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Abstract We propose an interactive machine learning frame-
work where the machine questions the user feedback when
it realizes it is inconsistent with the knowledge previously
accumulated. The key idea is that the machine uses its avail-
able knowledge to check the correctness of its own and the
user labeling. The proposed architecture and algorithms run
through a series of modes with progressively higher con-
fidence and features a conflict resolution component. The
proposed solution is tested in a project on university student
life where the goal is to recognize tasks like user location
and transportation mode from sensor data. The results high-
light the unexpected extreme pervasiveness of annotation
mistakes and the advantages provided by skeptical learning.

Keywords Interactive learning · Knowledge and learning ·
Managing annotator mistakes

1 Introduction

The performance of supervised learning algorithms crucially
depends on the quality of the labeling of the data they are
trained on. A perfectly labeled training set is a condition
rarely met in real-world scenarios. Most modern supervised
learning approaches can tolerate a small fraction of misla-
belled training instances. The implicit assumption made in
(even recent) mainstream machine learning and also in [7]
is that annotators are experts. However, with the use of ma-
chine learning becoming viral, more and more applications
are being developed where the tagging is provided by non-
expert users. The research in social sciences provides evi-
dence of the unreliability of people in providing correct an-
swers when asked [18,17]. The main motivations for this
phenomenon relate to the users’ response biases, e.g., con-
ditioning, memory bias, and sometimes also unwillingness
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to report. The work in [9] provides evidence of the fact that
these phenomena also apply when users are asked to tag sen-
sor values in a pervasive system scenario. This work relates
the response quality to cognitive bias, e.g., the inadequate
recall of respondents when annotating and to carelessness,
namely not putting enough attention to providing the an-
swer, e.g., because of hurriedness.

Our work presented in this paper is part of a long-term
series of experiments aimed at studying the University stu-
dent life. As detailed in the evaluation section, since the be-
ginning, it was clear that an unexpectedly high percentage of
the labels provided by students was unreliable. The goal of
the research described here is to minimize the effects of this
overwhelming amount of mislabeling. The key idea is to de-
sign a model that allows machines to interact with user and
use all its available knowledge to check the correctness of
its own prediction and of the label provided by the user. By
keeping track of the sequence of wrong and right answers,
the machine builds a measure of confidence towards itself
and the user, which is then used, in the case of a contra-
diction, to decide what is actually the case. In this context,
by available knowledge we mean both the knowledge in-
ductively built out of the previous learning activity and the
knowledge which may come from third parties or may be
built-in as a priori knowledge.

2 Related Work

While traditional approaches to concept learning assume per-
fectly labeled training sets, most recent supervised learn-
ing techniques can tolerate a small fraction of mislabelled
training instances (see for instance [7]). A common solution
consists in designing learning models which are robust to
(some) label noise [6]. In particular, by averaging predic-
tions of multiple learners, ensemble methods usually per-
form well in terms of noise robustness [3,12]. In this line
of thought, the robustness of random forests, the ensemble
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method used in this paper, has recently been shown both
theoretically and empirically [8]. Nonetheless, label noise
badly affects the performance of learning algorithms [11].
Our approach diverges from existing solutions since it in-
volves an interactive error correction phase. This process al-
lows tolerating a much larger amount of noise, achieving
substantial improvements over the previous work.

The field of statistical relational learning [2] deals with
the integration of symbolic and sub-symbolic approaches to
learning. Frameworks like Markov Logics [14], Semantic-
Based Regularization [4] or Learning Modulo Theories [16]
combine logical rules or other types of constraints with learn-
able weights to encourage predictions consistent with the
available knowledge. Our main difference is that we use
knowledge in an interactive way to identify potential errors
in user feeback, and activate a conflict resolution phase to
solve such controversies.

While many machine learning approaches assume an ex-
pert user, it is not the case in other areas of research, e.g.,
mobile crowdsensing [10], where users collect and share
sensed data and their annotations via their smartphones. A
relevant issue here is assessing the quality of users’ annota-
tions (see [13] for a comprehensive review). However, the
focus in these works is on gathering reliable information
about locations or events of common interest among a set
of users. The key difference from this work is that we focus
on personal data, e.g., personal context and activities, to be
used by the user herself. Thus, the quality of a user’s anno-
tation cannot be evaluated by comparing it with other an-
notations from the crowd (which would be very hard if not
impossible, since we deal with personal data) but, rather, by
comparing it with the machine’s knowledge.

3 The SKEL Main Algorithm

We propose Skeptical Learning (SKEL) and implement it as
a multi-layer architecture [20]. The key intuition is that the
human annotator(s) and the machine learning algorithm(s)
are considered as interpretation channels that provide their
own fallible perspective on what the case is in the real world.

In this section, without loss of generality, we assume that
there is a single property of interest P , e.g., the location of
the user at a certain time. We represent by Y the set of pos-
sible values for this property.

We model SKEL as an algorithm which takes input a
continuous stream of sensor data as they are stored in Stream
Data Storage. The pseudocode of SKEL is reported in Al-
gorithm 1. The algorithm can be in one of three modalities
which, for simplicity, we assume are activated sequentially,
namely: Train mode performed in usual supervised learn-
ing, Refine mode where it checks the quality of the user
answers and, under certain conditions, it challenges them,
and the Regime mode where it starts being autonomous and
only queries the user for particularly ambiguous instances.
The algorithm takes as input a confidence threshold of θ. It

Algorithm 1 Skeptical Learning (SKEL)
1: procedure SKEL(θ)
2: init cu = 1, cp = 0
3: while TRAINMODE(cp, cu, θ) do
4: xt = SENSORREADING()
5: yt = ASKUSER()
6: ŷt = PRED(xt)
7: TRAIN(xt, yt)
8: UPDATE(cp, ŷt, yt)

9: while REFINEMODE(cp, cu, θ) do
10: xt = SENSORREADING()
11: yt = ASKUSER()
12: ŷt = PRED(xt)
13: SOLVECONFLICT(cp, cu,xt, ŷt, yt)

14: while True do
15: xt = SENSORREADING()
16: ŷt = PRED(xt)
17: if min

ŷ′
t
∈SMERS(ŷt)

CONF(xt, ŷ
′
t, c

p
ŷ′

t
) ≤ θ then

18: yt = ASKUSER()
19: SOLVECONFLICT(cp, cu,xt, ŷt, yt)

Fig. 1: Ontology of the labels used in the experiment. Bold
contours correspond to classifiers in the PRED procedure.

starts by initializing the user confidence to one and the pre-
dictor confidence to zero for all classes (|cu| = |cp| = |Y|).
Then the training phase begins. The algorithms collect sen-
sor readings (xt) to be used as input for the predictor.

The prediction procedure PRED is implemented as a hi-
erarchy of classifiers matching the schematic knowledge (SK)
ontology, which contains general knowledge about the world.
There is one multiclass classifier for each internal node in
the ontology (bold contour nodes in Figure 1), discriminat-
ing between its children. Prediction starts from the root clas-
sifier and progresses down in the hierarchy following the
highest scoring class at each node, until a leaf node is reached
which is the class eventually predicted.

The system then asks the user for a label (yt) to be used
as ground truth. The input-output pair trains the predictor by
following the TRAIN procedure. Note that thanks to the SK,
the system can infer all the labels implied by that provided
by the user, i.e., all those from the root to the user label. Each
classifier in the path is thus retrained with the addition of its
corresponding input-output pair during a TRAIN procedure.

After training, the confidence of the predictor is updated
using the UPDATE procedure, receiving as input the ground
truth label and the predicted one before the training step.
The UPDATE procedure takes as input a confidence vector, a
tentative label (ŷt) and a ground truth label (yt), and updates
the confidence vector according to the relationship between
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the two labels. The new confidence vector is as a label-wise
running average accuracy over the current and past predic-
tions, for a certain window size d. Confidence updates are
applied to all implied label pairs according to the SK, i.e.,
those from the root to the predicted (respectively) ground
truth label.

The confidence in a prediction y for an input x is the
product of the score of the prediction times the confidence
cp
y the predictor has in predicting that label:

CONF(x, y, cp
y) := cp

y · fPARENT(y)(x, y) (1)

When a predicted label is compared with a user provided
label, care must be taken in making a sensible comparison.
The system recovers all the labels in the hierarchy up to
the first common root, i.e., the least common subsumer [1]
and compares them instead of the original ones. Thus, for
instance, in the previous example, Train implies In vehicle
which is then compared to On foot as they are both children
of On the move.

The system remains in training mode as long as the ex-
pected probability of contradicting the user does not exceed
the threshold:

TRAINMODE(cp, cu, θ) :=

E[1(CONF(x, ŷ, cp
ŷ) > cu

y · θ)] ≤ θ
(2)

where 1(ϕ) evaluates to one if ϕ is true and zero other-
wise, and the expectation is taken over all inputs seen so
far. The labels to be compared are obtained as (ŷ, y) =
LCS CHILDREN(PRED(x), yu), where PRED(x), the pre-
dicted label for input x, yu is the label provided by the user
for that input, and the LCS CHILDREN procedure outputs a
pair of implied predicted/user labels which are children of
the least common subsumer. The user is contradicted when
the confidence in the predicted label exceeds a factor θ of
the confidence of the user in her own label.

When the system enters the refine mode, it keeps asking
the user for labels, but it starts to compare them with its own
predictions. The SOLVECONFLICT procedure deals with this
comparison, and will be described in detail later. The refine-
ment stage stops when the predictor is confident enough to
stop asking for user feedback on every input, but selectively
query the user on “difficult” cases. In general, it should be
the user who decides when to switch modes, thus trading
off system maturity and cognitive load. A simple fully au-
tomated option, similar to the one used for the train mode
consists in staying in refine mode as long as the expected
probability of querying the user exceeding the threshold:

REFINEMODE(cp, cu, θ) :=

E[1(CONF(x, ŷ, cp
ŷ) ≤ θ)] ≥ θ

(3)

again with expectation taken over all inputs are seen so far.
Note that given that the system has no access to the user
label here, it takes a conservative approach and considers
the smallest confidence among the ones of the subsumers
(SMERS) of its (leaf) prediction, see line 17 in Algorithm 1.

When leaving the refine mode, the system enters the
regime, where it stays indefinitely. Here, the system stops
asking feedback for all inputs, and an active learning strat-
egy [15] begins. The system queries the user only if the
(minimal) confidence in a certain prediction is below the
“safety” threshold θ. If the system decides to query the user,
it includes the tentative label in the query, and then behaves
as in refinement mode, calling SOLVECONFLICT to deal with
the comparison between the predicted and the user labels.

4 The Conflict Management Algorithm

Algorithm 2 Procedure for solving labeling conflicts.
1: procedure SOLVECONFLICT(cp, cu,x, ŷ, y)
2: if ISCOMPATIBLE(ŷ, y) then
3: y∗ = CONSENSUS(ŷ, y)
4: UPDATE(cp, ŷ, y∗)
5: UPDATE(cu, y, y∗)
6: else
7: (ŷ′, y′) = LCS CHILDREN(ŷ, y)
8: if CONF(x, ŷ′, cp

ŷ′) ≤ cu
y′ · θ then

9: TRAIN(f,x, y)
10: UPDATE(cp, ŷ, y)
11: else
12: y∗ = CHALLENGEUSER(ŷ)
13: if not ISCOMPATIBLE(ŷ, y∗) then
14: TRAIN(xt, y∗)

15: UPDATE(cp, ŷ, y∗)
16: UPDATE(cu, y, y∗)

The SOLVECONFLICT procedure is described in Algo-
rithm 2. It takes as input the predictor and user confidence
vectors cp and cu, an input x with its predicted label (ŷ) and
the label given by the user (y). It first compares the two la-
bels according to the ISCOMPATIBLE procedure. As the SK
encodes a subsumption hierarchy for the property of interest,
the procedure returns true if the two labels are the same or if
one subsumes the other. In case the labels are compatible, a
consensus label is taken as the ground truth, and the predic-
tor and user confidences are updated accordingly. A natural
choice for the consensus (the one used in our experiments)
is choosing the more general among the two labels.

If the two labels are not compatible, a labeling conflict
arises. In case the confidence of the prediction is not large
enough, the user label is taken as ground truth, the predic-
tor is retrained with this additional feedback, and its con-
fidence is updated accordingly. Otherwise, the system con-
tradicts the user, advocating its own prediction as the right
one1. The user is now responsible for solving the conflict.
She can decide to stick to her own label, realize that the ma-
chine is right and converge on the predicted one, or provide

1 In order to support its argument, the machine could provide some
sort of explainable critique to the user feedback, in terms of counter-
examples or evidence of inconsistencies with respect to the SK. This is
a promising direction for future research.
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a third label as a compromise. Note that the user can, and
often will because of imperfect memories, make a prudent
choice and return an intermediate node of the label hierar-
chy rather than a leaf. As we are assuming a non-adversarial
setting, and we aim at providing a support to the user rather
than a replacement for her, the system eventually trusts the
newly provided label (even if unchanged), which becomes
the ground truth. At this point, a compatibility check is made
to verify whether a retrain step is needed, and the predictor
and user confidences are updated.

5 Dataset

The evaluation of the SKEL architecture presented in this
paper is based on a dataset collected in an experiment which
main objective was to understand the empirical gap concern-
ing students’ time allocation and academic performance. The
data was collected using the i-Log mobile application [19]
that can simultaneously acquire data from up to thirty sen-
sors on the smarpthone, both hardware (e.g., GPS) and soft-
ware (e.g., running applications). The i-Log also allows to
administer time diaries to the participants asking about their
activities, location and social relations at fixed time inter-
vals. The collected answers are then used as the user’s la-
bels in the machine learning algorithms of the SKEL archi-
tecture.

Initially, 312 students who enrolled in the first academic
year of the bachelor courses active in 2016 at our Univer-
sity were asked to participate in this experiment. 104 stu-
dents from this initial population fulfilled the three specific
criteria that were defined: i) to agree on sharing their socio-
demographics, as shown in Table 1, and other characteris-
tics, e.g., psychological and time use related; ii) to attend
lessons during the period the experiment took place in order
to describe their daily behavior during a normal day at the
university, and iii) to have an Android smartphone (iOS was
not supported at the time the experiment was done). In the
end, the final sample consisted of 72 students that reflected
the general population of freshman year students of our Uni-
versity in terms of gender and departments.

Table 1: Socio-demographics of students from the experi-
ment

Gender Male 61,1%
Female 39,9%

Departments Scientific 56,9%
Humanities 43,1%

Scholarship True 37,5%
False 62,5%

Age Min 19
Max 22

Table 2: Percentage of users with each label noise level.

Label noise level ≤ 10% 10%-25% ≥ 25%

Users 21.6% 51.4% 27.0%

6 Results and Evaluation

In order to have a ground-truth independent of both the pre-
dictor and the user annotation, we focused on predicting the
locations participants visited during the two weeks of the ex-
periment, as these were easier to verify with respect to, e.g.,
activities. We used a hierarchy of labels from SK that ac-
counts for both the user location and the user transportation
means, as reported in Figure 1. We computed ground-truth
labels for University by using maps of University buildings.
The ground-truth for user’s home was identified by cluster-
ing the locations she labels as home via DBSCAN [5] and
choosing the cluster where she spends most of the time dur-
ing the night. By using Google data (for users that agreed
to provide them, i.e. 32 out of 72), we could also detect if
the user was on the move, and whether she was onon foot,
by bike or in vehicle. Finally, the Other location label was
assigned to the cases in which none of the other three main
locations was detected. Note that SKEL has no access to the
information used to compute the ground truth.

The classifier for each internal node in the ontology was
implemented as a random forest classifier, which is known
to be robust to labeling noise. The window size for confi-
dence computation was set to be infinite (d = ∞). In order
to achieve a reasonable trade-off between accurate training
and cognitive effort for the user, the confidence parameter θ
was set to 0.2.

6.1 Comparing SKEL with three alternative strategies

We compared SKEL with three alternatives:

– NONSKEL, that never contradicts the user (obtained by
replacing SOLVECONFLICT with a train and update step,
as happens in the training phase);

– IGNORE, that simply ignores any example for which a
conflict arises (obtained by removing everything from
the ELSE onwards in Algorithm 2);

– BOTHER, that always contradicts the user (obtained by
calling CHALLENGEUSER after all ASKUSER calls, and
removing SOLVECONFLICT).

When comparing user annotations with the ground truth,
we found a surprisingly high proportion of inconsistencies.
Table 2 shows some statistics on the percentage of users with
different amounts of labeling noise. In order to estimate the
effect of this large and very diverse proportion of labelling
errors on the performance of the system, we divided the set
of users in the three groups reported in the table. Figure 2 re-
ports the results of SKEL and of the three alternatives for an
increasing number of iterations. Each column represents the
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Fig. 2: Results averaged over users with at most 10% (left column), from 10% to 25% (middle column) and more than 25%
(right column) labelling errors. First row: F1 scores on left-out data. Second row: number of times user is contradicted. The
Time axes represent the number of iterations the algorithm is going through.

results for a different group of users: at most 10% labelling
errors (left), 10% to 25% (middle), more than 25% (right).
The first row reports f1 scores averaged over all users in
the corresponding group with a number of training samples
greater than 200. The score for each user is computed on a
fixed test set, namely the latest 15% of the all data avail-
able for that user, which was not used for training. This
score provides an estimate of the performance of the algo-
rithms when making predictions on future data. Note that
we consider a label as correctly predicted if it is compatible
with the ground-truth label, because this is the only type of
reliable supervision we have access to. Results clearly in-
dicate that our skeptical algorithm (red curve) consistently
outperforms a non-skeptical alternative (blue curve). As ex-
pected, the advantage is moderate for users with a relatively
small fraction of labelling errors (left figure), and grows
with the unreliability of the users, reaching a gap of 0.20
for users with more than 25% labelling errors (right figure).
Ignoring conflicting cases (brown curve) is clearly not an
option, as it achieves the worst performance in all cases.
On the other hand, having always access to correct super-
vision, BOTHER (green curve) clearly achieves the highest
performance. However SKEL is capable of getting reason-
ably close to this upper bound when enough iterations are
provided, at a fraction of the cost in terms of user effort. The
second row reports the number of times the user is contra-
dicted for SKEL (red curve) and for BOTHER (green curve),
for which they are simply the number of iterations. SKEL
clearly contradicts more when facing increasingly unreliable
users. However, the cost remains substantially lower than the
one of BOTHER, going from 13% (left figure) to 23% (right
figure).

6.2 Variability of Users

The objective labels are the labels provided by the oracle and
the subjective labels are the ones provided by the user. In this
section, we investigate the performance of the SKEL algo-
rithm with respect to these two types of labels. By analysing
performance graphs of every single user, we can identify
four different patterns that are related to distinct behavior
patterns. Figure 3 shows the results for these four proto-
typical users. Each row refers to a specific user. Left fig-
ures report f1 scores with respect to the objective labels
and the subjective labels. Figures on the right column re-
port the number of queries by SKEL, the number of times
when SKEL challenges the user, and the number of times
when SKEL agrees with the oracle label.

– Inattentive user. The results of the first row in Figure 3
show that the highest score is achieved by the SKEL al-
gorithm evaluated on objective labels. This behavior can
be explained in terms of an inattentive user, who often
provides subjective labels that are different from the ob-
jective ones (difference between red and blue curves).
The inconsistency of the user is also reflected in the right
graph of the first row of Figure 3, showing that half of
times when the user is contradicted (because there is no
agreement) the predictor agrees with the oracle. This is
the type of user benefits the most from SKEL algorithm.
Note that the fact that SKEL manages to correct user
inconsistencies indicates that the system reaches a suf-
ficient confidence to start challenging the user, i.e., the
user is a “detectable” inconsistent one.

– Predictable user. The second case is a particularly inter-
esting one. Initially, the algorithm learns to predict sub-
jective labels with a high accuracy (blue curve is higher
than the red curve). This happens because the user is
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Fig. 3: Results for four different prototypical users, namely an inattentive user, a predictable user, a reliable user, and a
tricksy user (from the top to the bottom). The images on the left report the f1 scores with respect to different labels, and the
ones on the right report the information about the number of queries and the agreement with the user and the oracle.
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consistent in providing feedback, but her subjective la-
bels are largely different from the objective ones. At a
certain point, the system starts challenging the user and
soon afterward (around iteration 40), the system learns
to predict objective labels with an higher accuracy with
respect to subjective ones. We refer to this user as “pre-
dictable”. When the system receives the appropriate feed-
back, objective labels can be predicted with high ac-
curacy. This is confirmed by the high number of times
when the predictor and the oracle agree (brown curve
with high value in the right figure). A predictable user
is thus another case in which the benefits of SKEL are
substantial, even if it takes some time for the system to
figure out the discrepancy between subjective and objec-
tive labels.

– Reliable user. The third row of Figure 3 shows that, for
of this user, the performance of the SKEL on objective
and subjective labels are roughly the same and have sim-
ilar trend. This is because the user is already reliable in
providing initial feedback, as can be seen by the substan-
tial overlap between the red and blue curves. Indeed, the
user is contradicted only occasionally (green curve in the
right figure), and even rarer are the cases in which the or-
acle agrees with the predictor against the subjective label
of the user (brown curve). This is a user for whom SKEL
is not helpful, but also not harmful.

– Tricksy user. The last one is a case in which the SKEL
algorithm completely fails to predict user actual behav-
ior. The big gap between between blue and red curves
shows the difference performance between subjective and
objective labels. Note that the user will be contradicted
only when it goes into refine or regime mode. The first
part of the green curve in the right figure stays in zero,
which means the machine stays in the train mode in the
first 90 iterations. The algorithm keeps learning from
subjective labels, even when it goes into the next mode
and is given the chance to question user labeling. The
right figure shows that this chance is rarely taken by the
algorithm, and in few cases it discovering that prediction
agrees with oracle. The user here succeeds in fooling the
system by convincing it with the correctness of her own
feedback.

7 Conclusion

In this paper we introduced Skeptical Learning as a paradigm
for dealing with the unreliability of users when providing
labels that describe their personal context. The fundamen-
tal idea is to use the available knowledge when deciding
what is more reliable between the output of the machine
learning algorithms and the user input, and to engage in a
conflict resolution phase when a controversy arises. Experi-
mental results show the pervasiveness of mislabelling when
dealing with feedback from non-expert users, and the effec-

tiveness of Skeptical Learning in addressing the problem as
compared to existing approaches to deal with noisy labels.
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