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Abstract
Stance detection (StD) aims to detect an author’s stance towards a certain topic and has become a key component in applica-
tions like fake news detection, claim validation, or argument search. However, while stance is easily detected by humans, 
machine learning (ML) models are clearly falling short of this task. Given the major differences in dataset sizes and fram-
ing of StD (e.g. number of classes and inputs), ML models trained on a single dataset usually generalize poorly to other 
domains. Hence, we introduce a StD benchmark that allows to compare ML models against a wide variety of heterogeneous 
StD datasets to evaluate them for generalizability and robustness. Moreover, the framework is designed for easy integration 
of new datasets and probing methods for robustness. Amongst several baseline models, we define a model that learns from 
all ten StD datasets of various domains in a multi-dataset learning (MDL) setting and present new state-of-the-art results on 
five of the datasets. Yet, the models still perform well below human capabilities and even simple perturbations of the original 
test samples (adversarial attacks) severely hurt the performance of MDL models. Deeper investigation suggests overfitting 
on dataset biases as the main reason for the decreased robustness. Our analysis emphasizes the need of focus on robustness 
and de-biasing strategies in multi-task learning approaches. To foster research on this important topic, we release the dataset 
splits, code, and fine-tuned weights.

Keywords  Stance detection · Robustness · Multi-dataset learning

1  Introduction

Stance detection (StD) represents a well-established task in 
natural language processing and is often described by having 
two inputs: (1) a topic of a discussion and (2) a comment 
made by an author. Given these two inputs, the aim is to find 
out whether the author is in favor or against the topic. For 
instance, in SemEval-2016 Task 6 [30], the second input is 
a short tweet and the goal is to detect, whether the author 
has made a positive or negative comment towards a given 
controversial topic:

Topic: Climate Change is a Real Concern
Tweet: Gone are the days where we would get tem-
peratures of Min -2 and Max 5 in Cape Town
Stance: FAVOR

While the task has a long tradition in the domain of political 
and ideological debates [30, 41, 43, 45], in recent years, it 
has been brought to attention by the uprising debates around 
fake news, where StD is an important pre-processing step [9, 
11, 33], as well as for other downstream tasks like argument 
search [42] and claim validation [34].

However, while humans are quite capable of assessing 
correct stances, ML models are often falling short of this 
task (see Table 1).

As there are numerous domains to which StD can be 
applied, definitions of this task vary considerably. For 
instance, the first input can be a short topic, a claim, or may 
not be given at all. If the first input is not given, the topic 
or claim has to be inferred from explicit or implicit men-
tions within the given text. The second input can be another 
claim, an evidence, or a full argument and may differ in 
length from a single sentence to a whole document. The 
number of classes can also vary between 2-class problems 
(e.g. for/against) and more fine-grained 4-class problems 
(e.g. comment/support/query/deny). Moreover, the num-
ber of samples varies drasticially between datasets (for our 
setup: from 2394 to 75,385).
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While these differences are problematic for cross-domain 
performance, it can also be seen as an advantage, as it con-
cludes in an abundance of datasets from different domains 
that can be integrated into transfer or multi-task learning 
approaches. Yet, given the decent human performance on 
this task, it is hard to grasp why ML models fall short of 
StD, while they are almost on par for related tasks like Sen-
timent Analysis1 and Natural Language Inference2 (NLI).

Within this work, we provide foundations for answering 
this question. We empirically assess whether the abundance 
of differently framed StD datasets from multiple domains 
can be leveraged by training and evaluating on them col-
lectively in a multi-task fashion. However, as we only have 
one task but multiple datasets, we henceforth define it as 
multi-dataset learning (MDL). And indeed, our model prof-
its significantly from datasets of the same task via MDL 
with + 4 percentage points (pp) on average, as well as from 
related tasks (e.g. NLI or Textual Entailment) via Transfer 
Learning (TL) with + 3.4pp on average.

We then probe the robustness of our models via three 
adversarial attacks (perturbations of the original test sets 
of all StD datasets used) and measure it with a modified 
version of the Resilience score by Thorne et al. [44]. How-
ever, while we gain significant performance improvements 
on the original test sets by using TL and MDL, the expected 
robustness of these approaches is missing. Surprisingly, the 
results reveal that MDL models are even less robust than 
single-dataset learning (SDL) models (i.e. models trained on 
one dataset only). We investigate this phenomenon through 
low resource experiments and observe that less training data 
leads to an improved robustness for the MDL models, nar-
rowing down the gap to the SDL models. We thus assume 
that lower robustness stems from dataset biases introduced 
by the vast amount of available training data for the MDL 
models, leading to overfitting. Consequently, adversarial 
attacks that cause the data to deviate too much from the 
learned biases have a more severe impact on these models.

The contributions of this paper are as follows: (1) to the 
best of our knowledge, within the field of StD we are the first 

to combine learning from related tasks (via TL) and MDL, 
designed to capture all facets of StD tasks, and achieve new 
state-of-the-art results on five of ten datasets. (2) In an in-
depth analysis with adversarial attacks, we show that TL and 
MDL for StD generally improves the performance of ML 
models, but also drastically reduces their robustness if com-
pared to SDL models. (3) To foster improved analysis of this 
task, we publish the full benchmark system including model 
training and evaluation, as well as the means to easily add 
and evaluate more datasets, adversarial attack sets, and low 
resource experiments.3. All datasets and their fixed splits, 
the fine-tuned model weights, and the machine translation 
models4 can be downloaded for reproducibility.

2 � Related Work

Stance detection is a well-established task in natural lan-
guage processing. Initial work focused on parliamentary 
debates [43], whereas latest work has shifted to the domain 
of social media [8], where several shared tasks have been 
introduced [9, 14, 30]. With the shift in domains, the def-
inition of the task also shifted: more classes were added 
(e.g. query [14] or unrelated [33]), the number of inputs 
has changed (e.g. multiple topics per sample [40]), or the 
definition of the inputs itself (e.g. tweets [14] or argument 
components [42]). There also exists a subfield of StD that 
specializes in classifying the stance towards a given rumour 
[14, 55]. In addition to stance labels, Sirrianni et al. [39] also 
predict the intensity of a stance towards a post.

In past years, the problem of StD has become a corner-
stone for downstream tasks like fake news detection [33], 
claim validation [34], and argument search [42]. Yet, recent 
work mainly focuses on individual datasets and domains. 
We, in contrast, concentrate on a higher level of abstraction 
by aggregating datasets of different domains and definitions 
to analyze them in a holistic way. To do so, we leverage the 
idea of TL and multi-task learning (in form of MDL), as 
they have shown to increase performance and robustness 
[37, 51], as well as significant support in low resource sce-
narios [38]. Experiments on StD in a multi-task learning 
setup have been conducted in the past [2]. Latest frameworks 
for multi-task learning include the MT-DNN [26], which 
scored state-of-the-art results on the GLUE Benchmark 
[47]. In contrast to their work, we will use this framework 
for MDL, i.e. combining only datasets of the same task to 
analyze whether StD datasets can benefit from each other by 
transferring knowledge about their domains. Furthermore, 
we extend the framework with adversarial attacks to probe 

Table 1   Inter-annotator agreement (IAA) vs. state-of-the-art results. 
ARC/FNC-1 in F

1
 macro, PERSPECTRUM in F

1
 micro

aIAA taken from Hanselowski et al. [16]

Dataset State-of-the-art (%) Agreement (%)

ARCa [15] 57.30 77.30
FNC-1 [33] 61.10 75.40
PERSPECTRUM [5] 70.80 90.90

1  http://​nlppr​ogress.​com/​engli​sh/​senti​ment_​analy​sis.​html.
2  http://​nlppr​ogress.​com/​engli​sh/​natur​al_​langu​age_​infer​ence.​html.

3  https://​github.​com/​UKPLab/​mdl-​stance-​robus​tness
4  Necessary for one of the adversarial attacks.

http://nlpprogress.com/english/sentiment_analysis.html
http://nlpprogress.com/english/natural_language_inference.html
https://github.com/UKPLab/mdl-stance-robustness
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the robustness of the learned models and to analyze whether 
performance increases gained through TL and MDL are in 
accordance with an increased robustness.

Adversarial attacks describe test sets aimed to discover 
possible weak points of ML models. While much recent 
work in adversarial attacks aims to break NLI systems and 
is especially adapted to this problem [13, 29], these stress 
tests have been applied to several other tasks, e.g. Question-
Answering [49], Machine Translation [4], or Fact Check-
ing [1, 44]. Unfortunately, preserving the semantics of a 
sentence while automatically generating these adversarial 
attacks is difficult, which is why some works have defined 
small stress tests manually [19, 27]. As this is time (and 
resource) consuming, other work has defined heuristics with 
controllable outcome to modify existing datasets and to pre-
serve the semantics of the data [31]. In contrast to previous 
work, we adapt and analyze some of these attacks for the 
task of StD and probe the robustness of our SDL and MDL 
models.

3 � Stance Detection Benchmark: Setup 
and Experiments

We describe the dataset and models we use for the bench-
mark, the experimental setting, and the results of our experi-
ments. For all experiments, we use and adapt the MT-DNN 
framework5 [26].

3.1 � Datasets

We choose ten StD datasets from five different domains to 
represent a rich environment of different facets of StD. Data-
sets within one domain may still vary in some attributes 
like their number of classes or sample sizes. All datasets 
are shown with an example and their domain in Table 2. In 
addition, Table 3 displays the split sizes and the class distri-
butions of each dataset. All code to preprocess and split the 

Table 2   All datasets, grouped by domain and with examples

Topics in parentheses signal implicit information

Dataset Domain Topic Comment Stance

ibmcs Encyclopedia [...] atheism is the only way Atheism is a superior basis for ethics PRO
semeval2019t7 Social media (Charlie Hebdo) “[...] #CharlieHebdo gunmen have been killed” yayyy [...] Support
semeval2016t6 Feminist Movement [...] every women should have their own rights!! #SemST Favor
fnc1 News Hugh Hefner Dead? Hugh Hefner has denied reports that he is dead [...] Disagree
snopes Farmers feed their cattle candy [...] [...] padding out cow feed with waste candy is nothing new. Agree
scd Debating forums (Obama) I think Obama has been a great President. [...] For
perspectrum School Day Should Be Extended So much easier for parents! Support
iac1 existence of god [...] the Bible tells me that Jesus existed [...] Pro
arc Salt should have a place at the table [...] the iodine in salt is necessary to prevent goiter. [...] Agree
argmin Web search school uniforms We believe in freedom of choice. CON

Table 3   Splits, classes, and class distributions for all used datasets

Datasets # samples

Train Dev Test Total Classes

arc [15, 16] 12,382 1851 3559 17,792 Unrelated (75%), disagree (10%), agree (9%), discuss (6%)
argmin [42] 6845 1568 2726 11,139 Argument_against (56%), argument_for (44%)
fnc1 [33] 42,476 7496 25,413 75,385 Unrelated (73%), discuss (18%), agree (7%), disagree (2%)
iac1 [46] 4227 454 924 5605 Pro (56%), anti (34%), other (10%)
ibmcs [3] 935 104 1355 2394 Pro (55%), con (45%)
perspectrum [5] 6978 2071 2773 11,822 Support (52%), undermine (48%)
scd [18] 3251 624 964 4839 For (60%), against (40%)
semeval2016t6 [30] 2497 417 1249 4163 Against (51%), favor (25%), none (24%)
semeval2019t7 [14] 5217 1485 1827 8529 Comment (72%), support (14%), query (7%), deny (7%)
snopes [17] 14,416 1868 3154 19,438 Support (74%), refute (26%)

5  https://​github.​com/​namis​an/​mt-​dnn.

https://github.com/namisan/mt-dnn
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datasets is available online.6 In the following, all datasets 
are introduced.

arc We take the version of the Argument Reasoning Cor-
pus [15] that was modified for StD [16]. A sample consists 
of a claim crafted by a crowdworker, a user post from a 
debating forum, and its respective class label.

argmin The UKP Sentential Argument Mining Corpus 
[42] originally contains topic-sentence pairs labelled with 
argument_for, argument_against, and no_argument. We 
remove all non-arguments and simplify the original split: 
we train on the data of five topics, develop on the data of one 
topic, and test on the data of two topics.

fnc1 The Fake News Challenge dataset [33] contains 
headline-article pairs from news websites. We take the origi-
nal data without modifying it.

iac1 The Internet Argument Corpus V1 [46] contains 
topic-post pairs from political debates on internet forums. 
We generate a new split without intersection of topics 
between train, development, and test set.

ibmcs The IBM Debater®—Claim Stance Dataset [3] 
contains topic-claim pairs. The topics are gathered from 
a debating database, the claims were manually collected 
from Wikipedia articles. We take the pre-defined train and 
test split and split an additional 10% off the train set for 
development.

perspectrum The PERSPECTRUM dataset [5] contains 
pairs of claims and related perspectives, which were gath-
ered from debating websites. We take the data they defined 
for the StD task in their work and keep the exact split.

scd The Stance Classification Dataset [18] contains 
posts about four topics from an online debate forum with all 
posts being self-labelled by the post’s author. The topics are 
not part of the actual dataset and have to be inferred from 
explicit or implicit mentions within a post. We generate a 
new data split by using the data of two topics for training, 
the data of one topic for development, and the data of the 
leftover topic for testing.

semeval2016t6 The SemEval-2016 Task 6 dataset [30] 
contains topic-tweet pairs, where topics are controversial 
subjects like politicians, Feminism, or Atheism. We adopt 
the same split as used in the challenge, but add some of the 
training data to the development split, as it originally only 
contained 100 samples.

semeval2019t7 The SemEval-2019 Task 7 [14] contains 
rumours from reddit posts and tweets towards a variety of 
incidents like the Ferguson Unrest or the Germanwings 
crash. Similar to the scd dataset, the topics are not part of 
the actual dataset.

snopes The Snopes corpus [17] contains data from a fact-
checking website,7 documenting (amongst others) rumours, 
evidence texts gathered by fact-checkers, and the documents 
from which the evidence originates. Besides labels for auto-
matic fact-checking of the rumours, the corpus also contains 
stance annotations towards the rumours for some evidence 
sentences. We extract these pairs of rumours and evidence 
sentences and generate a new data split.

3.2 � Models

We experiment on all datasets in an SDL setup, i.e. train-
ing and testing on all datasets individually, and in an MDL 
setup, i.e. training on all ten StD datasets jointly but testing 
on their test splits individually, which allows us to report 
separate scores for each dataset. We use the MT-DNN 
framework [26], as it provides the means to do both SDL 
and MDL.

For SDL, we use the BERT transformer architecture 
introduced by Devlin et al. [10] and add a classification 
layer on top. For MDL, we also use the BERT architecture 
and train it in a multi-task learning fashion as introduced by 
Liu et al. [26]: all ten datasets share the same BERT model 
and update it jointly at training time, while dataset-specific 
classification layers are updated for each dataset individu-
ally. For both SDL and MDL, a classification layer is either 
represented by a single dense layer (in case of the single-
input datasets scd and semeval2019t7) or by the stochastic 
answer network [25] (in case of the eight remaining datasets 
with input pairs), which has been integrated as part of the 
MT-DNN framework by its authors and performs additional 
multi-step reasoning on the BERT-encoded input pairs. All 
datasets are batched and fed through the architecture in a 
random order.

As initial weights for BERT, we use either the pre-trained 
BERT (large, uncased) weights [10] or the MT-DNN (large, 
uncased) weights [26]. The latter uses the BERT weights 
and is fine-tuned on all datasets of the GLUE Benchmark 
[47]. By using the MT-DNN weights, we transfer knowledge 
from all datasets of the GLUE Benchmark to our models, i.e. 
we apply TL. Henceforth, we use SDL and MDL to define 
the model architecture, and BERT and MT-DNN to define 
the pre-trained weights we use to initialize the model. This 
leaves us with four combinations of models: ����SDL , 
����MDL , MT-���SDL , and MT-���MDL (see Fig. 1).

For all experiments in this section, we mainly keep the 
MT-DNN Framework’s [26] default hyperparameters. To 
fit the experiments onto our hardware, however, we lower 
the batch size from 32 to 16 and the maximum sequence 
length of the samples from 512 to 100 (sub-)words. All other 

7  www.​snopes.​com.6  https://​github.​com/​UKPLab/​mdl-​stance-​robus​tness.

http://www.snopes.com
https://github.com/UKPLab/mdl-stance-robustness
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hyperparameters are left at the pre-defined default values 
and are listed in Appendix 1, Table 9. We train all models 
over 5 different fixed seeds and report the averaged results in 
F1 macro ( F1m+ ). We run all experiments on a Tesla P-100 
with 16 GByte of memory. One epoch with all ten datasets 
takes around 1.5 h. We use the splits for training and testing 
as shown in Table 3.

3.3 � Results

We report the results of all models and datasets in Table 4. 
The last column shows the averaged F1m+ for a row. We 
make three observations: (1) TL from related tasks improves 
the overall performance, (2) MDL with datasets from the 
same task shows an even larger positive impact, and (3) TL, 
followed by MDL, can further improve on the individual 
gains shown by (1) and (2).

We show (1) by comparing the models BERTSDL and 
MT-DNNSDL , where a gain of 3.4 pp due to TL from the 
GLUE datasets can be observed. While some datasets show 
a small drop in performance, the performance increases on 
average. We show (2) by comparing BERTSDL to BERTMDL 
(+ 4 pp) and MT-DNNSDL to MT-DNNMDL (+ 1.8 pp). The 
former comparison specifically indicates that learning from 
similar datasets (i.e. MDL) has a higher impact than TL 
for StD. The latter comparison shows that, even with TL 
already applied, MDL can further improve the performance. 
Lastly, we show (3): combining TL from related tasks 
(+3.4pp with BERTSDL vs. MT-DNNSDL ) and MDL on the 
same task (+4pp with BERTSDL vs. BERTMDL ) can result in 
considerable performance gains (+5.1pp with BERTSDL vs. 
MT-DNNMDL ). However, as the individual gains from TL 
and MDL do not add up, it also indicates an information 

overlap between the datasets of the GLUE benchmark and 
the StD datasets.

Lastly, while BERTSDL already outperforms five out of six 
state-of-the-art results, our BERTMDL and MT-DNNMDL are 
able to add significant performance increases on top.

4 � Analysis

As the robustness of an ML model is crucial if applied to 
other domains or in downstream applications, we analyze 
this characteristic in more detail. We define adversarial 
attacks to probe for weaknesses in the models and investigate 
the reason for observed losses in robustness.

4.1 � Adversarial Attacks: Definition

Inspired by stress tests for NLI, we select three adversarial 
attacks to probe the robustness of the models and modify all 
samples of all test sets with the following configurations:

Paraphrase Naturally, a model should be able to handle 
paraphrasing of learned data and, hence, we paraphrase all 
samples of the test sets. For this, we apply a method by Mal-
linson et al. [28] and train two machine translation models 
with OpenNMT [23]: one that translates English originals 
to German and another one that backtranslates.

Spelling Spelling errors are quite common, especially 
in data from social media or debating forums. We add two 
errors into each input of a sample [31]: (1) we swap two let-
ters of a random word and (2) for a different word, we sub-
stitute a letter for another letter close to it on the keyboard. 
We only consider words with at least four letters, as shorter 
ones are mostly stopwords.

Fig. 1   Overview of the training process. ① represents the train-
ing process of the pre-trained BERT model on a single StD dataset, 
resulting in BERT

SDL
 for that dataset. ② represents the simultaneous 

training process (MDL) of the pre-trained BERT model on all StD 

datasets, resulting in BERT
MDL

 . ③ and ④ represent the same as ① and 
②, respectively, but based on the MT-DNN model. The MT-DNN 
model was fine-tuned on the datasets of the GLUE benchmark by Liu 
et al. [26] (shown in the dashed box) and is re-used in this work



334	 KI - Künstliche Intelligenz (2021) 35:329–341

1 3

Ta
bl

e 
4  

R
es

ul
ts

 o
f e

xp
er

im
en

ts
 o

n 
al

l d
at

as
et

s 
in

 F
1
m

+
 ( F

1
 m

ac
ro

) a
nd

 o
rig

in
al

 p
ap

er
 m

et
ric

s 
in

 p
ar

en
th

es
es

 ( F
1
m

−
 ( F

1
 m

ic
ro

), 
A

cc
ur

ac
y 

(A
cc

), 
Fa

ke
 N

ew
s 

C
ha

lle
ng

e 
sc

or
e 

(F
N

C
1)

, F
1
 m

ac
ro

 
w

ith
ou

t c
la

ss
 n

on
e 

( F
1
m

+
⧵
 n

on
e)

)

B
ol

d 
nu

m
be

rs
 in

di
ca

te
 th

e 
m

od
el

 w
ith

 th
e 

hi
gh

es
t p

er
fo

rm
an

ce
 fo

r t
he

 re
sp

ec
tiv

e 
da

ta
se

t
Th

e 
la

st 
co

lu
m

n 
sh

ow
s a

ve
ra

ge
 re

su
lts

 o
f S

D
L 

an
d 

M
D

L 
m

od
el

s o
ve

r a
ll 

da
ta

se
ts

 a
nd

 fi
ve

 d
iff

er
en

t s
ee

ds
 in

cl
. s

ta
nd

ar
d 

de
vi

at
io

n
a
Ta

lo
sC

om
b 

[1
6]

b
ES

IM
 w

/ G
RU

 +
 D

ro
po

ut
 [2

0]
c
R

an
ki

ng
-M

LP
 [5

4]
d
U

ni
gr

am
s S

V
M

 [3
]

e
B
E
R
T
C
O
N
S
 [3

5]
f
TG

M
N

-C
R

 [5
0]

g
G

PT
-b

as
ed

 [5
3]

M
od

el
s

ar
c 

12
.4

k
ar

gm
in

 6
.8

k
fn

c1
 4

2.
5k

ia
c1

 4
.2

k
ib

m
cs

 0
.9

k
pe

rs
pe

c-
tru

m
 7

.0
k

sc
d 

3.
3k

se
m

ev
al

-2
01

6t
6 

2.
5k

se
m

ev
al

-
20

19
t7

 
5.

2k

sn
op

es
 1

4.
4k

A
vg

.

M
et

ric
s (

or
ig

in
al

)
F
1
m

+
F
1
m

+
F
1
m

+
 (F

N
C

1)
F
1
m

+
F
1
m

+
 (A

cc
)

F
1
m

+
 ( F

1
m

−
)

F
1
m

+
F
1
m

+
 ( F

1
m

+
⧵
 n

on
e)

F
1
m

+
F
1
m

+
F
1
m

+

M
aj

or
ity

 b
as

el
in

e
0.

21
45

0.
33

83
0.

20
96

 (3
9.

37
)

0.
21

27
0.

34
06

 (0
.5

16
6)

0.
34

66
 (0

.5
30

5)
0.

35
30

0.
24

27
 (0

.3
64

1)
0.

22
34

0.
43

98
0.

29
21

R
an

do
m

 b
as

el
in

e
0.

19
07

0.
49

98
0.

18
15

 (3
2.

09
)

0.
33

74
0.

48
64

 (0
.4

92
3)

0.
50

11
 (0

.5
05

2)
0.

48
30

0.
30

61
 (0

.3
76

9)
0.

18
04

0.
46

52
0.

36
32

St
at

e-
of

-th
e-

ar
t

0.
57

30
a

–
0.

61
10

b
 (8

6.
66

)c
–

(0
.5

47
0)

d
0.

79
95

e
–

(0
.7

10
4)

f
0.

61
87

g
–

–
B
E
R
T
S
D
L

0.
64

80
0.

61
67

0.
74

66
 (8

8.
57

)
0.

31
67

0.
53

47
 (0

.5
42

9)
0.

80
12

 (0
.8

02
6)

0.
56

99
0.

68
39

 (0
.7

01
8)

0.
53

64
0.

72
74

0.
61

81
 ±

 0
.0

15
8

M
T-
D
N
N

S
D
L

0.
63

24
0.

60
19

0.
76

90
 (8

8.
82

)
0.

33
29

0.
70

66
 (0

.7
11

6)
0.

84
80

 (0
.8

48
6)

0.
62

11
0.

68
82

 (0
.7

08
0)

0.
56

49
0.

75
06

0.
65

16
 ±

 0
.0

10
4

B
E
R
T
M
D
L

0.
65

83
0.

61
57

0.
74

75
 (8

8.
60

)
0.

37
81

0.
72

11
 (0

.7
24

0)
0.

80
93

 (0
.8

10
2)

0.
64

44
0.

69
79

 (0
.7

16
2)

0.
57

12
0.

74
14

0.
65

85
 ±

 0
.0

10
1

M
T-
D
N
N

M
D
L

0.
65

26
0.

61
74

0.
75

22
 (8

8.
85

)
0.

37
97

0.
77

72
 (0

.7
78

7)
0.

83
74

 (0
.8

38
3)

0.
65

41
0.

69
79

 (0
.7

18
1)

0.
57

32
0.

75
32

�
.�
�
�
�
±
�
.�
�
�
�

H
um

an
 P

er
fo

rm
an

ce
0.

77
30

–
0.

75
40

–
–

(0
.9

09
0)

–
–

–
–

–



335KI - Künstliche Intelligenz (2021) 35:329–341	

1 3

Negation We use the negation stress test proposed by 
Naik et al. [31]. They add the tautology “and false is not 
true” after each sentence, as they suspect that models 
might be confused by strong negation words like “not”. 
Recently, this assumption was confirmed by Niven and 
Kao [32] and we assume the same is also valid for our 
setup. We add a slightly modified tautology “false is not 
true and” at the beginning of each sentence, since we trun-
cate all inputs to a maximum length of 100 sub-words.

To measure the effectiveness of each adversarial attack 
a ∈ A , we calculate the potency score introduced by 
Thorne et al. [44] as the average reduction from a perfect 
score and across the systems s ∈ S:

with ca representing the transformation correctness from test 
to adversarial samples and a function f that returns the per-
formance score for a system s on an adversarial attack set a.

The correctness rate ca is calculated by taking 25 ran-
domly selected samples from all test sets (i.e. 250 samples 
in total), comparing them to their adversarial counterparts, 
and finally dividing the number of correctly transformed 
samples by the total number of checked samples. The para-
phrase attack was manually annotated for semantic equiv-
alence between the original texts and their paraphrased 
counterparts. Due to the high subjectivity of this task, 
the annotation was conducted by two human annotators; 
the first author and a postdoctoral researcher with back-
ground in natural language processing (not involved in 
this work). The inter-annotator agreement was computed 
with Cohen’s Kappa [7] and signals “moderate” agree-
ment [24] with � = 0.47 (see Appendix 2 for more infor-
mation about the annotation process), which is comparable 
to the inter-annotator agreement in Atanasova et al. [1], 
where claims generated with GPT-2 were annotated for 
semantic coherence. The percentage of samples annotated 
as “semantically equivalent” is 48.4% (average of both 
annotators), resulting in a correctness ratio ca of 0.484 for 
the paraphrase attack.

As the changes through the spelling attack are minor 
and difficult to evaluate for humans (who easily cope with 
small typos), we apply the Flesch–Kincaid grade level 
[21], which is a well-established metric for text readability 
in the area of education and calculated as follows:

with the outcome corresponding to a U.S. grade level. We 
compare the Flesch–Kincaid grade level of an original 
sample and its adversarial counterpart and label it as incor-
rectly perturbed if the readability of the adversarial sample 

Potency(a) = ca
1

|S|
∑

s∈S

(1 − f (s, a)),

0.39 ×
total words

total sentences
+ 11.8 ×

total syllables

total words
− 15.59,

requires a higher U.S. grade level. Applying this method, the 
correctness ratio for the spelling attack is 0.584.

For the negation attack samples, we assume a correctness 
of 100% ( ca = 1.0 ) as the perturbation adds a tautology and 
the semantics and grammar are preserved.

4.2 � Adversarial Attacks: Results and Discussion

We choose to limit the compared systems to BERTSDL and 
MT-DNNMDL , as the latter uses both TL from related tasks 
and MDL, whereas the former uses neither. The potencies 
for all attack sets are shown in Table 5. The raw potency 
symbolizes the potential strength of an adversarial attack 
if the automatic creation of adversarial samples would be 
without errors (i.e. in case of ca = 1.0 ). The performance 
results on the adversarial attack sets for both the SDL and 
MDL model are shown in Table 6.

The paraphrasing attack has the lowest raw potency of 
all adversarial sets and the average scores only drop by 
about 2.8–4.7% as compared to the test set performance. 
Interestingly, on datasets that turned out to be difficult 
to paraphrase (semeval2019t7, arc, snopes), the score on 
the MT-DNNMDL only drops by about 4.3%, 6.4%, and 
6.5% (see Appendix 3, Table 11), which is close to aver-
age. This confirms Niven and Kao [32] in that the BERT 
architecture, despite contextualized word embeddings, also 
primarily focuses on certain cue words and the semantics 
of the whole sentence is not the main criterion. With raw 
potencies of 41.1% and 43.3%, the negation and spelling 

Table 5   Potency of all adversarial attacks

Method Raw potency 
(%)

Correctness ratio Potency (%)

Spelling 43.3 0.584 25.3
Negation 41.1 1.0 41.1
Paraphrase 38.0 0.484 18.4

Table 6   Influence of adversarial attacks, averaged over all datasets, 
on the BERT

SDL
 and MT-DNN

MDL
 model (in F

1
m+ and, in parenthe-

ses, relative to the score on the test set)

Bold numbers indicate the model with the smallest relative perfor-
mance drop (w.r.t the test set performance) for the respective adver-
sarial attack

Test BERT
SDL

MT-DNN
MDL

0.6181 0.6695

Spelling 0.5568 (− 9.9%) 0.5767 (− 13.9%)
Negation 0.5914 (− 4.3%) 0.5871 (− 12.3%)
Paraphrase 0.6012 (− 2.8%) 0.6380 (− 4.7%)
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attacks have the highest negative influence on both SDL 
and MDL (4.3–13.9% performance loss). We assume this 
to be another indicator that the models rely on certain key 
words and fail if the expected occurrence of these words 
in the seen samples is changed. This is easy to see for the 
negation attack, as it adds a strong negation word.

For the spelling attack, we look at the following original 
sample from the perspectrum dataset:

Claim: School Day Should Be Extended
Perspective: So much easier for parents!
Predict/Gold: support/support

And the same sample as spelling attack:

Claim: School Day Sohuld Be Ectended
Perspective: So much esaier for oarents!
Predict/Gold: undermine/support

Since all words of the original sample are in the vocabu-
lary, Google’s sub-word implementation WordPiece [52] 
does not split the tokens into sub-words. However, this is 
different for the perturbed sentence, as, for instance, the 
tokens “esaier” and “oarents” are not in the vocabulary. 
Hence, we get [esa, ##ier] and [o, ##are, ##nts]. These 
pieces do not carry the same meaning as before the per-
turbation and the model has not learned to handle them.

However, the most surprising observation represents 
the much higher relative drop in scores between the test 
and adversarial attack sets for MT-DNNMDL as compared 
to BERTSDL . For some datasets, even the absolute F1m+ of 
the MDL model drops below that of the SDL model (see 
Appendix 3, Table 11). MDL should produce more robust 
models and support them in handling at least some of these 
attacks, as some of the datasets originate from Social Media 
and debating forums, where typos and other errors are quite 
common. On top of that, the model sees much more samples 
and should be more robust to paraphrased sentences.

We want to further evaluate the robustness of the two 
systems and, for this, leverage the resilience measure 
introduced by Thorne et al. [44]:

It defines the robustness of a model against all adversarial 
attacks, scaled by the correctness of the attack sets. Surpris-
ingly, the resilience of the MDL (59.6%) and SDL (58.4%) 
model are almost on par. The score, however, only considers 
the absolute performance on the adversarial sets, but not the 
drop in performance when compared to the test set results. 
If, for instance, model A performs better than model B on the 
same test set, but has a higher drop in performance on the 
same adversarial set, model A should show a lower robustness 
and thus receive a lower resilience score. As the resilience 

Resilience(s) =

∑
a∈A ca × f (s, a)
∑

a∈A ca
.

score does not consider this, we adapt the equation by taking 
the performance on the test set t into account. Moreover, we 
define the highest possible model performance of 1.0 as a 
common base and subtract the gained relative score from it:

Hence, if the performance differences between the test set 
and its adversarial sets become smaller, the Resiliencerel will 
increase.

Looking at the results, the Resiliencerel signals a much higher 
relative resilience for the SDL model as compared to the MDL 
model (see Table 7, “Overall”), which is also in accordance 
with the relative drops shown on the adversarial attacks (see 
Table 6). We also calculate the Resiliencerel for all adversarial 
attacks separately and observe that the SDL model outperforms 
the MDL model in each case. While our experiments show that 
performance-wise we can benefit from MDL, there is a high 
risk of drastic loss in robustness, which can cancel out the per-
formance gains or, even worse, may render the model inferior 
in real-world scenarios.

4.3 � Analysis of Robustness Via Low Resource 
Experiments

To investigate why the MDL model shows a lower robust-
ness than the SDL models on average, we conduct low 
resource experiments by training the MDL model and the 

Resiliencerel(s) = 1.0−

�����

∑
a∈A ca × (f (s, t) − f (s, a))

∑
a∈A ca

�����
.

Table 7   Resilience
rel

 of BERT
SDL

 and MT-DNN
MDL

Bold numbers indicate the model with the highest Resilience
rel

 for the 
respective adversarial attack

Method/model BERT
SDL

 (%) MT-
DNN

MDL
 

(%)

Spelling 96.4 94.6
Negation 97.3 91.8
Paraphrase 99.2 98.5
Overall 96.6 92.7

Table 8   Train data ratio performance on the test set in F
1
m+

Bold numbers indicate the model with the highest F1m+
 for the 

respective train data ratio

Model/ratio 10% 30% 70% 100%

MT-DNN
MDL

0.5855 0.6317 0.6624 0.6695
Diff. − 0.0953 − 0.0758 − 0.0598 − 0.0514
BERT

SDL
0.4902 0.5559 0.6026 0.6181
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SDL models on 10, 30, and 70% of the available training 
data. Development and test sets are kept at 100% of the 
available data at all times and results are averaged over five 
seeds.

As is to be expected, the performance gap between 
BERTSDL and MT-DNNMDL on the test set grows with less 
training data (see Table 8). Here, the MDL shows its strength 
in low resource setups [38]. Even more so, while the MDL 
model showed disencouraging performance with regard to 
adversarial attacks when trained on 100% of the data, we 
observe that with less training data, the MT-DNNMDL reduces 
the difference in Resiliencerel to the BERTSDL from 3.9 pp at 
100% training data to 1.5 pp at 10% training data (see Fig. 2b). 
As shown in Fig.  2a, this is mostly due to a lower impact of 
the negation attack and partly of the paraphrase attack.

Our analysis reveals that the amount of training data has 
a direct negative impact on model robustness. As most (if 
not all) datasets inevitably inherit the biases of their annota-
tors [12], we assume this negative impact on robustness is 
due to overfitting on biases in the training data. Hence, less 
training data leads to less overfitting on these biases, which 
in turn leads to a higher robustness towards certain attacks 
that target these biases. For instance, the word “not” in the 
negation attack can be a bias that adheres to negative class 
labels [32]. Likewise, an overall shift in the distribution of 
some words due to the paraphrase attack can interfere with 
a learned bias. We argue that spelling mistakes are unlikely 
to be learned as a bias for stance detection classes and the 
actual reason for the performance drop of the attack is due 
to the split of ungrammatical tokens into several sub-words 
(see Sect. 4.2).

5 � Discussion

We introduced a StD benchmark system that combines TL 
and MDL and enables to add and evaluate adversarial attack 
sets and low resource experiments. We include ten StD data-
sets of different domains into the benchmark and found the 
combination of TL and MDL to have a significant positive 
impact on performance. In five of the ten used datasets, we 
are able to show new state-of-the-art results. However, our 
analysis with three adversarial attacks reveals that, contrary 
to what is expected of TL and MDL, these techniques result 
in a severe loss of robustness on our StD datasets, with 
scores often dropping well below SDL performance. We 
investigate the reasons for this observation by conducting 
low resource experiments and identify overfitting on biases 
of vast amounts of training data as a possible issue in our 
MDL approach.

Reducing the amount of training data for both SDL and 
MDL models narrows down the robustness anomaly between 
these two setups, but also lowers the test set performance. 
Hence, we recommend to develop methods that integrate de-
biasing strategies into multi-task learning approaches—for 
instance, by letting the models learn which samples contain 
biases and should be penalized or ignored [6] to enhance 
the robustness, and at the same time being able to leverage 
more (or all) training data available to maintain the test set 
performance. Besides de-biasing techniques, in future work, 
we aim to concentrate on task-specific adversarial attacks 
and to build defences for the models [36, 48]. We foster the 
research on StD and model robustness by publishing our 
benchmark with all dataset splits, models, and experimental 
code.

(a) Plot with difference (BERTSDL − MT-DNNMDL) in
Resiliencerel for all train data ratios and all adversarial

attacks separately.

Models / Ratio 10% 30% 70% 100%

MT-DNNMDL 96.9% 94.6% 93.1% 92.7%

BERTSDL 98.4% 97.6% 96.9% 96.6%

(b) Resiliencerel for both models and all tested train
ratios.

Fig. 2   Resilience
rel

 in numbers and plotted over different train data 
ratios

Table 9   Hyperparameters for all experiments

Hyperparameter Value

Batch size 16
Epochs 5
Gradient clipping max norm: 1.0
Dropout 0.1
Max. sequence length 100
Learning rate 5e−5
Optimizer Adamax [22]
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Appendix 1: Hyperparameters

We list the important hyperparameters for all experiments in 
Table 9. With the exception of the batch size and the maxi-
mum sequence length of the samples, all hyperparameters 
are left at the MT-DNN Framework’s [26] default values.

Appendix 2: Guidelines: Annotations 
for the Paraphrase Attack

In order to check the paraphrase attack for correctness, a 
postdoctoral researcher with background in natural lan-
guage processing (not involved in this work) and the first 
author annotated 250 samples from all 10 StD datasets (25 
samples per dataset). The annotators checked whether the 
shown pairs of original and translated samples are semanti-
cally equal. Semantic equality was measured binary (“yes” 
or “no”). The annotation guidelines are as follows:

–	 The translated sentences need not be grammatically cor-
rect, but they have to be comprehensible.

–	 The meaning of the compared sentences need not be 
perfectly the same, as different words naturally result 
in a slightly different meaning.

–	 Typos or swapped letters in a named entity (e.g. com-
pany name, event name, person) should be neglected. 
If full words or large parts of an entity are replaced, 
which render it unrecognizable, the sample should be 
viewed as incorrectly transformed (for example, “Elon 
Musk” and “Alon Musk” can be seen as a typo whereas 
“Bill Clinton” and “Invoice Clinton” would be incor-
rect).

–	 In case of samples with multiple sentences, semantic 
equality has to hold for each individual sentence (as the 
paraphrasing was done on sentence level, the number 
of sentences for original and translated samples are the 
same and they must be compared individually).

The following examples were provided:

Example #1
Original: In particular , school uniforms are often 
not modest enough in covering the female body to 
suit Muslims .
Paraphrased: In particular, school uniforms are 
often not modest enough to adapt the female body 
to Muslims.
Label: “n”
Reason: “adapt the female body to Muslims” is non-
sensical and has not the same meaning as the original 
sentence.

Example #2
Original: Uniforms are certainly easier for admin-
istrators to enforce than dress codes .
Paraphrased: Uniforms are certainly easier to 
enforce for administrators than dress codes .
Label: “y”
Reason: The syntax has changed but not the seman-
tics.

Example #3
Original: She does n’t want to have to wear what every-
one else is wearing .
Paraphrased: It does not want to carry what all others 
bear.
Label: “n”
Reason: The meaning has changed in a way that the 
paraphrased sentence is talking about “bearing” some-
thing (like a burden) and not about wearing a uniform. 
Also, the personal pronoun has changed and “it” distorts 
the meaning in that it does not refer to a person anymore.

Example #4
Original: There ’s another thing about uniform though 
; even if everybody wears exactly the same , they ’re all 
going to look different , because the same uniform is n’t 
going to suit everybody .
Paraphrased: There is another thing about uniform, 
although even if everyone wears exactly the same, they 
’all will look different because the same uniform does 
not suit everyone.
Label: “y”
Reason: Some words have changed and a minor typo-
logical error has been introduced (apostrophe before 
“all”), but the meaning is clear and remains the same.

Table 10   Inter-annotator agreement for the paraphrase attack (on all 
datasets)

Dataset Cohen’s kappa

arc 0.34
argmin 0.56
fnc1 0.52
iac1 0.48
ibmcs 0.51
perspectrum 0.49
scd 0.49
semeval2016t6 0.47
semeval2019t7 0.45
Snopes 0.43
Total 0.47
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The inter-annotator agreement (computed with Cohen’s 
kappa [7]) between the annotators is 0.47, which signals “mod-
erate” agreement [24]. This is comparable to the inter-annota-
tor agreement in Atanasova et al. [1], where claims generated 
with GPT-2 were annotated for semantic coherence. Table 10 
shows the Cohen’s kappa for each dataset separately.

Appendix 3: Adversarial Attacks on Stance 
Detection Models

Table 11 shows the absolute performance scores of mod-
els MT-DNNMDL (all datasets with subscript MDL) and 
BERTSDL (all datasets with subscript SDL). All absolute 
scores are in F1 macro. The numbers in parentheses in the 
Avg. column represent the relative drop to the respective 
score on the test set. Bold numbers in a column represent 
the best score between the MDL and SDL on an adversarial 
attack set.  
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