
The DLVHEX System

Thomas Eiter · Stefano Germano · Giovambattista Ianni · Tobias

Kaminski · Christoph Redl · Peter Schüller · Antonius Weinzierl

Abstract HEX programs extend ASP with external

atoms implemented in C++ or Python. DLVHEX is a

solver for HEX that permits cyclic reasoning over exter-

nal atoms and external value invention.

Keywords Answer set programming · External source

access · Nonmonotonic reasoning

1 Motivation

Answer Set Programming (ASP) [1] is a logic program-

ming formalism for knowledge representation and rea-

soning. However, in many applications, rules are insuf-

ficient for representing all reasoning about the domain

of interest. Instead, accessing information or computa-

tions from the world outside the program is needed.

HEX programs [5] extend ASP with special external
atoms in rule bodies, whose truth value is determined

by an external source using, e.g., imperative code.

Consider the following simple example:

critical(R)← robot(R),&battery[R](Lvl),Lvl < 25 .

where the status of some robots is determined by read-

ing and interpreting their battery level. External oracles

can perform arbitrary computations to determine their

truth value. Two distinguishing features of HEX are:

T. Eiter · T. Kaminski · C. Redl · P. Schüller · A. Weinzierl
Institut für Logic and Computation, TU Wien
Favoritenstraße 9-11, A-1040 Vienna, Austria
E-mail: {eiter,kaminski,redl,ps,aweinz}@kr.tuwien.ac.at

S. Germano · G. Ianni
Department of Mathematics and Computer Science, Univer-
sity of Calabria (UNICAL)
Via Bucci, Cubo 30B - I-87036 Rende (CS), Italy
E-mail: {germano,ianni}@mat.unical.it

This research has been supported by the Austrian Science Fund
(FWF) projects P27730 and W1255-N23. This is a pre-print of an
article published in KI - Künstliche Intelligenz. The final authenti-
cated version is available online at: https://doi.org/10.1007/s13218-
018-0535-y.

– external computations can produce new constants,

– external computations may depend (possibly cycli-

cally) on the true extension of predicates in a re-

spective answer set.

These two features make HEX a widely applicable and

also very expressive formalism.

2 HEX Formalism

hex programs [5] extend ASP by allowing the use of

external atoms of the form &g[p1, . . . , pk](c1, . . . , cl) in

rule bodies, where &g is an external predicate, p1, . . . , pk
are input predicate names or constants, and c1, . . . , cl
are output terms. Intuitively, the semantics of an ex-

ternal predicate &g defines for a given assignment and

input list p1, . . . , pk for which lists of output constants

c1, . . . , cl the external atom should be true. The notions
of rule and program satisfaction and of answer sets are

then extended from ASP to HEX in the obvious way.

Importantly, external oracles can be true for out-

put constants that do not occur in the input program

to extend the domain of the original program (called

value invention) [6]. This permits HEX programs to im-

port knowledge from external sources, e.g., the Internet,

as well as to reason with that knowledge. hex is ΣP
2 -

complete for ground programs if all external sources are

polynomial and up to Turing-complete in general.

3 DLVHEX Solver

The DLVHEX solver1 implements HEX programs based

on Gringo and Clasp as backends and supports exter-

nal atoms to be implemented in C++ and Python us-

ing an API provided by the reasoner. While grounding

1 www.kr.tuwien.ac.at/research/systems/dlvhex/

www.kr.tuwien.ac.at/research/systems/dlvhex/


2 Thomas Eiter et al.

and ground program solving are often separated in two

phases in ASP, in HEX the potential value invention in

external sources requires them to be interleaved.

The basic approach [5] for evaluating ground HEX

programs is based on a guess and check rewriting of

the HEX program to normal ASP, where the checking

part requires verification calls to the external sources.

However, for scalability reasons, this approach has been

extended by advanced evaluation techniques.

Related to DLVHEX are WASP’s extension with ex-

ternal Python propagators [4], and Clingo 5 [9], which

provides generic interfaces for ASP modulo theory solv-

ing. While DLVHEX aims at user-friendly integration of

heterogeneous sources, Clingo 5 is geared to techni-

cally integrate specific theories, with limited value in-

vention and possibly unfounded external recursion.

For getting started with HEX and the DLVHEX sol-

ver, a manual2 and a step-by-step walkthrough for buil-

ding an application based on HEX [7] are provided.

4 Applications

Angry-HEX. This AI agent plays the popular physics-

based game Angry Birds3 autonomously [2]. The aim

of the game is to use a slingshot to shoot birds of dif-

ferent types at pigs placed on a scene in order to de-

stroy them. Pigs are usually protected by obstacles of

different types. The game uses a realistic physics simu-

lation, including gravity and statics. The agent is pub-

licly available as open-source software4. For a detailed

explanation we refer to [2].

The reasoning part of the agent is implemented us-

ing logic programming. Plain ASP is insufficient as the

computation involves physics simulation and floating

point numbers to realize geometrical reasoning about

properties, positions and relationships of the objects in

the game. We used HEX programs, which allow for han-

dling such computations by external atoms while the

actual planning can be conveniently done by rules. For

instance, the external atom &canpush[ao](A,B) finds

all the pairs 〈A,B〉 of objects such that A can hori-

zontally push B if it is hit by a bird or by another

object. This computation requires geometric consider-

ations about location and orientation of the objects.

The reasoning involves also the evaluation of the tra-

jectory of the shot that will inflict the most useful direct

and indirect damage to the target objects of the scene,

which has been realized by using weak constraints.

2 www.kr.tuwien.ac.at/research/systems/dlvhex/docs/

userguide.pdf
3 https://www.angrybirds.com/games/angry-birds
4 https://github.com/DeMaCS-UNICAL/Angry-HEX

Due to the generality of the approach, HEX has been

successfully utilized in many further applications. At

this, HEX is suited for importing information from ex-

ternal sources as well as outsourcing computations.

Besides simple plugins for querying RDF data sour-

ces or performing string operations (see the system web-

site), one of the first elaborated use cases for HEX was

an interface to a Description Logics (DL) reasoner, such

that a DL ontology can be queried as well as manipu-

lated from within a HEX program. Due to its modular

architecture, HEX also makes it easy to plug in other

external reasoners, e.g. a constraint solver, which has

been exploited in an application that externally checks

the satisfiability of arithmetic constraints used in a HEX

program. Moreover, it is possible to leverage different

types of external sources in the same HEX program.

The HEX formalism has also been deployed for solv-

ing more involved real-world problems, e.g. for planning

in the area of robotics [8], for integration of biomedical

databases [8], or for accessing data streams and classi-

fying events with an DL ontology [3].

The mentioned applications, while cumbersome to

formalize in many other formalisms, can be implemen-

ted in a natural way using HEX, which allows to com-

bine very diverse modes of reasoning. Consequently, the

continuous efforts directed towards making the HEX al-

gorithm more efficient in general, as well as for particu-

lar classes of programs, pays off in terms of its increas-

ing usefulness for solving practical problems.

A broader overview of HEX applications, discussion

of problem solving and further references can be found

in [7].

References

1. T Schaub, S Woltran. Answer set programming un-
leashed!. KI (forthcoming), 2018.

2. F Calimeri, M Fink, S Germano, A Humenberger,
G Ianni, C Redl, D Stepanova, A Tucci, and A Wimmer.
Angry-HEX: an artificial player for angry birds based on
declarative knowledge bases. IEEE Trans Comput Intell
AI Games, 8(2):128–139, 2016.

3. T M Do, S W Loke, and F Liu. Answer set programming
for stream reasoning. In Proc. Canadian Conference on
Artificial Intelligence, 104–109, 2011.

4. B Cuteri, C Dodaro, F Ricca, and P Schüller. Con-
straints, lazy constraints, or propagators in ASP solving:
an empirical analysis. Theory and Practice of Logic Pro-
gramming, 17(5-6):780–799, 2017.

5. T Eiter, M Fink, G Ianni, T Krennwallner, C Redl, and
P Schüller. A model building framework for answer set
programming with external computations. Theory and
Practice of Logic Programming, 16(04):418–464, 2016.

6. T Eiter, M Fink, T Krennwallner, and C Redl. Domain
expansion for ASP-programs with external sources. Ar-
tificial Intelligence, 233:84–121, 2016.

www.kr.tuwien.ac.at/research/systems/dlvhex/docs/userguide.pdf
www.kr.tuwien.ac.at/research/systems/dlvhex/docs/userguide.pdf
https://www.angrybirds.com/games/angry-birds
https://github.com/DeMaCS-UNICAL/Angry-HEX


The DLVHEX System 3

7. T Eiter, T Kaminski, C Redl, P Schüller, and A Wein-
zierl. Answer set programming with external source ac-
cess. In Reasoning Web, LNCS 10370, 204–275, 2017.

8. E Erdem, M Gelfond, and N Leone. Applications of an-
swer set programming. AI Magazine, 37(3):53–68, 2016.

9. M Gebser, R Kaminski, B Kaufmann, M Ostrowski,
T Schaub, and P Wanko. Theory solving made easy with
clingo 5. In ICLP (Tech. Comm.), OASIcs, vol 52, pp
2:12:15, 2016.


	Motivation
	HEX Formalism
	DLVHEX Solver
	Applications

