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Software is vital for modern society. It is used in many safety- or security-critical applications, where a high degree of
correctness is desirable. Over the last years, technologies for the formal specification and verification of software – using
logic-based specification languages and automated deduction – have matured and can be expected to complement and partly
replace traditional software engineering methods in the future. Program verification is an increasingly important application
area for automated deduction. The field has outgrown the area of academic case studies, and industry is showing serious
interest. This article describes the aspects of automated deduction that are important for program verification in practice,
and it gives an overview of the reasoning mechanisms, the methodology, and the architecture of modern program verification
systems.

1 Introduction

The field of program verification is a very broad one, and we can-
not possibly give an overview of all existing approaches within
this article. We focus on approaches of deductive verification,
where the actual program code is verified and not an abstracted
system (as opposed to, e.g., approaches where many details of
the program are abstracted away, and tools like model check-
ing are used on the result). We also focus primarily on systems
for modern imperative and object-oriented languages, although
some other well-known systems are also mentioned. And finally,
we focus more on implementation than on theory, since modern
program verification is unthinkable without extensive tool sup-
port, not only for proving itself, but also for the generation and
management of specifications, proof obligations, etc.

The field of deductive program verification, i.e., formal rea-
soning about the behaviour of programs, is old. The idea of
applying deduction to programs goes back at least to the work
of Scott, Plotkin, and Milner in the late 1960s. Recent years
have brought tremendous advances in both scope and practical-
ity however. Today, program verification is applied to real-word
software. For example, security-critical system software is veri-
fied in the Verisoft XT project (see the article in this issue [7])
and the L4.verified project [21].

This article focuses mostly on the aspects that make deduc-
tive program verification today different from what it was ten
years ago. The KeY system [6, 2], which has been co-developed
by the authors, is used as an example in this article.

Program verification is concerned with proving that a pro-
gram is consistent with some specification, which may be stated
in terms of pre-/post-conditions, invariant properties, or termi-
nation properties. The deductive approach to show such prop-
erties can be roughly divided into two parts.

First, the reasoning about the program logic itself: this in-
clude the program’s control structures, like conditionals, loops,
method calls, exception handling, etc. It also includes the lan-
guage-specific aspects of data handling, like pointer dereferenc-
ing, null-pointer checks, typing issues, pointer aliasing, etc. Ad-
ditional aspects that are mostly orthogonal to these include, for
example, concurrency, garbage collection, data security.

Second, when all has been said about the program itself,

one still needs to reason about the data. This means that facts
about built-in data types like integers, floats, finite enumera-
tions, strings, etc. need to be proven, but also about user-defined
types like, e.g., lists, trees, and dictionaries.

Additionally, some “glue” is needed to bind these two parts
together, either explicitly, by embedding both in a common log-
ical language, or implicitly by tying various components of an
implementation together.

Approaches vary in how the individual components are re-
alised and bound together, and some aspects of this are dis-
cussed in the following section.

One of the most important advances of the past years in the
field of deductive verification concerns the treatment of standard
data types, which are particularly important for many practical
purposes, and for which specialised provers have been developed.
This will be discussed in Section 3.

Finally, an essential difference between deductive program
verification and, e.g., the mechanical proof of mathematical the-
orems, is the fact that proofs about programs often fail, due to
errors either in the program or in its specification. It makes sense
to look at a program verification tool also as a development tool
and a debugging aid. This makes it clear that, in practice, feed-
back about incorrect input is at least as important for a practical
system as feedback about correct proofs; see Section 4.

2 System Architecture

As said above, every deductive program verification system has
to perform (at least) two rather separate tasks: (a) handling
the program-language- and specification-language-specific con-
structs and reducing or transforming them to classical logic ex-
pressions, (b) theory reasoning and reasoning in classical log-
ics, for handling the resulting expressions and statements over
data types. One can either handle these tasks in one mono-
lithic logic/system, or one can use a combination of subsystems.
The advantage of using subsystems is the possibility to use spe-
cialised techniques and tools. The advantage of a monolithic
system is that user interaction and providing feedback is easier.
In the following we describe exemplary representatives of these
two approaches.
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Toolchain with Several Subsystems. Tools following what is
known as the verifying compiler paradigm, such as Spec# [4],
VCC [25], and Caduceus [15], typically use several subsystems.
They are all based on powerful fully-automatic provers and deci-
sion procedures, and they support real-world programming lan-
guages such as C and C#.

For example, the first stage of the VCC toolchain translates
the annotated C code into first-order logic via an intermediate
language called Boogie [12]. Boogie is a simple imperative lan-
guage with embedded assertions. Then, in a second stage, a set
of first-order logic formulas is generated from the Boogie repre-
sentation. These formulas state that the program satisfies the
embedded assertions. They are called verification conditions,
and this second stage a verification condition generator (VCG).
More information on VCC and examples can be found in the
related article [7] in this issue.

In the second stage, the resulting formulas are given to an
automatic theorem prover (TP) resp. SMT solver (in this case
Z3 [11, 7]) together with a a background theory capturing the se-
mantics of C’s built-in operators, etc. The prover checks whether
the verification conditions are entailed by the background theory.
Entailment implies that the original program is correct w.r.t. its
specification.

For such systems, user input and guidance of proof search
solely occurs via the annotations in the source code.

An advantage of this approach is that components in the
toolchain can be developed and improved independently: the
toolchain will directly benefit from improvements of the under-
lying theorem prover. If appropriate interfaces are used, it is
possible to plug different theorem provers into the toolchain.
The developers of the toolchain do not usually need to develop
their own theorem prover.

The disadvantage of this approach becomes apparent when
proofs fail: the toolchain typically produces very many first-
order proof conditions, most of which are easily proved by the
theorem prover. But when one of the difficult ones fails, the
fact that the proof conditions are so decoupled from the original
program means that a lot of expertise is needed to find out why
it failed, and what needs to be done to fix the specification or
the program. This issue will be addressed further in Section 4.

Monolithic Systems. A typical example for a monolithic ver-
ification system is the KeY Program Verification System [6, 2]
(co-developed by the authors).

The target language for verification in the KeY system is
Java Card 2.2.1. Java 1.4 programs that respect the limitations
of Java Card (no floats, no concurrency, no dynamic class load-
ing) can be verified as well. Specifications are written using the
Java Modeling Language (JML).

The program logic of KeY, called Java Card DL, is axioma-
tised in a sequent calculus. Those calculus rules that axioma-
tise program formulas define a symbolic execution engine for
Java Card and so directly reflect the operational semantics. The
calculus is written in a small domain-specific language called
the taclet language that was designed for concise description of
rules. Taclets specify not merely the logical content of a rule,
but also the context and pragmatics of its application. They
can be efficiently compiled not only into the rule engine, but
also into the automation heuristics and into the GUI. Depend-
ing on the configuration, the axiomatisation of Java Card in the

KeY prover uses 1000–1300 taclets.
The KeY system is not merely a verification condition gen-

erator (VCG), but a theorem prover for program logic that com-
bines a variety of automated reasoning techniques. The KeY
prover is monolithic in that symbolic execution of programs,
first-order reasoning, arithmetic simplification, external decision
procedures, and symbolic state simplification are interleaved.

At the core of the KeY system is the deductive verification
component, which also can be used as a stand-alone prover. It
employs a free-variable sequent calculus for first-order dynamic
logic for Java. The calculus is proof-confluent, i.e., no back-
tracking is necessary during proof search.

While striving for a high degree of automation, the KeY
prover features a user interface for presentation of proof states
and rule application, aiming at a seamless integration of auto-
mated and interactive proving.

Another monolithic tool is the ACL2 system [20]. It achieves
integration of program reasoning into the logic by using the same
language (a subset of LISP) for programming, specification, and
during proving. The same can be said of some approaches to
verification that build on systems based on higher-order log-
ics or type-theory (e.g. [17, 28, 8]): the logic is interpreted as
a higher-order functional programming language. In order to
make this approach sound, one needs to ensure that the “pro-
grams” actually behave like terms in the logic. In particular,
special attention needs to be paid to termination. In ACL2, for
instance, the system usually accepts a function definition only
after it is shown that it terminates on all inputs. One advantage
of this approach is that the user needs to learn only one formal-
ism for specification, programming, and proving. One also has
the advantage that proof methods developed for the logic can be
directly applied to proofs about programs. A drawback of this
approach is that it requires additional work for aspects of pro-
grams that are not desirable, or not naturally present, in a logic,
like non-termination, side effects, or resource usage. To reason
about these aspects, one needs to depart from the strict equa-
tion of terms and programs. These problems are surmountable
however, and ACL2 and various of the higher-order systems have
successfully been used for substantial verification tasks including
all of the mentioned aspects.

The Need for Interaction. User interaction remains indispens-
able in deductive program verification. Efficiency must, thus, be
measured in terms of user plus prover, not just prover alone.
Some systems, including KeY and many of the higher-order and
type theory tools, emphasise interaction during proof search, be
it through a graphical user interface or through a command line.
Others, like ACL2 and most toolchain systems require up-front
interaction, either via program annotations, or by formulating a
suitable set of lemmas to guide the proof construction. In both
cases, the user has to analyse the situation when proof search
fails – either during proof construction or after a failed proof at-
tempt –, and then has to guide the proof construction or provide
helpful lemmas, axiom instantiations etc. In monolithic systems
that is done by invoking certain calculus rules. For toolchain
systems, new annotations have to be added. This process has
to be repeated until a proof is found.

Inductive invariants and variants (or, more generally, well-
founded orders) are two kinds of auxiliary specifications that are
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difficult to synthesise for verification systems and that tradition-
ally have to be provided by the user. Invariants are needed for the
verification of programs containing loops and the specification
of data structures. Variants are used to verify the termination
of loops or recursive programs by ordering the state space of a
program in a well-founded manner that is consistent with the
program execution.

The last years have seen significant advances in methods
for the automatic inference of both invariants and variants, so
that user interaction can today be avoided in many practical
cases. Variants can be generated by algebraic techniques like
linear programming or finite differences (e.g., [22, 9]). Besides,
a variety of methods to prove termination has been developed
in the context of term rewriting systems (e.g., [3, 14]) and has
successfully been applied in particular to functional or logic pro-
grams. Invariants can be generated by algebraic methods, proof
analysis, and many other techniques, see e.g. [19].

3 Reasoning about Theories
and Data Structures

Both in monolithic systems and in systems built as toolchains,
the logically last stage in the verification of a program is to check
and (possibly) discharge elementary verification conditions. On
this level, most constructs specific to a programming language
have been eliminated, and what remains are (a) basic datatypes
provided by a language, like integer and floating point arith-
metic, algebraic datatypes, or strings, (b) theories that have
been used in the specification of programs or libraries, which
could be sets, lists, maps, or arrays, and (c) theories that have
been used to encode the semantics of the program to be veri-
fied, which are primarily first-order constructs like uninterpreted
functions, quantifiers, and the theory of arrays. Reasoning about
formalisms like these has seen enormous advances in the last
years, and there are two main approaches that dominate today’s
verification landscape.

Satisfiability Modulo Theories (SMT). The automatic theo-
rem provers currently used in program verification, e.g., Z3 [11],
CVC3 [5], and Yices [13], follow the “little proof engine” para-
digm [26] and have their roots in the area of satisfiability check-
ers for propositional logic (SAT solvers). This architecture is in
contrast to the design of classical automated theorem provers
for first-order logic, although there has been a rich exchange of
concepts and ideas between the two approaches.

SMT solvers are able to reason very efficiently about first-
order formulas that have a complicated propositional structure,
which is an important feature for program verification (where
the number of cases to be covered often is huge, due to the size
of programs and the number of execution paths through them).
SMT solvers also represent a framework in which decision pro-
cedures for theories like uninterpreted functions, linear integer,
rational, and bit-vector arithmetic, or arrays can naturally be
integrated. These theories are sufficient for many practical pro-
gram verification problems, e.g., proving that array bounds are
not violated during program execution.

While SMT solvers are decision procedures for ground for-
mulas in first-order logic with various theories (which are usually
difficult for classical first-order theorem provers), they typically

only offer heuristic support for quantifiers. This situation is to a
certain degree inevitable, because many theories become too ex-
pressive to allow even semi-decision procedures when combined
with quantifiers (for instance, linear integer arithmetic combined
with uninterpreted functions and quantifiers is Π1

1-hard). Most
SMT solvers are not even complete for first-order logic, how-
ever. This restriction becomes relevant for more complicated
and harder verification tasks, including proofs of the functional
correctness of programs (e.g., that a sorting procedure actually
returns a sorted permutation of the input array). Although the
integration of SMT solvers with first-order theorem provers is an
active area of research, until now such tasks are the domain of
interactive systems.

Decision Procedures in Interactive Systems. Monolithic ver-
ification systems and proof assistants typically offer decision pro-
cedures for theories, too, although the setup is different than in
SMT solvers. Monolithic systems are normally built on expres-
sive logics, in which theories can be introduced by adding new
symbols and axioms. In order to support the proving process, the
applications of the theory axioms is automated by means of tac-
tics, proof search strategies, or reflected algorithms, which are all
essentially programs defined in the verification system that im-
plement simplification or decision procedures. Such procedures
can be interactively invoked by the user to generate (part of) a
proof. In the KeY system, for instance, proof search strategies
exist for deciding formulas in linear integer arithmetic, and to
simplify expressions in nonlinear arithmetic [23].

The range of theories accessible for interactive systems is
larger than that of SMT solvers, because the more expressive a
theory is, the more difficult is it to achieve full automation. To
reason about full Peano arithmetic or other inductively defined
datatypes, for instance, it is frequently necessary to instantiate
induction axioms, which is normally beyond the abilities of au-
tomatic procedures. Also for the treatment of quantifiers, user
interaction is often unavoidable. Simpler reasoning steps in such
theories can nevertheless be performed automatically.

Statements about program correctness for algorithms often
correspond to interesting mathematical properties of the data
types. Much of the deduction required in these cases is very
similar to mathematical theorem proving. A possible difference is
that much of mathematics concentrates on algebraic structures
like rings and fields, which mostly require inductive proofs only
to establish that a given type actually is an instance of such a
structure. In program verification, where the specific properties
of lists, trees, dictionaries, or user-defined datatypes are often
central, more proofs make direct use of induction.

Since the same kind of general statement about common
data types are often required in different programs, it is useful
to build a library of lemmas, simplification rules, etc. to help in
automating reasoning about the data types. Every reasonable
verification system has some mechanism for this kind of “theory
reasoning.”

In practical systems, the two approaches to theory reason-
ing are often combined: simpler (but possibly large) parts of
verification conditions can be sent to back-ends that will try to
construct a proof automatically, while deeper and more intri-
cate (but hopefully smaller) parts can be handled with a higher
degree of interaction. The KeY system, for instance, supports
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various SMT solvers like CVC3 and Yices as back-ends, but also
offers full interactive reasoning and semi-automatic proof search
strategies.

4 Automated Deduction
for Bug Finding

Traditionally, approaches and systems for deductive program ver-
ification fall short of giving useful feedback in the case that the
program under consideration is not correct. But, indeed, this
is the much more frequent case, in particular when it comes to
applications that exceed the size of text book examples. In the
last decade or so, this challenge is increasingly acknowledged
in the research community, and various approaches address this
issue. To categorise those, we start with the observation that
deductive program verification usually phrases the problem of
program correctness as formulas, the validity of which implies
the program being correct. Now, there are several ways to show
programs to be incorrect. One is to establish the invalidity of
formulas, by generating counter models. This approach is also
referred to as disproving. An alternative way is to reduce in-
correctness to validity, by coding it as a formula again, and
applying theorem proving directly. (A third possibility is that
the (sub-)problem at hand is decidable, in which case decision
procedures can establish validity or invalidity. This case is not
discussed in the following but see the previous section for a dis-
cussion of decision procedures.)

Disproving Correctness. We first take a closer look at the
problem of showing invalidity of formulas. Automated deduc-
tion is traditionally tailored to showing validity of conjectures,
while the issue of showing invalidity is largely neglected (at least
in undecidable logics). The reasons for this are both of theo-
retical and practical kind. On the theoretical side, the problem
of invalidity is harder than that of validity in many logics. For
instance, in first-order logic, validity is semi-decidable, whereas
invalidity is not. On the practical side, invalidity was not con-
sidered interesting in the early decades of automated deduction,
where the application area was mostly mathematics. The con-
jectures to be proved automatically were largely known to be
true, or at least likely to be true. This changes dramatically
when deduction is used for verifying systems, be it software or
hardware. In particular software is almost never correct from
the start. For automated deduction to be effective for program
verification, it needs to give the user helpful feedback on faulty
conjectures.

The problem of showing a conjecture ϕ invalid can be ex-
pressed as the problem of finding a counter model for ϕ, i.e., a
model in which all assumptions (axioms) are true but ϕ is not. In
general, finding counter models is a very hard problem, as their
existence is undecidable in many logics. Note that, for instance,
a single boolean function over the natural numbers has already
uncountably many models. The solutions suggested in the liter-
ature focus on some finite approximation of the general problem.
One way is to consider finite approximations of possibly infinite
domains, and search for models on increasing domain sizes, see
for instance [10]. A different approach is to leave the domains
infinite, but put a finite limit on the instantiations of universal
quantifiers in the axioms [1]. Neither of these approaches can

be both sound and complete. The second, however, is at least
monotonic, in the sense that the number of models only gets
smaller when the limit is increased.

Proving Incorrectness. In cases where incorrectness of a pro-
gram can be expressed as a formula (in a logic where we have
a proof system at hand), we can use proving machinery instead
of constructing counter models. However, it is not as easy as
that, normally. The coding of incorrectness in formulas might
not be straightforward. Also, such formulas can carry character-
istics which are not well supported by standard proving technol-
ogy; this calls for research on theorem proving tuned for these
purposes. In the following, we consider two approaches demon-
strating these issues.

At first, we look at the problem of proving incorrectness of
pre-post condition statements, of the kind expressed by Hoare
triples [18]. As the triple {φ}π{ψ} demands ψ to hold after
all terminating runs of π starting form a state satisfying φ, the
incorrectness of this triple corresponds to the existence of a state
where φ is true, such that execution of π terminates, and ψ is
not valid afterwards. It is shown in [24] how to formulate and
prove this kind of incorrectness in dynamic logic, an extension of
Hoare logic able to express termination, and allowing programs
in the scope of quantifiers. The main challenge for the deduction
machinery is the quite massive existential quantifier over the pre-
state. The target language of that work is Java, such that the
state entails the object heap, and the quantifier instantiation
mechanism must be able to construct such heaps. This is done
using a tableau/sequent style calculus featuring meta-variables
(also called ‘free’) to be instantiated by incremental constraint
solving, extending on the work in [16].

Besides partial correctness, another aspect of program cor-
rectness is termination. In that setting, proving incorrectness
corresponds to proving non-termination. For imperative lan-
guages the possible non-termination of loops while(ε){α} is
of particular relevance. The approach taken in [27] essentially
searches for a loop invariant I such that I → ε, which shows
that the termination condition cannot be reached. The synthesis
of such invariants is again based on constraint solving, and on
iteratively strengthening invariants based on counter examples
from failed proof attempts.

5 Conclusion

Program verification is today one of the most promising ap-
plication areas of automated deduction. In line with that, the
automated deduction community has in recent years put an in-
creasing emphasis on the characteristics of deduction problems in
program verification. In this article, we tried to give an overview
of those aspects of deduction which are particularly significant in
this context, and reviewed the typical scenarios for the interplay
of deduction and verification. We categorised typical architec-
tures (toolchain, monolithic) and the various kinds of user input
(assertions, lemmas, interactive proof steps). We also discussed
the dominant role of theories and data structure in the reason-
ing, being addressed (among others) by tailored proof strategies
and decision procedures (including SMT). Again, those are com-
bined either by integrating tools (toolchain) or by integrating
techniques into the frame of a more general calculus (mono-
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lithic). Finally, we highlighted the role of feedback in the case
that the verification target is not correct

Altogether, one can say that the rapid progress of practical
program verification in the last decade or so has boosted the field
of automated deduction, and, we are convinced, will continue to
do so.
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[6] Bernhard Beckert, Reiner Hähnle, and Peter H. Schmitt, editors.
Verification of Object-Oriented Software: The KeY Approach.
LNCS 4334. Springer-Verlag, 2007.

[7] Bernhard Beckert and Micha l Moskal. Deductive verification of
system software in the Verisoft XT project. KI, 2010. In this
issue.

[8] Yves Bertot. A short presentation of Coq. In Otmane Äıt Mo-
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