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1  Introduction

Eye–hand coordination plays an important role in many 
human–machine interactions with tangible products, e.g. 
using a coffee machine. In such real-world scenarios there 
is a striking and intimate link between eye movements and 
behavioural goals [11, 20].

Behavioural goals can be broken down into a series of 
actions directed towards various target objects [1], whereby 
the actions typically have durations of around 3 s [10]. Land 
and Tatler emphasised that “attention is intricately enmeshed 
in the task structure and actions that we engage in” [21]. 
Koenig et al. added that the eye movements “provide a win-
dow to the pacing [of actions] and the relevant variables of 
multistep behaviour ...” [9].

The eyes can be described as the slave to the motor sys-
tem, as their function is to seek the information necessary to 
steer the actions [3]. Thus, decisions on the gaze location are 
linked to the needs of the current action. Hereby, the visual 
system acquires relevant information for fulfilling the sub-
goal just in time, instead of collecting those data beforehand 
[22]. Hence, analysing the eye–hand coordination can be 
directly assigned to the current behavioural sub-goal.

When analysing the dynamics of a sub-goal, the eyes and 
the motor system can be in one of two states: either both 
are focussed on the same target, i.e. the eyes are aiding the 
hands to perform the action, or the eyes move to other tar-
gets during the action, i.e. the motor system has sufficient 
information to operate without guidance.

At the start of a sub-goal, the gaze usually arrives at the 
corresponding target before the motor system starts to act, 
as it collects the relevant information to plan the motor 
system’s movements [11]. Similarly, when the outcome 
of the current action can be predicted with confidence the 
gaze could already move to the target of the next phase [1]. 
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This phenomenon is known as look-ahead fixation [6] and 
there is evidence that such fixations acquire information 
that is useful for the subsequent action [13]. As Tatler and 
Land stated,

“At times when actions do not require strict monitor-
ing, the attentional system can take advantage of these 
opportunities to look ahead and acquire information 
useful to the next part of the ongoing behaviour.” [21]

Hence, depending on the demands of the current action, the 
gaze stays or already shifts to the next target [1]. Thus, only 
during focussed interaction phases the gaze and the hand 
both are rigidly directed to the target of the current action.

Mobile eye tracking (MET) describes wearable systems 
tracking the user’s gaze [4]. Recent advancements in this 
technology make it possible to record human behaviour in 
almost any real-world settings in a non-invasive and unob-
trusive manner [7, 21]. The scene camera of the eye tracker, 
which records the user’s field of vision in the first-person 
perspective, also captures the user’s actions performed with 
the hands, if the head is directed to that action. According 
to the eye-mind hypothesis, the location gazed upon is con-
nected to what is simultaneously processed in the mind [8]. 
The gaze does not directly allow cognition to be measured, 
but can act as a window to cognitive processes [9].

Being able to measure the visual attention allows for new 
insights at the intersection of human behaviour and artificial 
intelligence, e.g. in a semantic interpretation of dynamic 
visuo-spatial imagery [19] or in the analysis of cognitive 
workload induced by artificial intelligence systems [2]. The 
work of [19] deals with spacio-temporal relations of objects 
detected in videos, which is relevant in the analysis of eye-
hand coordination as well.

MET is a suitable tool to analyse the usability of tangi-
ble products [15], which are understood as physical objects 
operated with the hands. However, the analysis of MET 
videos is time-consuming and subjective because it is per-
formed exclusively manually, which is a key obstacle to 
make this process efficient [5].

2 � Research goal

The goal of this investigation is to automatically detect cog-
nitive demanding handling interactions in long MET videos, 
with durations of 5–19 min per participant. Therefore we 
distinguish between two states: cognitive demanding and 
fluent. An interaction is seen as cognitive demanding if a 
user does not know how to approach a task or if the handling 
itself is difficult. To isolate demanding interactions, two 
behavioural aspects are combined in a multi-modal feature 
level fusion and their spacio-temporal relation is analysed.

–	 The focus of the perception is considered by the location 
of the gaze, taken from the MET raw data.

–	 The focus of the action is considered by the position of 
the hand, extracted from the MET scene video.

We hypothesise that cognitive demanding handling inter-
actions are represented by long periods of constant hand-
gaze distance, as in these phases the hand and the gaze are 
involved in the same action.

3 � Approach

This section describes how demanding human–machine 
interactions are isolated from MET data1 in three parts: the 
detection of the hands, the identification of focussed interac-
tions and the deduction of usability problems.

Detection of the hands To locate the position of the hand 
in the ego-centric scene video a pixel-wise classification 
through colour detection is applied [12]. Two colour spaces 
(HSV and RGB) are combined with a simple hue segmen-
tation, as described by Song et al. [18]. Aiming to detect 
closed areas which most accurately represent the hands, 
two post-processing steps are performed. An erosion-and-
dilation step eliminates most of the noise. Only areas larger 
than 15,000 px then are selected as hands. An example is 
presented in Fig. 1.

Identification of focussed interactions The hand-gaze 
distance (HGD) is acquired by measuring the minimum 
distance between the detected hand area and the gaze loca-
tion (Fig. 1, yellow arrow). To isolate the focussed interac-
tions on the basis of the HGD, four processing steps are 
performed (cf. Fig. 2).

In Step 1, the raw HGD signal is smoothed with a roll-
ing median filter (window size 10). Since the focussed 

Fig. 1   Left Original frame from the scene video; right applied colour 
segmentation. The red circle shows the gaze location and the yellow 
arrow represents the hand-gaze distance. (Color figure online)

1  The investigation is based on the SMI Eye Tracking Glasses 2w, 
providing a scene camera resolution of 960 by 720 px (60°  horizon-
tal, 46°  vertical) at 30 Hz. This refresh rate is interpolated to match 
the 60  Hz of the eye movement signal, which has a precision of 
0.5°  over all distances.
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interactions are expected to have a certain minimum dura-
tion, in Step 2 only those sections are kept, in which the 
hand and gaze were consistently in the image for at least 
2 s. In Step 3, the standard deviation is calculated within 
a rolling window of 2 s. This aims to capture also phases 
in which the HGD is increased due to the usage of a tool. 
For instance, people using a screwdriver hold it at the 
handle, but gaze at its tip. The standard deviation con-
siders the constancy of the HGD and thus measures the 
rigidity of the scene—with and without tool. In Step 4, 
the most rigid interactions are kept by accepting only data 
below a threshold of 3.5° (60 px). In summary, these four 
steps isolate periods of long and constant HGD, which are 
marked as focussed interactions.

Deduction of usability problems Video snippets are 
created automatically for the focussed interactions. They 
show phases in which the user has a high attentional focus 
on a performed action. To assess their usability, the snip-
pets are analysed manually and are categorized in prob-
lem clusters.

4 � Evaluation

The HGD approach was tested on a study of a 3D printer 
with 40 participants. The participants, all novices on the 
device, were asked to print a 3D object, to remove the 
printed object, and to change the filament. The interactions 
analysed have an average duration of 7.9 min (SD 3.2 min). 
To exemplify how the algorithm works, two interaction 
sequences are presented first (Sect. 4.1). Subsequently, the 
HGD approach is applied to the entire sample. The detec-
tion of the hand (Sect. 4.2), the accuracy of the usability 
problems derived from the focussed interactions (Sect. 4.3) 
and the manual effort (Sect. 4.4), are evaluated.

4.1 � Exemplary sequences

The left and the right column of Fig. 3 show two sequences 
with similar durations of 10–15 s. The first sequence shows 
three different actions, namely grasping the scissors (a), 
cutting the filament (b) and opening the side door (c). All 

Fig. 2   An excerpt of a partici-
pant’s data is presented. It takes 
four steps to isolate the focussed 
interaction phases from the raw 
hand-gaze distance. The time 
stamps a–f are linked to the 
images in Fig. 3, showing the 
corresponding interactions of 
the same participant
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actions are fluid and unproblematic for the user. As visible 
in Fig. 2, a is registered as an action, but is filtered out for 
not being long enough. The actions b and c are registered as 
long actions, but they are filtered out for not being constant 
enough. Their standard deviations are above the threshold 
of 60 px.

In the second sequence, all images d, e, f show the same 
action. The participant encountered difficulties inserting 
the material into the printing head. This problem, which is 
also marked in Fig. 4, occurs frequently among the partici-
pants. The hands hold the filament while the gaze is rigidly 
directed to the filament’s end for several seconds, which 
results in a constant HGD, leading to the classification as a 
focussed interaction.

4.2 � Detection of the hands

Method In order to assess the hand detection applied, a 
manual evaluation has been performed for 35% of randomly 
selected participants. The phases of the video depicting at 
least one hand were noted to the tenth of a second. Subse-
quently, this manual detection was compared to the auto-
matic detection for each frame.

Results The data of 14 participants with a total video 
duration of 157 min (564 858 frames) were analysed man-
ually. As shown in Table 1, the colour detection applied 

identified 77.4% of the frames correctly (c), combining 
50.1 and 27.3%. The falsely detected frames consist of 
15.6% false positives fp) and 7.0% false negatives (fn).

Discussion The frames recorded falsely positive are less 
problematic for finding usability problems, as they can be 
eliminated in the subsequent manual analysis. In contrast, 
falsely negative detected frames are more critical, as they 
imply a loss of information. In the evaluation presented 
7.0% of the frames are false negatives. On the basis of a 
sample size of 40 participants, it is estimated that this low 
number has only a weak influence on the evaluation of the 
HGD approach. In combination with the 77.4% correctly 
detected frames, the performance of the hand detection is 
acceptable.

Fig. 3   Two sequences of actions are shown, both in a similar time 
frame of 10–15 s. The images are linked to the time stamps shown in 
Fig. 2. Seq. 1 (a, b, c) shows three different actions which are easy to 
handle, while Seq. 2 (d, e, f) shows one long action that is demanding 
for the participant

Table 1   The hand detection is evaluated per frame on the basis of 14 
participants, and the ratios of correct (c), false positive (fp) and false 
negative (fn) frames are reported

Autom. detection

Hand No hand

Manual detection
 Hand 50.1%c 7.0%fn

 No hand 15.6%fp 27.3%c

Fig. 4   Each dot represents a usability problem. The 17 problems 
marked with blue dots were found with both methods, the green dots 
are problems only found with the manual analysis, while the orange 
dots are problems only detected with the HGD approach. The HGD 
approach and the manual analysis correlate significantly relating 
to the fraction of participants experiencing the problems (r = .58, p 
(two-tailed) <.01.). (Color figure online)
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4.3 � Identification of usability problems

Method The focussed interactions of all 40 participants were 
analysed to find out whether they depict a usability problem 
and if so, they were assigned to problem clusters. Those 
clusters were then compared to problem clusters derived 
from a separate manual analysis of the MET videos, per-
formed according to the Target-Based Analysis [14].

Results The HGD algorithm identified 1589 video snip-
pets as focussed interactions across all 40 participants. Of 
these, 231 (14.2%) were removed since they did not contain 
a hand.2 Of the remaining 1358 snippets, 928 (68.3%) show 
a demanding interaction.

The comparison of the problem clusters with the sepa-
rate manual analysis showed that each method was able 
to uncover 19 problems, of which 17 were identical in the 
two methods. For both methods, the fraction of participants 
experiencing a certain problem is presented in Fig. 4. Rarely 
occurring problems are displayed on the bottom left, while 
frequent problems are shown in the top right position of the 
diagram. There is a significant positive relationship between 
the usability problems found with the HGD approach and 
those detected by a manual analysis, r = .58, p (two-tailed) 
<.01. For the 17 overlapping problems (blue dots) the HGD 
algorithm on average detects 11% more participants experi-
encing a problem than the manual analysis.

In addition to the 17 overlapping problems, the manual 
analysis uncovered two rarely occurring problems (green 
dots; 3 and 7% of the participants). These show participants 
hesitating to start an action. Two problems were exclusively 
found by the HGD approach (orange dots). Both show 
users having difficulties with the handling of the filament 
cartridge.

Discussion The high amount of usability problems in the 
focussed interactions is a promising result: A total of 68.3% 
of the focussed interactions with correct hand detection 
show usability problems. In addition, the approach presented 
and the manual analysis correlate significantly relating to the 
fraction of participants experiencing a problem. This result 
was higher than expected.

Instead of only detecting problems in which the manual 
interaction is demanding, the HGD approach also found 
high-level problems of comprehension and confusion. 
Users who could not find the correct target often resorted 
to trial and error which again led to demanding interac-
tions, detectable by the HGD algorithm. The example of 
opening the side door of the 3D printer can illustrate this 
effect. 45% of the users did not directly realize that the 

3D printer has a side door. After a few seconds of hesitat-
ing, they tried to remove the filament without opening the 
side door from inside the printer. As this is not possible, 
they experienced problems, which resulted in focussed 
interactions.

However, problems in which the hand is not involved, 
such as hesitating, cannot be detected with the HGD 
algorithm. Even though in this study only two prob-
lems occurred rarely (3 and 7%), it is a limitation of the 
approach. The two problems exclusively found with the 
HGD approach are clearly to be judged as usability prob-
lems, but were missed in the manual analysis. They were 
considered as preparatory steps rather than as part of the 
actual task. As missed problems due to such subjective 
restrictions are critical for usability tests, the more objec-
tive detection of the algorithm is advantageous in this 
aspect.

The HGD approach identified usability problems more 
often than the thorough manual coding, which indicates a 
conservative setting of the algorithm. To save time in the 
later stages of the approach, a more aggressive trimming 
of the parameters should be tested.

4.4 � Analysis of video snippets

Method The amount of work required to analyse the video 
snippets of the focussed interactions is evaluated by com-
paring the accumulated duration of all the snippets to the 
total duration of the entire recordings.

Results The total duration of videos to be assessed man-
ually was reduced from 321 min for the entire recordings 
to 118 min for only the snippets. The snippets have an 
average duration of 4.4 s (SD 3.7 s).

Discussion The application of the HGD approach 
reduced the duration of video material to be analysed 
manually by 63%. As all participants were novices, usu-
ally having more difficulties than experienced users, it can 
be expected that the ratio of focussed interactions is even 
lower with experienced users.

Watching only the short video snippets with a high 
probability of containing a usability problem led to a 
higher sustained concentration of the analyst compared 
to manual analysis of the entire recording. By presenting 
only the focussed interactions to the analyst, the subjec-
tive nature of deciding on usability problems is reduced. 
However, it also reduces the understanding of the context. 
This has been partly compensated by expanding the video 
snippets for half a second at the beginning and at the end. 
Furthermore, analysts are advised to watch about three 
entire recordings before starting to evaluate the snippets in 
order to gain a high-level understanding of the interaction.2  The difference to the ratio of false positives reported in Subsect. 4.2 

is due to the filtering described in Sect. 3.
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5 � Discussion and conclusion

To assess whether cognitive demanding interactions could 
be automatically detected on the basis of MET videos, a 
multi-modal feature level fusion considering both the per-
ception (gaze) and the actions (hand) has been performed. 
The paper presents a first evaluation processing the HGD 
extracted from MET videos. Long phases of constant 
HGD are marked as focussed interactions, representing 
sequences of high attentional focus towards the current 
action.

To assess the viability of the approach, it was applied 
to a usability study of a 3D printer with 40 participants. 
The HGD approach showed similar results and was sig-
nificantly faster than a manual video analysis. The appli-
cation of one hand-crafted feature—the HGD—showed 
acceptable accuracy, within the case at hand, to which the 
evaluation is limited. However, to broaden and improve the 
HGD approach we see great potential through the field of 
AI, in the following three aspects:

1.	 The colour-based hand detection could be replaced by 
an object detection algorithm. Considering the vary-
ing number of objects (no hand, one hand, two hands) 
region proposal CNNs could be applied, which would 
also set the basis for real-time detection [16].

2.	 Object detection and localization of the product parts, as 
described by [17], would increase the automation of the 
HGD approach. Being able to assign the gazes during 
focussed interactions to parts of the product would allow 
critical parts to be reported automatically and thus could 
replace the manual video analysis.

3.	 Besides the HGD, other features such as pupil size and 
other patterns such as specific gaze motions might play 
an important role in detecting demanding interactions. 
A fully automated end-to-end deep learning approach 
using CNNs with a multi-modal classifier (video, gaze, 
pupil size) could be applied. However, learning a global 
description of the video’s temporal evolution, especially 
for long videos, is considered to be a challenging task 
[23].

Overall, this investigation shows that studying the inter-
play between gaze and hand is vital to understand human 
behaviour. A fluent interaction sequence can be distin-
guished from demanding handling interactions requiring 
a high focus of attention. This could be valuable in any 
scenario where first-person video footage, eye tracking 
data and handling interactions are available. The automatic 
identification of demanding sequences is seen as the first 
step to a real-time event-interpretation of human behaviour 
on the basis of MET data.
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