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Abstract Resilience is about the ability of the system to

resist, adapt to, and expeditiously recover from a disruptive

event. The first and maybe the crucial step of resilience

management is known as resilience analysis. However,

there are many obstacles in front of the analyzers to ana-

lyze the resilience of systems. One of these obstacles is

precise resilience data accessibility. Conventional resi-

lience analysis methods frequently only consider historical

data (e.g., time to repair and time to failure). However, to

analyze the system resilience more precisely, the effect of

the risk factors, which are known as observed and unob-

served covariates, should be considered in the collected

resilience database. These covariates will lead to the

observed and unobserved heterogeneities among the col-

lected database. Ignoring the effect of covariate may lead

to erroneous conclusion about the resilience level of the

system. Since it is hard to find a homogeneous operating

condition, in this study, a formulation is proposed to model

the effect of these covariates on complex system resilience.

Finally, it is applied to a transportation system of a surface

mine.

Keywords Resilience � Risk factors � Covariate �
Reliability � Maintainability � Supportability

1 Introduction

Severe large scale events such as COVID-19 have shown

that risk management is not enough to protect systems and

infrastructures against disruptive events. Therefore,

recently, systems managers have moved their attention

from building a robust system by risk management to

establish a resilient system using resilience management

(Barabadi et al. 2020). Robust systems experience sudden

failure in case of disruption and lose their core value, while

resilient systems absorb the adverse impacts, adapt to and

recover their desired performance level after a disruption

(Mottahedi et al. 2021). The concept of resilience has

spread from ecological systems into other domains (Hol-

ling 1973). US National Infrastructure Advisory Council

(NIAC) defined resilience as the ‘‘system’s ability to

anticipate, absorb, adapt to, and rapidly recover from a

potentially disruptive event’’ (National Infrastructure

Advisory Council 2009). The European project IMPRO-

VER has also proposed one of the newest definitions of

system resilience. It defined resilience as ‘‘the ability of a

CI system exposed to hazards to resist, absorb, accom-

modate to and recover from the effects of a hazard in a

timely and efficient manner, for the preservation and

restoration of essential services’’ (Petersen et al. 2020). To

date, the resilience concept has been adopted in various

disciplines, such as engineering (Rød et al. 2016; Najarian

and Lim 2019), social (Amico and Currà 2014; Zhang and

Huang 2018), economic (Vugrin et al. 2011; Pant et al.

2014), ecological (Holling 1973; Müller et al. 2016), socio-

technical (Omer et al. 2014; Cook et al. 2016), and socio-

ecological systems (Brown and Williams 2015; Meng et al.

2018).
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Resilience analysis is the first and important step of

resilience management. There are many obstacles in front

of the analyzers to analyze the resilience of systems. One

of these obstacles is accessibility to accurate resilience

data. The accuracy of estimated resilience considerably

relies on the quality and accuracy of the collected resi-

lience data and the tools applied to analyze the collected

database. These prerequisites pose several challenges for

the analyst. The first challenge is the presence of hetero-

geneities among the collected database. In the process of

engineering system resilience analysis, the historical data

are usually collected from different units at different times

with different operating environments, where the assump-

tion of the homogeneous and the independent and identi-

cally distributed data are not realistic (Finkelstein 2007). In

such cases, the operational and environmental risk factors,

which are also known as observed and unobserved

covariates, will lead to observed and unobserved hetero-

geneities among the collected database (Kumar and Klefsjo

1994; Garmabaki et al. 2016).

According to the general resilience analysis methods,

there is no evidence about considering the effect of

observed or unobserved heterogeneities in the resilience

analysis process. These heterogeneities can be counted

using covariates. They can be observed or unobserved and

affect the system’s resilience. Those covariates that their

effects are known are named as observed covariates

(Garmabaki et al. 2016). For example, rock kind (e.g., soft

and hard), precipitation, and temperature are observed

covariates that influence the system repair or failure rate

and can be collected in the database. On the contrary, the

unobserved covariates are unknown and cannot be col-

lected in the database. But, their effects can be added to the

analysis (Gutierrez 2002). In this work, a formulation is

presented to model these covariates on complex system

resilience. Finally, in order to demonstrate how it can be

used in a real case, it is applied to a transportation system

of a surface mine.

2 Resilience formulation

Rød et al. (2016) presented a quantitative metric to analyze

infrastructure’s resilience at the Arctic region. According

to Rød et al. (2016), the system resilience at time t (w tð Þ)
can be obtained as follow:

w tð Þ ¼ R tð Þ þ K tð Þ 1� R tð Þð Þ ð1Þ

In Eq. (1), R tð Þ is the reliability of system and K tð Þ refer to
system recovery efficiency and can be formulated as

follow:

K tð Þ ¼
Y4

i¼1

bi ð2Þ

where b1 and b2 represent the disrupted system maintain-

ability and supportability. b3 refers to the efficiency of the

prognostic and health management (PHM) system before

disruption, and b4 refer to the organizational resilience in

the case of disruption (the resilience of the system’s

owner).

In Eqs. (1) and (2), reliability can be defined as ‘‘the

ability of the system to maintain its required capacity and

performance during a given period under stated condi-

tions’’ (Youn et al. 2011). Maintainability can be defined as

‘‘the ability of an item under given conditions of use, to be

retained in, or restored to, a state in which it can perform a

required function, when maintenance is performed under

given conditions and using stated procedures and resour-

ces’’ (Barabadi et al. 2011). Supportability refers to the

inherent system features, which facilitate the efficient and

effective support of the system during the life cycle.

Reliability, maintainability, and supportability refer to the

technical aspect of system’s resilience. Therefore, man-

agers need another concept to evaluate resilience from the

organizational aspect. Organizational resilience considers

the resilience of the system’s owner. It plays an important

role in the system’s resilience. Applying this concept helps

organizations to be able to deal effectively with hazards,

especially when the situation is very uncertain and unsta-

ble (Walker et al. 2014; Rehak 2020). Besides, PHM sys-

tem performance assesses the health state of the system,

forecast potential defects, and assists to suitably maintain

engineered systems during their life cycle. Investment on

the PHM system can modify vulnerable systems into

resilient systems (Youn et al. 2011; Rød et al. 2016).

It is clear that Eq. (1) is not a covariate-based formula,

and for this purpose, some modifications should be carried

out on it. Therefore, the covariate-based resilience analysis

formula is given by Eq. (3). Moreover, for a series–parallel

system with n series and m parallel subsystems, the Eq. (3)

can be rewritten with Eq. (4):

wh t; c; c tð Þð Þ ¼ Rh t; c; c tð Þð Þ
þ Kh t; c; c tð Þð Þ 1� Rh t; c; c tð Þð Þ½ � ð3Þ

wh t; c; c tð Þð Þ ¼
Yn

i¼1

1�
Ym

j¼1

1� Rijh t; c; c tð Þð Þ
� �

1� Kijh t; c; c tð Þð Þ
� �

" #" #

¼
Yn

i¼1

1�
Ym

j¼1

1� wijh t; c; c tð Þð Þ
" #" #

ð4Þ

In Eq. (3),wh t; c; c tð Þð Þ;Rh t; c; tð Þð Þ and Kh t; c; c tð Þð Þ
refer to the covariate-based resilience, reliability, and

recovery efficiency. Furthermore, c and c tð Þ represent the
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time-independent and time-dependent observed covariates,

and h is the symbol that refer to the consideration of the

effect of the unobserved covariates. In order to use Eq. (3),

covariate-based reliability, maintainability, and supporta-

bility (RMS) values should be estimated. Thus, in the next

section, the covariate-based RMS estimation procedure of

engineering systems is depicted.

2.1 Covariate-based RMS estimation

The conventional RMS estimation methods (e.g., homo-

geneous poison process (HPP), power-law process (PLP))

are only based on the failure, repair, and logistic data. In

these methods, by validating the assumption of the inde-

pendent and identically distributed nature (iid) of data

(using trend and serial correlation tests), the best distribu-

tion models of data are selected (Barabadi et al. 2011;

Garmabaki et al. 2016). These models are known as

baseline hazard rate (for the failure database), baseline

repair rate (for the repair database), and baseline delivery

rate (for the logistic database). However, neglecting the

observed and unobserved covariates will result lead to

underestimation. Hence, to regard the covariates’ impacts,

the steps that are illustrated in Fig. 1 must be carried out.

2.1.1 Database collection

First of all, a database that contained the time between

failures (TBFs), time to repairs (TTRs), and time to

deliveries (TTDs) data and their associated observed

covariates should be established.

2.1.2 Time dependency test

In order to check the time-dependency of observed

covariates, the assumption of the proportionality should be

evaluated. When the proportionality assumption is violated

for a covariate, it means that the influence of the covariate

is dependent on time and vice versa. For example, a system

that requires to be restored outdoors through unfavorable

weather conditions in the winter may demand more extra

time to restore than through the summer. It means the

effect of weather conditions is time-dependent (Barabadi

et al. 2011). There are many methods to check the time

dependency of observed covariates like graphical methods

and goodness of fit test (Kumar and Klefsjo 1994). But in

this paper, Schoenfeld residuals test is suggested for this

aim. In this test, a Schonfeld residual is defined for each

covariate. Afterward, all of data (e.g., TBFs) ranked based

on their order. In Schoenfeld residuals test, the null

hypothesis is that the correlation between Schoenfeld

residuals and ranks of data is zero. Finally, rejection of the

null hypothesis (P � value\0:05) shows that the propor-

tionality assumption is violated, and the covariate is time-

dependent (Kleinbaum and Klein 2012).

2.1.3 Heterogeneity test

Unobserved covariates are unknown among the database,

but there is a way to check their effect. There are several

statistical tests for this purpose. However, the likelihood

ratio test is one of the common tests for checking the

unobserved heterogeneity among a database. In this test,

the null hypothesis is that there is no unobserved hetero-

geneity among the database. The likelihood ratio test is

expressed in Eq. (5) as follow (Garmabaki et al. 2016):

R ¼ 2 ln L k̂; b̂; ĥ
� �

� lnL k̂0; b̂0; 0
� �� �

ð5Þ

In this equation, k̂ and b̂ refer to the estimated param-

eters of the power low intensity function. Moreover, ĥ can

be interpreted as the degree of unobserved heterogeneity.

In Eq. (5), the parameters k̂; b̂ and ĥ can be estimated by

maximizing the full likelihood function and the k̂0 and b̂0
likelihood function under the null hypothesis (for further

information about likelihood function L k; b; hð Þð Þ refers to
the (Garmabaki et al. 2016)). If R� 2:706

(P � value\0:05) then null hypothesis (no unobserved

heterogeneity,h ¼ 0) will be rejected on a 5% significance

level, and it means there is an unobserved heterogeneity

among the collected database.

2.1.4 Model selection

In order to estimate the RMS, in addition to the selection of

the baseline hazard, repair, and delivery rates models, the

suitable models should be selected for modeling the effect

of covariates. Hence, when all observed covariates are

time-independent, and there is no evidence about the

existence of unobserved heterogeneity, Cox regression

model can be used to model hazard and repair rates as

follow (Kumar and Klefsjo 1994; Barabadi et al. 2011):

k t; vð Þ ¼ k0 tð Þ exp
Xq

i¼1

bivi

 !
ð6Þ

Fig. 1 Considered flowchart for

the RMS estimation of system
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l t; zð Þ ¼ l0 tð Þ exp
Xp

i¼1

dizi

 !
ð7Þ

where k t; vð Þ and l t; zð Þ represent the hazard and repair

rates function, and k0 tð Þ and l0 tð Þ are the baseline hazard

and repair rates, respectively. Moreover, exp
Pq

i¼1

bivi

� �
and

exp
Pp

i¼1

dizi

� �
are the positive function for capturing the

effect of observed time-independent covariates (i.e., v and

z) on the hazard and repair rates, respectively. Moreover, bi

and di refer to the regression coefficients of ith time-in-

dependent observed covariates, which affect hazard and

repair rates, respectively.

When time-dependent observed covariates exist in the

database as well as time-independent covariates, the

extended form of Cox regression model should be used to

model hazard and repair rates as (Barabadi and Markeset

2011; Barabadi et al. 2011):

k t; v; v tð Þð Þ ¼ k0 tð Þ exp
Xq

i¼1

bivi þ
Xg

j¼1

xjvj tð Þ
 !

ð8Þ

l t; z; z tð Þð Þ ¼ l0 tð Þ exp
Xp

i¼1

dizi þ
Xh

j¼1

#jzj tð Þ
 !

ð9Þ

where v tð Þ and z tð Þ refer to the time-dependent observed

covariates that affect hazard and repair rates, respectively.

Furthermore, #i and xj are the regression coefficients of jth

time-dependent observed covariate, which affect hazard

and repair rates, respectively. However, when time-inde-

pendent and time-dependent observed covariates along

with unobserved covariates presence in the database, the

extension of mixed Cox regression model can be used to

model the hazard rate as follow (Lancaster 1979):

k t; v; v tð Þ; að Þ ¼ ak0 tð Þexp
Xq

i¼1

bivi þ
Xg

j¼1

xjvj tð Þ
 !

ð10Þ

Accordingly, to model repair rate, the extension of

mixed Cox regression model can be introduced as:

l t; z; z tð Þ; að Þ ¼ al0 tð Þexp
Xp

i¼1

dizi þ
Xh

j¼1

#jzj tð Þ
 !

ð11Þ

In these Eqs. (10) and (11), a refers to the unobserved

heterogeneity or frailty variable. a ¼ 1 shows there is no

effect of unobserved covariates, it is equal to 1. Gamma

distribution with mean equal to 1 and variance h is the

normally applied frailty model to estimate the a (Garma-

baki et al. 2016).

It should be noted, the significance of regression coef-

ficients of the mentioned models should be checked, and

those observed covariates that their coefficients are

insignificance should be excluded. The significance of each

coefficient can be tested by determining the Wald statistics

and its P-value. The P-value of 0.05 can be regarded as the

upper limit to check the coefficients’ significance; thus, the

observed covariates that their coefficients’ P-values are

greater than 0.05 (insignificance coefficients) must be

excluded from the RMS estimation (Barabadi et al. 2011;

Barabadi 2012).

2.1.5 RMS estimation

By using the selected model in the previous section, the

general form of the covariate-based reliability functions

can be written as follow (Zaki et al. 2019; Rod et al. 2020;

Ghomghaleh et al. 2020; Barabadi et al. 2021):

Rh t; v; v tð Þð Þ ¼ 1� hln R t; v; v tð Þð Þ½ �½ ��1=h ð12Þ

Accordingly, the covariate-based maintainability func-

tions is given by (Zaki et al. 2019; Rod et al. 2020;

Ghomghaleh et al. 2020; Barabadi et al. 2021):

Mh t; z; z tð Þð Þ ¼ 1� 1� hln M t; z; z tð Þð Þð Þ½ ��1=h ð13Þ

where Rh t; v; v tð Þð Þ and Mh t; z; z tð Þð Þ refer to the reliability

and maintainability functions, which are based on the

observed and unobserved covariates. The subscript h is

used to emphasize the dependence on the frailty variance h.
When h is equal to 1, it shows there is no evidence about

the existence of unobserved heterogeneity in the database.

Additionally, R t; v; v tð Þð Þ and M t; z; z tð Þð Þ represent the

reliability and maintainability functions that are only based

on observed covariates (In order to get more information

about R t; v; v tð Þð Þ and M t; z; z tð Þð Þ refer to (Barabadi and

Markeset 2011; Barabadi et al. 2011)).

Due to the similarity of supportability estimation with

the maintainability estimation, the general form of the

covariate-based supportability function is given by:

Sh t; x; x tð Þð Þ ¼ 1� 1� hln S t; x; x tð Þð Þð Þ½ ��1=h ð14Þ

In Eq. (14), x and x tð Þ refer to the time-independent and

time-dependent observed covariates, which affect the

delivery rate.

3 Case study

In the present study, the proposed framework for the

Sungun copper mine’s transportation system is used. This

mine is the second-largest copper mine in Iran. This mine

is located 75 km northwest of Ahar city, East Azerbaijan,

Varzeqan city, in a mountainous region that is one of the

coldest regions of Iran. In this area, heavy rain and fog are
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usual weather phenomena throughout the year. The mine’s

estimated reserves are about 828 million tons, with an

average copper grade of 0.62%. In this mine, mining

operations at the mine site are conducted by using dump

trucks, loaders, excavators, shovels, bulldozers, and dril-

ling rigs (Qarahasanlou et al. 2018). The characteristics of

the mine’s transportation system are introduced in Table 1.

Furthermore, the block diagram of the ore transportation

system has been shown in Fig. 2.

4 Results and discussion

In this section, the results of the covariate-based RMS and

resilience estimations of the mine’s transportation system

are presented, respectively.

4.1 RMS of the transportation system

In the first step, a database was established about the loader

and dump-trucks subsystems. The collected database

belonged to the period of fifteen months. It was obtained by

daily operation reports and periodical maintenance reports.

This database has contained the time between failures

(TBFs), time to repairs (TTRs), and time to deliveries

(TTDs) data and their associated observed covariates. The

identified observed covariates are introduced in Table 2.

In Sungun copper mine, loader and dump-trucks have

the same repair workstation. Hence, the identified observed

covariates about the repair database are similar for each

subsystem. Also, there were no observed covariates for the

logistic database. The collected data were classified and

sorted according to the identified covariates. The details of

the identified covariates are presented in Appendix (see

Table 8). In the second step, the time dependency of the

identified observed covariates was checked by Schoenfeld

residuals test. According to the results, some of the

covariates that are related to the DT.1 subsystem have

P-values less than 0.05. Hence, the effect of these covari-

ates on the failure of this subsystem is time-dependent.

Therefore, based on the experience and statistical

approach, the failure database of DT.1 was stratified into

three layers in a way that in each layer all covariates be

time-independent. The results of Schoenfeld residuals test

are shown in Appendix (see Tables 9 and 10).

In the third step, the unobserved heterogeneity among

the collected databases was checked. The results of the

heterogeneity tests for the failure, repair, and logistic

databases are introduced in Appendix (see Table 11) Based

on the results, failure data of Lo and DT.1 subsystems,

repair data of Lo and all dump-trucks subsystems, and also

logistic data of Lo and all dump-trucks subsystems have

unobserved heterogeneities. It must be mentioned that the

logistic data are the same for all dump-trucks subsystems

due to the same inventory, spare parts, and repairs.

In the fourth step, the suitable models were selected for

the hazard, repair, and delivery rates of the subsystems.

Firstly, based on the validation of the iid assumption using

the trend and serial correlation tests for the failure, repair,

and logistic data of the subsystems, the best models for the

baseline hazard, repair, and delivery rates were selected

(see Tables 5, 6, and 7). Secondly, based on the time

dependency and heterogeneity tests, the suitable models for

the hazard, repair, and delivery rates of the subsystems

were selected. The results are introduced in Table 3. It must

be mentioned, because the same inventory, spare parts, and

repairs, all dump-trucks subsystems have the same delivery

rate models. Afterward, the regression coefficients of the

observed covariates, as well as the variance of Gamma

distributions for each subsystem (i.e.,h) that have unob-

served heterogeneity, were estimated. The results of the

regression coefficients significance checking are introduced

in Appendix (see Table 12). The observed covariates,

which their regression coefficients P-values were greater

than 0.05, have been excluded from the RMS estimation

process. Furthermore, values of h for each subsystem are

introduced in Table 4. At the last step, based on the

selected models, RMS functions were obtained for each

subsystem. The results are introduced in Tables 5, 6, and 7.

Finally, RMS estimation was carried out for 6.3 h of sys-

tem operation (the considered time step is 0.7 h) using

Table 1 The mine’s transportation system characteristics

No Subsystem name Model Code

1 Wheel loader Caterpillar-988b Lo

2 Dump-truck Komatsu-785–5 DT.1

3 Dump-truck Komatsu-785–5 DT.2

4 Dump-truck Komatsu-785–5 DT.3

5 Dump-truck Komatsu-785–5 DT.4

6 Dump-truck Komatsu-785–5 DT.5

7 Dump-truck Komatsu-785–5 DT.6

Mine Lo.

DT.1

DT.2

DT.3

DT.4

DT.5

DT.6

Dump

Fig. 2 Block diagram of Sungun Copper mine’s transportation

system
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RMS functions. The results are illustrated in Figs 3, 4,

and 5.

Based on Fig. 3, at a certain time, the reliability of the

loader subsystem will be more than dump-truck

subsystems. For example, 2.80 h after starting the subsys-

tems activity, the reliability of loader and DT.4 will be

equal to 0.992 and 0.884, respectively. It means after the

2.8 h of subsystems operation, the probability of DT.4

failure will be 0.36% more than loader failure probability.

This value for 6.30 h after starting the activity will be

increased to 21.02%. According to Fig. 4, the maintain-

ability of DT.2 will be higher than the loader subsystem

maintainability. After the 2.8 h of activity, the repair

probability of DT.2 will be 53.1% more than the loader

repair probability. Other dump-truck subsystems have

approximately the same maintainability, which means their

repair probabilities are the same as each other. Figure 5

indicates that the loader subsystem will have better sup-

porting (in the form of spare parts logistics, maintenance

facilities, workforce, etc.) than dump-truck subsystems.

Concerning the results, the probability of supporting the

dump-truck subsystems after 6.3 h of system operation will

Table 2 Identified observed covariates that are associated with the failure and repair database

Failure database Repair database

Sub-system Identified covariates Sub-system Identified covariates Sub-system Identified covariates

Wheel

loader

v1 Shift Dump-

truck

v1
’ Shift Loader & Dump-

truck

z1 Shift

v2 Working place v2
’ Number of service z2 Involved maintenance

crew

v3 Proportion with

truck

v3
’ Proportion with

loader

z3 Weather condition

v4 Weather condition v4
’ Rock fragmentation z4 Precipitate

v5 Precipitate v5
’ Slope of road z5 Temperature

v6 Temperature v6
’ Weather condition

v7 Road condition v7
’ Precipitate

v8 Number of service v8
’ Temperature

v9 Rock fragmentation v9
’ Road condition

v10 Rock kind v10
’ Rock kind

v11
’ Hauling distance

Table 3 The results of the

hazard, repair, and delivery

models selection

Failure database Repair database Logistic database

Subsystem Model Subsystem Model Subsystem Model

Lo Mixed Cox model Lo Mixed Cox model Lo Mixed Cox model

DT.1 (1st layer) Cox model DT.1 Mixed Cox model DT.s Mixed Cox model

DT.1 (2nd layer) Cox model DT.2 Mixed Cox model

DT.1 (3rd layer) Mixed Cox model DT.3 Mixed Cox model

DT.2 Cox model DT.4 Mixed Cox model

DT.3 Cox model DT.5 Mixed Cox model

DT.4 Cox model DT.6 Mixed Cox model

DT.5 Cox model

DT.6 Cox model

Table 4 The values of the variance h

Failure database Repair database Logistic database

Subsystem h Subsystem h Subsystem h

Lo 0.970 Lo 0.570 Lo 0.588

DT.1 (3rd layer) 2.040 DT.1 3.220 DTs 1.050

DT.2 – DT.2 0.860

DT.3 – DT.3 3.430

DT.4 – DT.4 1.110

DT.5 – DT.5 3.300

DT.6 – DT.6 2.860
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Table 5 Obtained reliability functions for each subsystems

Subsystem Baseline hazard rate

parameters (PLP model*)

Reliability function

b (Scale) a (Shape)

Lo 9.592 1.950
RLo:h t; mð Þ ¼ 1� 0:97ln exp � t

9:592

� �1:95� �� �exp �0:6m1�1:05m2þ0:49m4�0:17m5�0:83m10ð Þ
� �� 	�1=0:97

DT.1 (1st layer) 7.123 1.293
RDT:1 t; m0ð Þ ¼ exp � t

7:123

� �1:293� �� �exp �2:02m
0
2
�1:04m

0
6ð Þ

DT.1 (2nd layer) 7.319 1.611
RDT:1 t; m0ð Þ ¼ exp � t

7:319

� �1:611� �� �exp �1:94m
0
1
�0:6m

0
2
þ0:58m

0
5
þ0:7m

0
9ð Þ

DT.1 (3rd layer) 24.600 2.339

RDT:1h t; m0ð Þ ¼ 1� 2:040ln exp � t
24:6

� �2:339� �� �exp �1:22m
0
2
þ2:14m

0
5
þ1:44m

0
6ð Þ� �� 	�1=2:040

DT.2 22.271 0.969
RDT:2 t; m0ð Þ ¼ exp � t

22:271

� �0:969� �� �exp �0:64m
0
1
�0:68m

0
2
þ0:65m

0
5
þ0:26m

0
6ð Þ

DT.3 44.742 1.012
RDT:3 t; m0ð Þ ¼ exp � t

44:742

� �1:012� �� �exp �0:44m
0
1
�0:82m

0
2
þ0:28m

0
4
þ0:87m

0
5ð Þ

DT.4 14.549 1.301
RDT:4 t; m0ð Þ ¼ exp � t

14:549

� �1:301� �� �exp �1:08m
0
1
�0:98m

0
2
þ0:29m

0
4
þ0:66m

0
5ð Þ

DT.5 30.569 0.988
RDT:5 t; m0ð Þ ¼ exp � t

30:569

� �0:988� �� �exp �0:6m
0
1
�0:65m

0
2
þ0:35m

0
4
þ0:45m

0
5ð Þ

DT.6 28.420 1.012
RDT:6 t; m0ð Þ ¼ exp � t

28:420

� �1:012� �� �exp �0:68m
0
1
�0:57m

0
2
þ0:82m

0
5ð Þ

*PLP model: a
b

t
b

� �a�1

Table 6 Obtained maintainability functions for each subsystems

Subsystem Baseline repair rate model’s parameters (PLP

model)

Maintainability function

b (Scale) a (Shape)

Lo 2.474 1.348
MLo:h t; zð Þ ¼ 1� 1� 0:57ln exp � t

2:474

� �1:348� �� �exp �2:35z2�0:48c3ð Þ
� �� 	�1=0:57

DT.1 1.370 3.680
MDT:1h t; zð Þ ¼ 1� 1� 3:22ln exp � t

1:37

� �3:68� �� �exp �7:37z2ð Þ
� �� 	�1=3:22

DT.2 1.486 2.211
MDT:2h t; zð Þ ¼ 1� 1� 0:86ln exp � t

1:486

� �2:211� �� �exp �3:01z2ð Þ
� �� 	�1=0:86

DT.3 1.239 3.547
MDT:3h t; zð Þ ¼ 1� 1� 3:43ln exp � t

1:239

� �3:547� �� �exp �7:51z2ð Þ
� �� 	�1=3:43

DT.4 1.710 2.103
MDT:4h t; zð Þ ¼ 1� 1� 1:1ln exp � t

1:71

� �2:103� �� �exp �0:55z1�2:92z2ð Þ
� �� 	�1=1:11

DT.5 1.056 3.493
MDT:5h t; zð Þ ¼ 1� 1� 3:3ln exp � t

1:056

� �3:493� �� �exp �7:26z2�0:67z3ð Þ
� �� 	�1=3:3

DT.6 1.394 3.453
MDT:6h t; zð Þ ¼ 1� 1� 2:86ln exp � t

1:394

� �3:453� �� �exp �6:7z2ð Þ
� �� 	�1=2:86
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Table 7 Obtained supportability functions for each subsystems

Subsystem Baseline delivery rate model’s parameters (PLP model) Supportability function

b (Scale) a (Shape)

Lo 0.318 1.397
SLo:h tð Þ ¼ 1� 1� 0:588ln exp � t

0:318

� �1:397� �� �h i�1=0:588

DTs 8.900 1.245
SDTs:h tð Þ ¼ 1� 1� 1:050ln exp � t

8:9

� �1:245� �� �h i�1=1:050

Fig. 3 Subsystems reliability estimation results

Fig. 4 Subsystems maintainability estimation results

Fig. 5 Subsystems supportability estimation results

Fig. 6 Transportation system’s subsystems resilience analysis results

for 6.30 h of activity
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be less than 40%, which means these subsystems will have

a great potential to suspend the transportation system

operation in the face of failure events.

4.2 Resilience of the transportation system

According to Fig. 2, the ore transportation system is a

series–parallel system. It must be mentioned the values of

the PHM system efficiency and organizational resilience

were considered as the constant values in this work

(b3 ¼ 0:85 and b4 ¼ 0:75) (Rød et al. 2016). Finally, using

the obtained results, the resilience of the ore transportation

subsystems for 6.3 h of operation were analyzed (see

Fig. 6).

As can be seen, the loader subsystem has higher resi-

lience than other subsystems. Whereas, dump-truck sub-

systems will have lower resilience than the loader

subsystem. For example, 6.30 h after starting the activity,

the resilience of DT.6 will be reached to 86.92%. There-

fore, in the face of disruptions or failures, the loader sub-

system will have a more probability to be resilience against

the failures.

Ultimately, the resilience of the system for 6.30 h of

activity is shown in Fig. 7. As can be seen, the resilience of

the ore transportation system will be equal to 97.43% after

6.30 h of activity. In other words, the system will have a

97.43% probability to withstand against and to recover its

normal function in the case of disruption. However,

maintaining or enhancing this ability is one of the most

critical issues for Sungun copper mine management.

Generally, to increase or maintain the resilience of the

system, the mine management should be more focused on

the subsystems with low RMS. Improvement of the pre-

ventive maintenance activates or increasing redundancy in

dump-truck and loader subsystems like adding the new

dump-trucks or loaders to the ore transportation system are

some ways to increment the reliability of the ore

transportation system. Maintainability of loader subsys-

tems can be increased by the improvement of repair

facilities and using skilled workers etc. Moreover, the

supportability of dump-truck subsystems can be increased

using suitable spare parts logistics, using fast and secure

coordination of the demand for spare parts and enhancing

spare parts transportation speed to the workstation, etc.

5 Conclusion

Previously large scale disruptive events have shown that

risk management is not enough to protect systems and

infrastructures against disruptive events. Furthermore,

anticipating the characteristics of all types of disruption,

such as occurrence probability and level of consequences,

is impossible. Thus, in the last years, systems’ managers

have shifted their focus from building a robust system by

risk management to establish a resilient system using

resilience management. Robust systems experience sudden

failure in case of disruption, while resilient systems absorb

the adverse impacts, adapt to and recover their desired

performance level after a disruption. Resilience analysis is

the first step to build a resilient system. Frequently, resi-

lience of systems is analyzed only using historical data.

However, to have a precise resilience analysis, the effect of

risk factors (observed and unobserved covariates) should

be considered. Thus, in this research, a formulation was

introduced to model risk factors on complex system resi-

lience. Ultimately, to demonstrate how it can be used in a

real case, it was applied for a mine’s transportation system.

According to the results, if there is a failure or disruption in

the transportation system, it will have a 97.43% probability

to be resilient against the failure events. It should be noted

the observed and unobserved covariates may have a sig-

nificant effect on the system resilience. Hence, it is

important to identify these covariates. Generally, to

increase or maintain the resilience of the mine’s trans-

portation system, the mine’s management should be more

focused on the subsystems with low reliability, maintain-

ability, and supportability. The application of the resilience

concept in the field of the mining industry will be useful for

mining companies and service providers that use a variety

of engineering systems for continuous production. This

concept will help them to minimize the downtime of

mine’s production systems and keep the costs down.

Appendix

See Tables 8, 9, 10, 11, and 12.

Fig. 7 The results of the transportation system resilience analysis for

6.30 h of activity
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Table 8 Identified covariates for failure and repair database

Database Subsystem Identified covariates Category (Score)

Failure

database

Lo v1 Shift Morning (0) Afternoon (1) Night (2)

v2 Working place Dump (0) Mining face (1)

v3 Proportion with

truck

Suitable (0) Partly

suitable (1)

Unsuitable (2)

v4 Weather condition Sunny (1) Semi cloudy (2) Cloudy (3) Dense fog

(4)

v5 Precipitate Continuous

covariate

v6 Temperature Continuous

covariate

v7 Road condition Normal (0) Abnormal (1)

v8 Number of service Good (1) Moderate (2) Bad (3)

v9 Rock fragmentation Ore, dump (0) Middle-

Monzonite (1)

North-

Monzonite (2)

Trachyte

(3)

South-

Monzonite (4)

v10 Rock kind Ore (0) Monzonite (1) Trachyte

(2)

DTs v1
0

Shift Morning (0) Afternoon (1) Night (2)

v2
0

Number of service Good (1) Moderate (2) Bad (3)

v3
0

Proportion with

loader

Suitable (0) Partly

suitable (1)

Unsuitable (2)

v4
0

Rock fragmentation Ore, oxide,

dump (0)

Middle-

Monzonite (1)

North-

Monzonite (2)

Trachyte

(3)

South-

Monzonite (4)

v5
0

Slope of road Same level (0) Down (1) Up (2)

v6
0

Weather condition Sunny (1) Semi cloudy (2) Cloudy (3) Dense fog

(4)

v7
0

Precipitate Continuous

covariate

v8
0

Temperature Continuous

covariate

v9
0

Road condition Normal (0) Abnormal (1)

v10
0

Rock kind Ore (0) Monzonite (1) Trachyte

(2)

v11
0

Hauling distance Short (0) Normal (1) Long (2)

Lo. and

DTs

z1 Shift Morning (0) Afternoon (1) Night (2)

Repair

database

z2 Involved

maintenance crew

One (0) More than one

(1)

z3 Weather condition Sunny (1) Semi cloudy (2) Cloudy (3) Dense fog

(4)

z4 Precipitate Continuous

covariate

z5 Temperature Continuous

covariate
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Table 9 Proportionality assumption results for the loader and dump-trucks covariates based on the repair database

Covariate P-value

Lo DT.1 DT.2 DT.3 DT.4 DT.5 DT.6

z1 0.965 0.812 0.556 0.991 0.919 0.947 0.858

z2 0.868 0.995 0.253 0.908 0.956 0.940 0.894

z3 0.865 0.944 0.781 0.984 0.755 0.842 0.982

z4 0.904 0.894 0.730 0.940 0.850 0.760 0.915

z5 0.376 0.677 0.914 0.735 0.909 0.428 0.777

Table 10 Proportionality

assumption results for the loader

and dump-trucks covariates

based on the failure database

Covariate P-value Covariate P-value

Lo DT.1 DT.2 DT.3 DT.4 DT.5 DT.6

v1 0.99 v1
0

0.513 0.624 0.989 0.979 0.695 0.945

v2 0.123 v2
0

0.008 0.548 0.326 0.452 0.370 0.550

v3 0.527 v3
0

0.001 0.448 0.896 0.814 0.695 0.972

v4 0.667 v4
0

0.027 0.380 0.747 0.481 0.95 0.661

v5 0.364 v5
0

0.534 0.294 0.748 0.826 0.529 0.738

v6 0.278 v6
0

0.284 0.401 0.711 0.884 0.858 0.556

v7 0.893 v7
0

0.520 0.495 0.473 0.477 0.893 0.311

v8 0.708 v8
0

0.680 0.328 0.751 0.626 0.094 0.924

v9 0.879 v9
0

0.170 0.710 0.608 0.775 0.637 0.880

v10 0.973 v10
0

0.079 0.309 0.602 0.616 0.473 0.412

v11
0

0.861 0.906 0.843 0.822 0.931 0.920

Table 11 Likelihood ratio test

results
Failure database Repair database Logistic database

Subsystem R P-value Subsystem R P-value Subsystem R P-value

Lo 14.930 0.000 Lo 15.540 0.000 Lo 10.440 0.000

DT.1 (1st layer) 0.210 0.332 DT.1 54.900 0.000 DT.s 2.880 0.045

DT.1 (2nd layer) 0.000 0.500 DT.2 17.710 0.000

DT.1 (3rd layer) 10.750 0.001 DT.3 70.310 0.000

DT.2 1.660 0.099 DT.4 52.610 0.000

DT.3 0.000 1.000 DT.5 26.950 0.000

DT.4 0.470 0.246 DT.6 65.280 0.000

DT.5 1.950 0.081

DT.6 2.040 0.077
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M, Lischeid G, Meesenburg H, Merz C, Millat G, Müller J,

Padisák J, Schimming CG, Schubert H, Schult M, Selmeczy G,

Shatwell T, Stoll S, Schwabe M, Soltwedel T, Straile D,

Theuerkauf M (2016) Assessing resilience in long-term ecolog-

ical data sets. Ecol Ind 65:10–43. https://doi.org/10.1016/j.

ecolind.2015.10.066

Najarian M, Lim GJ (2019) Design and assessment methodology for

system resilience metrics. Risk Anal. https://doi.org/10.1111/

risa.13274

Table 12 Results of the

coefficients significance

checking

Covariates P-value Covariates P-value

Lo DT.1 (3rd layer) DT.2 DT.3 DT.4 DT.5 DT.6

Failure database

v1 0.02 v1
0

0.07 0.04 0.04 0.00 0.01 0.00

v2 0.00 v2
0

0.03 0.00 0.00 0.00 0.00 0.00

v3 0.53 v3
0

- 0.65 0.95 0.23 0.21 0.82

v4 0.00 v4
0

0.33 0.54 0.00 0.00 0.00 0.93

v5 0.01 v5
0

0.00 0.00 0.00 0.00 0.00 0.00

v6 0.06 v6
0

0.02 0.02 0.35 0.28 0.50 0.97

v7 0.37 v7
0

0.09 0.77 0.95 0.06 0.57 0.81

v8 0.52 v8
0

0.40 0.59 0.40 0.07 0.13 0.66

v9 0.18 v9
0

0.52 0.03 0.24 0.08 0.02 0.08

v10 0.03 v10
0

0.81 0.14 0.19 0.05 0.01 0.17

v11
0

0.07 0.09 0.06 0.21 0.00 0.00

Repair database

z1 0.39 z1 0.13 0.18 0.56 0.01 0.66 0.30

z2 0.00 z2 0.00 0.00 0.00 0.00 0.00 0.00

z3 0.00 z3 0.79 0.15 0.53 0.19 0.01 0.90

z4 0.54 z4 0.91 0.31 0.96 0.27 0.59 0.95

z5 0.48 z5 0.98 0.72 0.85 0.05 0.61 0.78

123

882 Int J Syst Assur Eng Manag (October 2021) 12(5):871–883

https://doi.org/10.1016/S2212-5671(14)00929-0
https://doi.org/10.1016/S2212-5671(14)00929-0
https://doi.org/10.1371/journal.pone.0247650
https://doi.org/10.1371/journal.pone.0247650
https://doi.org/10.1007/s00267-015-0582-1
https://doi.org/10.1007/s00267-015-0582-1
https://doi.org/10.1016/j.jairtraman.2016.02.007
https://doi.org/10.1016/j.jairtraman.2016.02.007
https://doi.org/10.1016/j.ress.2006.09.018
https://doi.org/10.1016/j.ress.2006.09.018
https://doi.org/10.1371/journal.pone.0236128
https://doi.org/10.1371/journal.pone.0236128
https://doi.org/10.1177/1536867X0200200102
https://doi.org/10.1177/1536867X0200200102
https://doi.org/10.2307/1914140
https://doi.org/10.2307/1914140
https://doi.org/10.1016/j.watres.2018.06.048
https://doi.org/10.1016/j.watres.2018.06.048
https://doi.org/10.3390/en14061571
https://doi.org/10.3390/en14061571
https://doi.org/10.1016/j.ecolind.2015.10.066
https://doi.org/10.1016/j.ecolind.2015.10.066
https://doi.org/10.1111/risa.13274
https://doi.org/10.1111/risa.13274


National Infrastructure Advisory Council (2009) Critical infrastruc-

ture resilience: final report and recommendations. National

Infrastructure Advisory Council, Department of Homeland

Security, U.S.

Omer M, Mostashari A, Lindemann U (2014) Resilience analysis of

soft infrastructure systems. Procedia Comput Sci 28:873–882.

https://doi.org/10.1016/j.procs.2014.03.104

Pant R, Barker K, Zobel CW (2014) Static and dynamic metrics of

economic resilience for interdependent infrastructure and indus-

try sectors. Reliab Eng Syst Saf 125:92–102. https://doi.org/10.

1016/j.ress.2013.09.007

Petersen L, Lundin E, Fallou L, Sjöström J, Lange D, Teixeira R,
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