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Abstract Automatic detection of a speaker’s level of inter-
est is of high relevance for many applications, such as au-
tomatic customer care, tutoring systems, or affective agents.
However, as the latest Interspeech 2010 Paralinguistic Chal-
lenge has shown, reliable estimation of non-prototypical nat-
ural interest in spontaneous conversations independent of
the subject still remains a challenge. In this article, we intro-
duce a fully automatic combination of brute-forced acous-
tic features, linguistic analysis, and non-linguistic vocaliza-
tions, exploiting cross-entity information in an early feature
fusion. Linguistic information is based on speech recog-
nition by a multi-stream approach fusing context-sensitive
phoneme predictions and standard acoustic features. We
provide subject-independent results for interest assessment
using Bidirectional Long Short-Term Memory networks on
the official Challenge task and show that our proposed sys-
tem leads to the best recognition accuracies that have ever
been reported for this task. The according TUM AVIC cor-
pus consists of highly spontaneous speech from face-to-face
commercial presentations. The techniques presented in this
article are also used in the SEMAINE system, which fea-
tures an emotion sensitive embodied conversational agent.

Keywords Affective computing - Interest recognition -
Recurrent neural networks - Long short-term memory

1 Introduction

Automatically extracting information on interest or disinter-
est of users possesses great potential for general Human-
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Computer Interaction [16, 26, 37] and many applications,
including sales and advertisement systems, virtual guides, or
conversational agents like the SEMAINE system [19]. Re-
cent studies on interest recognition have primarily focused
on use-cases such as topic switching in infotainment or cus-
tomer service systems [20], meeting analysis [3, 13, 27], or
(children’s) tutoring systems [14]. In this context, the or-
ganizers of the Interspeech 2010 Paralinguistic Challenge
[23] defined an interest recognition task with unified system
training and test conditions in order to make the recognition
approaches developed by different researchers easily com-
parable. In the Affect Sub-Challenge, the task is to automat-
ically predict a user’s level of interest from the speech sig-
nal applying a pre-defined acoustic feature set and (option-
ally) linguistic information. The corpus used for training and
evaluation is the Audiovisual Interest Corpus recorded at
the Technische Universitiat Miinchen (“TUM AVIC”) [20]. It
features highly spontaneous speech from face-to-face com-
mercial presentations and reflects the conditions a real-life
interest recognition system has to face. The challenge task—
predicting a speaker’s level of interest in ordinal represen-
tation by suited regression techniques—deliberately avoids
hard decisions as it is well known that human affect is also
continuous and cannot be sufficiently described by a lim-
ited set of categories. In this article, we present our re-
cent research on affective state recognition by introducing a
fully automatic interest recognition system as it is applied in
the SEMAINE system [19]—a virtual conversational agent
tailored to emotionally sensitive topic-independent human-
machine interaction. In contrast to the baseline Paralinguis-
tic Challenge recognition system that has been applied and
evaluated in [23] and is based on acoustic features processed
via unpruned REP-Trees, our proposed system also makes
use of linguistic information obtained by automatic speech
recognition (ASR) and exploits a self-learned amount of
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contextual information. We apply Bidirectional Long Short-
Term Memory (BLSTM) recurrent neural networks which
have shown impressive affect recognition performance gains
with respect to standard techniques such as Support Vec-
tor Regression or Hidden Markov Models (HMM) [35, 36].
Furthermore, since ASR in conversational speech scenarios
tends to be more challenging than, e.g., the recognition of
read speech, we build on our recent work on robust ASR
by applying a multi-stream BLSTM-HMM system [34] for
extracting linguistic information. The multi-stream model
is composed of a BLSTM network for context-sensitive
phoneme prediction and an HMM that uses both, BLSTM-
based phoneme prediction features and conventional Mel-
Frequency Cepstral Coefficient (MFCC) features as obser-
vations. The combined acoustic-linguistic information for
interest recognition is represented in a joint feature vector
via early fusion.

In Sect. 2, we provide details on the TUM AVIC cor-
pus and introduce the recognition task. Next, in Sect. 3, we
motivate the use of Long Short-Term Memory and give a
brief overview over the BLSTM architecture. Section 4 con-
tains information about acoustic and linguistic feature ex-
traction and about the employed feature selection technique.
In Sect. 5, we outline experiments and results before draw-
ing conclusions in Sect. 6.

2 The TUM AVIC Corpus

The experiments outlined in Sect. 5 are based on the “TUM
AVIC” corpus [20] which had also been used for the Af-
fect Sub-Challenge of the Interspeech 2010 Paralinguistic
Challenge [23]. In the scenario setup, an experimenter and
a subject are sitting on opposite sides of a desk. The exper-
imenter plays the role of a product presenter and leads the
subject through a commercial (car) presentation. The sub-
ject’s role is to listen to explanations and topic presentations
of the experimenter, ask several questions of her/his inter-
est, and actively interact with the experimenter considering
his/her interest in the addressed topics. To capture a large
variety of interest levels, the subject was explicitly asked
not to worry about being polite to the experimenter, e.g., by
always showing a certain level of ‘polite’ attention. Instead
the participants were encouraged to honestly express interest
or disinterest, depending on the content of the presentation.
Visual and speech data was recorded by a camera and two
microphones, one headset and one far-field microphone. In
conformance with the Interspeech 2010 Paralinguistic Chal-
lenge, we exclusively use data recorded by the lapel micro-
phone (44.1 kHz, 16 bit).

21 subjects took part in the recordings, three of them
Asian, the remaining European. The language throughout
experiments is English, and all subjects are non-native, yet

very experienced English speakers. The mean age of the
participants is 29.9 years and the total recording time is
10.4 h. To acquire reliable labels of a subject’s ‘level of in-
terest’ (LOI), the entire video material was segmented into
speaker and sub-speaker-turns and subsequently labeled by
four male annotators, independently from each other. The
annotators were undergraduate students of psychology. The
intention was to annotate observed interest in the common
sense. A speaker-turn is defined as continuous speech seg-
ment produced solely by one speaker—back channel inter-
jections (“mhm”, etc.) are ignored, i.e., every time there is
a speaker change, a new speaker turn begins. This is in ac-
cordance with the common understanding of the term ‘turn-
taking’. Speaker-turns thus can contain multiple and espe-
cially long sentences. In order to provide level of interest
analysis on a finer time scale, the speaker turns were further
segmented at grammatical phrase boundaries: a turn lasting
longer than two seconds is split by punctuation and syntac-
tical and grammatical rules, until each segment is shorter
than two seconds. These resulting segments are referred to
as sub-speaker-turns. The LOI is annotated for every such
sub-speaker turn. In order to get an impression of a sub-
ject’s character and behavior prior to the actual annotation,
the annotators had to watch approximately five minutes of
a subject’s video. As the focus of interest based annotation
lies on the sub-speaker turn, each of those had to be viewed
at least once to find out the LOI displayed by the subject.
Five levels of interest were distinguished:

— LOI-2 Disinterest (subject is tired of listening and talk-
ing about the topic, is totally passive, and does not fol-
low)

— LOI-1 Indifference (subject is passive, does not give
much feedback to the experimenter’s explanations, and
asks unmotivated questions, if any)

— LOIO Neutrality (subject follows and participates in the
discourse; it cannot be recognized if she/he is interested
or indifferent in the topic)

— LOI+1 Interest (subject wants to discuss the topic,
closely follows the explanations, and asks questions)

— LOI4-2 Curiosity (strong wish of the subject to talk and
learn more about the topic).

To avoid different interpretations of the LOI names, the
annotators used the LOI values from —2 to 2 rather than
the terms (such as Neutrality or Curiosity) when assign-
ing their labels. Otherwise inconsistencies could have poten-
tially occurred, since terms like Indifference and Neutrality
might be interpreted differently or even used synonymously.
The inter-labeler agreement can be seen as sufficiently high
(k-value of 0.66, see [20]).

Further, the spoken content has been transcribed, and
long pause, short pause, and non-linguistic vocalizations
have been labeled. These vocalizations comprise breath-
ing (452), consent (325), hesitation (1,147), laughter (261),
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and coughing, other human noise (716). There is a total of
18,581 spoken words, and 23,084 word-like units includ-
ing 2,901 non-linguistic vocalizations (19.5%). In summary,
the overall annotation contains the spoken content, non-
linguistic vocalizations, individual annotator tracks, and
mean LOI (per sub-speaker-turn segment).

For the Interspeech 2010 Paralinguistic Challenge, the
ground truth is established by shifting to a continuous scale
obtained by averaging the single annotator LOL In accor-
dance with the scaling applied in other corpora (e.g., [6]),
the original LOI scale reaching from LOI-2 to LOI4-2 is
mapped to the interval from —1 to 1. Note that the level
of interest introduced herein is highly correlated to arousal.
However, at the same time there is an obvious strong cor-
relation to valence, as e.g., boredom has a negative va-
lence, while strong interest is characterized by positive va-
lence. The annotators however labeled interest in the com-
mon sense, thus comprising both aspects.

The speech data from the 21 speakers (3,880 sub-
speaker-turns) were split into a training, development, and
test set. Splitting was conducted in a speaker independent
way trying to achieve the best possible balance with re-
spect to gender, age, and ethnicity. The training set consists
of 1,512 sub-speaker-turns and 51.7 minutes of speech, re-
spectively, and comprises four female and four male speak-
ers, while the development set contains 1,161 sub-speaker-
turns, corresponding to 43.1 minutes of speech (three fe-
male and three male speakers). The test set includes 1,207
sub-speaker-turns and 42.7 minutes of speech, respectively
(three female and four male speakers).

3 Long Short-Term Memory

This section outlines the principle of the Long Short-Term
Memory RNNs that are used for context-sensitive interest
recognition in Sect. 5 as well as for phoneme prediction in
Sect. 4.2. The architecture of the whole acoustic-linguistic

estimated
level of interest

phoneme
prediction

interest recognition system is shown in Fig. 1: A feature ex-
tractor provides MFCC features to a BLSTM network which
computes a phoneme prediction. Together with the MFCC
features, those phoneme predictions are decoded by a multi-
stream HMM which outputs linguistic features. Both, lin-
guistic features and acoustic features are processed by a sec-
ond BLSTM network which infers the final level of interest
prediction.

The automatic prediction of a user’s level of interest as in-
vestigated in this article profits from classification architec-
tures that can access and model long-range context since the
level of interest is expected to evolve slowly over time, with
past observations potentially influencing the current predic-
tion. The number of past (and possibly future) speech turns
which should be used to obtain enough context for reliably
estimating the level of interest without affecting the capa-
bility of also detecting sudden changes of the speaker’s af-
fective state is hard to determine [21, 24]. Thus, a classifier
that is able to /earn the amount of context is a promising
alternative to manually defining fixed time windows for in-
terest recognition. Static techniques such as Support Vector
Machines do not explicitly model context between turns but
rely, e.g., on aggregating observations using Multi-Instance
Learning techniques [22]. Other classifiers such as neural
networks are able to model a certain amount of context by
using cyclic connections. These so-called recurrent neural
networks (RNN) can in principle map from the entire history
of previous inputs to each output. Yet, the analysis of the er-
ror flow in conventional recurrent neural nets resulted in the
finding that long range context is inaccessible to standard
RNNSs since the backpropagated error either blows up or de-
cays over time (vanishing gradient problem [9]). One of the
most effective solutions to this problem is the Long Short-
Term Memory (LSTM) architecture [10], which is able to
store information in linear memory cells over a longer pe-
riod of time. LSTM networks can learn the optimal amount
of contextual information relevant for the classification task
and thus are well-suited for context-sensitive interest recog-
nition.
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Fig.2 LSTM memory block consisting of one memory cell: the input,
output, and forget gates collect activations from inside and outside the
block which control the cell through multiplicative units (depicted as
small circles); input, output, and forget gate scale input, output, and
internal state respectively; a; and a, denote activation functions; the
recurrent connection of fixed weight 1.0 maintains the internal state

net output

An LSTM layer is composed of recurrently connected
memory blocks, each of which contains one or more mem-
ory cells, along with three multiplicative gate units: the in-
put, output, and forget gates. The gates perform functions
analogous to read, write, and reset operations. More specif-
ically, the cell input is multiplied by the activation of the
input gate, the cell output by that of the output gate, and
the previous cell values by the forget gate (see Fig. 2). The
overall effect is to allow the network to store and retrieve in-
formation over long periods of time. For example, as long as
the input gate remains closed, the activation of the cell will
not be overwritten by new inputs and can therefore be made
available to the net much later in the sequence by opening
the output gate.

Another problem with standard RNNSs is that they have
access to past but not to future context. This can be over-
come by using bidirectional RNNs [25], where two separate
recurrent hidden layers scan the input sequences in opposite
directions. The two hidden layers are connected to the same
output layer, which therefore has access to context informa-
tion in both directions. The amount of context information
that the network actually uses is learned during training, and
does not have to be specified beforehand.

Combining bidirectional networks with LSTM gives
bidirectional LSTM [5], which has demonstrated excellent
performance in various applications like handwriting recog-
nition [4], music information retrieval [28], speech recogni-
tion [33], keyword spotting [31], and emotion recognition
[32, 35, 36].

Note that bidirectional processing is rather suited for off-
line information retrieval than for fully incremental real-
time systems since it requires future information. Never-

theless exploiting future context can also be an interesting
aspect for on-line systems that aim at refining past predic-
tions once more (bidirectional) context is available. Often
a short look-ahead buffer is enough to profit from a lim-
ited amount of ‘future’ information, as for example when
applying triphone models for speech recognition, modeling
the coarticulation that occurs when preceding and successive
phonemes affect the pronuncation of the current phoneme.

4 Feature Extraction

In the following sections we describe the features that we
apply for classification. We will review the set of acoustic
features that has been proposed in [23] in order to define a
unified feature set that can be used for comparing the accu-
racy of different classification approaches (Sect. 4.1). Un-
like the baseline interest predictor that had been introduced
in [23] and is exclusively based on acoustic descriptors, the
regression technique applied in this article also makes use of
linguistic features and thus requires an ASR module recog-
nizing spoken content and non-linguistic vocalizations such
as laughing. In Sect. 4.2 we outline our multi-stream speech
recognizer providing linguistic features. Finally, in Sect. 4.3
we describe the feature selection technique which we apply
to reduce the dimensionality of the feature space.

4.1 Acoustic Features

The acoustic features applied in Sect. 5 correspond to the
baseline feature set of the Interspeech 2010 Paralinguistic
Challenge [23]. They are extracted via our real-time speech
analysis toolbox openSMILE [2] which has emerged as a
widely-adopted audio feature extractor used in various stud-
ies on affective computing and paralinguistic information
extraction [1, 8, 15, 17].

1,582 acoustic features are obtained in total by system-
atic ‘brute-force’ feature generation in three steps: first, the
38 low-level descriptors (LLD) shown in Table 1 (left col-
umn) are extracted at 100 frames per second with varying
window type and size (Hamming and 25 ms, respectively,
for all but pitch which is extracted using a Gaussian win-
dow and a window size of 60 ms) and smoothed by simple
moving average low-pass filtering with a window length of
three frames. Next, their first order regression coefficients
are added. Then, 21 functionals are applied (see Table 1,
right column) to each low-level feature stream in order to
capture time-varying information in a fixed-length static fea-
ture vector for each instance in the database. Note that 16
zero-information features (e.g., minimum FO, which is al-
ways zero) are discarded. Finally, the two single features
‘number of pitched segments’ and turn duration are added.



Table 1 The official 1,582-dimensional acoustic feature set of the In-
terspeech 2010 Paralinguistic Challenge: 38 low-level descriptors with
regression coefficients, 21 functionals. Abbreviations: DDP: difference
of difference of periods, LSP: line spectral pairs, Q/A: quadratic, abso-
lute

Descriptors Functionals
PCM loudness Max./min. (position)
MFCC [0-14] Arith. mean, std. deviation

log Mel Freq. Band [0-7]
LSP Frequency [0-7]
FO by Sub-Harmonic Sum.

Skewness, kurtosis

Lin. regression coeff. 1/2
Lin. regression error Q/A
Quartile 1/2/3

Quartile range 2-1, 3-2, 3-1
Percentile 1/99

Percentile range 99-1
Up-level time 75/90

FO Envelope
Voicing Probability
Jitter local

Jitter DDP

Shimmer local

4.2 Linguistic Features

This section briefly outlines the multi-stream BLSTM-
HMM ASR system we use to generate linguistic features.
In general, spontaneous, disfluent speech can lead to ex-
tremely high error rates when applying conventional HMM-
based speech recognizers. Thus, even if an ASR system just
serves as linguistic feature extractor, challenging scenarios
such as the TUM AVIC interactions require more advanced
strategies in order to obtain the best possible ASR perfor-
mance and linguistic features, respectively. For our exper-
iments we applied the technique presented in [34]. It was
shown that this multi-stream model architecture is particu-
larly suited for robust speech recognition in challenging sce-
narios (conversational speech, emotional coloring of speech,
background noise, etc.). The main idea of this technique is
to enable improved recognition accuracies by incorporating
context-sensitive phoneme predictions generated by a Bidi-
rectional Long Short-Term Memory network (see Sect. 3)
into the speech decoding process.

The structure of our multi-stream decoder can be seen in
Fig. 3: 5, and x, represent the HMM state and the acoustic
(MFCC) feature vector, respectively, while b, corresponds
to the discrete phoneme prediction of the BLSTM network
(shaded nodes). Squares denote observed nodes and white
circles represent hidden nodes. In every time frame ¢ the
HMM uses two independent observations: the MFCC fea-
tures x; and the BLSTM phoneme prediction feature b;.
The vector x; also serves as input for the BLSTM, whereas
the size of the BLSTM input layer i; corresponds to the di-
mensionality of the acoustic feature vector. The vector o;
contains one probability score for each of the P different
phonemes at each time step and b; is the index of the most
likely phoneme. In every time step the BLSTM generates a
phoneme prediction and the HMM models x1.7 and by.7 as
two independent data streams.
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The applied real-time LSTM-based phoneme predictor is
publicly available as part of our on-line speech feature ex-
traction engine openSMILE [2].

Via early fusion, we fuse linguistic information extracted
by the BLSTM-HMM speech recognizer with the supra-
segmental acoustic features described in Sect. 4.1. To ob-
tain linguistic feature vectors from the ASR output, a stan-
dard Bag-of-Words (BoW) technique is employed: for each
word in a segment, the term frequency (TF) is computed
(see [12]). Only words with a minimum term frequency of
two throughout the training set are considered (152 words).
A vector space representation of the word string is built from
the word’s TF values.

4.3 Feature Selection

In order to reduce the size of the resulting (acoustic-
linguistic) feature space, we conduct a cyclic Correlation
based Feature Subset Selection (CFS) based on the TUM
AVIC training set. The main idea of CFS is that useful fea-
ture subsets should contain features that are highly corre-
lated with the target class while being uncorrelated with
each other.

For correlation measurement, the symmetrical uncer-
tainty coefficient is used (as described in [7]). To avoid an
exhaustive search in the feature space a greedy hill climbing
forward search is applied [29]. In this heuristic search algo-
rithm, each feature is tentatively added to the feature subset.
Once the (so far) best feature set has been chosen, the proce-
dure is repeated. Note that we willfully decided for a filter-
based feature selection method, since a wrapper-based tech-
nique would have biased the resulting feature set with re-
spect to compatibility to a specific classifier. As termination
criterion we considered a maximum of five non-improving
nodes before terminating the greedy hill climbing forward
search.

Table 2 gives an overview over the acoustic features se-
lected by CFS on the TUM AVIC training set. We indicate
the number (#) of features that were selected, and their per-
centage with respect to the full 1,582-dimensional Paralin-
guistic Challenge feature set, which is reduced to 92 features
(about 6%).

First, in Table 2a, we distinguish the features by their
types. Judging from the percentages, it can be seen that a
broad range of prosodic, spectral, and voice quality features
are correlated with the mean level of interest, with no con-
siderable difference between these three groups. Overall, it
is striking that regression coefficients (A LLD) seem to con-
tribute equally to information about the mean level of inter-
est as the LLDs themselves.

Second, we investigate the contribution of different types
of functionals in Table 2b, concluding that especially the
percentiles seem to carry valuable information: Note that the
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Fig. 3 Architecture of the
multi-stream BLSTM-HMM

decoder: s;: HMM state, x;:
acoustic feature vector, b;:
BLSTM phoneme prediction
feature, i;, oy, h'[f/h,b: input,
output, and hidden nodes of the
BLSTM network.
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Table 2 Acoustic feature selection (CFS) on the TUM AVIC train-
ing set: number and percentage of features selected from the 1,582-di-
mensional Paralinguistic Challenge feature set, (a) by type of LLD
(prosodic, spectral, voice quality), and (b) by type of functional

Table 3 Results of acoustic and linguistic feature selection (CFS) on
the TUM AVIC training set. The number and percentage of features
selected from the union of the 1,582-dimensional acoustic feature set
and the BoW feature vector (152 features) are shown by type of LLD

[#] LLD A LLD Total # Selected LLD + A LLD

(a) By type of LLD Prosodic 5/124 (4%)

Prosodic 5/63 (8%) 0/61 (0%) 5/124 (4%) Spectral 66/1302 (5%)

Spectral 37/651 (6%) 39/651 (6%) 76/1302 (6%) Voice quality 12/156 (8%)

Voice q. 6/78 (8%) 5/78 (6%) 11/156 (7%) X acoustic 83/1582 (5%)
BOW 38/147 (26%

Total 48/792 (6%) 44/790 (6%) 92/1582 (6%) . (26%)
BOW non-ling. 2/5 (40%)

(b) By type of functionals 3 linguistic 40/152 (26%)

Extremes 10/182 (5%) 10/182 (5%) 20/364 (5%)

. Total 123/1734 (7%)

Regression 71152 (5%) 9/152 (6%) 16/304 (5%)

Moments 10/152 (7%) 9/152 (6%) 19/304 (6%)

Percentiles 16/228 (7%) 15/228 (7%) 317456 (7%) guistic (BoW) feature set. For the sake of clarity, we do

Duration 5/76 (7%) 1776 (1%) 6/152 (4%) not consider regression coefficients separately. Regarding

Total 481792 (6%) 447790 (6%) 92/1582 (6%) the selection of acoustic features from the joint feature set

Extremes category contains the 1- and 99-percentile instead
of actual minimum and maximum for robustness against
outliers.

Next, in Table 3, we summarize the results of CFS-based
feature selection from the union of the acoustic and the lin-

as opposed to the acoustic set only (Table 2), figures are
comparable, yet slightly less features are selected in total
(83 vs. 92). Interestingly, and in contrast to acoustic fea-
tures, a large share of the original BoW feature space is kept
(40 of 152, or 26%), which particularly includes two of the
five features corresponding to the non-linguistic vocaliza-
tions consent (“mhm”) and laughter. Other selected BoW



features correspond to set phrases such as oh, yeah, or good,
but also to words that can be judged as being relevant for
the corpus-specific car presentation scenario such as hybrid,
buy, or gas.

5 Experiments and Results
5.1 ASR Configuration and Training

As outlined in Sect. 4.2, our ASR module for linguistic fea-
ture extraction combines the HMM-based decoding with
context-sensitive BLSTM-based phoneme prediction. We
trained the multi-stream ASR system on utterances from the
training and the development partition of the TUM AVIC
corpus. As ASR features x, we used MFCCs 1 to 12 in-
cluding logarithmic energy together with first and second
order regression coefficients. To compensate for stationary
noise effects, we applied cepstral mean normalization. Since
the BLSTM network for phoneme prediction was trained
on framewise phoneme targets, we used an HMM system
to obtain phoneme borders via forced alignment. The net-
work consisted of three hidden layers (per input direction)
with a size of 78, 128, and 94 hidden units, respectively.
Thereby each memory block contained one memory cell.
For training of the BLSTM-based phoneme predictor we
used a learning rate of 10~ and a momentum of 0.9. As
a common means to improve generalization for RNNs, we
added zero mean Gaussian noise with standard deviation 0.6
to the inputs during training. Prior to training, all weights
were randomly initialized in the range from —0.1 to 0.1. In-
put and output gates used tanh activation functions, while
the forget gates had logistic activation functions. We trained
the networks on the standard (CMU) set of 39 different En-
glish phonemes and included targets for silence, short pause,
and garbage as well as for the non-linguistic vocalizations
breathing, coughing, hesitation, laughing, and consent (like
“mhm”).

Each phoneme of the underlying HMM system is repre-
sented by three states (left-to-right HMMs) with 16 Gaus-
sian mixtures. HMMs corresponding to non-linguistic vo-
calizations consisted of nine states. The initial monophone
models consisted of one Gaussian mixture per state and were
trained using four iterations of embedded Baum-Welch re-
estimation. After that, the monophones were mapped to tied-
state cross-word triphone models with shared state transition
probabilities. Two Baum-Welch iterations were performed
for re-estimation of the triphone models. Finally, the num-
ber of mixture components of the triphone models was in-
creased to 16 in four successive rounds of mixture doubling
and re-estimation. Both, the multi-stream acoustic models
and a back-off bigram language model were trained on the
TUM AVIC training and development set (vocabulary size
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of 1.9 k). Applying the multi-stream model, we obtain a
word accuracy of 28.9% (compared to 25.8% when using
only the MFCC feature stream), which is in the range of typ-
ical accuracies for such challenging ASR scenarios involv-
ing accented and spontaneous speech with a high number of
out-of-vocabulary events [11].

5.2 Neural Network Architectures for Interest Recognition

We evaluated four different neural network architectures
with respect to their suitability for speech-based interest
recognition: conventional recurrent neural networks, bidi-
rectional recurrent neural networks (BRNN), LSTM net-
works, and Bidirectional LSTM networks. The number of
input nodes corresponds to the number of selected acoustic
or combined acoustic-linguistic features. BLSTM networks
were composed of 32 memory blocks per input direction,
while LSTM networks consisted of 64 memory blocks. Sim-
ilarly to the BLSTM phoneme predictor, all memory blocks
of the interest prediction (B)LSTMs were composed of one
memory cell. RNN classifiers had a hidden layer of size 32
while BRNNSs consisted of 16 hidden nodes per input direc-
tion. All networks had one (regression) output node whose
activation represents the predicted level of interest.

As for the phoneme predictor, we improved generaliza-
tion by adding Gaussian noise to the inputs during train-
ing (standard deviation of 1.2). Note that all input features
were z-normalized before being processed by the networks.
Means and standard deviations for z-normalization were
computed from the training set. The remaining configura-
tions are similar to the parameterization for the phoneme
predictor, however, for interest recognition we applied re-
silient propagation (rProp) [18] instead of standard back-
propagation through time. Learning rate and momentum
were set to 107> and 0.9, respectively.

5.3 Results

Table 4 shows the results obtained on the Interspeech 2010
Paralinguistic Challenge (more precisely the Affect Sub-
Challenge) when applying the different context-sensitive
neural network architectures. In conformance with [23], we
chose the cross correlation (CC) between the ground truth
level of interest and the predicted level of interest as eval-
uation criterion. We do not report the mean linear error
(MLE), since the MLE strongly depends on the variance of
the ground truth labels and is hardly suited for revealing the
accuracy of the predictions. As an example, when evaluating
a (‘dummy’) classifier that always predicts the mean of the
training set ground truth labels, we obtain an MLE of 0.148
(which is only 0.002 below the MLE reported in [23]) while
we get a CC of zero.

All results reflect the recognition performance on the
TUM AVIC test set, when training the predictors on the
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Table 4 Results for interest recognition as defined in the Affect Sub-
-Challenge [23]: cross correlation obtained for different network archi-
tectures when using either acoustic (Ac.) or combined acoustic-linguis-
tic (Ac. + Ling.) information; baseline results reported in [23] when
applying unpruned REP-Trees with and without correlation-based fea-
ture selection (CFS)

Classifier CFS Cross correlation
Ac. Ac. 4 Ling.

BLSTM Yes 0.442 0.475
LSTM Yes 0.431 0.459
BRNN Yes 0.406 0.438
RNN Yes 0.422 0.439
REP-Trees Yes 0.439 0.435
REP-Trees [23] No 0.421 0.423

training and development partition of the TUM AVIC cor-
pus. Using only the training set did not lead to satisfy-
ing results since our neural network architectures require
a comparatively large amount of training data for general-
ization. Incorporating linguistic information leads to higher
cross correlations for all network architectures which is in
line with previous studies on speech based affect recog-
nition (e.g., [36]). The best performance can be obtained
when applying Bidirectional Long Short-Term Memory net-
works processing both, acoustic and linguistic features (CC
of 0.475). Bidirectional LSTM modeling gives slightly bet-
ter results than unidirectional LSTM which indicates that
also future information (if available) can be efficiently ex-
ploited for interest recognition. The performance difference
between LSTM-based architectures and conventional RNN
techniques reveals that the ability to model long-term tem-
poral context is beneficial for our classification task.

For comparison, also the Paralinguistic Challenge base-
line result (CC of 0.421, obtained with unpruned REP-Trees
in Random-Sub-Space meta-learning [23]) is shown in Table
4. The REP-Trees approach profits from feature selection via
CFS but cannot compete with the BLSTM technique. Our
results are even significantly better than the highest cross
correlation that has ever been reported for the Affect Sub-
Challenge so far (CC of 0.428 using acoustic and linguistic
information [11]).

We believe that a large part of the performance gain with
respect to previous studies on interest recognition can be at-
tributed to our strategy of not looking at single utterances in
isolation but modeling how the user’s interest evolves over
time. This is in conformance with the way humans judge the
affective state of others: They observe people over longer
time spans and tend to place utterances (or, more general,
behaviors) into context. Another reason for the good perfor-
mance of our approach is the applied feature selection which
leads to a reduction of the feature space and of the number

of network input nodes, respectively. Smaller networks pro-
cessing a moderate number of inputs are generally easier to
train with a limited amount of training material.

6 Conclusion and Outlook

This article presented a fully automatic approach towards
recognition of a user’s level of interest, based on informa-
tion extracted from the speech signal. We showed how a
context-sensitive neural network architecture based on the
Long Short-Term Memory principle can be applied for im-
proved assessment of interest exploiting both, acoustic (i.e.,
prosodic, spectral, and voice quality) and linguistic informa-
tion (i.e., the spoken content including non-linguistic vocal-
izations). Unlike previous studies extracting linguistic fea-
tures from the ground truth transcription of the spoken con-
tent, we focus on processing the ASR output, which of
course is error-prone but reflects the conditions a real-life
interest recognition system has to face. Since recognition
of spontaneous, conversational, and potentially emotionally
colored speech is a challenge in itself, we apply an advanced
multi-stream ASR system that exploits the LSTM principle
for enhanced phoneme recognition and integrates inferred
phoneme predictions into an HMM framework. Using this
acoustic-linguistic interest recognition technique, we were
able to outperform the baseline recognizer as well as all
other classification techniques that had been proposed for
the Interspeech 2010 Paralinguistic Challenge—an initiative
to make recognition results of different research teams com-
parable by defining unified test conditions.

The system proposed in this article can be seen as a ver-
satile speech-based interest recognizer that does not have to
be adapted to a certain speaker or to the characteristics of a
certain speaker. This, however, implies that our system can-
not capture that different users might express interest in dif-
ferent ways. User-profiled interest estimation in turn would
mean that user-specific models have to be used. Yet, in real-
life applications the availability of user profiles is an unreal-
istic assumption and general (or ‘average’) models that can
cope with unknown users are of higher importance. Another
limitation is that the user has to express interest or disinter-
est verbally, i.e., an interested user who is listening without
giving verbal feedback will of course not be captured by a
speech-based system.

Our results indicate that the prediction of human interest
can best be performed when applying model architectures
that consider contextual information instead of classifying
a speech turn in isolation. Similar findings have been pub-
lished for other affective dimensions, such as valence and
arousal (see [35, 36]). This raises the question whether over-
all recognition accuracies can be improved when jointly pre-
dicting multiple emotional dimensions—including the level



of interest—via multi-task learning. Another interesting di-
rection for future research is to examine framewise multi-
modal prediction in combination with hybrid fusion tech-
niques [30] which are able to model asynchronities between
multiple modalities or input streams such as acoustic, lin-
guistic, or video features. Also alternative ways for deter-
mining the ground truth interest level of an utterance are
thinkable for future experiments. For the TUM AVIC ex-
ample, the ‘true’ level of interest could be determined by
self-report methods or by asking the participants to summa-
rize the content of the presentation and derive the level of
interest from the quality of the summary which in turn indi-
cates how attentive or interested the user has been.
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