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Abstract Artificial neural networks are simple and efficient
machine learning tools. Defined originally in the traditional
setting of simple vector data, neural network models have
evolved to address more and more difficulties of complex
real world problems, ranging from time evolving data to
sophisticated data structures such as graphs and functions.
This paper summarizes advances on those themes from the
last decade, with a focus on results obtained by members of
the SAMM team of Université Paris 1.

1 Introduction

In many real world applications of machine learning and
related techniques, the raw data are not anymore in a standard
and simple tabular format in which each object is described
by a common and fixed set of numerical attributes. This
standard vector model, while useful and efficient, has some
obvious limitations: it is limited to numerical attributes, it
cannot handle objects with non uniform descriptions (e.g.,
situations in which some objects have a richer description
than others), relations between objects (e.g., persons involved
in a social network), etc.

In addition, it is quite common for real world applica-
tions to have some dynamic aspect in the sense that the data
under study are the results of a temporal process. Then, the
traditional hypothesis of statistical independence between
observations does not hold anymore: new hypothesis and
theoretical analysis are needed to justify the mathematical
soundness of the machine learning methods in this context.

Équipe SAMM, EA 4543
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Artificial neural networks provide some of the most effi-
cient techniques for machine learning and data mining [43].
As other solutions, they were mainly developed to handle
vector data and analyzed theoretically in the context of statis-
tically independent observations. However, the last decade
has seen numerous efforts to overcome those two limitations
[21]. We survey in this article some of the resulting solutions.
We will focus our attention on the two major artificial neural
network models: the Multi-Layer Perceptron (MLP) and the
Self-Organizing Map (SOM).

2 Multi-Layer Perceptrons

The Multi-Layer Perceptron (MLP) is one the most well
known artificial neural network model (see e.g., [5]). On a
statistical point of view, MLP can be considered as a para-
metric family of regression functions. Technically, if the data
set consists in vector observations in Rp, that is if each object
is described by a vector x = (x1, · · · ,xp)

T , the output of a one
hidden layer perceptron with k hidden neurons is given by

Fθ (x) = β +
k

∑
i=1

aiψ
(
wT

i x+bi
)
, (1)

where the wi are vectors of Rp, and the β , ai and bi are
real numbers (θ denote the vector of all parameters obtained
by concatenating the wi, ai and bi). In this equation, ψ is a
bounded transfer function which introduces some non linear-
ity in Fθ . Given a set of training examples, that is N pairs
(Xi,Yi), the learning process consists in minimizing over θ a
distance between Yi the target value and Fθ (Xi) the predicted
value. Given an error criterion (such as the mean squared
error), an optimal value for θ is determined by any optimiza-
tion algorithm (such as quasi Newton methods see e.g. [7]),
leveraging the well know backpropagation algorithm [62]
which enables a fast computation of the derivatives of F with
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respect to θ . The use of a one hidden layer perceptron model
is motivated by approximation results such as [26] and by
learnability results such as [63] (in statistical community,
learning is called estimation and learnability consistency).

2.1 Model selection issues for MLP

It is well known since the seminal paper of [31] that MLP are
an efficient solution for modeling time series whenever the
linear model proves to be inadequate. The simplest approach
consists in building a non linear auto-regressive model: given
a real valued time series (Yt)t∈N, one builds training pairs
Zt = (Ut ,Yt), where Ut is a vector in Rp defined by Ut =

(Yt−1, · · · ,Yt−p)). Then a MLP is used to learn the mapping
between the Ut (the past of the time series in a time window
of length p) and Yt (the current value of the time series), as
in any regression problem.

In order to avoid overlearning and/or large computation
time, the question of selecting the correct number of neurons
or, more generally, the question of model selection arises
immediately. Standard methods used by the neural-networks
community are based on pruning: one trains a possibly too
large MLP and then removes useless neurons and/or con-
nection weights. Heuristic solutions include Optimal Brain
Damage [32] and Optimal Brain Surgeon [24], but a statisti-
cally founded method, SSM (Statistical Stepwise Method),
was introduced by [11]. The method relies on the minimiza-
tion of the Bayesian Information Criterion (BIC). Shortly
after, [64] and [55] proved the consistency (almost surely)
of BIC in the case of MLPs with one hidden layer. These
results, established for time series, allow to generalize the
consistency results in [63] for the iid case.

The convergence properties of BIC may be generalized
even further. A first extension is given in [53]. The noise
is supposed to be Gaussian and the transfer function ψ is
supposed to be bounded and three times derivable. Then [53]
shows that under some mild hypothesis, the maximum of the
likelihood-ratio test statistic (LRTS) converges toward the
maximum of the square of a Gaussian process indexed by a
class of limit score functions. The theorem establishes the
tightness of the likelihood-ratio test statistic and, in particular,
the consistency of penalized likelihood criteria such as BIC.
Some practical applications of such methods can be found in
[38]. The hypothesis on the noise was relaxed in [54]. The
noise is no longer supposed to be Gaussian, but only to admit
exponential moments. Under this more general assumption,
BIC criterion is still consistent (in probability).

On the basis of the theoretical results above, a practical
procedure for MLP identification is proposed. For a one hid-
den layer perceptron with k hidden units, we first introduce

Tn(k) = min
θ

(En(θ)+an(k,θ)) ,

where En(θ) is the mean squared error of the MLP for pa-
rameter θ and an(k,θ) is a penalty term. Then we proceed
as follows:

1. Determination of the right number of hidden units.
(a) begin with one hidden unit, compute Tn(1),
(b) add one hidden unit if Tn(k+1)≤ Tn(k),
(c) if Tn(k+1)> Tn(k) then stop and keep k hidden units

for the model.
2. Prune the weights of the MLP using classical techniques

like SSM [11].

Note that the choice of the penalty term an(k,θ) is very
important. On simulated data, good results have been re-
ported for an(k,θ) from an(k,θ) =

En(θ) log(n)
n to an(k,θ) =

En(θ)
√

(n)
n (see [55], [52]).

Let us also mention that the tightness of the LRTS and, in
particular, the consistency of the BIC criterion were recently
established for more complex neural-networks models such
as mixtures of MLPs [41] and mixtures of experts [42].

2.2 Modeling and forecasting nonstationary time series

As mentioned in the previous section, MLP are a useful
tool for modeling time series. However, most of the results
cited above are available for iid data or for stationary time
series. In order to deal with highly nonlinear or nonstationary
time series, a hybrid model involving hidden Markov models
(HMM) and multilayer perceptrons (MLP hereafter) was
proposed in [50]. Let us consider (Xt)t∈N a homogeneous
Markov chain valued in a finite state-space E= {e1, · · · ,eN}
and (Yt)t∈N the observed time series. The hybrid HMM/MLP
model can be written as follows:

Yt+1 = FXt+1 (Yt , · · · ,Yt−p+1)+σXt+1εt+1, (2)

where FXt+1 ∈ {Fe1 , · · · ,FeN} is a regression function of order
p. In this case, Fei is the i-th MLP of the model, parameterized
by the weight vector wi. σXt+1 ∈ {σe1 , · · · ,σeN} is a strictly
positive number and (εt)t∈N is a iid sequence of standard
Gaussian variables.

The estimating procedure as well as the statistical proper-
ties of the parameter estimates were established in [51]. The
proposed model was successfully applied in modeling diffi-
cult data sets such as ozone peaks [14] or financial shocks
[37].

2.3 Functional data

The original MLP model is limited to vector data for an
obvious reason: each neuron computes its output as a non
linear transformation ψ applied to a (shifted) inner product
wT x+b (see equation (1)). However, as first pointed out in
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[56], this general formula applies to any data space on which
linear forms can be defined: give a data space X and a set of
linear functions W from X to R, one can define a general
neuron with the help of w ∈W , as calculating ψ(w(x)+b).

This generalization is particularly suitable for functional
data, that is for data in which each object is described by one
or several functions [45]. This type of data is quite common
for instance in multiple time series setting (where each object
under study evolves through time and is described by the
temporal evolutions of its characteristics) or in spectrometry.
A functional neuron [46] can then be defined as calculating
ψ (b+

∫
f wdµ), where f is the observed function and w is a

parameter function. Results in [46] show that MLP based on
this type of neurons share many of the interesting properties
of classical MLP, from the universal approximation to statis-
tical consistency (see also [47] for an alternative functional
neuron with similar properties). In addition, the parameter
functions w can be represented by standard numerical MLP,
leading to a hierarchical solution in which a top level MLP
for functional data is obtained by using a numerical MLP
in each of its functional neurons. Experimental results in
[46, 48] show the practical relevance of this technique.

3 Self-Organizing Maps

As the MLP, Kohonen’s Self-Organizing Map (SOM) is one
of the most well known artificial neural network model [29].
The SOM is a clustering and visualization model in which a
set of vector observations in Rp is mapped to set of M neu-
rons organized in a low dimensional prior structure, mainly
a two dimensional grid or a one dimensional string. Each
neuron c is associated to a codebook vector pc in Rp (pc is
also called a prototype). As in all prototype based clustering
methods, each pc represents the data points that have been
assigned to the corresponding neuron, in the sense that pc is
close to those points (according to the Euclidean distance in
Rp). The distinctive feature of the SOM is that each prototype
pc is also somewhat representative of data points assigned to
other neurons, based on the geometry of the prior structure:
if neurons c and d are neighbours in the prior structure, then
pc will be close to data points assigned to neuron d (and
vice versa). On the contrary, if c and d are far away from
each other in the prior structure, the data points assigned to
one neuron will not influence the prototype of the other neu-
ron. This has some very important consequences in terms of
visualization capabilities, as illustrated in [60] for instance.

The original SOM algorithm has been designed for vector
data, but numerous adaptations to more complex data have
been proposed. We survey here three specific extensions, re-
spectively to time series, functional data and categorical data.
Another important extension not covered here is proposed in
[22] which is built upon processing of multiple time series
with recursive versions of the SOM. The authors show that

trees and graphs can be clustered by those versions of the
SOM, using a temporal coding of the structure. Recent ad-
vances in this line of research include e.g. [19]. Other specific
adaptation include the symbol strings SOM described in [59].

3.1 Time series with metadata

While the SOM is a clustering algorithm, it has been used
frequently in supervised context as a component of a com-
plex model. We described briefly here one such model as an
example of complex time series processing with the SOM.
Let us consider a time series with two time scales, i.e., that
can be written down with two subscripts. The date is de-
noted by ( j,h) where j represents the slow time scale and
corresponds for instance to the day (or month or year) while
h = 1, . . . ,H corresponds to the observed values (e.g. the
hours or half-hours of the day, the days of the month, the
months of the year, etc.). Then the time series is denoted
(c j) j≥0 =

(
(c j,1, . . . ,c j,H)

)
j≥0. We assume in addition that

the slow time scale is associated with metadata. For instance,
if each j corresponds to a day in a year and one knows the
day of the week, the month, etc. Metadata are supposed to be
available prior a prediction.

The original time series c j,h takes value in R, but the
dual time scale leads naturally to a vector valued time series
representation, that is to the c j ∈ RH . In this point of view,
given the past of the vector valued time series, one has to
predict a future vector value, that is a complete vector of H
values. This could be seen as a long term forecasting problem
for which a usual solution would be to iterate one-step ahead
forecasts. However, this leads generally to unsatisfactory so-
lutions either because of a squashing behaviour (convergence
of the forecasting to the mean value of series) or to a chaotic
behaviour (for nonlinear methods).

An alternative solution is explored in [12]. It consists
in forecasting separately, on the one hand, the mean and
variance of the time series on next slow time scale step (that
is, on the next j), and on the other hand, the profile of the fast
time scale. The prediction of the mean and of the variance is
done by any classical technique. For the profile, a SOM is
used as follows. The vector values of the time series, i.e., the
(c j) j≥0, are centred and normalized with respect to the fast
time scale, that is are transformed into profiles defined by

q j =
1
σ j

(
(c j,1−µ j, . . . ,c j,H −µ j)

)
, (3)

where µ j =
1
H ∑

H
h=1 c j,h and σ2

j = 1
H ∑

H
h=1(c j,h − µ j)

2 are
respectively the mean and the variance of c j. The profiles are
clustered with a SOM leading to some prototype profiles pc.
Each prototype is associated to the metadata of the profiles
that has been assigned to the corresponding neuron.

Then a vector value is predicted as follows: the mean µ

and variance σ are obtained by a standard forecasting model
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for the slow time scale. Then the metadata of the vector to
predict is matched against the metadata associated to neurons:
assume for instance, that metadata are days of the week, and
the we try to predict a Sunday. Then one collects all the
neurons to which Sunday profiles have been assigned. Finally,
a weighted average of the matching prototypes is computed
and rescaled according to µ and σ . As shown in [12] this
technique enables both some stable and meaningful full day
predictions, while integrating non numerical metadata.

3.2 Functional data

The dual time scale approach described in the previous sec-
tion has become a standard way of dealing with time series
in a functional way, as shown in e.g. [4]. But as pointed out
in Section 2.3, functional data arise naturally in other con-
texts such as spectrometry. Then, the SOM has been naturally
adapted to functional data in other contexts than time series.
In those contexts, in addition to the normalization technique
described above that produces profiles, one can use func-
tional transformation such as derivative calculations in order
to drive the clustering process by the shapes of the functions
rather than mainly by their average values [49].

Another adaptation consists in integrating the SOM with
optimal segmentation techniques that represent functions or
time series with simple models, such as piecewise constant
functions for instance. The main idea it to a apply a SOM
to functional data using any functional distance (from the
L2 norm to more advanced Sobolev norms [61]) with an
additional constraint that prototypes must be simple, e.g.,
piecewise constant. This leads to interesting visualization
capabilities in which the complexity of the display is auto-
matically globally adjusted [25].

3.3 Categorical data

In surveys, it is quite standard that the collected answers are
categorical variables with a finite number of possible values.
In this case, a specific adaptation of the SOM algorithm can
be defined, in the same way that Multiple Correspondence
Analysis is related to Principal Component Analysis. More
precisely, useful encoding methods for categorical data are
the Burt Table (BT), which is the full contingency table be-
tween all pairs of categories of the variables, or the Complete
Disjunctive Table (CDT), that contains the answers of each
individual coded as 0/1 against dummy variables that corre-
spond to all the categories of all variables. Then, a Multiple
Correspondence Analysis of the BT or of the CDT is nothing
else than a Principal Component Analysis on BT or CDT,
previously transformed to take into account a specific dis-
tance between the rows and a weighting of the individuals
[33]. The SOM can be adapted to categorical data using this

approach, as described in [10] and [13]. The same transfor-
mation on BT or CDT is achieved and a SOM using the rows
of the transformed tables can thus be trained. This training
provides an organized clustering of all the possible values
of the categorical variables on a prior structure such as a
two dimensional grid. Moreover, if a simultaneous represen-
tation of the individuals and of the values is needed, two
coupled SOM can be trained and superimposed. The afore-
mentioned articles present various real-world use cases from
socio-economic field.

4 Kernel and dissimilarity SOM

The extensions of artificial neural networks model described
in the previous sections are ad hoc in the sense that they are
constructed using specific features of the data at hand. This
is a strength but also a limitation as they are not universal:
given a new data type, one has to design a new adaptation
of the general technique. In the present section, we present
more general versions of the SOM that are based on a dissim-
ilarity or a kernel on the input data. Assuming the existence
of such a measure is far weaker than assuming the data are
in a vector format. For instance, it is simple to define a dis-
similarity/similarity between the vertices of a graph, a data
structure that is very frequent in real world problems [40],
while representing directly those vertices as vectors is gener-
ally difficult.

4.1 Dissimilarity SOM

Let us assume that the data under study belong to a set X
on which a dissimilarity d is defined: d is a function from
X ×X to R+ that maps a pair of objects x and y to a non
negative real number which measures how different x and
y are. Hypothesis on d are minimal: it has to by symmetric
(d(x,y) = d(y,x)) and such that d(x,x) = 0.

As pointed out above, dissimilarities are readily avail-
able on sets of non vector data. A classical example is the
string edit distance [34] which defines a distance1 on symbol
strings. More general edit distances can be defined, such as
for instance the graph edit distance which measure distances
between graphs [8].

As the hypothesis on X are minimal, one cannot as-
sume anymore that vector calculation are possible in this set.
Then, the learning rules of the SOM do not apply as they are
based on linear combination of the prototypes with the data
points. To circumvent this difficulty, [28] suggest to chose
the values of the prototypes pc in the set of observations (Xi)i.
This leads to a batch version of the SOM which proceeds

1 A distance is a dissimilarity that satisfies in addition the strong
hypothesis of the triangle inequality: d(x,y)≤ d(x,z)+d(z,y).
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as follows. After a random initialization of the prototypes,
each observation is assigned to the neuron with the closest
propotype (according to the dissimilarity measure) and the
prototypes are then updated. For each neuron, the updated
pc is chosen among the observations as the minimizer the
following distortion

∑
i

Γ (N(Xi),c)d(Xi, p) (4)

where N(Xi) is Xi’s neuron and Γ is a decreasing function
of the distance between neurons in the prior structure. This
modification of the SOM algorithm is known as the median
SOM and is closely related to the earlier median version of
the standard k-means algorithm [27].

In the case where (Xi)i is a small sample, the constraint
to chose the prototypes in the data can be seen as too strong.
Then, [15] suggests to associate several prototypes (a given
number q) to each neuron. A neuron is represented by a
subset of size q from (Xi) and the different steps of the SOM
algorithm are modified accordingly. A fast implementation
is described in [9].

A successful application of the dissimilarity SOM on real
world data concerns school-to-work transitions. In [39], we
were interested in identifying career-path typologies, which
is a challenging topic for the economists working on the labor
market. The data was issued from the “Generation’98” survey
by the CEREQ. The data sample contained information about
16040 young people having graduated in 1998 and monitored
during 94 months after having left school. The labor-market
statuses had nine categories, from permanent contracts to un-
employed and including military service, inactivity or higher
education.

The dissimilarity matrix was computed using opti-
mal matching distances [1], which are currently the main
stream in economy and sociology. The most striking oppo-
sition appeared between the career-paths leading to stable-
employment situations and the “chaotic” ones. The stable
positions were mainly situated in the west region of the map.
However, the north and south regions were quite different: in
the north-west region, the access to a permanent contract (red)
was achieved after a fixed-term contract (orange), while the
south-west classes were only subject to transitions through
military service (purple) or education (pink). The stability of
the career paths was getting worse as we moved to the east
of the map. In the north-east region, the initial fixed-term
contract was getting longer until becoming precarious, while
the south-east region was characterized by the excluding
trajectories: unemployment (light blue) and inactivity (dark
blue).

Two other extensions of the SOM to dissimilarity data
have been proposed; they both avoid the use of constrained
prototypes. The oldest one is based on deterministic anneal-
ing [18] while a more recent one uses the so-called relational

Fig. 1 Career-path visualization with the dissimilarity SOM [39]: colors
correspond to the nine different categories

approach that relies on pseudo-Euclidean spaces [20, 23].
Both approaches lead to better results for datasets where the
ratio between the number of observations and the number of
neurons is small.

4.2 Kernel SOM

An alternative approach to dissimilarities is to rely on ker-
nels. Kernels can be seen as a generalization of the notion of
similarity. More precisely, a kernel on a set X is a symmet-
ric function K from X ×X to R that satisfies a positivity
property:

∀N ∈ N∗, ∀(xi)1≤i≤N ∈X N , ∀(αi)1≤i≤N ∈ RN ,

N

∑
i, j=1

αiα jK(xi,x j)≥ 0.

For such a kernel, there is a Hilbert space H (called the
feature space of the kernel) and a mapping φ from X , such
that the inner product in H corresponds to the kernel via the
mapping, that is [3] :

〈φ(x),φ(x′)〉H = K(x,x′). (5)

Then K can be interpreted as a similarity on X (values close
to zero correspond to unrelated objects) and defines indirectly
a distance between objects in X as follows:

dK(x,x′) = ‖φ(x)−φ(x′)‖H
=
√

K(x,x)+K(x′,x′)−2K(x,x′). (6)

As shown in e.g. [57], kernels are a very convenient way to
extend standard machine learning methods to arbitrary spaces.
Indeed, the feature space H comes with the same elementary
operations as Rp: linear combination, inner product, norm
and distance. Then, one has just to work in the feature space
as if it were the original data space. The only difficulty comes
from the fact that φ and H are not explicit in general, mainly
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because H is an infinite dimensional functional space. Then
one has to rely on equation (5) to implement a machine
learning algorithm in H completely indirectly using only K.
This is the so called Kernel trick.

In the case of the batch version of the SOM, this is quite
simple [6]. Indeed, assignments of data points to neurons
are based on the Euclidean distance in the classical numeri-
cal case: this translates directly into the distance in the fea-
ture space, which is calculated solely using the kernel (see
equation (6)). Prototypes update is performed as weighted
averages of all data points: weights are computed with the
Γ function introduced in equation (4) as a proxy for the
prior structure. It can be shown that those weights, which
are computed using the assignments only, are sufficient to
define the prototypes and that they can be plugged into the
distance calculation, without needing an explicit calculation
of φ . Variants of this scheme, especially stochastic ones, have
been studied in [2, 36]. It should also be noted that the rela-
tional approach mentioned in the previous section [20, 23]
can be seen a relaxed kernel SOM, that is an application of
a similar algorithm in situations where the function K is not
positive.

While kernels are very convenient, the positivity con-
ditions might seem very strong at first. It is indeed much
stronger than the conditions imposed to a dissimilarity, for
instance. Nevertheless, numerous kernels have been defined
on complex data [16], ranging from kernels on strings based
on substrings [35] to kernel between the vertices of a graph
such as the heat kernel [30, 58] (see [6] for a SOM based
application of this kernel to a medieval data set of notarial
acts). Two graphs can also be compared via a kernel based
on random walks [17] or on subtrees comparisons [44].

5 Conclusion

Present days data are becoming more and more complex,
according to several criteria: structure (from simple vector
data to relational data mixing a network structure with cate-
gorical and numerical descriptions), time evolution (from a
fixed snapshot of the data to ever changing dynamical data)
and volume (from small datasets with a handful of variables
and one thousand of objects to terabytes and more datasets).
Adapting artificial neural networks to those new data is a
continuous challenge which can be solved only by mixing
different strategies as outlined in this paper: adding complex-
ity to the models enable to tackle non standard behavior (such
as non-stationarity), theoretical guarantees limit the risk of
overfitting, new models can be tailor made for some specific
data structures such as graph or functions, while generic ker-
nel/dissimilarity models can handle almost any type of data.
The ability to combine all those strategies demonstrates once
again the flexibility of the artificial neural network paradigm.
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