline 
[1] and Broggi et al. used a baseline up to 1500 mm in 
length [2]. This is because a longer baseline improves the 
accuracy at larger distances. However, a system with an 
excessively long baseline introduces problems since it is 
difficult to be set up on a car, it is bletcherous, and it 
disturbs the driver’s view. On the other hand, obstacle 

detection methods using a monocular camera have also 
been proposed. Franke et al. [4], for example, suggested 
a method to estimate distance based on relative image 
motion. However, there is a problem that the distance 
cannot be estimated unless the ego-vehicle moves for a 
while. Therefore, we developed and reported on a 120 
mm baseline length stereovision system [5], [6]. This 
offers the advantage that it can be hidden behind the 
rear-view mirror in the vehicle. However, this system 
was found to have problems in that it produced some 
false positives while detecting obstacles. The 
characteristics of such false positives were that they 
appeared suddenly and rarely remained in the same 
position for long. Such problems are likely to affect not 
only our system but also systems that make use of raw 
sensor data. Moreover, our previous system suffered 
from a significant deterioration in distance accuracy as 
the baseline was shortened. 

In this paper, we propose an obstacle detection method 
using Occupancy Grid Maps (OGM) [7] to solve these 
problems. In this method, the existence of an obstacle is 
represented as a posterior probability based on all past 
measurements obtained by the stereovision system from 
moment to moment. By using OGM, the number of false 
positives is reduced and obstacles can be robustly 
detected; moreover, the deterioration in distance 
accuracy that arises from baseline-shortening can be 
ameliorated. 
 
2. Stereovision system 
 

Figure 1(a) shows our experimental vehicle. The 
stereovision system in the vehicle is mounted in front of 
the rear-view mirror as shown in figure 1(b). The length 



of the baseline is about 120 mm, so it is fairly 
unobtrusive and is almost hidden from the driver. 

The stereovision system is a sensor that can measure 
distances from the vehicle to obstacles based on the 
principle of triangulation using two or more cameras. In 
this system, two cameras are installed parallel to each 
other. For a stereovision system with a baseline length of 
b, a focal length of f, and a principal point of (cu, cv), as 
shown in figure 2, the three-dimensional position of a 
target object P(X, Y, Z) determined from the disparity is 
given by 
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where the subscripts L and R refer to the left and right 
cameras, respectively, and d is the disparity. Thus, we 
can obtain the three-dimensional position of a target 
object by computing the correspondence point between 
the right and left images. Figure 3 shows a disparity 
image where the magnitude of the disparity for each 
pixel is expressed with a gray scale value. In figure 3, it 
can be seen that there is a large amount of disparity even 
for textureless regions such as the road surface. This is 

because, in this method, a LoG (Laplacian of Gaussian) 
filter [8] was adopted for image enhancement and this 
type of filter is well known to produce such effects. In 
our algorithm, obstacles are detected based on this 
disparity image. 
 
3. Obstacle detection using virtual disparity 

image  
 

In our previous reports [5], [6], we proposed an 
obstacle detection algorithm using a virtual disparity 
image (VDI). In this section, we briefly explain our 
obstacle detection method. 
 
3.1. Road surface extraction 
 

The v-disparity method [2], [9], [10] is generally used 
for road surface identification, owing to its simplicity 
and effectiveness. However, we previously reported that 
this method became inaccurate when the vehicle was 
moving fast on a curve.  

In our previous reports [5], [6], we proposed the use of 
a virtual disparity image (VDI) to address this problem. 
The VDI is a disparity image transformed to a virtual 
observation point as illustrated in figure 4(a). Figure 4(b) 
shows an example of a VDI. 
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(a) External view        (b) Stereovision system
Figure 1. Experimental vehicle 
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When using the VDI, the road surface can be extracted 
by projecting the VDI onto the d-v plane as in the 
traditional v-disparity approach. Additionally, we can 
also extract the road surface by projecting onto the u-v 
plane. Figures 4(c) and (d) show examples of projections 
of the VDI, and it can be seen that the road surface is 
clearly distinguishable in both planes. It is known that a 
flat plane in three-dimensional space also appears as a 
flat plane in disparity image space [9]. Therefore, in this 
case, the image projections in the d-v and u-v planes 
correspond to a “side view” and “front view” of three 
dimensional road scenes from the road surface viewpoint, 
respectively. Therefore, by extracting lines from both 
planes, we can estimate not only the height h and pitch 
angle θ from the d-v plane, but also the roll angle φ from 
the u-v plane. Further details concerning these algorithms 
are given in [5], [6]. 
 
3.2. Obstacle map generation 

 
Next, we discuss an obstacle map generation method 

from the VDI. In the previous subsection, we described 
simple image projection onto the d-v and u-v planes from 
the virtual disparity image space. Here, we consider 
image projection onto the u-d plane from the virtual 
disparity image space. 

The image projected onto the u-d plane contains 
information concerning obstacle maps, and the 
three-dimensional position of an obstacle can be 
estimated using this image. However, an image simply 
projected in this manner includes not only obstacles 
touching the road surface but also objects above the road, 
such as bridges, traffic signs, and signals. Therefore, in 
our method, only virtual disparity image space points 
satisfying Hv

min < ∆Hv  < Hv
max are projected onto the u-d 

plane, where ∆Hv is the height above the road surface, 
and Hv

min and Hv
max are predefined minimum and 

maximum heights above the road surface in real 
three-dimensional space. In our implementation, these 
values are set to –0.5 m and 2.5 m, respectively. Figure 
5(b) shows an example of applying this type of 
projection to the image in figure 5(a). 

We next explain the obstacle detection method using 
the u-d plane. Here, we consider the situation in which 
two different vehicles are present in front of the 
stereovision system, as shown in figure 6. In this 
situation, if a sensor such as a two-dimensional scanning 
laser range finder is used, only the near side object can 
be detected. However, a stereovision system can detect 
both objects if they exist in the image. Therefore, in our 
method, we take advantage of the stereovision: up to two 
objects are detected for each u-line (defined as a vertical 
line in the u-d plane, as shown in figure 5(b)). 

Specifically, two disparities with maximum and 
semi-maximum vote values are detected on each u-line. 
Here, the vote value means number of projected pixels 
from original disparity image in each pixel on projected 
image. Figure 5(c) shows disparity distribution along a 

given line of figure 5(b). We define these disparities as 
di

max_vote (i = 1, 2). These positions are recorded as 
approximate obstacle positions. Moreover, pixels with 
disparities near these values in the VDI are searched for 
again based on these positions (u, di

max_vote). Finally, the 
average di

u and variance σi
u of these disparities are 

calculated by 

2
2

2 i
u

i

i
vi

u

i

i
vi

u

d
N
d

N
dd

−
∑

=

∑
=

σ

      (2), 

where di
v is one of the detected disparities near di

max_vote 
and Ni

 is number of such pixels. Subsequently, the di
u 

values obtained by equation (2) are adopted as obstacle 
positions on the u-line. Figure 7 illustrates an obstacle 
map in the vehicle coordinate system, calculated using 
this algorithm. In this figure, it can be seen that the 
distribution of points indicating preceding vehicles is 
spread out and distorted. As mentioned previously, this is 
most likely due to measurement errors resulting from the 
limited baseline length. 

Figure 8 shows an original image superimposed raw 
obstacle detection data. Here, obstacles are highlighted 
from ground level up to a constant height based on the 
calculated obstacle distance.  

In figure 8(a), the obstacles are detected accurately at 
their original positions. On the other hand, it can be seen 

 
Figure 6. The case of two obstacles in front 

The solid line rectangle is a foreground obstacle and the
dotted line rectangle is a background obstacle. 
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from figure 8(b) that there is a false positive in an area 
where no object exists on the road surface. This false 
positive is the result of noise that exists in the disparity 
image. Such noise tends to appear suddenly and in 
random positions. Therefore, in this paper, we propose a 
method to decrease the number of false positives using 
OGM [7] that can express the existence of obstacles as 
posterior probabilities based on all past measurements 
obtained by the stereovision from moment to moment. 
 
4. Obstacle detection using Occupancy Grid  

Maps  
 
In an OGM, the Cartesian coordinate space is 

partitioned into finitely many grid cells. For each cell, 
the posterior probability that an object exists is 
calculated based on all past measurements. Therefore, 
this algorithm can decrease the detection of false 
positives that appear suddenly. 

In this section, we propose a method for the robust 
detection of obstacles using OGM. 
 
4.1. Occupancy Grid Maps  
 

As described above, in the OGM algorithm, the 
Cartesian coordinate space is partitioned into finitely 

many grid cells. The posterior probability p(mx,y | z1:t, x1:t) 
of an obstacle being present is then calculated for each 
cell mx,y using information about the vehicle pose x1:t and 
measurements z1:t from the stereovision system. Here, x1:t 
represents the path of the vehicle defined by the 
sequence of all poses up to time t. Moreover, z1:t denotes 
the set of all measurements up to time t. 

If we assume that the surrounding objects are static, 
p(mx,y | z1:t, x1:t) can be recursively calculated using a 
Binary Bayes Filter [11], where the log-odds lt

x,,y are 
calculated, instead of p(mx,y | z1:t, x1:t), by 
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where p(mx,y | zt, xt) is a conditional probability given by 
the vehicle pose xt and a measurement zt on a grid cell 
mx,y at a time t. Inv denotes the inverse sensor model 
described in the next section. p(mx,y) is the prior 
probability that corresponds to the initial estimate before 
processing any sensor information. 

The probabilities p(mx,y | z1:t, x1:t) can be easily 
recovered from the log-odds ratio lt

x,,y: 

)exp(1
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Usually, in equation (3), p(mx,y) is set to 0.5 because 
the probability is unknown until measurements are taken. 
Therefore 0

,yxl is 0, and equation (3) is rewritten as 
follows: 
  1

,,
−+= t

yx
t

yx lInvl     (7). 
Hereby t yxl ,  can be continuously calculated as time 
passes. Moreover, the simple recursive addition improves 
the computation efficiency. 
 
4.2. Inverse sensor model 
 

The inverse sensor model allows us to express the 
probabilities in all grid cells based on the measurements 
zt. In this paper, this model is built on each u*-line in the 
u-d plane, and p(mx,y | zt, xt) is calculated based on 

*)*,(1 dupOcc , *)*,(2 dupOcc  and *)*,( dupFree as shown in 
figure 9 and by following equation: 

*)]*,(*),*,(*),*,(max[
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where (u*, d*) denotes the u-d plane coordinate of each 
grid cell mx,y transformed from the vehicle coordinates by 
using equation (1). Actually, u* is not an integer, but, in 
our implementation, rounded values are used instead of 

   
(a) True detection case 

   
(b) False positive case 

Figure 8. Obstacle detection results using raw data
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Figure 9. Inverse sensor model
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the original u*. 
We detail the particulars in the next subsection. 

 
4.2.1. Probability based on measurement *)*,( dupi

Occ .  
We now assume that objects are observed by the 

stereovision system at positions di
u*,t (i = 1, 2) given by 

equation (2) on the u*-line in the u-d plane. At this time, 
because the di

u*,t values contain measuring errors, it is 
necessary to assign probabilities based on variances. We 
define these probabilities as *)*,( dupi

Error  calculated by  
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where σ2
i is the variance of di

u*,t obtained by equation (2), 
and *)*,(max, dupi

Occ is a parameter representing the 
maximum probability as explained in the next 
subsection.  

In the area beyond the position di
u*,t, however, the 

existence of objects is unknown since they can not be 
observed. We define the probability in this unobservable 
area as pUnk(u*, d*) calculated by  
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Finally, the probabilities *)*,( dupi
Occ

 based on 
measurements are calculated by  

*)]*,(*),*,(max[*)*,( dupdupdup i
ErrorUnk

i
Occ =  (11). 

 
4.2.2. Probability based on road surface appearance 

*)*,( dupFree  and *)*,(max, dupi
Occ .  

On the other hand, objects may exist in the area 
between the vehicle position and the measurement point 
di

u*,t. Figure 10(a) shows original images under bright 
(left) and dark (right) conditions. Figure 10(b) shows the 
corresponding disparity images. 

As shown in figure 10(b), the disparity image in the 
dark tunnel is the noisier of the two since the original 
image was noisy. Therefore, in some situations it cannot 
be determined whether objects exist or not because of 
difficulties analyzing the disparity image. In such cases, 
it is necessary to assign a reasonable probability in the 
OGM. We define this probability as pFree(u*, d*). 

Figure 10(c) shows projection images onto the d-v 

plane based on the disparity image in each situation; 
these images represent the appearance of the road surface 
in the disparity images. In these images, the lighter the 
contrast, the less the road surface appears. Therefore, 
from figure 10(c), the road surface appearance in the 
tunnel is less than in bright situations. In other words, in 
dark situations, disparities are difficult to calculate. 
Therefore we proposed a method of adaptively 
calculating pFree(u*, d*) based on road surface 
appearances. 

Specifically, we calculate the road surface appearance 
[12] by analyzing two images projected onto the d-v and 
u-v planes, and we define the evaluated values as α(d*) 
and α(u*), respectively. For each vertical line in each 
image, these values are calculated by 

*)(/*)(*)( 2 dNdd σα =    (12), 
*)(/*)(*)( 2 uNuu σα =    (13), 

where σ 2(d*) and σ 2(u*) are the variances of the vote 
values of the disparities near the road surface position in 
the d-v and u-v plane, respectively. N(d*) and N(u*) are 
the total vote values of the disparities in the considered 
areas. In equation (12), if σ 2(d*) is large, the road 
surface position is ambiguous because α(u*) becomes 
large. By the same token, if N(d*) is small, observed 
road surface appearances become scarce. Therefore, the 
larger α(d*) and α(u*) are, the scarcer road surface 

v
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appearances are. Figure 10(d) shows α(d*) in bright and 
dark situations, and it is seen to be larger in the dark 
situation. 

Moreover, by multiplying α(d*) by α(u*), the road 
surface appearance at the coordinates (u*, d*) in the u-d 
plane is evaluated. We define this value as α(u*, d*) and 
calculate it by  

*)(*)(*)*,( dudu ααα ･=    (14). 
In our algorithm, we adopt this value as pFree(u*, d*) 

after normalizing it to a value between 0 and 0.5. It is 
limited to an upper value of 0.5 because pFree(u*, d*) is 
the probability to express that objects don’t exist. 

On the other hand, *)*,(max, dupi
Occ , which represents 

the maximum value in the probability distribution, also 
depends on the road surface appearance because 
measurements contain much more noise in dark 
situations than in bright ones. Therefore, it is necessary 
that the higher pFree(u*, d*) is, the lower *)*,(max, dupi

Occ  
becomes, and the OGM can be robustly generated even 
in such noisy situations. This probability *)*,(max, dupi

Occ is 
calculated by 

*)]*,(0.1,6.0max[*)*,(max, dupdup Free
i
Occ −= 　  (15), 

where the reason we set the minimum value to 0.6 is to 
influence measurements in the OGM even when  
pFree(u*, d*) becomes 0.5 due to the scarce appearance of 
the road surface. In other words, if the minimum value 
were set to 0.5, the OGM would rarely represent obstacle 
maps even if the measurements were accurate. 

As stated above, the OGM can be updated by applying 
a Binary Bayes Filter and inverse sensor model, and we 
proposed a method for the inverse sensor model that uses 
not only measurements but also the road surface 
appearance to robustly generate the OGM.  
 
4.3. Vehicle pose estimation using scan matching 
 

In the previous section, the OGM was generated based 
on the assumption that the vehicle pose is known. 
Therefore, in order to build a consistent map of the 
environment, good vehicle localization is required. The 
problem of simultaneously estimating vehicle pose and a 
consistency map is called Simultaneous Localization and 
Mapping (SLAM). The SLAM problem can be solved by 
a scan matching algorithm [13], [14], and an Iterative 
Closest Point (ICP) algorithm [15] is adopted in our 
implementation. 

The ICP algorithm can calculate the coordinate 
transformation parameters that minimize the error 
between the two obstacle maps by iterative calculations. 
Figure 11 shows an example of this method. We assume 
two obstacle maps Mt-1 and Mt exist as shown in figure 
11. Here, Mt-1 is a map at time t-1 and Mt is a map at time 
t, and ai and bi correspond to the elements of these maps, 
respectively. Then, the minimum distance between each 
point in Mt-1 and Mt is calculated, and the sum of the 
squares of these distances is calculated by   

2

1
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N

i
ii baE tRtR   (16), 

where N is number of minimum-distance combinations, 
R and t are coordinate transformation parameters and the 
error E relates to the distance between Mt-1 and Mt. The 
map Mt-1 is then repeatedly transformed until E is 
minimized, which results in an estimation of R and t. 

In our implementation, we use the steepest descent 
method to calculate the optimal solutions for R and t in 
equation (16), and the initial values of R and t are taken 
from the vehicle pose estimated using velocity and yaw 
rate sensors.  

Finally, an accurate vehicle pose xt is updated by using 
both the R and t values obtained by the ICP algorithm.   
 
5. Experiment 
 

In the previous section, the method of obstacle 
detection using the OGM was described. In this chapter, 
we present the results of obstacle detection using the 
OGM and estimate its validity; in addition we compare 
the distance accuracy between the raw data and OGM.  
 
5.1. Evaluation of obstacle detection using OGM 
 

First, the results of obstacle detection using the 
proposed method (OGM) are compared with the those 
using the conventional method (raw data). In this 
experiment, the detected obstacle positions are displayed 
in the original image by superimposing the raw data and 
the OGM as shown in figure 12(a) and (b). In the OGM, 
the high probability regions are displayed on the original 
image. The grid cell size in the OGM is 0.2 m × 0.2 m 
and the map region is 40 m × 120 m. Moreover, in the 
OGM, the darker the grid cell is, the higher the 
probability is. Mid-tone areas represent probabilities of 
about 0.5, where it is unknown whether an obstacle 
exists or not.  

It can be seen from figure 12(a) that there are some 
false positives in front of the vehicle. On the other hand, 
these do not appear in figure 12(b). This is because the 
data points corresponding to these false positives appear 
suddenly in the low probability region of the OGM, as 
shown in figure 12(c). Accordingly, by calculating the 
probability from moment to moment, sudden false 
positives can be eliminated. Furthermore, by 
accumulating obstacle maps through time, it can be seen 
that the highlighted regions corresponding to obstacles in 
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Figure 11. ICP algorithm 



figure 12(b) are denser than the raw data in figure 12(a), 
in particular in the far left-side region. 

Figure 13 illustrates the results of obstacle detection 
while driving in a tunnel. As previously mentioned, a 
large amount of noise appears in the disparity images in 
such dark situations. Thus, in figure 13(a), which 
displays the raw data, many false positives appear on a 
lane marking. However, this does not occur in figure 
13(b), which displays the OGM. This is again because 
the measurement data that correspond to them exist in 
the low probability area of the OGM. Thus, it can be 
seen that obstacles can be detected robustly using the 
proposed method. 

Moreover, we performed tests to evaluate the 
robustness of the method against false positive. In this 
experiment, 200 frames were examined. In the worst 
frame, there were 370 measurements calculated by 
equation (2) in the frame, and 7 of them (1.9%) were 
false positives. However, the proposed method 
completely eliminated these false positives. 
 

5.2. Evaluation of OGM validity  
 

In section 4.2, we described the inverse sensor model 
based on road surface appearance to handle situations 
were very few disparities occurred. In this section, we 
evaluate the effectiveness of this model in generating the 
OGM in such situations. 

Specifically, we evaluate how the probability pFree that 
indicates the road surface appearance as shown in 
equation (14) affects obstacle detection and the OGM. 
Figure 14 depicts obstacle detection results in a tunnel 
using the OGM method. Figure 14 (a) shows the case for 
using our model but excluding pFree, and (b) shows the 
case when pFree is included. Moreover, (c) and (d) show 
the OGMs corresponding to (a) and (b), respectively. 

In figure 14, there is little difference between the 
obstacle detection results shown in (a) and (b). However, 
in figure 14(c), the OGM indicates a low probability that 
no obstacle exists even in regions further than the 
physical tunnel wall. On the other hand, in figure 14(d), 
it can be seen that the OGM correctly assesses that such 
area is unknown whether an obstacle exists or not. 
Therefore, we can conclude that the use of pFree can 
reduce inaccurate estimations in the OGM. 
 
5.3. Evaluation of distance accuracy 
 

Next, we evaluate the distance accuracy of the OGM. 
Here, the distance accuracy calculated by OGM is 
compared with that determined from the raw data using a 
stereovision system whose baseline length is 120 mm. 
Additionally, a comparison is made with the raw data 
from a 350 mm baseline system.  

In this experiment, distance accuracy is evaluated by 
fixed-point observation of obstacles that are placed at 10 
m intervals from the stereovision system up to a distance 
of 100 m, as shown in figure 15. Figure 16 depicts 
examples of obstacle maps that the preceding vehicle is 
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placed at 60 m generated by the three systems. In figure 
16(c), the obstacle positions are calculated by extracting 
grid cells that have peak probability on an OGM. In this 
figure, the measurements for 120 mm system seems to 
have large measurement error compared with those for 
350 mm system. On the other hand, by using OGM, it is 
find from figure 16(c) that the measurement error is 
obviously reduced. 

Figure 17 shows the standard deviation results for the 
three systems. In this figure, the standard deviations of 
these measurements over 15 frames (1 second) are 
calculated at each position. It can be seen that the results 
for the 120 mm system (without OGM) are considerable 
worse than those for the 350 mm system, particularly at 
large distances. This is because the longer the baseline is, 
the higher the disparity accuracy becomes. However, for 
the 120 mm system with OGM, the standard deviations 
are much lower than those for the same baseline length 
without OGM. For example, for a distance of 100 m, 

OGM improves the accuracy by approximately 5 times. 
Moreover, the 120 mm system with OGM outperforms 
even the 350 mm system at distances of 40 m or above.  

Thus, even if we use a short baseline stereovision 
system, high distance accuracy better than a system with 
3 times the baseline length can be achieved.  

However, some problematic situations still exist. 
Figure 18 illustrates the results of obstacle detection in 
the situation where moving objects exist. To generate the 
OGM, as noted in the section 4.1, it is required that the 
surrounding objects are static. In this situation, a part of 
intersection that is actually clear of traffic originally 
seems to be blocked by a moving vehicle for a period of 
time. This is because the data corresponding to this 
vehicle do not appear in the same position because this 
vehicle moves.  

Actually, the false positive clears up over time because 
the probability in the false positive region becomes low 
if nothing is observed in this area after the vehicle moves 
away.  

Nevertheless, one method of approaching this problem 
may be to discard older maps from memory. Additionally, 
a method of detecting and tracking moving objects so 
that they do not influence the OGM may be effective. 
Currently, we are studying the latter approach based on 
the fact that a moving object does not appear in the same 
position every moment. 
 
6. Conclusion 
 

In this paper, we proposed an obstacle detection 
method using OGM to overcome some problems caused 
by shortening the baseline of stereovision systems. Our 
method is summarized as follows: 
・ By using OGM, false positives in the conventional 

method could be eliminated and dense obstacle 
maps could be generated. 

・ In the OGM algorithm, an inverse sensor model 
considering road surface appearance was proposed. 

(c) OGM 
Figure 18. Situation of existing moving object

 
(a) Obstacle detection 

using raw data 

 
(b) Obstacle detection using OGM 

 

Right turn vehicle

False positive

 
Figure 15. Situation of fixed-point observation
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Figure.16. Example of obstacle maps at 60 m 
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By using this model, consistent OGM which took 
into account the quality of disparity images could be 
generated.  

・ The reduction in stereovision accuracy caused by 
shortening the baseline was improved using the 
proposed method, and it was confirmed that the 
distance accuracy during obstacle detection was the 
same or better than a system with a baseline triple 
the length.  

 
In view of these results, it can be concluded that 

obstacle detection using OGM is an effective method in 
various situations, even when a large amount of sensor 
noise exists, and it can be easily applied to other sensing 
methods such as laser range finders.  
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