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1 Introduction

An effective and efficient Asset Management (AM) is impor-
tant to achieve operational excellence in asset intensive 
organizations such as railways. AM is defined as a coor-
dinated activity of an organization to realize value from 
assets (ISO 2014). Currently, the AM framework includes 
the engineering and governance perspectives (Mardiasmo 
et al. 2008). From the engineering perspective, AM focuses 
on parameters related to cost and asset performance, such 
as availability, reliability, maintainability, and supportability 
parameters. From the governance perspective, AM focuses 
on aspects such as organization, ownership, responsibility, 
creditability, accountability.

Asset management is aimed at facilitating decision mak-
ing and optimization (Tam and Price 2008). Therefore, 
managing complex technical assets in industry during their 
whole lifecycle is highly dependent on availability and 
accessibility of two main components: (a) The facts that 
provide data related to various features of the asset; and (b) 
The algorithms that extract information and knowledge from 
the facts. The developments in Information and Commu-
nication Technology (ICT) have increased the availability 
of data and accessibility to algorithms that were computa-
tionally expensive before. There have also been continuous 
advances in more efficient data structures and algorithms 
that require lower computational cost. This has enabled the 
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use of Artificial Intelligence (AI) as a potentially powerful 
tool to solve problems related to AM, operation, and main-
tenance (Rane and Narvel 2021; Tam and Price 2008).

The level of automation in AM can be enhanced by aug-
menting the decision making related to AM processes using 
AI tools and technologies. The concept of Augmented Asset 
Management(AAM) proposed by (Kumari et al. 2021), is 
based on the provision of a platform that aims to facilitate 
integration and transformation of data into information, 
knowledge and context models that are based on available 
sources of data, keeping the domain specific challenges at 
its center, and adapting the analytics to the needs of the 
end-user. AAM is expected to increase the efficiency and 
effectiveness of AM through the utilisation of AI and digital 
technologies.

AM of complex technical system-of-systems needs cross-
organizational operation and maintenance, asset data man-
agement and context-aware analytics (Kumari et al. 2021). 
This creates the need for a common and distributed platform 
to integrate, analyze, and share information regarding overall 
asset health and performance. Emerging technologies such 
as AI and digitalization can facilitate the augmentation of 
AM by providing data-driven and model-driven approaches 
to analytics, i.e., now-casting and forecasting.

Now-casting deals with understanding the characteris-
tics of the data and how it interacts with the Key Perfor-
mance Indicators (KPI) identified for the system (Bragoli 
and Modugno 2017). Forecasting deals with predicting the 
future state of a system as accurately as possible based on 
historical data and the knowledge of future events that might 
impact the forecast (Hyndman and Athanasopoulos 2018).

Now-casting and forecasting analytics utilize the avail-
able data for a system and transform it into useful informa-
tion based on the requirements of industrial contexts. These 
analytics aim to provide insight and knowledge about the 
relationships in data such as correlations and causalities of 
real-world phenomena. This often involves intensive pro-
cessing of vast amounts of data. Factors such as lack of data, 
and insufficient data quality related to assets can reduce the 
accuracy of the now-casting and forecasting models.

To enable context-aware now-casting and forecasting, the 
provision of a concept to describe the industrial context is 
essential. One of the concepts for context-aware analytics 
suggested by (Karim et al 2016), describes four (4) phases 
of analysis, i.e.: (1) Descriptive Analytics – ‘What has hap-
pened?’; (2) Diagnostic Analytics – ‘Why something has 
happened?’; (3) Predictive Analytics – ‘What will happen 
in the future?’; and (4) Prescriptive analytics – ‘What needs 
to be done?’. From a knowledge discovery perspective, 
these four phases of analytics are interdependent and pro-
vide insight into aspects such as fault identification, fault 
isolation, and physics of failure. (Karim et al. 2016) The-
ses phases of analytics enhances industries’ capability in 

‘Now-casting’ and ‘Forecasting’. The now-casting phase 
constitutes context-based descriptive and diagnostic analyt-
ics while the forecasting phase constitutes ‘predictive’ and 
‘prescriptive’ analytics.

However, implementing context-aware now-casting and 
forecasting in an operational environment with vast number 
of contexts is challenging. If the analytics is adapted to each 
individual context, then the overall architecture and infra-
structure of the AI solution becomes complex and compli-
cated. This is due to a number of components in the solution 
and the interaction between these components. Simultane-
ously, the individual characteristics might not be well repre-
sented, when increasing the level of abstraction of the solu-
tion and developing generic algorithms to address multiple 
contexts, the individual characteristics of each context might 
not be well represented.This can reduce the accuracy of the 
analytics. Hence, optimizing the number of algorithms that 
can represent a system, becomes fundamental for the overall 
availability, reliability, maintainability, and supportability of 
the AI-solution.

Fleet management of railway rolling stock consists of 
a number of vehicles with different operational contexts 
such as the operating environment, the stakeholders that are 
responsible for ownership, operation and maintenance, and 
the end users. It is challenging to model the behavior of 
each individual in a fleet as it increases the complexity of 
the architecture and infrastructure of the AI solution, with 
requirement for data acquisition and model development for 
every individual operating in different contexts. The Indi-
vidual2Fleet and Fleet2Individual approach proposed by 
(Kumari et al. 2021) can be used to simplify the infrastruc-
ture of the AI solution. The Fleet2Individual and Individu-
al2Fleet approach is based on making generalisations for the 
fleet and identifying the individual behvaiors that are outliers 
from the fleet. This approach can help to optimize the num-
ber of digital assets such as data acquisition and models that 
are required to represent the behavior of the fleet without 
compromising the unique behaviors of the individuals.

Hence, this paper proposes a framework for context-
aware now-casting and forecasting analytics for AAM of 
railways based on the Fleet2Individual and Individual2Fleet 
approach. The proposed framework is described and verified 
by applying it to the case of fleet of railway rolling stock in 
Sweden. The practical implications of the proposed frame-
work is to provide industries with a tool that can be used to 
simplify the implementation of AI and digital technologies 
in now-casting and forecasting.

2  Background

The introduction of AI empowered analytics to industry 
needs to be adapted to the industrial contexts. Industrial AI 
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(IAI), is part of the AI that is relevant and adapted to the spe-
cific characteristics of industrial contexts (Lee 2020). The 
four phases of the analysis used in context-aware analytics, 
suggested in the concept described by (Karim et al. 2016), 
is shown in Fig. 1.

Descriptive analytics gives a picture of the past and pre-
sent condition of an asset with the use of narrative tools 
such as bar charts, scatter plots, pie charts etc. Diagnostic 
analytics gives an insight into the event that has happened. 
Additional data that might be related to the event, is needed 
for diagnostic analytics in order to explain the event. Data 
mining and data integration tools are needed for diagnos-
tic analytics. Predictive analytics is based on the historical 
behavior of assets and knowledge of the future operating 
conditions, in order to predict failures in future. Techniques 
such as regression analysis, predictive modelling, machine 
learning, time series forecasting etc. are needed for predic-
tive analytics. Prescriptive analytics provides insights on 
proactive strategies that can be implemented in order to 
prevent failures in the future based on the forecasting from 
predictive analytics. Optimization tools and simulations are 
needed for prescriptive analytics. (Famurewa et al. 2017).

These phases of analytics enhance industries’ capability 
in now-casting and forecasting. Now-casting in industrial 
context is the process of providing the capability that aims 
to bring insight into what has happened and why has it 
happened. Now-casting uses data to recognize isolate and 
identify a real-world phenomenon. This process also tries 
to describe the underlying causes, which have led to the 
appearance of the identified phenomenon. Forecasting, on 
the other hand, refers to the process of providing capability 
that aims to predict what will happen in the future. Fore-
casting uses data and models to predict the appearance of a 
real-world phenomenon. Forecasting is essential to enable 

prescription that aims to prevent unwanted situations and 
failures in industry.

These four phases of analytics are data driven and 
model driven. To integrate data from multiple heteroge-
neous sources, for effective decision making, tools and 
technologies to acquire, integrate and visualize data are 
needed (Extract- 2015).

Data acquisition—One of the key performance drivers 
for asset management is data acquisition and data pre-pro-
cessing for performing data analysis and decision support 
to improve the performance of engineering assets (Mathew 
et al. 2009). Furthermore, the utilization of the relevant 
engineering data needs to be transferred to information 
for improved reliability, availability, safety, efficiency, and 
sustainability of assets (Murphy and Chang 2009). The 
data usability also needs to be implemented for an effi-
cient way of leveraging the data (Tretten and Karim 2014). 
Especially, in fleet management, there is an immense value 
of utilizing the data for information, since the data for 
each asset n the fleet needs to be analysed (Kinnunen et al. 
2016). Hence, there is a need to investigate the quality of 
data before analyzing it (Aljumaili et al. 2016).

Data integration—The data gathered from various data-
bases often have heterogeneity of datasets in terms of data 
types such as numeric, textual, image, audio, video, point 
cloud etc. However, all these disparate types of data need 
to be integrated to generate value for effective decision 
support for AM (Thaduri et al. 2015). It is also required to 
integrate asset data not only from computer maintenance 
management systems (CMMS) and online condition moni-
toring (CM) systems but also from supervisory control and 
data acquisition (SCADA) that are rarely used for asset 
diagnosis and prognosis (Galar et al. 2012). An architec-
ture needs to be developed based on existing datasets to 
obtain a unified database that can be further exploited for 
data analysis. The advantages of data integration are to 
improve the data quality by decreasing inconsistencies, 
duplication, and conflicts (Beck et al. 2007; Rane and 
Narvel 2022) Integration can also be done by optimizing 
horizontal (crosscutting across various databases) and ver-
tical (from higher level to lower level) databases for con-
sistency (Grossmann et al. 2010). Automated data integra-
tion with expert judgement and learning-based approaches 
will be efficient in terms of utilization, processing, and 
usability for the data analysis (Dong and Rekatsinas 2018).

Metaanalysis – MetaAnalysis refers to an automated 
process of data pre-processing, feature selection, and 
selection of the suitable machine-learning algorithm based 
on performance evaluation of different algorithms on the 
given data set. The MetaAnalysis process is expected to 
expedite the initial analysis of newly received datasets 
(Kumari et al. 2022).Fig. 1  The four phases of analytics for context aware now-casting 

and forecasting analytics
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From a knowledge discovery perspective, the four phases 
of analytics in Fig. 1 are inter-dependent and provide insight 
to aspects such as fault detection, fault isolation, and fault 
identification. Fault detection, isolation and identification 
can ensure the desired performance of a complex system-of-
systems both in the presence and absence of faults (Hwang 
et al. 2010).

Fault – A fault is defined as a state of an item or system 
characterized by its inability to perform a required func-
tion, excluding the inability during preventive maintenance 
or other planned actions, or due to lack of external resources 
(CEN 2010). To improve the functioning of the system, fault 
diagnosis is performed to monitor the location, and iden-
tify the faults within the system(Wakiru et al. 2019). The 
goal for the early fault diagnosis is to get sufficient time for 
counter measures which include planning of maintenance 
actions, such as repair, replace, postponing of operations, 
etc. (Isermann 2005).

Fault detection—Fault detection involves detecting and 
reporting an anomalous condition. Generally, it is based on 
measurement data from various instrumentation systems 
and information provided by human operators. This pro-
cess requires analytical knowledge and understanding of 
information provided by humans which is called heuristic 
knowledge. Hence, fault detection is often considered as a 
knowledge-based approach.

Fault isolation—Fault Isolation determines which compo-
nent/item has a fault, such as, kind, shape, size, location, and 
time of fault by evaluating symptoms. For fault detection, 
analysis of a single measurement can be sufficient, while a 
set of measurements is normally necessary for performing 
fault isolation. To accomplish it, a set of structured attributes 
need to be designed. Each measurement is defined to be 
sensitive to a subset of faults, whilst remaining measure-
ments are to be insensitive to other faults. The measure-
ment set has the necessary sensitivity to an individual fault 
and is insensitive to other faults. This method is also known 
as residual-based method which relies on relationships and 
characteristics of all items of interest (Meskin and Khorasani 
2011), (Rajeswari et al. 2014).

Fault identification—can be considered as an important 
objective of a fault diagnosis framework. Fault identification 
is the method for estimating information related to the fault 
after its detection. The identification outcome facilitates 
fault isolation through evaluating the expected measurement 
values with their normal values. It also determines the nature 
of the fault (Jardine et al. 2006).

Fault detection, isolation and identification is more chal-
lenging in fleet management due to the large amount of data 
collected from each individual in a fleet and the similar-
ity and variability between the behaviors of the individu-
als in a fleet that require adaptive models (Zaccaria et al. 
2018). These adaptive models can be derived based on the 

similarity analysis between the individuals of the fleet and 
context adaptation based on the similarity analysis in situ-
ations, where the individuals of a fleet operate in different 
contexts. Similarity analysis is done by identifying a feature 
for which similarity/dissimilarity is measured, keeping the 
other features constant (Wang and Megalooikonomou 2008).

In this paper the above concepts have been applied to the 
augmented asset management in railways for the fleet man-
agement of roling stock. There are studies for fleet manage-
ment that aim to optimize aspects such as resource planning 
and management, logistics etc. (Penna et al. 2017, Bnouachir 
et al. 2020) for physical assets. In addition, there are several 
studies for forecasting in railways, for example, freight diesel 
locomotive (LingAitis et al. 2014), railway traffic (Konstan-
tinova et al. 2021), noise level (Orynchak et al. 2021), train 
delays due to the condition of switches and crossings (Tha-
duri 2020), predicting train disruptions (Fink et al. 2013), 
data mining to draw up risk and control plans for trains 
(Kalathas and Papoutsidakis 2021), mathematical models 
for effective and efficient utilization of railway freight cars 
(Milenkovic and Bojovic 2019), and a simulation of railway 
fleet maintenance based on interactions of components such 
as rolling stock, infrastructure etc. (Bury et al. 2018). These 
studies have provided various optimization models for the 
fleet management of physical assets in railways.

The fleet management approach may also be used for 
optimization of digital assets such as a number of algorithms 
used in analytics. A similar framework for integration of 
models for each asset in a fleet of tools, to generate risk indi-
ces has been proposed by (Thomas et al. 2020). However, 
this model does not consider the optimization of the number 
of individual models based on the comparisons between the 
fleet behavior and the individual behavior. In context-aware 
now-casting and forecasting, the number of algorithms can 
be optimized by optimizing the number of operational con-
texts. The optimization might be done by a generalization 
and specialization approach based on fleet behavior and indi-
vidual behavior. This has been introduced as a top down, 
i.e. Fleet2Individual, and bottom up, i.e., Individual2Fleet, 
approach to analytics (Kumari et al. 2021).

However, there is a need for an appropriate framework 
to enable the implementation of Fleet2Individual and Indi-
vidual2Fleet approach in an industrial context of complex 
technical system-of-systems for now-casting and forecasting. 
A framework is defined as a meta-level model (a higher-
level abstraction) through which a range of concepts, mod-
els, techniques, methodologies can either be clarified and/
or integrated (Jayaratna 1994). The, proposed framework 
in this paper integrates the concepts discussed in this sec-
tion and it consists of the categorization of components that 
have a process flow of interconnected steps. This proposed 
framework is applied and verified for the case of fleet of 
rolling stock in Sweden.
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3  The proposed framework

The proposed framework for now-casting and forecasting 
consists of four (4) interconnected components i.e.: (a) con-
text definition; (b) Data Extract/Transform/Load (ETL); and 
(c) Fault detection and identification, and 4) Now-casting 
and forecasting analytics. These components and their inher-
ent items/steps are aimed to facilitate the analytics process 
in fleet asset management. Figure 2 illustrates the proposed 
framework and the relationships between its components 
and steps.

3.1  Component: I. Context definition

Step 1—Domain specification—Industrial AI aims to apply 
AI enabled technologies to develop analytic services for 
real world challenges in industrial applications. To develop 

an analytic service, it is important to define the industrial 
domain for which the service is being developed. An indus-
trial domain definition can be on a higher abstraction level, 
such as ‘railways,’ or for a specific challenge within an indus-
trial domain, such as ‘preventive maintenance of engines and 
compressors in railway vehicles in Norbotten.’The subse-
quent steps of the framework are dependent on the industrial 
domain specified in Step 1.

Step 2—End-user specification- The analytic services 
developed for an industrial domain need to be further adapted 
to the context of the end user. For instance, the vehicle own-
ers of a fleet of railway vehicles are interested in the overall 
performance of the fleet, while a maintenance engineer is 
interested in insights on failure and repair times of individual 
components used in the railway vehicles. The definition of the 
end user context leads to the next step of defining the KPIs.

Fig. 2  The proposed frame-
work for now-casting and fore-
casting analytics in augmented 
asset management with a 
fleet2individual and individual-
2fleet approach
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Step 3—KPI identification—Now-casting analytics uses 
available data to calculate parameters of interest that are not 
known otherwise. These parameters of interest can be the 
KPIs for end users in an industrial domain. The end users 
might be interested in more than one KPI that contributes 
to factors such as cost, sustainability, short term goals and 
long term goals for their organization. However, in the first 
iteration of developing the analytic services, it is recom-
mended to select a single KPI of interest. This can further 
contribute to complex analysis based on multiple KPIs the 
interactions and correlations between them. The efficiency 
and effectiveness of the analytic services will depend on the 
stepwise identification of KPIs in the domain either through 
literature survey or through interviews with domain experts.

3.2  Component: II. ETL

Step 4—Data acquisition—Data acquisition is dependent 
upon the nature of operational assets, nature of the organi-
zations, and their strategy goals to achieve desired out-
comes. Engineering asset data comprises of configuration 
and baseline data, asset condition data, event or incident 
data, environmental data and process data. Data quality of 
the acquired data is one of the key concerns from an appli-
cation area point of view. Data quality has also a significant 
impact on decisions and their respective consequences since 
decisions with the help of data-drive algorithms.

Step 5—Data integration—In this step the asset data from 
multiple heterogenous sources is integrated into a unified 
database that is used for further analysis. This unified data-
base consists of operation, maintenance, failure, and condi-
tion monitoring data of the fleet and individual assets of the 
fleet over different spatial and temporal operational contexts.

Step 6—MetaAnalysis—The MetaAnalysis of the inte-
grated data automates the process of data pre-processing., 
the identification of important features that contribute to the 
KPIs, and the identification of suitable models for devel-
opment of analytic services on the given data. This step, 
therefore, identifies and removes data quality issues such 
as missing, incomplete, and duplicate data and speeds up 
feature and model selection through automation.

Fleet2Individual Individual2Fleet – The fault detection, 
isolation and identification steps of the proposed framework 
are carried out in parallel (a) and (b) processes as shown 
in Fig. 2, for the whole fleet and for individual vehicles in 
the fleet, respectively. Establishing the two-way relationship 
between the fleet and the individual, helps to generalize on 
the fleet level that account for each individual of the fleet, as 
well as to identify individuals/groups of individuals that dif-
fer from those generalizations. The conditions encountered 

by the individual vehicles are used to define the context of 
the fleet when the individual behavior is same as the fleet. 
Similarly, the context of the fleet specifies the expected 
behavior of an individual in that context, and therefore helps 
in identifying outliers.

3.3  Component: III. Fault detection and identification

Step 7—Fault detection—This step consists of (1) defining 
the normal behavior of the system under consideration (2) 
defining the fault i.e., the deviation from normal behavior, 
and (3) spotting the occurrence of the defined fault.

Step 8—Fault isolation- Fault isolation in the proposed 
framework, refers to the description of the characteristics of 
the fault such as, the type of fault, the location of occurrence 
and the time of occurrence. In this step, the fault is isolated 
by narrowing down the considered values of these character-
istics, by one characteristic at a time. This is done to identify 
the set of characteristics that represent the majority of the 
faults occurring in the system.

Step 9—Fault identification—In this step the impact of the 
isolated fault on the overall system performance is identified. 
This is done by analyzing the isolated faults as a percent-
age of the total faults occurring in the system. This helps in 
identifying the extent of impact of the isolated fault on the 
system.

3.4  Component: IV. Now‑casting and forecasting 
analytics

Step 10—Now-casting—The information about the system, 
that is extracted from fault detection, isolation and identifica-
tion steps, is used for now-casting to answer the questions 
(1) What has happened and (2) Why it has happened. It is 
done by visualizing the historical and the current state of the 
KPIs and identifying trends or patterns in the data.

Step 11—Forecasting—The trend or pattern identified in 
the historical data is projected into the future under similar 
operational contexts, in order to forecast the future value of 
the KPIs. This can be done using various modelling tech-
niques that involve a predicted variable and one/multiple 
predictor variables. The selection of now-casting and fore-
casting models depend upon multiple factors such as the 
intended outcome of the model, the availability of historical 
data, the desired model accuracy etc.

Step 12—Similarity analysis—The similarity analysis 
involves identifying the similarity and differences in behav-
ior of the fleet and individuals/group of individuals. This 
is done by comparing the similarity/dissimilarity between 
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individuals and the fleet by comparing only one feature and 
meanwhile making other features constant. The features that 
remain constant for similarity analysis are narrowed down in 
the fault detection and isolation steps discussed previously. 
While narrowing down these features some data points from 
the entire dataset are lost as they do not represent these fea-
tures. Therefore, it should be considered that the dataset 
after still has considerable number of data points so as to 
represent the behavior of the fleet and the individual. The 
similarity analysis helps to identify clusters of individuals 
that behave similarly to each other and to the fleet. This cone 
done by comparing values of the features using visualiza-
tion techniques, algorithmic comparisons. Similarity analy-
sis when done with multiple variable features can also use 
machine learning algorithms such as clustering to identify 
similar groups in the data.

Step 13—Context adaptation – The clusters/groups iden-
tified in similarity analysis may be due to the individuals 
operating in similar context. The context adaptation step 
involves identifying this relationship between formation of 
clusters to contexts in order to make generalizations about 
groups of individuals in a fleet that have similar operational 
context. For scenarios in the future, when there is insuf-
ficient data available, the behavior of the individuals can be 
predicted based on the behavior of other individuals operat-
ing in similar context.

4  Case study description

The proposed framework in this paper has been verified on 
the case of railway rolling stock in Sweden. The Swedish 
Transport Administration (Trafikverket) registers all the 
deviations from scheduled arrival times for trains. For busi-
ness management, causing a deviation means that a train is 
delayed by 5 min or more in the travel between two measur-
ing points that follow directly after each other in the Swedish 
Transport Administration’s system. Causing a deviation also 
means that a train becomes 5 min or more delayed compared 
to the timetable at the first measuring point.

The infrastructure manager’s responsibility for devia-
tions mainly covers additional delays caused by disruptions 
to infrastructure or operations management. The responsibil-
ity of railway undertakings or transport organizers for devia-
tions includes mainly the railway vehicles and their driving. 
A quality fee needs to be paid by the organization to which 
the delay is assigned, for each minute of registered delay.

The additional delays are recorded with an associated rea-
son code from a standardized code list. The time recorded 
for this additional delay is specifically attributed to the rea-
son codes. The purpose of recording this reason code is to 
identify the cause of this delay and the party responsible for 

addressing it. This reason code is associated with a three-
level description. Level-1(Nivå 1) describes who is the prob-
lem owner. Level-2 gives a description of the problem, in 
terms of where and what. Level-3 codes are entered only 
in specific cases. Train supervisor/train dispatcher must 
primarily indicate the first two levels while the third level 
can be completed later when the party that owns the delay 
requests for it. Railway companies and traffic organizers 
must pay a quality fees for Level-1 reason code as ‘railway 
organizations’ (J-Järnvägsföretag). These three level reason 
codes are used to decide the action that should be taken on 
these delays. Considering each additional delay record as a 
failure that impacts the system performance, the combina-
tion of these three level reason codes gives a specific failure 
mode. These delays with Level-1 reason code as ‘railway 
organization’ are referred to as ‘registered additional delays’ 
in this paper.

The railway organization to which these delays are 
assigned owns a fleet of 12 railway vehicles. Apart from 
Level-1, 2, and 3 reason codes, a delay record also contains 
information about the vehicle number in which the delay was 
reported, the route on which the vehicle was operating, and 
the place and time of the occurrence of the delay. Since the 
railway organization has to pay for each minute of registered 
additional delay assigned to them, this delay is an important 
Key Performance Indicator (KPI) to assess the health of the 
fleet and individual vehicles in the fleet.

5  Verification of the proposed framework

5.1  Component: I. Context definition

Step 1—Domain specification—This paper applies the con-
text based now-casting and forecasting framework for asset 
management in railways, to the fleet management of railway 
rolling stock in Sweden. The considered case in the paper is 
a fleet of 12 passenger railway vehicles operating in Sweden.

Step 2—End-user specification—The end users for this 
case are the vehicle owners of the fleet of railway vehicles 
operating in Sweden (Fig. 3).

Step 3—KPI identification—Once the industrial domain 
and the end users are identified, the related KPI is identified 
systematically as shown in Fig. 4. The first step, specifies 
the domain as railways and identifies arrival delays in trains 
as a KPI. In the next step, after the strategy for management 
of railway vehicles is known, two KPIs are defined as the 
count of delays per Million Km of performance for a (1) 
fleet of vehicles and for (2) each individual vehicle. Further, 
the vehicle owners/operators are only responsible for delays 
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that have ‘railway organization’ listed as the Level-1 reason 
codes for additional delays. Hence, the KPI of concern is 
only the registered additional delays that are caused due to 
Railway organizations.

As shown in Fig. 3, over 90% of the delay count com-
prises of the delays between 0 and 15 min. Due to high fre-
quency of occurrence, registered additional delays between 
0 and 15 min are the identified KPI for now-casting and 
forecasting analytics in order to explain, predict, and reduce 
these uncertainties.

5.2  Component: II. ETL

Step 4—Data acquisition – Data from different stakeholders 
was acquired to carry out analytics for the fleet management 
of rolling stock. For the analytics in this paper, history of 
vehicle performance and the history of damage in vehicles 
was acquired from vehicle owners. The data on arrival delays 
in vehicles and registered additional delays was acquired by 

the Swedish Transport Administration (Trafikverket).The 
weather data was acquired from open source API based on 
the time and location of the train operation. The acquired 
datasets were for a fleet of 12 railway vehicles operating 
in Sweden. This data is from Jan – 2018 until Dec 2020. 
All this data were received from different stakeholders in 
separate csv files.

Step 5—Data integration – The data acquired from multiple 
stakeholders was integrated to obtain a holistic picture of the 
vehicles in the fleet. The data sources were integrated based on 
the date associated to the records, the vehicle numbers associ-
ated to the records and the place of operation associated to 
the records.

Step 6—MetaAnalysis – This step was done to identify 
the important features in the data that had an impact on the 
KPI, i.e. registered additional delays. The parameters used 
for this analysis were the reason code for the delays, place of 

Fig. 3  The count of delays 
observed in the fleet of 12 
railway vehicles with the delay 
intervals

Fig. 4  Systematic identification 
of KPIs based on the industrial 
domain, the end-users
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occurrence of the delays, month/quarter/year of occurrence 
of the delays, and weather parameters such as temperature, 
humidity, and weather condition associated to the delays. 
After conducting a regression analysis through an automated 
MetaAnalyser platform, it was observed that the ‘reason code’ 
was the prominent feature that had impact on the KPI. There-
fore, reason codes were the selected features for the now-cast-
ing and forecasting analytics.

5.3  Component: III. Fault detection and identification

Step 7—Fault detection—A registered additional delay is 
considered as fault in the context of this paper, if it satisfies 
all the 3 criteria.

1. delays that are > 3 min
2. the Level-1 reason code is assigned as ‘railway organiz

ation’(Järnvägsföretag)
3. delays that are < 15 min

It was observed that there were a total of 6090 registered 
additional delays in total for the fleet of 12 railway vehicles, 
that fulfilled the above criteria.

Step 8 – Fault isolation -The registered additional delays 
are assigned with 3 level reason codes. The Level-1 reason 
code describes the problem owner which is ‘railway organi-
zation’ in the context of this case study. The level 2 and 
Level-3 reason codes give a broad and narrow description 
respectively, of the reason of occurrence of the delay (Figs. 5 
and 6).

Figure 7 shows a relative distribution of registered addi-
tional delays by Level-2 reason codes for the fleet of 12 
vehicles. The most frequently attributed Level-2 reason 
code to the KPI considered in this case is RC8, followed 
by RC2, RC4, RC7 and RC6. Figure 5 shows a relative 
distribution of registered additional delays by Level-2 
reason codes for each individual vehicle in the fleet. It is 
observed in Fig. 5 as well that The most frequently attrib-
uted Level-2 reason code to the KPI considered in this case 

Fig. 5  The relative distribution of registered additional delays by Level-2 reason codes for individual vehicles
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is RC8, followed by RC2, RC4, RC7 and RC6. Based on 
this above observation, in the next step only the registered 
additional delays with most frequently attributed Level-2 

reason codes (RC8, RC2, RC4, RC7 and RC6) are consid-
ered for further analysis.

Fig. 6  The relative distribution of registered additional delays for top 5 Level-2 reason codes by Level-3 reason codes for individual vehicles

Fig. 7  The relative distribution of registered additional delays by Level-2 reason codes for the fleet
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In Fig. 6, a relative distribution of registered additional 
delays by Level-3 reason codes with filtered Level-2 rea-
son codes in the previous step, for individual vehicles is 
shown. Delays with most frequently attributed Level-3 
reason codes are identified in this step. It can be seen in 
Fig. 6, that for most of the recorded delays, the Level-3 
reason code is unknown (denoted by U in Fig. 6).

A similar relative distribution of registered additional 
delays by Level-3 reason codes with filtered Level-2 reason 

codes for the fleet of 12 vehicles showed that the fleet behav-
ior is similar to the behavior of individual vehicles in terms 
of occurrence Level-3 reason codes with 3 most frequently 
attributed Level-3 reason codes being, ‘U’, ‘C3 14’ and 
‘C3 17’. However, the distribution registered additional 
delays that were attributed to other Level-3 reason codes 
was observed to be different for the fleet than for individual 
vehicles. Therefore, in order to represent the fleet behav-
ior as well as the variation in behavior of the individual 

Fig. 8  The relative distribution of registered additional delays for top 5 Level-2 and Level-3reason codes by train routes for individual vehicles

Table 1  The percentage of 
delays that comprises the 
isolated delays

Vehicle number Count of total registered 
additional delays considered 
as KPIs

Count of registered additional 
delays in the isolated scenario

Isolated delays as 
percentage of total 
delays %

X001 543 373 69
X002 518 364 70
X003 546 397 73
X004 413 305 74
X005 493 368 75
X006 495 396 80
X007 510 378 74
X008 583 440 75
X009 468 366 78
X010 518 364 70
X011 527 386 73
X012 476 341 72
Fleet 6090 4478 74
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vehicles, registered additional delays attributed to 8 most 
frequently attributed Level-3 reason codes were selected for 
further analysis.

In the next step, a distribution of registered additional 
delays by their route of operation was observed for indi-
vidual vehicles as shown in Fig. 8. It was observed that most 
of the registered additional delays for individual vehicles 
occurred in routes R4, R5, R6 and R9. A distribution of 
registered additional delays by route of operation for the fleet 
showed similar result. Therefore, R4, R5, R6 and R9 were 
identified as the routes with highest frequency of occurrence 
of registered additional delays.

Step 9—Fault identification—Table 1 shows the isolated 
delays from step 8 as percentage of the total registered addi-
tional delays that were identified as the KPIs for this case. 
The first column in Table 1 shows the vehicle number. The 
second column shows the total number of delays that were 
considered as KPI according to the criteria in step 3 for each 
vehicle and the fleet.The third column shows the count of 
delays that were isolated by Level-2 reason codes, Level-3 
reason codes and routes of operation in step 8 for each vehi-
cle and the fleet. The last column shows the isolated delays 
in column 3 as a percentage of total delays in column 2. It 

is observed that the isolated delays comprise an average of 
70% of the delays registered for each individual vehicle and 
the entire fleet.

5.4  Component: IV. Now‑casting and forecasting 
analytics

Step 10, 11—Now-casting and forecasting—This step dem-
onstrates the now-casting and forecasting for the isolated 
faults in previous steps. On the left side of Fig. 9 the count 
of delays for each of the 12 months in the year 2018, is 
shown which is assumed to be the the current/historical state 
of the system. The historical data for 12 months in 2018 is 
considered in order to forecast for the next 3 months in 2019, 
as shown on the right side of Fig. 9. The now-casting and 
forecasting were performed using a simple linear regression 
model.

The equation of the trendline as shown in Fig. 9 was 
observed to be:

The R2 value has been used for the evaluation of the lin-
ear model.

y = − 14.766x + 298.56

Fig. 9  The now-casting and forecasting of the count of delays in each month based identification of the trend in monthly delay count for 12 con-
secutive
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where

where x = independent variable, y = dependent variable, 
f = predicted values of y.

The R2 value for the model was found to be 0.7137. Fig-
ure 9 shows the now-casting and forecasting for the fleet. 
Similar individual regression models were developed for 
each of the 12 vehicles in the fleet. These models are com-
pared for similarity analysis in step 11.

Step 11—Similarity analysis- In this step, the slope of the 
regression models for individual vehicles have been com-
pared with the slope of the regression modle for the fleet 
for similarity analysis. Table 2 shows the linear regression 
model parameters for individual vehicles and for the fleet. It 

R2
= 1 −

SSres

SStot

SSres =
∑

i

(

yi − fi
)2

SStot =
∑

i

(

yi − y
)2

is observed that all the vehicles have a negative slope indi-
cating decrease in the number of delays with time.

For similarity analysis, the slope values were divided 
into 4 intervals as shown in column 1 of. The vehicles with 
slope values in the same intervals form a group. individual 
behavior. Based on the groups observed in, the number of 
linear regression models for now-casting and forecasting of 
the count of delays for the isolated scenario in step 8,, can 
be reduced from 13 (fleet and 12 individual vehicles) to 4 
(Table 3).

Step 12—Context adaptation – The now-casting and fore-
casting analytics in this paper has been verified for the fleet 
of rolling stock in Sweden. This fleet consists of passenger 
trains. Further the context of the considered KPI in this case, 
i.e. registered additional delays assigned to railway organiza-
tions was narrowed down in the fault detection, isolation and 
identification steps. This has been performed by filtering the 
delays that were between 0 and 15 min and were assigned 
to specific Level-2 reason codes, Level-3 reason codes and 
routes. Further, the now-casting and forecasting model was 
developed using historical data for the year 2018 to predict 
the count of delays in the first quarter of 2019. These fac-
tors were the considered context for delays in this paper. 
However, there can be more operational contexts such as 
place of operation, weather conditions, type of faults that 
causes the delays, the time to repair the faults etc. that can 
be considered.

6  Discussion

Based on interviews with domain experts in the railway 
vehicle organizations it was found that the delays that were 
considered as KPIs in this case are those delays for which 
the reason of occurrence remains largely unknown. This 
can be due to the reason that Level-1 and level 2 codes are 
entered for each registered additional delay, but Level-3 rea-
son codes are provided only when requested by the railway 
organizations, as explained in the case study description sec-
tion. This lack of information about the reason of occurrence 
of the delays can cause uncertainty in the system. Therefore, 
the now-casting and forecasting of such delays is of impor-
tance for the railway organizations.

The fleet of railway vehicles in Sweden is owned operated 
and maintained by multiple parties such as vehicle owner, 
local transport authority, vehicle operator and maintenance 
service provider. The vehicle owners feel the responsibil-
ity and need, that all parties handling the vehicles should 
base their operation and maintenance decisions on a com-
mon image of the fleet status and the vehicle status. They 
are interested in analytics that helps to visualize the overall 
health of the fleet in terms of KPIs calculated on the fleet 

Table 2  Linear regression model parameters for individual vehicles 
and for the fleet

Vehicle Slope Intercept R2 score

X001 −0,8396 22,048 0,3237
X002 −1,2643 25,181 0,5775
X003 −2,0571 31,857 0,436
X004 −1,2179 26,143 0,5424
X005 −1,0214 23,105 0,242
X006 −0,6286 20,629 0,1542
X007 −0,775 20,933 0,2049
X008 −1,5964 30,838 0,4002
X009 −1,1143 25,548 0,332
X010 −1,3357 25,819 0,5577
X011 −0,719 19,81 0,2492
X012 −0,6706 20,2 0,3058
fleet −1,6682 26,995 0,8375

Table 3  Similarity analysis and consequent grouping of individuals 
based on the slope value of their individual linear regression models

Slope value range Vehicles with slope in the give range

0.6–0.8 X001 X006 X007 X011 X012
1.0–1.3 X002 X004 X005 X009 X010
2.05 X003
1.5–1.6 X008 fleet
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level and on individual vehicle level. For example, after the 
integration of data, the performance in kilometers, recorded 
damages, registered delays, failures in components and 
weather conditions for the vehicles could be retrieved for 
each vehicle and for the fleet on a specified date, place or 
interval in time.This provides a common picture of the fleet 
health to all the stakeholders.

In Sect. 5, the registered additional delays were filtered 
by Level-2 reason codes, Level-3 reason codes and routes. 
It is possible to further isolate the delays by identifying 
contexts such as the place and time of occurrence of the 
delays. In this case study, it was observed that the distribu-
tion of delays in the places Sundsvalls C and Sundsvalls 
Västra were similar for the fleet and for each individual 
vehicles in fleet. However, for other places such as Öster-
sunds c, Storien, Ånge, Umeå, the distribution of delays 
in individual vehicles could not be represented by the fleet 
distribution. Additionally, the distribution of delays by 
quarter of the year, where Q 1 – Jan–Mar, Q2 – Apr–Jun, 
Q3 – Jul–Sep, Q4 – Oct–Dec, was observed to be, simi-
lar for the fleet and most of the individual vehicles with 
maximum delays observed in Q1. However, the context for 
fault isolation in this case study was only considered for 
Level-2 reason codes, Level-3 reason codes and routes of 
operation. This was due to the observation that isolation of 
delays by contextx such as places and quarter of the year, 
led to significant reduction in number of data points. This 
may lead to overfitted models that are may not represent 
the general behavior of the vehicle or the fleet.

It was observed in ‘step 9 – fault identification’ of Sect. 5, 
that, the isolated delays in step 8 comprise of 70% of the 
total delays considered as KPI in this case. This implies that 
the isolated delays represent a considerable fraction of the 
registered additional delays. The diagnostics performed on 
the set of characteristics of these isolated delays in terms of 
reason of occurrence and route of operation, can contribute 
to the reduction of a substantial number of delays that were 
recorded for the fleet.

The linear regression model for now-casting and forecast-
ing of registered additional delays in this case study was 
developed by considering the count of delays for 12 months 
in the year 2018 as historical data, to predict the count of 
delays in the first quarter of 2019. This combination was 
established based on observation of the available data for the 
count of delays for each month in this case. It was observed 
that the forecast, was less accurate when the historical data 
for more than 12 months was considered and when the fore-
cast was made for a longer period than 3 to 4 months in 
the future. R2 value was chosen as the performance met-
ric for linear regression model in this case. R2 value is the 
proportion of variance in the dependent variable that can 
be explained by the independent variable. The obtained R2 
value of 0.7137 is considered as a moderate effect of the 

independent variable on the dependent variable. The linear 
model has been chosen for this case study due to simplicity 
in order to explain the framework. However, other regression 
models, e.g. exponential, logarithmic, or polynomial, may 
also be applied for now-casting and forecasting of delays. 
Furthermore, for the given dataset in this case study, more 
complex model evaluation should be conducted in order to 
predict using historical data for 2–3 years and to be able to 
forecast over more than 3–4 months.

The slope of the trendline of the linear regression model 
has been considered for similarity analysis in this case study. 
The slope represents the shape of the trendline. The com-
parison of the slope is done to compare the footprint of the 
behavior of the shape between the fleet and individual vehi-
cles. The intercept of a linear model is based on the values 
of the data, while the slope tells the rate of change in the 
predicted variable based on the predictor variable.

The similarity analysis is done to optimize the number of 
algorithms for a system with a generalization approach for 
the fleet as well as a specialization approach for individual 
vehicles. The representation of the vehicles in the fleet with 
fewer models reduces the complexity of the architecture and 
infrastructure of the AI solution. However, when very few 
models are representing the fleet, then specialised behav-
ior of some of the individual vehicles might also be lost. 
Therefore, it is important to find an optimised number of 
models that can represent the general fleet behavior as well 
as specialized individual behaviors. When the models devel-
oped for a specific context, need to be adapted to a different 
context, the features of the context should be varied one by 
one.This should be done in order to identify the parameters 
that are similar and different in different contexts.

Within this study, a framework for context-aware now-
casting and forecasting has been proposed. The proposed 
framework contains of a number of components and steps, 
aimed to facilitate and simplify the process of enhanced 
context-aware analytics in industrial asset management. 
The framework is proposing a fleet management approach 
to reduce the management of number of contexts that the 
analytic models need to consider and adapt to. It is assumed 
that by increasing the abstraction level of the algorithms 
for now-casting and forecasting, the universality of indi-
vidual model can be increased. For verifying and validation 
the level of universality of analytics, a similarity check has 
been included in the framework. The similarity check tries 
to identify context individuals that are representatives for 
more than one context, which are considered as a fleet of 
contexts. In the other words, the proposed framework can 
be used as a tool to optimize the number of context-based 
algorithms based on common behavior of a group of indi-
viduals operating in different contexts and specialization 
of the specific characteristics of an individual in a given 
context.
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The practical implication of this work is that it will facil-
itate the implementation AI–based solutions in industrial 
context by reducing the complexity related to development, 
implementation, and maintenance of algorithms during the 
system-of-interest’s whole lifecycle.

The work with development of the proposed framework 
have been carried out by conceptual modelling of the frame-
work. The conceptual model of the framework has then been 
verified with the case of railway rolling stock. It is believed 
that the proposed framework can be applied to similar indus-
trial contexts for context-aware now-casting and forecasting 
in augmented asset management for mining and construction 
industries. However, additional research effort might be nec-
essary to verify the universality of the proposed framework 
over a system’s whole lifecycle. This have not been possible 
to conduct due to practical limitations, since many of the 
complex technical systems in industry have a long lifetime, 
e.g. 10–50 years.

7  Conclusions

The purpose of this paper has been to explore if AI empow-
ered now-casting and forecasting can be simplified, and to 
develop and propose an appropriate framework for context-
aware analytics in various industrial contexts. Implementa-
tion of now-casting and forecasting to an industrial context 
with a large number of operational contexts is challenging. 
To overcome this challenge, the fleet2individual and indi-
vidual2fleet approach was used. This approach is used to 
optimize the number of algorithms by optimizing the num-
ber of operational contexts. The proposed framework con-
sists of 4 components i.e. context definition, data extract 
transform and load, fault detection and identification, and 
now-casting and forecasting analytics. The fault detection 
and isolation, and now-casting and forecasting analytics have 
been conducted for the top-down i.e. fleet2individual and 
bottom up i.e. individual2fleet approach followed by simi-
larity analysis between individuals and fleet and proposing 
the idea of adaptation of the analytics to the context. The 
proposed framework was described and verified by using 
the case of railway rolling stock in Sweden.

Based on the findings from the conducted research activ-
ity, it can be concluded that the proposed framework can be 
utilized as a handrail, by industries dealing with complex 
technical systems to facilitate the implementation of AI 
and digital technologies for context-aware now-casting and 
forecasting analytics. The future work may be focusing on 
the investigation and identification of appropriate universal 
technologies, methodologies, and tools within the individual 
components and steps of the proposed framework. This is to 
increase the universality of the framework and its inherent 
components.
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