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Abstract
In this theoretical paper, we consider the notion of semantic competence and its relation to general language understand-
ing—one of the most sough-after goals of Artificial Intelligence. We come back to three main accounts of competence 
involving (a) lexical knowledge; (b) truth-theoretic reference; and (c) causal chains in language use. We argue that all three 
are needed to reach a notion of meaning in artificial agents and suggest that they can be combined in a single formalisation, 
where competence develops from exposure to observable performance data. We introduce a theoretical framework which 
translates set theory into vector-space semantics by applying distributional techniques to a corpus of utterances associated 
with truth values. The resulting meaning space naturally satisfies the requirements of a causal theory of competence, but it 
can also be regarded as some ‘ideal’ model of the world, allowing for extensions and standard lexical relations to be retrieved.

Keywords  Formal semantics · Distributional semantics · Competence

1  Introduction

From a high-level perspective, research in Natural Language 
Processing (NLP) can be said to be dedicated to the ques-
tion ‘Can we give machines the faculty of language?’ Seen 
from a theoretical linguistics point of view, this question 
boils down to solving the problem of competence acquisi-
tion. However, the notion of competence itself has received 
relatively little attention in recent NLP and AI frameworks, 
where focus has been on acquiring specific linguistic skills 
from a linear signal consisting essentially of surface forms. 
As pointed out by various researchers, the practice of apply-
ing statistical techniques to enormous amounts of text is 
unlikely to yield human-like language, including its relation 
to the world around us, its pragmatic nuances, or the fact that 

it can be acquired from very limited data [5, 43, 54]. The 
present paper seeks to provide a more encompassing compu-
tational framework by coming back to the main theories of 
competence in the linguistic literature, focusing specifically 
on the acquisition of meaning.

The fundamental distinction between competence (know-
ing one’s language) and performance (using one’s language) 
is introduced by Chomsky in the opening of Aspects of the 
theory of syntax (henceforth Aspects, [10]). The distinc-
tion is meant to capture the fact that native speakers of a 
language seem to be able to reliably make grammaticality 
judgements, even though their observable utterances exhibit 
errors as well as various types of limitations on their form, 
length and complexity. In a word, people know the rules 
of their language but don’t always apply them in practice. 
Performance is degraded competence.

Whilst the notion of competence is attractive for the 
study of syntax and grammaticality judgements, its seman-
tic equivalent has proved extremely difficult to pinpoint 
in linguistic theory. At first glance, it would seem that 
semantic competence should be the ability to recognise 
utterances that are true of a given world [1, 14, 46, 52]. Or 
perhaps, it should simply be about satisfying some notion 
of lexical selectional restriction [10, 32]. But it has been 
noted that the boundary between felicity and infelicity, 
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particularly with regard to truth conditions, is very hard to 
elicit [45]. This in itself might only be a matter of grada-
tion (syntactic judgements are not always perfect either). 
But the more fundamental issue at hand is that the various 
semantic theories of competence, whether related to truth 
values, to the lexicon or to anything else, have different 
philosophical underpinnings. Reconciling them remains 
an extremely challenging task [47].

Beyond philosophical considerations, we must further 
take into account Chomsky’s epistemological reflections 
on the study of linguistics. His argument in Aspects is that 
the status of linguistics as a science depends on having 
competence as its object of study, that is, on the investiga-
tion of the mental phenomenon that supports observable 
performance. In short, the job of linguistics is not only to 
describe the formal structure of competence, as theoreti-
cians would have it, but also to explain the cognitive pro-
cesses that might lead to its acquisition from performance 
data. Following this ideal, we focus in this paper on the 
goal of finding a formal representation which would be 
amenable to defining various types of semantic compe-
tence (thus accounting for theoretical matters), and which 
could be shown to be acquirable from performance data 
(thus accounting for cognitive reality and, of importance to 
us, allowing for the computational simulation of specific 
aspects of linguistic cognition).

Theoretically, we draw the consequence of performance 
being defined as an incomplete or degraded competence, 
namely that performance and competence are made ‘of the 
same stuff’. If performance, the observable part of language, 
can be characterised in terms of utterances, so should com-
petence. Formally, we define both competence and perfor-
mance as generating a set of sentences uttered about some 
world(s) using some grammar. We further acknowledge the 

various incarnations of semantic competence and hypoth-
esise that our representations should allow for at least three 
levels of meaning to be extracted: the truth-theoretic level, 
the lexical level, and the level of language use.

Cognitively, we posit that our representation of perfor-
mance sentences should allow a learner to infer from it 
the building blocks of competence, at all relevant levels 
of meaning. To model learnability, we use distributional 
semantics (DS: [6, 18, 40]), a vector-based representation 
of sentence constituents. DS defines meaning through usage 
and generates representations through the computational 
analysis of large corpora. That is, it relies on observable 
data—the data of performance—, as recorded from the many 
individual speakers who produced the utterances included 
in a given corpus.

Combining the theoretical aspects of competence with 
DS presupposes a representation which accommodates 
model theory as well as distributional learning. The contri-
bution of this work is therefore the formal re-definition of 
a truth-theoretic model in terms of a dynamic vector space, 
with dimensions consisting of the individuals (both singu-
lar and plural) in a given universe. Predicates are defined 
with respect to those dimensions, resulting in a framework 
where meanings are a function of the entities that instanti-
ate them. A minimal example of such a model is shown in 
Fig. 1, showing two single instances of trees and their corre-
sponding plurality as a 3D space, and some predicates living 
in that space as boolean vectors, within a cube. This space 
has a number of properties desirable in both formal and dis-
tributional semantics, which we will describe in the course 
of the paper: ability to compute pluralities and differentiate 
collectives from distributive predicates, compositionality, 
amenability to probabilistic approaches and word meaning 
contextualisation.

Fig. 1   A model with two entities and their plurality, in a space with 
basis BM = {{a1}, {a2}, {a1, a2}} , corresponding to some uni-
verse U. Predicates PL = {beech, tree, old, young, elm, forest} are 
boolean vectors, thus defining the vertices of a cube: old′ , the set of 

old things, is given by the vector [100] (the bottom right vertex of 
the cube), corresponding to the set {a1} . We will show in the paper 
how to derive composed predicates such as young-or-old′ , and how to 
relate the entities to their plurals
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2 � Competence and Performance

We will first position our paper with respect to previous 
approaches to the competence/performance distinction. In 
what follows, we introduce various frameworks, starting 
with the canonical Chomskian definition of competence, 
and subsequently highlighting specific attempts to port 
the original notion to semantics. We discuss proposals 
with different foci and look at semantic competence from 
the point of view of (a) lexical semantics [32]; (b) ‘ideal’ 
truth theory [46]; and (c) a causal theory of reference [35], 
which contends that people simply use words as others 
have used them before. Our aim is to position ourselves at 
the junction of those proposals, hoping that our formalisa-
tion provides a bridge across them.

2.1 � Competence and Performance in Syntax

Chomsky [9, 10] claims that syntactic competence corre-
sponds to some unconscious knowledge of a speaker-hearer, 
which reflects the grammar of his or her language. Compe-
tence is ‘error-free’ and not constrained by speaker limita-
tions like working memory size or processing time. Perfor-
mance, in contrast, refers to the observable side of language, 
including associated production errors, memory limitations, 
etc. Linguistics, under that view, is the study of competence, 
that is, of what it means to know one’s language, and of the 
processes that leads to its acquisition. As such, linguistics 
can be regarded as a branch of psychology.

According to Chomsky, the acquisition of competence 
from performance data implies the existence of an underly-
ing Universal Grammar (UG), i.e. an innate system shared 
by all human beings, which kick-starts the process of learn-
ing one’s native language. The existence of UG is justified 
by several observations. First, all human languages seem to 
share some properties. Second, children learn their language 
extremely rapidly, despite being exposed to relatively sparse 
data (‘poverty of the stimulus’), and within a language com-
munity, they seem to converge towards the same language 
even though they are exposed to different utterances. Fur-
thermore, they acquire a notion of grammaticality even in 
the absence of explicit information about ungrammatical-
ity. Finally, there seems to be some ‘ordering’ in the way 
that various constructions are acquired. The question of 
innateness is an interesting one for AI practitioners, as it 
encourages the field to question whether purely data-driven 
approaches can account for human-like acquisition, and what 
kind of inbuilt knowledge comes with a specific machine 
learning architecture. But the notion of Universal Grammar 
is not straightforwardly applicable to semantics, prompting 
the question of defining competence with regard to meaning.

Partee [48] gives a thorough account of the relation 
between Chomskian theory and semantics, highlighting 
how the syntax-semantics interface figures prominently in 
all of Chomsky’s writing—and this, despite his reservations 
about the importance of semantics. Aspects [10] introduces 
the notion of deep structure as the input to semantics. The 
specific proposal in that book is that syntax is what gener-
ates such deep structure, and that deep structure forms the 
basis of semantic interpretation. The semantic component 
assumed by Chomsky was first developed in an account by 
Katz and colleagues [32, 33], which we introduce in the 
next section.

2.2 � Competence and Performance in Semantics

Competence as lexical semantics Following the path of ‘psy-
chological’ linguistics, Katz and Fodor [32] pick up on the 
notion of generative grammar advocated by Chomsky, and 
argue that the ability to determine the meaning of a novel 
sentence cannot be given by syntax alone: two sentences 
with identical syntactic structures can mean different things, 
while two sentences with different syntactic structures can 
mean the same thing. They propose that the object of seman-
tics should be what is left when “subtracting grammar from 
the goals of a description of a language” ([32]: p172). In 
other words, semantics should model whatever in language 
is left unexplained by a theory of grammar. In that paper, the 
‘leftovers’ of grammar can all be seen as elements of lexi-
cal semantics: e.g. the relations of hyponymy or antonymy, 
as well as word senses. Katz and Fodor argue that having 
knowledge of such relations lets the speaker detect non-
syntactic ambiguities (e.g. the meaning of bill in the bill is 
large), resolve them (in the bill is large but need not be paid, 
only one sense of bill applies), and also identify semantic 
anomalies ( ∗the paint is silent). A competent speaker, thus, 
should be able to distinguish those meanings and relations 
between them. Following on this work, Katz and Postal [33] 
propose a compositional account of such components, stat-
ing that transformations in a generative grammar will be 
meaning-preserving. Notably, Katz and Fodor do not make 
any assumption with regard to the innateness of semantics, 
although later work by Fodor will famously argue for the 
innateness of concepts [22].

Competence as ‘ideal’ truth theory Moving to the rela-
tionship between cognitive approaches to linguistics and 
formal semantics, Putnam [50] argues that it is possible to 
not know the intension of a term and still have some lexical 
knowledge about it: whilst not being able to tell a beech from 
an elm, he is aware that the two kinds are different from each 
other and that they are some types of trees. Further, he seems 
to be able to use the terms appropriately (‘competently’). 
So semantic competence, he claims, may be observable at 
the level of language use without the speaker mastering 
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truth-theoretic values. Despite appearances, people don’t 
seem to know their language, at least extensionally.

Following such claims, Partee [46] remarks that it is 
indeed difficult to find a notion of semantic competence 
which is compatible with both formal semantics and psy-
chological, Chomskyan linguistics. She questions what it 
might mean to have full competence in a truth-theoretic, 
Montague semantics, and explores the notion of a perfect, 
‘godly’ speaker, who would have perfect ability to match 
words to extensions (i.e. a perfect interpretation function), 
and would be logically omniscient. Such a speaker, she 
proposes, might embody (intensional) semantic compe-
tence. The model incompleteness and the erroneous beliefs 
observed in actual speakers could just be put down to per-
formance factors. She however rejects this proposal in view 
of issues related to propositional attitudes: even if P and Q 
are logically equivalent, the godly speaker will not make the 
inference from Irena believes that P to Irena believes that 
Q. That is, the godly speaker cannot follow the premises of 
Montague semantics that a) logically equivalent constituents 
are substitutable; and b) intensions of sentences (‘knowing 
what the sentence means’) is a function from possible worlds 
to truth values. This kind of truth-theoretic super-compe-
tence only works if all other speakers are similarly godly.1

Competence as causal theory Another issue highlighted 
by Partee [46] is that of rigid designators such as proper 
names. In formal semantics, proper names are taken to have 
the same extension in all possible worlds. But this view is 
not compatible with a psychological theory of meaning 
because across speakers, we will observe differences in rep-
resentations of such terms: a speaker may not know who 
Frege is, or have misunderstood who Frege is, and still be 
able to use the word appropriately, for instance when they 
ask Who is Frege? Kripke [35] argues for a ‘causal theory of 
reference’ to explain such effects: in a nutshell, people use 
the word Frege in a way that is consistent with what they 
have observed in other speakers’ utterances. In this case, as 
in the beech/elm example, competent usage follows from 
simple exposure to performance data, without assuming 
fully competent extensional knowledge. Again, such a view 
does not seem to account for a view of semantic competence 
in the formal truth-theoretic tradition.

A compromise view Partee [47] makes the interesting 
point that a formal view of competence as fully knowing 
one’s language may have been mistaken. She draws on the 
following claim from [8]: “[… ] both perceptual reference 
and the specific ways individuals perceive the world (their 
perceptual groupings and categorizations) depend more on 
the ways individuals are physically and functionally related 

to specific types of entities in the environment than on indi-
viduals’ ability to describe or know something about what 
they perceive” [8]. Mirroring this view of perception, Partee 
claims that semantic competence does not have to be godly 
super-competence. It is acceptable to assume that there is a 
relation between constituents of our language and external 
reality and at the same time that language users are some-
times mistaken or don’t possess competence in all aspects 
of meaning. In other words, truth-theoretic semantics may 
be able to live with imperfect truth. This is the position we 
will adopt in this paper.

2.3 � How to Position this Paper

The present paper makes an attempt at piecing together the 
various arguments and ideas about competence acquisition 
that we have related above. Our position is that linguistic 
competence is the result of cognitive processes but that it 
does not preclude the formal definition of an intensional 
semantics over incomplete models, dependent on a speaker’s 
exposure to performance data. That is, following Partee [47], 
competence is not super-competence. We will explore what 
this means in terms of the formalisation of a model.

Our hypothesis, as stated in Sect. 1, is that the acquisition 
of semantic (and syntactic) competence should be derivable 
from performance data. The formalisation of competence 
should have the same components as that of performance, so 
that performance can be seen as ‘incomplete’ or ‘degraded’ 
competence rather than a fully different type of linguistic 
object. We have seen that semantic competence can refer 
to various notions. One relates to the knowledge of core 
lexical relations [32], another to the ability to retrieve the 
extension of a term [46], yet another to the ‘acceptable’ use 
of a term [32, 35, 50]. We endeavour in this paper to find a 
common formalisation underlying these three notions, whilst 
at the same time acknowledging that they may not emerge 
jointly (and consequently not fail jointly). The limitations 
of speakers’ competence that we presented in Sect. 2.2 (e.g. 
not knowing the extensional difference between elms and 
beeches) should be explicable in terms of the very nature of 
the performance data they were exposed to. A consequence 
of our approach is that Katz and Fodor’s lexical relations 
should be discoverable from performance data rather than 
assumed to be innate, and they should be tightly bound to 
the state of the syntax-semantics interface in the learner. We 
will cover this in Sect. 4.3.

The currently most popular approach to learning meaning 
from performance data is distributional semantics (hence-
forth DS—for introductions to the topic, see [6, 18, 40]). 
DS is a corpus-driven technique to acquire lexical mean-
ing, in the tradition of distributionalists such as Harris [26]. 
By virtue of being corpus-driven, DS is usually considered 
a representation of performance, to be distinguished from 

1  At which point, we note, there is not much point in speakers talking 
to each other, since they all have perfect ontological knowledge.
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the type of lexical relations that might be extractable from 
truth-theoretic approaches. We believe that vector-based 
semantics is the right tool to accommodate the requirements 
we set for a full account of competence. But in its current 
form, it is completely unsuitable for representing essential 
ingredients of a formal semantics—crucially, by failing to 
encode extensions. A large part of the present paper is thus 
dedicated to building a kind of vector semantics which will 
be amenable to both set-theoretical work and the type of 
lexical knowledge that DS excels at.

3 � Preliminaries

In this section, we present the formalisms that we will be 
using throughout the paper. We include a short overview of 
Distributional Semantics (DS), a brief presentation of Mini-
mal Recursion Semantics (our chosen sentence representa-
tion), and some pointers to Linkian semantics, which we use 
to represent plurality.

3.1 � Distributional Semantics

Distributional semantics models build a representation of 
each term in a vocabulary by adding up the number of times 
a context occurs with it, thereby producing a co-occurrence 
frequency matrix which is usually re-weighted using infor-
mation measures such as Pointwise Mutual Information. 
The resulting representations can be viewed as vectors in a 
multidimensional space.

DS has proved to be powerful in modelling psycholin-
guistic phenomena at the word level, including similarity 
and priming [39, 44]. Interestingly, Dumais and Landauer’s 
Solution to Plato’s problem [39] proposes an answer to the 
‘poverty of the stimulus’ problem, involving one of the first 
highly popularised distributional semantics model, further 
incarnated in Latent Semantic Analysis (LSA). There is thus 
a historical connection between DS techniques and some of 
the linguistic phenomena usually seen as part of competence 
acquisition.

Beyond its success at the single word level, DS has made 
small progress on the matter of compositionality. Clark [11] 
and Erk [18] give extensive introductions to composition 
in count-based models. More recent developments have 
focused on training neural systems to represent sentences 
directly (ELMo, [49]; BERT, [15]), and as a by-product, 
contextualised word representations, following previous 
insights from count-based models [20, 53]. With respect to 
lexical relations, DS has had some success with e.g. hypon-
ymy [3, 41, 51]. However, it is fair to say that it still strug-
gles when encoding relations that require both lexical and 
denotational knowledge, such as antonymy.

The problems experienced by DS models at the level 
of lexical relations are symptoms of a more fundamental 
issue, namely that such models are not designed to cater for 
referential information. For similar reasons, the framework 
has failed so far to account for logical phenomena that for-
mal semantics naturally models, such as quantification. It 
has essentially focused on modelling generic, conceptual 
information. It is unclear how DS should be transformed to 
represent the specific attributes of individual entities and sets 
of entities. In response to such issues, a new sub-area has 
developed, referred to as ‘Formal Distributional Semantics 
(FDS)’ (for an introduction, see [7]). Although still in its 
infancy, this area of work is promising, both at a theoretical 
and experimental level. We leave a brief review of relevant 
FDS proposals to the end of this paper (Sect. 7), where we 
show their relation to our framework.

In what follows, we will adopt the formal definition of 
a distributional model given by Erk [19]. A distributional 
model D is a structure of the form

TD and OD are respectively the set of target words and 
the set of context items under consideration. BD are the 
dimensions (the basis) the vector space. CD is the input 
corpus, which can be considered a collection of target 
and context items: CD ∈ (OD ∪ TD)

∗ (any word not in 
the target or context set is then ignored). XD is an extrac-
tion function which takes the corpus and produces a fre-
quency space: XD ∶ (OD ∪ TD)

∗
→ ((TD × OD) → ℕ0) . 

Any post-processing such as weighting or dimension-
ality reduction is bundled into an aggregation function 
AD ∶ ((TD × OD) → ℕ0) → ((TD × BD) → ℝ) . Finally, the 
similarity function over terms in the space is defined as 
SD ∶ (TD × TD) → ℝ.

3.2 � Grammar and Logic

We assume an underlying grammar G, which could in prin-
ciple use any formalism. Whenever we talk of the compo-
sitional rules in G, we will use context-free notation such 
as VP → V NP , but this is only for convenience. The ter-
minals TG in the grammar correspond to predicates PL and 
logical operators LL in a logic L, which has the structure 
L = ⟨PL, LL,VL⟩ . VL is a set of variables. In order to match 
the underspecified logical representation we are about to 
introduce, we assume a constant-free logic. But there is no 
principled reason why constants cannot be expressed in our 
overall framework.

As with the grammar, any type of logic could in principle 
be plugged into the framework we are to propose. Because of 
this, we will build our formalisation around Minimal Recur-
sion Semantics (MRS: [13]), a meta-language which lets us 

⟨TD,OD,BD,CD,XD,AD, SD⟩
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encode an underspecified representation of logical forms. 
MRS has been shown to be compatible with HPSG gram-
mars such as the English Resource Grammar (ERG: [21]) 
and context-free grammars [12].

In more detail, MRS is based on the principle that the 
compositional semantic representation should capture the 
information available from syntax but it does not make dis-
tinctions that syntax cannot resolve. Thus MRS representa-
tions are underspecified for certain ambiguities which are 
not resolved by syntax, such as scope ambiguity. An MRS 
structure consists of elementary predications (EPs) con-
sisting of a predicate and its arguments, identified by varia-
bles. EPs are implicitly conjoined by a ∧ connective: e.g., the 
representation for young tree is young(x4), tree(x4) rather 
than young(x4) ∧ tree(x4) . There are no specific quantifier 
or disjunction operators. Those are handled by dedicated 
elementary predications, as is the rest of the lexicon. For 
instance, an elm is not old would make use of a negation 
operator neg, together with a scoping mechanism:

where l1 and h1 label the predicates and negation opera-
tors respectively, and the qeq relation indicates the scope 
of neg. Scope can be left underspecified: an MRS structure 
with underspecified scope can be related to a set of scope-
resolved MRSs, interpreted as a disjunction. The mechanism 
avoids the need for explicit nesting in the MRS structure (the 
syntax is ‘flat’).

Formally, a bare-bone MRS without scoping mechanism 
is a logic L where PL is a set of predicates corresponding to 
the elements in TG (the terminals in the grammar), and LL 
is the single ∧ connective represented by a comma. In this 
paper, we will consider a logic where predicates have one 
argument only, that is, the logical form LF of a sentence will 
be a string of EPs so that each EP ∈ (PL × VL)

∗ . (We express 
n-place predicates as unary predicates with a single, poten-
tially ordered tuple argument: see footnote 4 in Sect. 4.)

MRS representations can be obtained for sentences from 
an automatic parser, and in that form, are independent of a 
model of the world (as opposed to traditional representations 
in Montague semantics). We will however need to link them 
to extensional representations in the course of this work. We 
thus introduce our notion of model in the next section.

3.3 � Model

We define a model M in the standard way, as a structure 
⟨U, ��.��⟩ . U is the universe containing a non-empty set of 
objects. ||.|| is an interpretation function which maps an 
n-place predicate to a set of ordered n-tuples of objects in 
U, and a proposition to a truth value. For instance, assum-
ing that elm is a predicate in the grammar with a one-place 

l1 ∶ elm(x1), l1 ∶ old(x1), h1 ∶ neg(_2, x1), h1 qeq l1

tuple argument, we might have ||elm|| = {{a1}, {a2}} , 
meaning that the predicate elm maps onto the singletons 
{a1} and {a2} in the universe. ||elm|| is the extension of elm. 
We will also use the prime notation whenever convenient, so 
elm� = ||elm|| = {{a1}, {a2}} . Note that we do not disam-
biguate extensions: if a can truthfully be called a tree, then 
tree�(a) is true, whether the tree is a living being or a graph. 
We will discuss later how several conceptual categories can 
nevertheless emerge from such ambiguities (Sect. 5.3).

Set representation For our set representation, we adopt 
a Linkian semantics [42], where sets are described as join-
semilattices. This allows us to talk about plurality and col-
lectivity, two aspects of formal semantics that are missing 
in current machine learning approaches to the modelling of 
language but are nevertheless essential in making correct 
inferences from utterances (see e.g. the distinction between 
The children ate cake → A child ate cake vs. The children 
built a raft ↛ A child built a raft).

A lattice is a partially ordered set in which any two ele-
ments have a unique least upper bound (their join) and a 
unique greatest lower bound (their meet). The lattices 
described by Link are join-semilattices, i.e. only the join 
constraint is enforced. An example of a join-semilattice is 
shown in Fig. 2, for some set of trees {a1, a2, a3} in a mini-
world. Note, for future reference, that subsets of that join-
semilattice correspond to sets of single and plural individu-
als which can form the basis of an entity space, of the type 
shown in Fig. 1. We reproduce the cube from Fig. 1, with its 
three individuals {{a1}, {a2}, {a1, a2}} , to make this clear.

In Linkian plural semantics, the ∗ (star) sign gener-
ates all individuals sums of members of the extension of 
some predicate P. So with P = tree , the extension of tree 
is a join-semilattice ∗tree representing all possible sums of 
trees in our domain (as shown in the picture). The sign � is 
the sum operator. �aPa represents the sum, or supremum, 
of all objects that are P (so the top of the semilattice). In 
the example above, � a tree a is the supremum of all trees: 

Fig. 2   An example join-semilattice with three atomic individuals and 
their pluralities. The cube from Fig. 1 corresponds to the subset of the 
semilattice with individuals {{a1}, {a2}, {a1, a2}} . The entire semilat-
tice would fit into a space of dimensionality 7, to accommodate all its 
nodes
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{a1, a2, a3} . Any individual plural can be retrieved via the 
individual sum operator ⊕ . So {a1}⊕ {a2} is the plural 
object consisting of a1 and a2 , that is, {a1, a2} . Similarly, 
{a1}⊕ {a2}⊕ {a1, a2} = {a1, a2}.

Logical operators As suggested above, MRS per se does 
not have an extensional interpretation, so that the meaning 
of quantifiers, for instance, is not defined. This allows us to 
set a meaning for some operators and not others, as needed. 
This property is important as we do not want to assume that 
a speaker necessarily masters such operators. Quantifiers 
are a case in point, being acquired relatively late by chil-
dren [29, 30]. For the sake of illustration, we will however 
treat ∃ and ∀ here as having their standard first-order logic 
formalisations, leaving other operators to be discussed later 
in this paper.

Assignment Additionally, we will define an assignment 
function � which maps variables in the MRS representation 
to actual objects in the universe. For instance,

Objects can be plural, so we might also have

Substitution In combination with an assignment function, 
we will posit a substitution function ��

U
 operating over 

MRS logical forms, which expands out quantifiers, map-
ping each variable bound by the quantifier(s) to the object in 
U given by the assignment function � . Given some assign-
ment �(x) = {a1 … an} and a proposition � correspond-
ing to ∀x�(x) , the substitution ��

U
(�) returns the MRS 

{�(a1),�(a2), … ,�(an)} (i.e., a conjunction). Given some 
assignment �(x) = {a1 … an} and a proposition � corre-
sponding to ∃x�(x) , the substitution ��

U
(�) returns a set of 

MRSs {�(a1)},… , {�(an)} interpreted as a disjunction.
To take an example, if �(x34) = {{a2}, {a3}} and we 

have the logical form {all(x34), elm(x34), old(x34)},2 and all 
is defined in the logic as the standard ∀ , then we obtain the 
following set of substitution instances with a single logical 
form:

For the logical form {some(x34), elm(x34), old(x34)} , assum-
ing that some corresponds to ∃ , we would have a set of sub-
stitution instances containing two logical forms:

�(x34) = {{a2}, {a3}}

�(x34) = {{a2}, {a3}, {a1, a3}}

{{elm�(a2), elm
�(a3), old

�(a2), old
�(a3)}}

The purpose of the substitution is to gain a representation of 
the properties/relations that apply to individuals in the uni-
verse, according to the sentence (which may or may not be 
true) and given a certain assignment. Truth values are then 
computed individually over the substitution instances, as we 
will show below. Note that after substitution, we use the 
prime notation over predicates to show that they now have 
an extensional interpretation (which, we recall, they did not 
have in the MRS). We will talk of ‘substituted EPs’ to refer 
to the translation of individual MRS elementary predications 
in the substituted instances.

Truth Finally, we can compute the truth value of a MRS 
logical form � according to the obtained substitution 
instances. We will use the notation ⊧𝛼

M
𝛷 to say that � is 

true, and ⊭𝛼
M
𝛷 otherwise. Given a proposition � corre-

sponding to ∀x�(x) (universally quantified), we have ⊧𝛼
M
𝛷 iff 

every substitution instance in the set ��
U
(�) is true. Given a 

proposition � corresponding to ∃x�(x) (existentially quanti-
fied), we have ⊧𝛼

M
𝛷 iff some substitution instance in the set 

��
U
(�) is true.

4 � A Distributional Account of Semantic 
Competence

In this section, we formally introduce our definition of a 
speaker’s semantics. Our formalisation is to be given in a 
distributional framework and thus naturally fits in the Krip-
kean causal theory of competence (Sect. 2.2), which simply 
states that competent usage follows from exposure to per-
formance data. We however also demonstrate in Sect. 4.1 
that the account can model the idea of truth-theoretic super-
competence introduced by Partee [46]. Further, we also show 
in Sect. 5.3 that it allows us to retrieve the all-important 
lexical relations of Katz and Fodor [32].

In a nutshell, our proposal is to redefine set-theoretic 
models as DSMs with the following shape:

Note that we are now using the subscript M instead of D for 
the model’s components, to clarify the difference between 
a standard distributional model, which computes statistics 
over a real corpus, and the approach proposed here, which 
computes truth values within an truth-theoretic language. 
The components of the model are as follows:

•	 PL = {P1 …Pm} the predicates of a logic;
•	 U = {{a1}…{an}…{a1, a2}…} a given universe with n 

atomic objects and the pluralities computable over those 
objects;

{{elm�(a2), old
�(a2)}, {elm

�(a3), old
�(a3)}}

M = ⟨PL,U,BM ,CG,L,��
U
,XM ,AM , SM⟩

2  As pointed out in Sect.  3.2, MRS captures the scoping of 
quantifiers via additional notation on the elementary predi-
cations. In this case, the full scoped expression would be: 
l0 ∶ all(x, h1, h2), l1 ∶ elm(x), l2 ∶ old(x), h1 = l1, h2 = l2, top = l0   , 
where h1 shows the restriction of the generalized quantifier and h2 
the scope. In the spirit of clarity, we do not show this in the examples.
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•	 BM the vector basis of the model’s space;
•	 CG,L,��

U
 a corpus of substitution instances;

•	 XM ∶ (PL ∪ U)∗ → ((PL × U) → {0, 1}) , an extraction 
function attributing truth values to pairs of predicates/
entities and returning a predicate by entity matrix (the 
ideal entity matrix);

•	 AM ∶ ((PL × U) → {0, 1}) → ((PL × PL) → ℕ0)  ,  a n 
aggregation function returning a predicate by predicate 
matrix (the ideal predicate matrix);

•	 SU
M
∶ (U × U) → ℝ and SP

M
∶ (PL × PL) → ℝ , two simi-

larity functions acting over the entity or predicate matri-
ces.

To illustrate the general idea, we can come back to Fig. 1, in 
which we see a cube that corresponds to a model M extracted 
from some corpus, with U the universe of 3 individuals 
expressed by the 3-dimensional basis BM of that space, and 
PL a set of predicates labelling the vertices of the cube. The 
right of the figure shows the corresponding matrix form of 
that space. The values in the cells of the matrix are the result 
of applying XM to PL and U: they tell us which properties 
attach to which individuals.

We will now explain how to derive the above definitions.

4.1 � Formalisation of the Super‑Competent Speaker

Following Partee [46], let’s assume the existence of an ideal, 
truth-theoretic speaker—some godly being who knows what 
there is the world (i.e. has perfect ontological knowledge of 
the universe U) and knows how to name things (i.e has a per-
fect, deterministic interpretation function ||.||). This speaker, 
according to Partee, might be said to have some semantic 
(truth-theoretic) super-competence. We will now show 
that such an ideal speaker can straightforwardly generate 
a truth-theoretic boolean vector space of the type shown in 
Fig. 1, that is, a model encapsulated by a high-dimensional 
hypercube.

The following contains a fair number of formal defini-
tions, but the overall intuition of our method is extremely 
simple. Our godly being has a grammar, as defined in 
Sect. 3.2. He or she can generate all sentences allowed by 
that grammar, compute their substitution instances and the 
truth values of those substitutions, as shown in Sect. 3.3. The 
result of this procedure is the set of all sentences allowable 
by the godly being’s language, marked as True or False. Our 
goal is to show that this information can be formalised as a 
vector space. We will first go through definitions and then 
provide a practical example of their applications in Sect. 4.2.

Let us define the language that can be produced by gener-
ating all valid sentences with our grammar G.3 We will call 
this set of sentences CG and simply refer to it as language. 
Let us also define the MRS representations of the sentences 
in CG as a set of logical forms CG,L . For each sentence in 
CG , we have a unique underspecified MRS representation 
in CG,L . We will call the set of logical forms in CG,L the 
minimal logic language. Using our notion of substitution 
��

U
 , each MRS in CG,L can be converted to its substitution 

instance, where objects replace variables (Sect. 3.3).
Let us define CG,L,��

U
 as the set of substitution instances 

obtained by passing each logical form in CG,L through ��
U

 . 
This set of substituted logical forms will be called the sub-
stitution language. The truth of each proposition in CG,L,��

U
 

can be computed given a particular assignment. We will call 
the combination of CG,L,��

U
 and the corresponding truth value 

assignments a truth-theoretic language, denoted by T  . 
That is, T = ⟨CG,L,��

U
, ��.��⟩ . As we see, the truth-theoretic 

language structure is very close to the definition of a model 
M = ⟨U, ��.��⟩ . While the truth-theoretic language is a set of 
substitution instances over logical forms, together with an 
interpretation function, the model is the universe itself asso-
ciated with the same interpretation function.

Now, let’s note that CG,CG,L and CG,L,��
U
 are nothing other 

than ‘corpora’ of sentences, at different levels of representa-
tion. That is, we can define a distributional semantics model 
(DSM) over any of them. We will now produce a semantic 
space from CG,L, , using our definition of a DSM as

Let TD be the predicates of our logic, that is, TD = PL . Our 
DSM contexts will be the objects in our universe, so 
OD = U . Our corpus CD is CG,L,��

U
 . We will define an extrac-

tion function XD so that

XD returns 0 whenever the truth value of a substituted EP 
(i.e. a proposition) is false, and 1 otherwise. As in stand-
ard distributional semantics, it results in a matrix of target-
context pairs: a semantic space. For instance, the cell of the 
matrix at the intersection between row elm and column a2 , 
written as elm × a2 , corresponds to the truth of the propo-
sition elm�(a2) (e.g. 1 if it is true that elm�(a2) ). We will 
call the resulting matrix the ideal entity matrix, that is, 
the vectorial representation of the truth-theoretic language, 
expressed in terms of context entities.

D = ⟨TD,OD,BD,CD,XD,AD, SD⟩

XD ∶ (PL ∪ U)∗ → ((PL × U) → {0, 1})

3  Technically, these are sentences combined with their associated 
syntactic derivation.
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Finally, we can define an aggregation function AD which 
groups context elements by predicate (e.g. all objects that are 
elms are aggregated into a single elm′ context):

This aggregation function returns a matrix of predicates by 
predicates, as standard distributional models do. We will call 
this aggregated matrix the ideal predicate matrix.

Two variants of the similarity function SD can be straight-
forwardly defined over the space, before and after aggre-
gation: one computing similarity over targets (predicates), 
another one over contexts (entities). That is,

The semantic space obtained from passing CG,L,��
U
 through 

XD is nothing other than a model, expressed in vector form. 
But a range of distributional semantics techniques can now 
be applied to that model.

4.2 � (Imperfect) illustration

We will now show the use of our formalisation on a simple 
example. By virtue of being ‘simple’, this example will fall 

AD ∶ ((PL × U) → {0, 1}) → ((PL × PL) → ℕ0)

SP
D
∶ (PL × PL) → ℝ and SU

D
∶ (U × U) → ℝ

short of producing an instance of ideal competence (we will 
discuss later in which ways exactly it is defective). But the 
exercise will nevertheless provide an illustration of the defi-
nitions we laid out in the previous section.

We will define a grammar and a logic as shown in Figs. 3 
and 4. The predicates in PL straightforwardly correspond to 
equivalent terminals in TG . In LL , ∃ corresponds to a(n) and 
∀ to all. We will also introduce a small model M = ⟨U, ��.��⟩ 
to match G. The universe in that model consists of six indi-
vidual objects, all trees. Those objects can be old or young, 
and they are elms, beeches or oaks. The objects are labelled 
a1 … a6 and since they are all trees, our universe U can be 
defined as the extension of tree which, to include plurality, 
will be written as ∗tree . That is, U = ∗tree , which is

Figure 5 shows the interpretation of each predicate in PL.4

4.2.1 � Computing Languages

CG is the language that can be generated with G, that is, all 
the valid sentences obtainable from the grammar:

CG ={‘an elm is old’, ‘an elm is young’, ‘a tree is old’, 
‘a tree is young’, ‘an oak is old’, ‘an oak is young’, ‘a 
beech is old’, ‘a beech is young’, ‘all beeches are old’, 
‘all beeches are young’, ‘all trees are old’, ‘all trees 
are young’, ‘all oaks are old’, ‘all oaks are young’, ‘all 
elms are old’, ‘all elms are young’}

(Note that our small grammar does not have a rule 
VP ⟶ V NP , so sentences such as An elm is a tree are 
not generated. We will come back to this point later in the 
paper.)

{{a1}, {a2}…{a3, a4}…{a1, a2, a3, a4, a5, a6}}

Fig. 3   A grammar

Fig. 4   A logic

Fig. 5   Predicate extensions

4  Note that for simplicity, we will not cover predicates with multi-
ple arguments in this paper. We can generalise our framework to 
such predicates by assuming that our unary elementary predications 
can take ordered tuples as their (single) argument. For instance, 
chase′ may be represented in a substituted EP as chase�(A) where 
A = ⟨{a1}, {a2}⟩ . This allows us to preserve the convenience of a 
two-dimensional matrix.
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The minimal logic language CG,L is the translation of CG 
into MRS (variables are allocated as sentences are encoun-
tered, and we have |CG| = 16):

CG,L = {a(x1), elm(x1), old(x1);
a(x2), elm(x2), young(x2);

...
all(x15), elm(x15), old(x15);

all(x16), elm(x16), young(x16)}

The substitution language CG,L,��
U
 is the set of substitution 

instances for the logical forms in CG,L . It must be computed 
for each possible assignment � . Let’s consider for instance 
the first MRS above, a(x1), elm(x1), old(x1) . An assignment 
function � can associate six different entities with x1 : 
x1 → a1, x1 → a2, x1 → a3, x1 → a4, x1 → a5 , or x1 → a6 . 
This corresponds to six different substitution instances 
{{elm�(a1), old

�(a1)}} … {{elm�(a6), old
�(a6)}} . The assign-

ment can be to sums of individuals: if x16 → {{a2}, {a3, a4}} , 
then the substitution instance of

is {{elm�(a2), young
�(a2), elm

�(a3, a4), young
�(a3, a4)}}

We note that if we had to write down a complete grammar 
G, we would have to deal with the fact that CG may contain 
an infinite number of sentences. This is due to recursive 
grammar rules of the type N ⟶ AN which might return 
sentences such as A young (young)∗ … tree is young (where 
the Kleene star indicates an indefinite number of repetitions 
of young). Thus the substitution language CG,L,��

U
 , even for 

a universe with a finite number of entities, may consists of 
an infinite number of propositions. This is in line with the 
idea of competence as the ideal system that allows a speaker 
to generate and interpret a potentially infinite number of 
sentences. The actual performance of a speaker, bounded in 
particular by memory limits and processing capacity, will 
only include a finite subset of those sentences.

4.2.2 � The Ideal Entity Matrix

Let’s now create an entity matrix from CG,L,��
U
 . Our space 

has dimensions U. It contains the following target vectors:

We can use the extraction function XM to compute the truth 
value of each EP in CG,L,��

U
 . For instance, the proposition 

elm�(a1) in {{elm�(a1), old
�(a1)}} evaluates to True because 

a1 is in the set of elms. The proposition elm�(a3, a4) also 
evaluates to True because the set {a3, a4} is in a subset of 
elms.

Because of space constraints, we cannot print the whole 
vector space here. We will first consider the subset U′ of U 
containing singletons only. We will then show an example 

all(x16), elm(x16), young(x16)

PL = {tree, beech,… , young}

representation with a plurality, pointing out the relevance of 
the formalisation for dealing with collectivity and distribu-
tivity. Of course, in the spirit of modelling the truth-theoretic 
language, dimensions should actually be available for each 
possible plurality.

The semantic space for U′ , where

is shown on the left of Table 1. The matrix can be read 
‘by row’ as well as ‘by column’. Row beech′ returns all the 
objects which are beeches, that is, the extension of beech: 
||beech|| = {a ∶ beech� × a = 1} (the individuals a so that 
the matrix cell beech� × a has a value of 1). Similarly, col-
umn a3 returns all the predicates that are true of a3 . Whether 
the label of a particular column is in the set of things denoted 
by the label on a particular row is given by the value in the 
corresponding cell.

The right of Table 1 shows us an example with three sin-
gletons and two plurals (we assume our grammar has been 
expanded to accommodate the relevant sentences in CG ). We 
have also added a new predicate forest′ and for the sake of 
illustration, we will arbitrarily posit that three trees or more 
can be referred to as a (very small!) forest. This is retriev-
able from the representation: the set {a1, a2, a3} has a weight 
of 1 on the predicate forest′ , but the set {a1, a2} hasn’t. To 
get the set of beeches when considering plurals, we per-
form a Linkian sum operation on the objects which have a 
weight of 1 in a particular row. So the extension of beech is 
𝜎a beech a = {a1}⊕ {a2}⊕ {a1, a2} = {a1, a2}.

Let’s now remark that the predications that are applied 
to plural individuals are underspecified: a weight of 1 on 
the dimension beech′ for {a1, a2} does not explicitly tell us 
whether the predicate should operate distributively or col-
lectively on the plural. Note that forest′ also has a weight of 
1 on dimension {a1, a2, a3} , but while a1 and a2 are distribu-
tively beeches, a1, a2 and a3 are collectively a forest. Doing 
things this way allows us to have a more compact represen-
tation. However, we can easily infer the predicate status by 
unpacking the plural object and checking the weight of its 
component singletons on the relevant dimension. For exam-
ple, the plural {a1, a2, a3} has a weight of 1 on both tree′ and 
forest′ . We can however find out that tree′ acts distributively 
by noticing that {a1, a2, a3} = {a1}⊕ {a2}⊕ {a3} and that 
tree� × a1 = 1 , tree� × a2 = 1 and tree� × a3 = 1 . Conversely, 
all of the entities a1 , a2 and a3 have a weight of 0 on the for-
est′ dimension, so forest′ acts collectively.

4.2.3 � Aggregation Function

Applying the aggregation function AD to the space shown in 
Table 1 (left), we get the symmetric predicate matrix shown 
in Table 2. The cells in the diagonal of the matrix show the 

U� = {{a1}, {a2}, {a3}, {a4}, {a5}, {a6}}
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cardinality of the sets denoted by the predicate on the respec-
tive rows/columns. For example, the cell tree� × tree� tells us 
that our universe contains six trees.

We can verify that the vector representation of beech ′ 
([2, 0, 0, 2, 1, 1]) is simply the pointwise addition of the 
columns for the beech objects in Table 1 ( a1 and a2 ). Note 
that when performing this operation over plurals and col-
lectives, we must perform a Linkian sum operation rather 
than simple addition. But the principle behind aggregation 
remains the same.

4.2.4 � Similarity Function

Vectors allow the use of standard distributional approaches 
to similarity. In the predicate matrix, similarity can be com-
puted over target words as SP

M
∶ (PL × PL) → ℝ . The similar-

ity between two lexemes corresponds to the degree to which 
their semantic properties are shared. For instance, oaks are 
more similar to elms than to beeches because they are more 
likely to be old, given our observations. It is also possible to 
compute similarity from the entity matrix. One particularly 
useful computation may be the similarity between objects 
SU
M

 , allowing the model to compute spatial distance between 
any two individual or plural objects. As we will see later, this 

ability also relates to the formal definitions of antonymy and 
word senses (Sect. 5.3).

Compare this with DSMs based on word co-occurrences, 
where similarity essentially corresponds to the degree to 
which two lexemes share usage patterns. While SP

M
 is derived 

from extensional information, it does also naturally capture 
lexical information: old′ and young′ are somewhat similar 
because they both apply to instances of beech ′ and elm′ , 
that is, they would both be found in sentences such as an 
elm is old or an elm is young. Thus, the similarity shown 
here does capture some ‘word co-occurrence’ information, 
as they would be observed in declarative sentences. This is 
an important point because it allows us to see our proposed 
truth-theoretic model as a special case of standard DSMs (as 
described in Sect. 3).

Figure 6 (left) shows a similarity heatmap for the entity 
matrix from Table  1. Each square of the heatmap shows how 
related the entities in the corresponding row and column are 
(as calculated using cosine similarity). We can see that a3 
and a4 , since they have identical vectors, display maximum 
similarity. Figure 6 (right) shows a similarity heatmap for 
the predicate matrix obtained in Table 2. We see from that 
heatmap that there is a weak similarity between oaks and 
young things, due to the fact that oaks are never young.

4.3 � Relation to Performance

So far, we have presented our theoretical framework from 
the formal and ideal point of view of ‘super-competence’, 
that is, assuming a speaker with perfect ontological knowl-
edge. In order to show that it is amenable to computational 
treatment, we now need to inspect its properties with 
respect to human, ‘non-godly’ competence. In particular, 

Table 1   Left: Entity matrix, representation of model M, as extracted from C
G,L,��

U

 . Right: variation with plurals and a collective predicate
a1 a2 a3 a4 a5 a6

beech’ 1 1 0 0 0 0
elm’ 0 0 1 1 1 0
oak’ 0 0 0 0 0 1
tree’ 1 1 1 1 1 1
old’ 1 0 1 1 0 1
young’ 0 1 0 0 1 0

a1 a2 a3 a1, a2 a1, a2, a3

beech’ 1 1 0 1 0
elm’ 0 0 1 0 0
tree’ 1 1 1 1 1
old’ 1 0 1 1 1
young’ 0 1 0 0 0
forest’ 0 0 0 0 1

Table 2   Aggregated version of the distributional model in Table 1
beech’ elm’ oak’ tree’ old’ young’

beech’ 2 0 0 2 1 1
elm’ 0 3 0 3 2 1
oak’ 0 0 1 1 1 0
tree’ 2 3 1 6 4 2
old’ 1 2 1 4 4 0
young’ 1 1 0 2 0 2

Fig. 6   Left: Similarity heat-
map for ideal entity matrix in 
Table 1. Right: Similarity heat-
map for ideal predicate matrix 
in Table 2
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we must consider the fact that linguistic competence has to 
be acquired (by a human or a machine) and that our model 
must accommodate a speaker’s expanding information state 
and linguistic knowledge.

Let us come back to our definition of competence in terms 
of a set of utterances. A natural question that may be asked 
about our proposal is whether our object space could not be 
directly built from the model representation, in a grammar-
free fashion: if the set of beeches is included in the set of 
trees in the model, we should be able to derive the equivalent 
vectors without going through the hassle of producing a cor-
pus of sentences. In other words, if we have a model 
M = ⟨U, ��.��⟩ , why do we need the truth-theoretic language 
T = ⟨CG,L,��

U
, ��.��⟩?

The simplest answer to this question may just be that in 
actual fact, non-godly beings do not have access to either 
U or ||.||. In humans, U is incomplete because no one has 
complete ontological knowledge. U may also be biased in 
various ways because a lot of what we know about the world 
comes from ‘being told’ rather than having direct percep-
tual experience of the relevant situations—or alternatively 
because our perception and inferential abilities are them-
selves imperfect. ||.|| is similarly deficient, partially for the 
same reasons, but also because some predicates are more 
difficult to model truth-theoretically than others. Abstract 
terms are probably the most obvious area of difficulty. But 
we also note classic disagreements across speakers, such as 
the notorious cup/mug example (what is a cup for me may 
be a mug for you: [38]).

Perhaps less obviously, the semantics that the speaker 
acquires should be the semantics of their language, that is, 
a particular rather than a universal semantics, which matches 
the speaker’s grammar at the syntax/semantics interface. 
Arguably, a semantics directly based on a true model of the 
world is too powerful and will not account for cross-linguis-
tic variability.5 This has an important consequence for the 
completeness property of the truth-theoretic language 
T = ⟨CG,L,��

U
, ��.��⟩ . In order to be a complete description of 

the world, T  would require some ‘ideal grammar’. Such a 
grammar may be more than the grammar of a competent 
speaker, in that it would presumably include an ideal lexicon 
and an ideal set of composition rules which would afford an 
ontologically perfect representation of what there is.

To make this point clearer, it suffices to inspect the com-
pleteness of CG,L,��

U
 with respect to the corresponding entity 

matrix. Let’s recall that CG,L,��
U
 are the substitution instances 

of logical forms that are obtained by parsing the sentences in 
CG . The entity matrix is the result of putting CG,L,��

U
 through 

a truth-theoretic extraction function XM . If we look again at 

the entity matrix on the left of Table 1, we note that we can 
easily generate propositions from the matrix, with their asso-
ciated truth values. Specifically, the set of true propositions 
given assignment � , written as {𝜙 ∶⊧𝛼

M
𝜙} , is given by all 

possible combinations of object/predicate pairs with a value 
of 1 in the object matrix: {𝜙 ∶⊧𝛼

M
𝜙} = {{a,P} ∶ P × a = 1} . 

More generally, the truth of a random proposition 
� = {{P1(a1),P2(a2),… ,Pk(ak)}} is the product of the truth 
values of its (substituted) EPs: (P1 × a1)(P2 × a2)… (Pk × ak) . 
As expected, this product will be 0 if one single EP is false.

Let’s now illustrate what this means in terms of our 
example object matrix in Table 1 by generating a few 
propositions from this matrix by simply picking up, for 
each proposition, a number of random cells:

�1 is true because beech × a1 = 1 . �2 is also true because 
beech × a1 = 1 and tree × a1 = 1 . �3 is false because 
elm�(a2) = 0.

One important observation about this exercise is that we 
are generating true propositions which are not derivable 
from our original corpus CG . Note, for instance, that �2 , 
which might roughly be expressed as the sentence There 
exists a beech which is a tree, is not in CG . This happened for 
the simple reason that our grammar G, as we have set it up, 
does not include a rule VP → V NP (which would let us write 
A beech is a tree). This illustrates an important point: a true 
description of the world is not necessarily a comprehensive 
one. The set of true sentences that can be generated from a 
given grammar, as given by the truth-theoretic language T  , 
may not correspond to what the speaker knows about the 
world. In other words, syntactic competence and semantic 
competence may be out of sync.

Putting these considerations together, we see that we 
must downgrade our idealised notion of super-compe-
tence M = ⟨U, ��.��⟩ by acknowledging that, in a real 
speaker, mastery of U and ||.|| is imperfect, resulting in a 
notion of human competence MH = ⟨UH , ��.��H⟩ , where 
knowledge of the universe is limited to a certain informa-
tion state. By extension, the truth-theoretic language 
T = ⟨CG,L,��

U
, ��.��⟩ can itself be considered bounded by the 

speaker’s grammatical competence, with the interpretation 
function being perfect for a given state of grammar (and 
logic), as we’ve shown above. This results in human 
language,

�1 = {{beech�(a1)}}

�2 = {{beech�(a1), tree�(a1)}}

�3 = {{elm�(a2), tree�(a2), old�(a4)}}

T
H = ⟨CH

G,L,��
U

, ��.��H⟩

5  We thank Nicholas Asher for this insight.
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i.e. the sentences that a speaker is able to parse and/or gener-
ate given their grammatical competence, together with that 
speaker’s belief about their truth values.

This, now, looks very much like performance: a cor-
pus of grammatically imperfect utterances, mapped to an 
incomplete universe associated with an equally flawed 
interpretation function. The consequence of this is that 
the general structure of our formalisation can be retained 
when learning from standard corpora and/or grounded 
data. We will give a concrete example of this in Sect. 6.

5 � Features of the Semantics

We now consider features of our semantics, including its 
relation to compositionality, its amenability to probabil-
istic treatments, and the way it encodes lexical relations.

5.1 � Composition

A fully compositional account of our framework is beyond 
the scope of this paper, but we will sketch how some of the 
relations typically considered in distributional semantics 
can be modelled using our approach. In particular, we will 
exemplify how composition returns both a set-theoretic 
representation of the composed constituents and still pre-
serves our expectations of distances in the vector space.

We will use two operators when performing composi-
tion, which act over elements of the basis BM . The sum 
operator + performs disjunction: for instance, when we 
pick out the denotation of young or old, we select all 
dimensions activated by the predicate young′ and add all 
dimensions activated by the predicate old ′  , obtaining a 
subspace of dimensionality equal to the number of indi-
viduals in the young semi-lattice plus the number of indi-
viduals in the old semi-lattice. In contrast, the pointwise 
multiplication operator ⊙ performs conjunction: in our 
boolean vector space, whenever we multiply two vectors, 
any dimension where one of the vectors has weight 0 will 
be set to 0, in effect making that dimension redundant to 
the interpretation of the predicate. For instance, in our 
cube in Fig. 1, multiplying tree ′  with young ′  results in 
the vector [111]⊙ [010] = [010] , effectively ‘cancelling 
out’ the first and third dimensions from the interpretation. 
The resulting universe of utterance consists of a unidi-
mensional subspace corresponding to individual a2 (the 
young tree).

What follows is a translation of a standard (simple) 
formal semantics account of composition into a vector 
account. We will assume an account of the syntax-seman-
tics interface where each category in the grammar has a 
corresponding type T ∈ GR in the semantics. Semantic 

types have two main features. First, they have argument 
slots that can be filled by constituent vectors. Those slots 
are initially filled by a vector of 1 values (written as 1⃗ ) 
and are related in the type by either the + or ⊙ opera-
tor, as explained above. For instance, the conjunctive and 
involves two arguments and the ⊙ operator: 1⃗⊙ 1⃗ . Fill-
ing an argument slot with a predicate involves pointwise 
multiplication of the predicate vector with 1⃗ , resulting in 
the predicate itself. For instance, [0, 1, 0] × 1⃗ = [0, 1, 0] . 
Arguments slots that remain unfilled are thus 1⃗ . Second, 
operations have to be wrapped in some function b(v⃗) , the 
role of which is simply to return values above 1 to 1 (this 
is necessary because addition of predicates may result in 
non-boolean vectors):

The definitions below are given with respect to the ideal 
entity matrix, unless stated otherwise.

Intersective composition in phrases Intersective compo-
sition has type b(1⃗⊙ 1⃗) : the extension of young elms, for 
instance, is simply given by the pointwise multiplication 
of the vectors for elm′ and young′ . We can verify this in 
the entity matrix shown on the left of Table 1:

There is a single 1 in the resulting vector, corresponding to 
a subspace with a unique dimension a5 : that is, the set of 
young elms is the singleton {a5}.

Conjunction Conjunction is also of type b(1⃗⊙ 1⃗) (the 
conjoined predicates p1 and p2 both apply to the same 
entity). It operates essentially as intersective composi-
tion, corresponding to the pointwise multiplication of the 
coordinated vectors. For instance:

That is, nothing is both an elm and a beech.
Disjunction Disjunction is of type b(1⃗ + 1⃗) (either p1 or 

p2 applies to the entity). Extensionally, the set of things that 
are elms or beeches is {a ∶ elm� × a = 1 ∧ beech� × a = 1} . 
This extension can be computed by simple vector addition, 
passed through b(v⃗) (so that the resulting vector remains 
boolean even when values are greater than 1). For exam-
ple, we can get the representation for elms or beeches by 
summing the relevant vectors:

b(v⃗i) =

{
0, if v⃗i = 0

1, otherwise

young-elm� = b([0, 1, 0, 0, 1, 0]⊙ [0, 0, 1, 1, 1, 0])

= [0, 0, 0, 0, 1, 0]

elm-and-beech� = b([0, 0, 1, 1, 1, 0]⊙ [1, 1, 0, 0, 0, 0])

= [0, 0, 0, 0, 0, 0] = 0⃗

elm-or-beech� = b([0, 0, 1, 1, 1, 0] + [1, 1, 0, 0, 0, 0])

= [1, 1, 1, 1, 1, 0]
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The resulting vector tells us that the entities that are elms or 
beeches are 1⃗ in basis {a1, a2, a3, a4, a5}.

Negation Negation of a predicate corresponds to type 
b(1⃗)−1 , where the exponent indicates that the selected basis 
is the complement of the negated constituent’s basis. For 
instance:

The resulting vector selects 1⃗ in basis {a1, a3, a4, a6} which 
correspond to the old trees in our model.

Quantification Quantifiers are a binary structure with 
two arguments, a restrictor and a scope. All quantifiers 
have the same type b(Q(1⃗⊙ 1⃗)) . We note that the truth 
value of a quantified statement can be obtained via 
pointwise multiplication of the restrictor and scope. For 
instance, we may have:

Note that the denotation of the NP (e.g., all trees) corre-
sponds to the situation where the second slot of the quanti-
fier is unfilled.

We can also regard quantification as depending on a 
ratio between set cardinalities, it is possible to use the 
information from a probabilistic version of the predicate 
matrix to assess truth values. Such a matrix will be intro-
duced in Sect. 5.2 (see Table 5 for an example). Assuming 
we simply set the meaning of most to be ‘more than half’, 
then we can read off the matrix that most trees are old by 
noting that tree × old = 0.67 > 0.5 (see [17] for a proba-
bilistic account of quantifiers similarly compatible with a 
distributional model).

Similarity We note that those composition operations 
return vectors which behave as expected with respect to 
similarity. For example, using cosine as our similarity meas-
ure, and reading from the predicate matrix after aggregation 
(Table 3), we can derive that old elms are more similar to old 
oaks than to young beeches:

¬young� = b([0, 1, 0, 0, 1, 0])−1 = [1, 0, 1, 1, 0, 1]

⊧𝛼
M
all(N� ⊙ VP�) iff N� ⊙ VP� = N�

⊧𝛼
M
some(N� ⊙ VP�) iff N� ⊙ VP� ≠ 0⃗

⊧𝛼
M
no(N� ⊙ VP�) iff N� ⊙ VP� = 0⃗

Contextualisation Finally, we note that by considering the 
subspace of utterance for particular constituents, we can 
model contextualisation effects on the lexical meaning of 
the predicates, in the spirit of other DS approaches [15, 20].

Let us first consider what composition is supposed to 
achieve, set-theoretically. Given a complex constituent, 
e.g. ‘young or old’, we want to return the extension of 
that constituent (or its truth value, at the sentence level). 
As we have seen before, the denotation of a predicate is 
the set of dimensions in the entity matrix where the predi-
cate has value 1: the extension of beech is given by the 
dimensions that are beeches. So a denotation is a subset of 
the entire universe U = BM , and getting the meaning of a 
constituent involves carving a set of individuals out of the 
original model hypercube, resulting in a new hypercube 
corresponding to the universe of utterance UU , that is the 
set of entities that are actually referred to. (To visualise 
this: the cube in Fig. 1, reproduced in Fig. 2, is a subset 
of the 7-dimensional hypercube that expresses the entire 
semilattice in Fig. 2).

Formally, we can say that the denotation of a (poten-
tially complex) predicate P ′  lives in the basis of a sub-
space of BM where P� = 1⃗ . For example, in Fig. 1, the 
basis formed by {a1} and {a2} contains the denotation 
of young-or-old ′  : it defines all individuals that are 
either young or old and in that 2-dimensional space, 
young-or-old� = [11] = 1⃗ . Whenever the denotation of P ′ 
is empty, we have a zero-dimensional subspace with basis 
{0⃗}.

The interesting aspect of the universe of utterance UU 
is that it itself forms an entity matrix which describes a 
closed subset of the entire universe. Applying the aggrega-
tion function AM to that new entity matrix gives us vectors 
contextualised with respect to UU . This effect is exempli-
fied in Table 4. We observe in particular that the similarity 

SP
M
(old elm�, old oak�)

= cos([0, 2, 0, 2, 2, 0, 2, 0, 0], [0, 0, 1, 1, 1, 0, 0, 1, 0]) = 0.5

SP
M
(old elm�, young beech�) =

cos([0, 2, 0, 2, 2, 0, 2, 0, 0], [1, 0, 0, 1, 0, 1, 0, 0, 1]) = 0.25

Table 3   Aggregated version of the distributional model, with example of intersection
beech’ elm’ oak’ tree’ old’ young’ old-elm’ old-oak’ young-beech’

beech’ 2 0 0 2 1 1 0 0 1
elm’ 0 3 0 3 2 1 2 0 0
oak’ 0 0 1 1 1 0 0 1 0
tree’ 2 3 1 6 4 2 2 1 1
old’ 1 2 1 4 4 0 2 1 0
young’ 1 1 0 2 0 2 0 0 1
old-elm’ 0 2 0 2 2 0 2 0 0
old-oak’ 0 0 1 1 1 0 0 1 0
young-beech’ 1 0 0 1 0 1 0 0 1
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of elms to beeches after the speaker has heard the utter-
ance young tree is now 0.67, compared to 0.59 in U (see 
heatmap for U in Fig. 6). This is to be expected, since in 
UU all elms and all beeches are young—in contrast with 
U where half of beeches and a third of elms are young.

5.2 � Probabilistic Interpretation and Possible Worlds

A predicate matrix of the type shown in Table 2 can be 
easily manipulated to give e.g. a probabilistic notion 
of set membership. Given enough data, it would for 
instance be valid to normalise each vector by the car-
dinality of the target set, giving a representation telling 
us the probability that a given instance of a set might 
have such or such property. So as an example, we can 
take the vector for tree ′  : [2, 3, 1, 6, 4, 2] and normal-
ise it by |tree�| = tree� × tree� = 6 and obtain vector [0.3
3, 0.5, 0.17, 1, 0.67, 0.33], telling us that a random tree 
has a probability of 0.33 to be young. Such a probabil-
istic predicate matrix is shown in Table 5. Each cell in 
this matrix is a simple conditional probability of the type 
Prob(p1�(x)|p2�(x)) : for instance, cell tree� × young� cor-
responds to Prob(young�(x)|tree�(x)).

Using a probabilistic matrix, we can derive a traditional 
notion of possible worlds, following e.g. Goodman and 
Lassiter [24], who show that possible worlds can be gener-
ated by sampling entities which have a certain probability 
of displaying a certain property. By randomly generating a 
large number of entity matrices (worlds) which are basically 
variations on our original universe U, we can define notions 
of possibility and necessity in the standard formal fashion.

5.3 � Formalisation of Lexical Relations

To finish the exposition of our formalism, we will show 
that a number of lexical relations can be retrieved from 
both entity and predicate matrices, satisfying the require-
ment that a semantically competent speaker should master 
such relations.

Synonymy Synonymy relations can be captured from the 
predicate matrix. Two words with high similarity value in 
SP
M

 can be considered near-synonyms. We would also expect 
that for a given model, the utterances about two true syno-
nyms such as aubergine and eggplant, together with their 
truth values, would form two identical subsets of CG,L,��

U
 

(and thus two identical vectors with similarity 1). We might 
also talk of two ‘synonymous’ entities if they share exactly 
the same properties (see e.g. a3 and a4 in Table 1).

Hyponymy If A is a hyponym of B, then A′ ⊆ B′ . This 
can be straightforwardly retrieved from the entity matrix, 
reading the rows and checking for inclusion relations. The 
inclusion of A′ in B′ can be expressed as a vector relation 
where A� ⊙ B� = A� . For instance, in Table 1 (left), we 
have elm� ⊙ tree� = elm� so elms are trees. This relation 
is even easier to retrieve from the probabilistic predicate 

Table 4   Composition example

We start from the entity matrix for the entire universe U. The speaker hears young tree, which results in a universe retraction operation, ending 
up in a universe of utterance U

U
 in two dimensions ( a

2

, a
5

 ). A new aggregation matrix can be computed by applying A
M

 to U
U

 ’s entity matrix. 
We note that in that matrix, similarities are different from the values for the entire universe U (0.67 vs 0.59 for the similarity of beech′ and elm′ ). 
The lexical meaning of the predicates has been contextualised to the universe of utterance

Table 5   Probabilistic interpretation of the aggregated space in 
Table 2

beech’ elm’ oak’ tree’ old’ young’
beech’ 1 0 0 1 0.5 0.5
elm’ 0 1 0 1 0.67 0.33
oak’ 0 0 1 1 1 0
tree’ 0.33 0.5 0.17 1 0.67 0.33
old’ 0.25 0.5 0.25 1 1 0
young’ 0.5 0.5 0 1 0 1
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matrix: if A� × B� = 1 then A is a hyponym of B (all the 
instances of A have to be instances of B).

Note that when considering a matrix with plurals and 
collectives, the inclusion relation above should only be 
computed over predicates of the same type (either dis-
tributive or collective). We refer back to Sect. 4.2 for more 
detail on distinguishing distributives from collectives.

Antonymy Geeraerts [23] distinguishes between three 
basic types of antonymy: gradable, non-gradable and multi-
ple antonyms. The gradable type refers to pairs of terms that 
describe opposite ends of a scale, for instance cold and hot. 
Non-gradable antonyms are those that express a discrete, 
binary opposition like dead and alive. The last class, mul-
tiple antonyms, refers to terms that denote several discrete 
points on a non-gradable, discontinuous scale: academic 
positions (postdoc, lecturer, professor, etc) are an example 
of such a scale. Binary gradable/non-gradable antonyms 
usually refer to adjectives, while multiple antonyms can take 
a variety of forms, including nouns (see above), adjectives 
(e.g. colours) or even verbs (e.g. walk, jog, run… ). The terms 
‘taxonomical siblings’ and ‘co-hyponyms’ are sometimes 
used to refer to multiple antonyms, as they normally are 
classes of objects that have a common hypernym.

To give a general definition, we can say that antonyms 
refer to alternative and incompatible properties with respect 
to a particular class of objects, or with respect to a necessary 
property of that class. For instance, an instance of a living 
thing cannot be young and old at the same time but it must 
be one or the other (because having an age is a necessary 
property of a living thing). The antonymy relation can be 
found in the probabilistic predicate matrix by identifying 
groups of mutually exclusive predicates which are included 
in a common set of objects.

We can see an example of a set of taxonomical siblings 
in Table 5. The predicates elm′ , beech′ and oak′ all have a 
weight of 1 at their intersection with tree′ but a weight of 
0 at their mutual intersection ( elm� × beech� , elm� × oak� , 
beech� × oak� ). Similarly, young ′  and old ′  are mutually 
exclusive properties of trees.

Formally, let N = {P1 …Pk} be a set of predicates and 
PC another predicate so that PC ⊈ N  . N is a set of anto-
nyms if in the probabilistic predicate matrix, for each p ∈ N , 
p × PC = 1 and for each q ∈ N − p , p × q = 0 . I.e., it is nec-
essary that the predicates in N be instantiations of PC and it 
must be impossible that their denotations intersect.

We note that by virtue of relating to a common scale, anto-
nyms are usually lexically related, and their similarity will be 
somewhat substantial. Note in our toy example that oak′ and 
young′ are also mutually exclusive sets and could in principle 
be considered antonyms (if we disregard the fact that it is 
unusual to consider antonymy across parts-of-speech). This 
effect is of course partly due to the size of our sample (we 

would expect some oaks to be young in a larger model). But 
perhaps more importantly, we can retrieve from the similarity 
heatmap in Fig. 6 (right) that the similarity between oaks and 
young things is very low, making them unlikely candidates 
for antonyms. We will pursue this point further looking at 
word senses.

Word senses The notion of word sense is complementary 
to the general antonymy relation. The biological sense of 
tree should be distinct from its representational sense, for 
instance. Extensionally, it means that the individuals that are 
biological trees will not intersect with the individuals that 
are, say, syntactic trees, that is, as in the antonymy case, we 
have to find mutually exclusive subsets of a general predi-
cate. Unlike multiple antonyms, however, the discovered 
clusters may be lexically relatively dissimilar—or even fully 
dissimilar in the case of homonyms.

Let’s give an example. Figure 7 shows the same semantic 
space as before, but expanded to include two new instances 
corresponding to syntactic trees. The similarity map for this 
matrix is shown on the right of the table. We clearly see 
senses emerging from that map. All vectors in the space are 
similar to tree (indeed, all are trees): this is visible when 
looking at the row/column for predicate tree′ , which con-
tains relatively dark cells. However, we also note a clear 
dissimilarity between things that are syntactic and other 
things that are trees: there is a clear ‘light’ line on the row/
column for syntactic′ , indicating that things that are syn-
tactic are dissimilar to other things that are trees. We may 
conclude that we are observing two very different types of 
things which are nevertheless both referred to as ‘trees’, i.e. 
two sense clusters of the lexical item tree.

It is worth noting that this notion of sense is not a lexi-
cographical one. It in fact aligns better with Kilgarriff’s 
rejection of word senses as fixed objects which would have 
some semantic integrity [34]. Instead, it goes with a notion 
of sense as ‘sets of usages’, that is, a fuzzy notion of distri-
butional similarity amongst utterances, which can dynami-
cally change over time—an approach usually referred to as 
‘meaning in context’ in the computational literature [16, 
20].

6 � Implementation

We now briefly come back to our original discussion of 
semantic competence (Sect. 2.3), emphasising how the 
acquisition process should derive from real performance 
data, and eventually lead to three cornerstones of com-
petence: the ability to refer, the mastery of lexical rela-
tions, and a shared intuition for acceptability judgements. 
This section makes use of results previously published in 
[28], and relates them to the formalisation presented in 
this paper.
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Herbelot [28] presents a system nicknamed EVA 
(Entity Vector Aggregator), which builds an entity matrix 
and associated predicate matrix from the Visual Genome 
dataset (VG: [36]). The idea is that the bounding boxes in 
the dataset provide access to individual entities and their 
properties. Each image is taken to represent a ‘situation’. 
For instance, the first situation in the VG contains a tall 
brick building, identified by variable 1058508, as well as a 
black sign situated on that building, identified by variable 
1058507. Converting the VG format to MRS, it is possible 
to obtain logical forms associated with each situation, e.g.:

Two-place predicates can be curried into two one-place 
predicates: the on predicate above becomes on(1058507,  
building.n�) , on(sign.n�, 1058508).

Whilst being somewhat artificial, this type of annota-
tion can be taken as an approximative description of some 
subset of the real world (that is, the subset encapsulated 
by the entire image corpus). In other words, it corresponds 
to some incomplete human language TH = ⟨CH

G,L,�U
, ��.��H⟩ , 

bounded by a speaker’s knowledge and the type of rela-
tions expressible in their grammar. An example of the 
VG’s incompleteness can be seen in the following 
instances of bear (objects referents 158539 and 1617277), 
annotated with various degrees of precision:

158539 bear.n has(-,eye.n) has(-,claw.n) has(-,paw.n)
has(-,mark.n) beside(grass.n,-) has(-,ear.n)
on(-,land.n) has(-,leg.n) has(-,nose.n)

1617277 bear.n has(-,fur.n) has(-,nose.n)

We see from this example that a learner might not get 
consistent information about the type of properties that nec-
essarily apply to bears: entity 1617277 is not said to have 
paws or ears. Similarly, the ‘grammar’ of the VG is restricted 
to only two ‘rules’: attributes (mostly adjectives) and rela-
tionships (mostly two-place verb and prepositional predi-
cates), taking objects as arguments.

building.n�(1058508), tall�(1058508), brick�(1058508),

sign.n�(1058507), black�(1058507),

on (1058507, 1058508)

Formally, the VG can be represented as a model 
M = ⟨PL,U,BM ,CU ,XM ,AM , SM⟩ as described in Sect. 4.1. 
We can then write a basic feature structure grammar asso-
ciating syntactic rules with semantic constructions and 
their corresponding distributional compositional type, as 
explained in Sect. 5.1. For instance, adjective-noun phrases 
map onto type 1⃗⊙ 1⃗ (we assume here for simplicity that all 
adjectives are intersective). Querying the system with e.g. 
the phrase brown bear in this way will return all entities that 
can be truthfully referred to as brown bears in the Visual 
Genome. That is, the model naturally encodes resolution of 
referring expressions (see paper for examples).

The EVA system tests the word vectors from the VG pred-
icate matrix on various tasks, including the identification of 
lexical relations and the simulation of human acceptability 
judgements. The system performs in a manner comparable 
to a large pretrained embedding model, whilst having being 
exposed to a factor of 103 less data (2.8M words in total). 
This result is interesting because it indicates that the type 
of data a system is trained on can drastically accelerate the 
learning process. In the scope of the present paper, it may 
mean that sentences akin to the truth-theoretic language 
CG,L,�U

 are ‘better’ (or at least more efficient) data than large 
corpora without extensional information.

While the above results only test part of the formalisation 
presented here, they indicate that the basic features of our 
entity and predicate matrices are beneficial to acquisition 
from small grounded data.

7 � Conclusion

To conclude this paper, we give a brief account of the spe-
cific ways in which our framework relates to other FDS 
proposals. We particularly emphasise the acquisition of 
semantic competence as the phenomenon of interest and 
highlight how this choice makes specific requirements on 
the formalisation. In doing so, we also highlight the aspects 
of the framework that require further work.

Meaning as truth-theoretic vectors: our account is close in 
spirit to Venhuizen et al. [55], who propose a ‘Distributional 

Fig. 7   Predicate matrix for a model including two syntactic trees, and corresponding similarity heatmap
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Formal Semantics’ based on truth-theoretic vector repre-
sentations of propositional meaning. Their meaning space 
contains propositional vectors defined in terms of a set of 
models (or possible worlds), and each vector records in 
which models the proposition is true. One main difference 
between the two accounts is the choice of a predicate- vs 
proposition-based semantics. Our reason for prioritising 
predicate-level co-occurrences in our framework is that we 
pursue the specific goal of competence acquisition. We ide-
ally want to be able to learn from sentence fragments, for 
which no truth value is a priori available. In the long term, 
we want to be able to experiment with different theories 
of grammar, in particular how generative vs constructionist 
approaches might play out in the framework. It is therefore 
advantageous to us to be able to directly represent sub-
propositional expressions rather than derive them from a 
propositional semantics.

Entities as semantic primitives: entities are core to our 
proposal—so much so that they form the basis of our vector 
space model. This design choice is unusual in distributional 
semantics, where both vectors and dimensions of the seman-
tics space are usually regarded as lexical or ‘kind’ repre-
sentations. Entities themselves do not usually belong to the 
standard DS apparatus, although there are (partial) excep-
tions [25, 27]. Notably, Kruszewski et al. [37] find a function 
to map distributional vectors of kinds to ‘boolean’ vectors 
in which each dimension roughly corresponds to the notion 
of an individual. From a representational point of view, this 
proposal is close to our framework, as the basis of the vector 
space consists of entity-like objects (although without plu-
rality), and the property vectors are boolean. Emerson [17] 
proposes a probabilistic semantics with a space of ‘pixies’ 
corresponding to a set of properties and denoting the set of 
individuals regarded by the speaker as having those proper-
ties. The main difference between our work and previous 
accounts is the way we choose actual individuals in a given 
universe to be the semantic primitives of our approach. We 
take the stance that experiences (semantic space dimensions) 
are primary, and that concepts (vectors) can emerge from 
them.

Gradation and probabilistic interpretation: a limitation 
of the present account is the underlying assumption that 
we are able to tell whether an attribute applies or not to 
an individual: our extraction function XM returns boolean 
values and ‘knows’ whether e.g. a particular object can 
be called red or anything else. This follows from our sim-
plistic view that all lexical items can be expressed as sets, 
including gradable predicates, and from the assumption 
that our interpretation function is perfect and determinis-
tic with respect to the speaker’s model of the world. We 
will relax those assumptions in future work. We note in 
particular that compatible probabilistic approaches provide 

useful accounts of a person’s information state and beliefs 
[17, 19, 55].

Incrementality: an account of competence acquisition 
should be by nature incremental, and various DS proposals 
have kept this in mind [4, 31]. One aspect of our framework 
that may be worrying is the exploding number of dimen-
sions in the entity matrix. In principle, a full model would 
include one dimension per individual, making the model 
of a speaker at time t as large as the sum of their experi-
ences. A truly incremental version of our framework would 
thus have to integrate plausible mechanisms of attention 
and forgetting. We think that the aggregation function AM 
could be refined to provide such a service. In particular, we 
assume that after time, and unless there are pragmatic rea-
sons for them to remain salient to the speaker, individuals 
would decay into their respective kinds (see [2] on the role 
of forgetting for consolidation in long-term memory: we can 
imagine this process as the ‘bottom’ of the Linkian semi-
lattice fading away). So with respect to world knowledge, a 
space would always be as large as the long-term memory of 
the speaker allows.

Ultimately, we hope to expand the existing implementation 
of our framework to test its features in a realistic simulation 
of language acquisition. We are particularly interested in the 
way that child-directed corpora and behavioural datasets can 
let us investigate the relationship between the ‘flawed’ per-
formance data a speaker is exposed to and their competence 
level. We also want to integrate our formalisation into learning 
algorithms that let us evaluate which additional assumptions 
are necessary to explain the success or failure of the acquisi-
tion process under different conditions (what must be innate? 
where is explicit supervision or correction required?) But for 
now, we hope to have provided the theoretical frame which 
will guide hypotheses at the experimental stage.
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