
Vol.:(0123456789)1 3

KI - Künstliche Intelligenz (2022) 36:17–33
https://doi.org/10.1007/s13218-021-00748-0

TECHNICAL CONTRIBUTION

Simplifying Programming for Non‑technical Students: A Hermeneutic
Approach

Andrea Valente1 · Emanuela Marchetti2

Received: 28 May 2021 / Accepted: 7 December 2021 / Published online: 17 January 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany and Gesellschaft für Informatik e.V. 2021

Abstract
This paper investigates the simplification of programming for non-technical university students. Typical simplification
strategies are outlined, and according to our findings CT courses for non-technical students typically address learners from
different faculties, providing generic and basic knowledge, not specifically related to their major. In this study, we propose
instead a hermeneutic approach to simplify programming, in which we aim at clarifying the problem-solving aspect of pro-
gramming, addressing computational problems that are specific to their studies and leveraging on learners’ preunderstanding
of the digital media they have experienced as users. The practical counterpart of our theoretical approach is a minimalistic
Python multimedia library, called Medialib, that we designed to enable university students with a non-technical profile to
create visual media and games with short and readable code. We discuss the use of Medialib in two empirical case studies: a
collaboration with the university of Kyushu in Fukuoka, Japan, and a coding module for Media Studies students at the Uni-
versity of Southern Denmark. Furthermore, we use Notional Machines to attempt a comparison of the simplicity of learning
tools for programming, and to ground our claim that Medialib is “simpler” for learners than other popular approaches. The
main contribution is a hermeneutic approach to the simplification of programming for specific contexts that combines the
hermeneutic spiral and notional machines. The approach is supported by a tool, the Medialib library; the two case studies
provide examples of how the approach and tool can be deployed in beginners in CT courses.

Keywords Computational Thinking · Learn programming · Simplification · Hermeneutic · Notional Machines

1 Introduction

Programming is hard to learn, hence in the field of Com-
putational Thinking (CT for short) various pedagogical
approaches and tools have been proposed to simplify access
to programming for pupils at different educational levels.
This paper investigates what it means to simplify program-
ming for non-technical university students, discussing typi-
cal strategies embodied in different programming tools, both
from literature and from reflections on two empirical case
studies: an online study, in collaboration with the univer-
sity of Kyushu in Fukuoka (Japan), and a 4-weeks coding

module addressing Media Studies students, in Odense, at the
University of Southern Denmark. The two studies involved
the deployment and testing of Medialib, a minimalistic
Python multimedia library designed to enable university
students with a non-technical profile to create visual media
and games with simple and readable code, using given or
self-created assets.

In order to discuss the complexity that learners have to
face when learning programming via different tools and
approaches, we will employ Notional Machines [2, 5],
NOMs for short: NOMs will allow us to work concretely
with the otherwise vague idea of simplification. The design
principles for the Medialib derive from our comparison of
various NOMs, that help express the complexity of other,
very popular approaches, such as learning programming via
Python and Pygame or Pygame Zero.

This study is grounded on a theoretical framework com-
bining the concepts of hermeneutic spiral and of NOMs,
which we see as a concretization of the hermeneutic spi-
ral, translated into the domain of learning to program in a

 * Andrea Valente
 anva@mmmi.sdu.dk

1 Maersk Mc-Kinney Moller Institute, Game Development
and Learning Technology, University of Southern Denmark
(SDU), Odense, Denmark

2 Media, Department for the Study of Culture, University
of Southern Denmark (SDU), Odense, Denmark

http://orcid.org/0000-0002-6295-9511
http://crossmark.crossref.org/dialog/?doi=10.1007/s13218-021-00748-0&domain=pdf

18 KI - Künstliche Intelligenz (2022) 36:17–33

1 3

specific language. From a hermeneutic perspective we see
the Medialib as a mediating language between the learn-
ers and actual programming languages that are used in
programming practice, specifically Python. In this sense,
the Medialib is seen as a concretization of our approach,
embodying both hermeneutic pedagogy and NOMs, with
the goal of facilitating our learners to access the herme-
neutic spiral in their learning of programming in Python.

The following sections present related work and our
theoretical framework (Sects. 2 and 3); Sect. 4 introduces
the concept of NOM and shows how it can be used to sim-
plify CT, and programming in particular, by providing a
guide to the design of simpler libraries for beginners, such
as our Medialib. Section 5 discusses two use cases where
the Medialib was used with different groups of learn-
ers; reflections on these two experiences are framed with
respect to our hermeneutic approach. Section 6 concludes
the paper.

2 Related Work

2.1 CT and Programming

Teaching and learning programming has received increas-
ing attention, especially within the field of Computational
Thinking, which is defined as abilities typically associated
with programmers such as “solving problems, designing
systems, and understanding human behavior” ([37] p. 33).
In fact, CT can be defined as an interdisciplinary set of
skills and knowledge from fields such as engineering and
computer science, design, business, and social sciences
among others [32]. The goal of CT studies is to find effec-
tive approaches to provide young people with knowledge
and skills that can enable them to access the global job mar-
ket and act as citizens, aware of their rights and duties, in
increasingly digitized societies [14]. Although it has been
stated that programming does not equal CT [32, 37], pro-
gramming is still perceived as a central skill in CT, and a
main concern for CT studies. Programming is seen as a com-
plex practice, aimed at making software and it is segmented
into: analysis and design, which is the process of analysis of
the problem to solve through the making of software, cod-
ing, which is intended as the actual process of writing the
code with the selected programming language, and testing
of software according to usability principles. Programming
and specifically coding involves also practices like debug-
ging and refactoring, which deal with identifying and fixing
various issues in a program, and techniques to safely restruc-
turing existing code. CT studies have explored pedagogical
approaches and tools aimed at simplifying programming, to
make it more accessible and officially introduce it in schools.

2.2 How is Programming Simplified

In this study we adopted Python as a beginner-friendly
language, given its popularity in the learning community
as a good, entry-level and scalable programming language.
In a previous paper [34], together with a colleague from
Fukuoka, we performed a review of typical programming
materials used in beginners’ programming courses. These
materials, which include books, lecture slides and typical
exercises, were selected based on our collective teaching
experience with beginners programming courses, the fact
that most introductory materials we have used or know
from university-level courses are based on the Python
language, and that these books appear to be used in both
Denmark and Japan. We analyzed and compared the struc-
ture of beginners’ books (such as [27, 31, 36], with [19]
being an outlier), of online courses [18, 26, 28], and the
way popular libraries are presented (like Pygame Zero for
instance [22]). Most of these materials are organized in a
traditional, bottom-up fashion:

– Variables and primitive types;
– Control flow (conditionals and loops);
– Data-structures, such as lists, arrays, and perhaps

objects;
– Files, followed eventually by more advanced topics

We call this “typical course structure”, or TCS. We found
that it is typical for these topics to be grounded in some-
what generic, simplified mathematical or logical problems.
Textbooks and online courses often do not offer a coherent
narrative in which the learners are confronted with prob-
lems meaningful to them. Furthermore, concepts are typi-
cally introduced in a specific order mainly because of their
importance in understanding concepts that will follow, a
sort of internal logic. Moreover, in our analysis beginners
textbooks tend to focus too much on formal definitions and
terminology, instead of helping the learners to build a solid,
practical understanding of coding as a craft. As examples of
these problems, comparing [27] with [19] we noticed that
[27] introduces functions before loops, and lists much after.
[19] instead follows a spiral approach: a quick intro to vari-
ables and basic data types, then sequences (i.e. strings and
lists) and dictionaries; after that conditionals and loops are
also shortly introduced (e.g. using loops with lists), followed
by a simple definition of functions. Then [19] introduces the
Pygame library, followed by some more iteration on topics
like conditional, loops and data structures, but this time with
games in focus. In our experience, the approach adopted in
[19] works better for beginners in technical faculties, and we
consider it promising also for students from non-technical
areas.

19KI - Künstliche Intelligenz (2022) 36:17–33

1 3

From our analysis we also found out that most materials
adopt one or a few of a short list of strategies to simplify
programming:

– Removing theoretical explanations requiring further
knowledge;

– Providing block-coding tools, to enable younger pro-
grammers to compose their code from provided

 command-blocks, without having to memorize instruc-
tions’ syntax;

– Providing practical exercises to apply knowledge
acquired through the topics;

– Promote creative engagement with coding through devel-
opment of simple games, or some form of interactive
programs

Practical exercises are often framed to enable the creation
of simple games in specifically designed systems or pro-
gramming environments, like Scratch, Python with Pygame
or Pygame Zero, P5 (a reimplementation of Processing in
JavaScript). Development of simplified games (or parts of
games) is seen mainly as a motivational resource, leverag-
ing the learners’ personal interests. But while games and
multimedia seem to be regarded as motivating and rewarding
elements for learners, most materials still follow closely the
TCS, and even books targeted at primary school learners
tend to introduce graphics and multimedia in the second
half of the text (as is the case in books for children of the
series created by Carol Vorderman, e.g. [35], which have
been translated in multiple languages). On the other hand,
technically-framed exercises usually involve the solution
of elementary numeric problems, through manipulation
of numbers, strings, or simple data structures like lists or
arrays. In this sense, simplification of programming appears
to be approached from a quantitative, reductionist perspec-
tive, cutting down and reducing the complexity of compu-
tational problems presented to learners. Moreover, in our
experience, CT courses for non-technical students typically
address learners from different faculties, providing generic
knowledge, non-specifically related to their major.

2.3 Notional Machines and Simplicity

In this paper we are interested in a different meaning of
complexity and simplification. Following current research
[5, 6, 29] and [2], we adopt the idea of Notional Machines,
or NOMs, and use them to reason about the complexity
(or more precisely about the simplicity) of programming
and programming learning. NOMs were first introduced
by DuBoulay in the 1980s [5], and are based on two main
ideas: (1) that learners need a model to reason about com-
putation, but also (2) that the model does not need to be
complete or highly complex form the very beginning, and

instead it would make more pedagogical sense to proceed
with multiple models, in a spiral or incremental fashion.
Interestingly, DuBoulay wrote that “A Notional Machine
is the best lie we tell students [about how the machine
works]”, and in [5, 6] NOMs are presented as:

[...] artifacts intentionally designed to serve the
pedagogical purpose of representing and explaining
the behavior of a computational system. A notional
machine uses terminology and abstraction levels
aimed at a particular audience to support their prac-
tices in a particular context. It is often a simplifica-
tion and can be communicated in different formats.

An example of a NOM for Java is presented in [2], and
its advantages for learners discussed. Since we are inter-
ested in simplifying programming for beginners, we could
ask the question: when is a pedagogical approach to pro-
gramming simpler than another?, or more practically: sim-
ple with respect to what?. The strategy presented in [6]
allows to compare the Cognitive Complexity of Computer
Programs, CCCP for short; in this remarkable work, the
authors considered “a number of short programs as case
studies”, then they applied their Cognitive Complexity
method to “illustrate why one program or construct is more
complex than another, to identify dependencies between
constructs that a novice programmer needs to learn and
to contrast the complexity of different strategies for pro-
gram composition”. We cannot use their method directly,
because what we want to compare are not programs, but
approaches to teaching programming to beginners. Also,
although we are inspired by [6], we prefer to consider
NOMs as ways to mentally and manually run code, to
make sense of programs, and not in relation to algorithm
animation as the authors of that paper do. Our approach
(detailed in Sect. 4) proposes instead to take a few exam-
ples of programming tasks, solve them in the simplest,
shortest and most readable way using 2 different program-
ming environments (for example Python with Pygame, and
Python with our Medialib library). Then using a similar
method as CCCP, analyze and list all concepts (and their
dependencies) needed to create a minimal NOM that com-
plete beginners could use to manually execute the code.
And once we have these two minimal NOMs, we can com-
pare them, and conclude which one is simpler, i.e. which
NOM is defined with fewer and least complex concepts.
The idea that NOMs can be used to compare more than
programs, but also entire programming languages is sup-
ported by papers like [25], where the authors discuss their
comparison of Python and Scratch via the complexity of
their NOMs, and conclude that Scratch has surprisingly
much hidden complexity, and a rather different expressive
power than more common programming languages such
as Python.

20 KI - Künstliche Intelligenz (2022) 36:17–33

1 3

3 Hermeneutic Grounding

The design of our Medialib is grounded on a hermeneutic
approach to learning, which focuses on describing the pro-
cess of understanding from the perspective of the learners.
The term hermeneutics derives from the Greek “herme-
neutikos”, which means meaning to interpret. Hermeneu-
tics is mainly concerned with the understanding and inter-
pretation of texts [1, 10], intended as a process of decoding
and sense making of a given text from the subjective per-
spective of the learners. In our project, we aim at ena-
bling non-technical students to approach programming as
a form of problem-solving, leveraging the construction of
technological artefacts through scientific inquiry, as well
as design, algorithmic thinking, and coding. In our view,
coding deals with the practice of writing code in a pro-
gramming language and through a specialized editor (as
discussed in [17]). In this respect, we consider code as a
text, written in an artificial language to solve specific prob-
lems through a computer, that the learners need to under-
stand and master, to gain core competences in CT, to make
sense of how digital technologies work in general, and be
able to modify and write new code from scratch in relation
to different software applications. According to Gadamer
and Tomkins [9, 33], understanding emerges through a
critical dialogue between the reader and the text, high-
lighting that the learners will understand the text inter-
preting it from their individual perspective, in relation to
their sociocultural backgrounds and what the text actually
means to them (as also in [30]). Taking inspiration from
Gadamer [9], our inquiry focuses on the simplification of
programming practice, to facilitate the learners in actively
engaging with code, starting from an interpretive process
with given code and then moving towards editing, and
finally creating new code from scratch: the use-modify-
create progression [17]. Being text interpretation strictly
intertwined with “the cultural and discursive setting, in
which—and from which—it emerges” ([33], p. 4), we have
created an innovative multimedia library for Python, the
Medialib, that simplifies operations such as visualizing
images and creating interactive elements. Medialib sup-
ports learners in their interpretation of code, by provid-
ing powerful and atomic commands that are cognitively
simple to execute; and this enables learners to focus on
problem-solving and semantics. This is a strategy in con-
trast with the idea of simplifying the syntax of a language
through block coding, as it is commonly done in current
programming environments for beginners, like Scratch or
Blockly. Our library achieves this by hiding part of the
complexity of media programming, and by offering a cod-
ing style that reduces the number of concepts needed by
beginners to understand simple programs; as the students

progress, we can gradually expand on what has been hid-
den, while introducing incrementally more complex prob-
lems to solve.

Taking these considerations into account, the pedagogical
model behind the development of the Medialib represents an
application of the hermeneutic circle or spiral, concretized
through the concept of NOM (as discussed in Sect. 2, and
in [2, 5, 6]). According to Gadamer [9] and Heidegger [12],
text understanding and interpretation take place through a
circle, which represents a metaphor of the process through
which learners engage in meaning making [30]. There is no
unique or exhaustive definition of the hermeneutic circle,
however, it is a simple but powerful symbol, representing
how learning and understanding are not linear but iterative
processes. The hermeneutic circle captures in fact the initial
difficulty of the learners to access new knowledge through a
tentative and conflictual dynamic, as they move from their
initial knowledge to embrace new, technical knowledge
from a specific field [33]. Following the hermeneutic circle,
understanding is a relational and referential process, through
which we make connections by means of comparison, con-
trast or juxtaposition between the whole and the parts of
the bits of knowledge we are trying to make sense of, and
also through a comparison with our previous knowledge.
According to Schleiermacher ([24], pp. 24, [33]), a text can
be understood by connecting the whole to the parts that com-
pose it, decoding how they depend on each other to form
the text. In our understanding, this principle can be applied
to the understanding of code as a text, as learners of pro-
gramming have to make sense of code, establishing connec-
tions between the different syntactic units such as: technical
terms, instructions and constructs, and data structures. A
classical example of meaning that is distributed across code
is the declaration of a variable and its uses. To know what
the value of a variable is at a given point in the execution
of a program, a learner might have to correlate many lines
of code, possibly spread across the program. Moreover, to
move further and edit or write new code, learners must have
understood what is the meaning of the different words in
the code in relation to the whole. However, differently from
a literary text, code has a more practical aspect as it has to
return a result, or express a certain behavior, when run on
a computer. In this sense, programming learners have the
possibility to alter and run code to test its correctness, and
of their expectations circa its behavior. Hence, the practices
of running and debugging code, acquire cognitive mean-
ing from a hermeneutic perspective, providing learners an
objective test bench for their understanding, through the
computer, as a form of dialogue.

As in the process of understanding a literary text in natu-
ral language, the process of understanding code in an artifi-
cial language necessitates to leverage the learners’ preunder-
standing, which is defined as a prejudice or preconception

21KI - Künstliche Intelligenz (2022) 36:17–33

1 3

about any new knowledge we are going to acquire. Accord-
ing to Heidegger and Gadamer, a preunderstanding is a nec-
essary precondition for understanding to take place (see also
[33]). Heidegger [12] and Gadamer [9] argue that any tex-
tual understanding is the result of a personal interpretation,
dependent on the previous experiences and sociocultural
background of the readers. Heidegger argues that:

an interpretation is never a presuppositionless appre-
hending of something presented to us. If, when one is
engaged in a particular concrete kind of interpretation,
in the sense of exact textual interpretation, one likes
to appeal to what “stands there” , then one finds that
what “stands there” in the first instance is nothing
other than the obvious un-discussed assumption of the
person who does the interpreting

(from [12], pp. 191–192). Similarly, Gadamer describes the
hermeneutic circle as a process centered on“the anticipation
of meaning in which the whole is envisaged becomes actual
understanding when the parts that are determined by the
whole themselves also determine this whole” ([9], p. 291).
Building on these insights, understanding becomes a dia-
logue between the text and the learners, in which the learn-
ers gain meaning from the text reassembling the whole and
parts, in relation to their previous knowledge. Moreover, so
defined the process of understanding has a temporal aspect,
which frames the passage from the initial preunderstanding
to the achievement of actual understanding. This temporal
aspect of the understanding process is emphasized by Gad-
amer, who argues that as the learners engage in the circle
they gain new knowledge [9]. The hermeneutic circle can
therefore be reformulated into a spiral, which illustrates how
learners do not simply move in a circle between whole and
parts while engaging with the understanding process, but
instead they acquire new knowledge and shift from general
preunderstanding to more specialized, deeper knowledge
[13, 21]. During this process, learners might have to negoti-
ate between their preunderstanding and the new knowledge
they are encountering. This might happen through a harmo-
nious integration or through forms of negotiation and con-
flicts. The idea of growing knowledge spirally, from simpler
but grounded approximations, to more complex and correct
models is also found in NOMs [5, 29], possibly because of
their pedagogical nature. By moving through the circle or
spiral, the learners are expected to reach a Fusion of Hori-
zons between their preunderstanding and the new targeted
knowledge [9, 12]. The notion of Fusion of Horizons is a
model on the essence of understanding and learning, rooted
in an interpretation process, through which learners gain
ownership on the text they are facing, making it their own
from the perspective of their previous knowledge and values.

Moving towards programming and the specific challenges
that emerge with learning problem-solving through coding,

we see preunderstanding consisting of resources that enable
learners to approach the new subject from their individual
intuition. In this way we distinguish:

– Cultural preunderstanding, in which students can build
on their own intuition regarding their experience with
digital media in their free time;

– Sensorial preunderstanding, in which simple manipula-
tion of visuals and sounds are seen as enabling the stu-
dents to understand their code, yet avoiding complicated
math.

Cultural preunderstanding corresponds with the traditional
notion of preunderstanding in hermeneutics, constituted by
previous knowledge and experiences of the learners. On the
other hand, when tackling CT problem-solving through algo-
rithmic thinking, it might be hard for the learners to even
evaluate their solution to a problem, when the problem itself
might be complex and possibly require knowledge from
mathematics. Therefore, when we teach programming with
Medialib, we formulate “visual” exercises in which the cor-
rect outcome is visually different from an incorrect one; in
this way our students can easily be sure whether their solu-
tions are correct, just by looking at the results of their solu-
tions. Typical tasks could be moving an image on the screen
or drawing a bar chart from a known data set: in this way
we combine their cultural and sensorial understanding, and
ground the activities of testing and debugging in the preun-
derstanding of the learners. We designed our courses in this
way also to gain the extra advantage of avoiding classical
math-based problems and focus instead on problem-solving.

4 Python NOMs and Medialib’s Design

Following the approach of [5] we have defined a NOM for
Python, but instead of using only natural language rules, as
done in [5], we present a more visual representation of our
NOM’s rules.

In Fig. 1 we define a minimal NOM for a core impera-
tive fragment of Python, called NOM

1
 . To show how NOM

1

works, we can consider a simple Python program, called
program 1, that could be part of an introductory course
(see Fig. 2).

Using the rules of NOM
1
 (as in Fig. 1) it is possible to

read program 1 and correctly execute it. The “sequence” rule
tells us that the three lines of code in the program have to be
executed one after the other; the first line is an input instruc-
tion, and according to NOM

1
 its execution creates a box in

the memory, labeled “name” , and the program will wait
for the user to type his or her name, and the resulting string
will be inserted in the “name” box as its value. The second
line is an assignment of a string expression, and according

22 KI - Künstliche Intelligenz (2022) 36:17–33

1 3

to the “operations on strings” rule in NOM
1
 its execution

will create a box labeled “salutation” in the memory of the
machine, and set its value to the concatenation of the string
“Hello” and whatever name the user typed and it is currently
stored in the box labeled “name” . Finally, the third line is
a print instruction, and printing a variable has the effect of
looking up the value in box “salutation” which is a string in
this case, and output that value to the screen.

NOM
1
 is good enough to describe the behavior of sim-

ple programs like this, and with the addition of a few more
mathematical and string operators (and possibly condition-
als and loops) it could be used by beginners to understand a
substantial portion of imperative Python programs. We are
interested in particular in flat programs, i.e. programs with-
out function definitions, because functions require a more
complex execution model, including for instance the execu-
tion stack and the scope of variables, and therefore a more
complex NOM. Finally, NOM

1
 has a blocking input instruc-

tion. In our experience this is a straightforward enough
concept beginners to learn; moreover, from our analysis of
programming textbooks in Sect. 2.2 and in [34], we know
that sequential execution and blocking on inputs appear to be
the normal way to introduce simple, input-compute-output
programs to beginners.

4.1 Extending Python with Multimedia
and Comparing NOMs

How can we define a NOM for multimedia programs in Python
that is at a similar level of complexity as NOM

1
 ? We want

to follow [6] in our approach to compare complexity in rela-
tion to NOMs, therefore we propose to investigate this ques-
tion by first defining two simple tasks involving images. An
implementation of each task will then be shown, using the
Pygame and the Pygame Zero Python libraries. The code for
these implementations will be as short and readable as pos-
sible. Two NOMs, NOMpg and NOMpgz will then be defined
based on the programming styles and assumptions implicit
in the code for each implementation. We will then present
solutions for the two tasks written using our Medialib library
[34], and a NOM will also be constructed for the “Python with
Medialib” language, and we will call it NOMml . We will argue
that comparing NOMpg and NOMpgz with NOMml , the latter
results the simplest, hence programs written with Python and
the Medialib are cognitively simpler to understand than using
the other two widely adopted libraries. The two multimedia
tasks are defined as follows:

1. A program that asks the user the name of a picture, and
shows it on the screen

2. A program that displays a picture, then waits for the user
to click a mouse button, and terminates

The Pygame solutions to the two tasks could look like the
first two solutions in Fig. 3. Those two programs are simplified
versions of the examples in [22] chapter 3 and chapter 6, and
are arguably the shortest and clearest possible. The Pygame
Zero solutions (PGZ for short) are the next two listed in Fig. 3.
And the last two listings in Fig. 3 are coded using our Medi-
alib. Notice that programs written using Medialib should
always terminate with a call to the all_done() function, which
has the effect of closing the graphic window.

4.2 Three NOMs: NOMpg , NOMpgz and NOMml

An analysis of the Pygame solutions in Fig. 3 shows that
a beginner programmer would need to understand quite a
number of complex concepts. In particular for solution 1:

Fig. 1 The rules of NOM
1

Fig. 2 Program 1, possibly one of the first examples shown to begin-
ners

23KI - Künstliche Intelligenz (2022) 36:17–33

1 3

– The concept of importing Python modules, that there are
at least 2 ways to import, which in turn require some
ideas about namespaces and scope of variables across
modules;

– Dot notation and dot paths (i.e. multiple dot notations
used in the same expression, as visible in line 4) require
to know how functions can be accessed across modules,
but also that in some cases the dot notation has to do with
objects and not modules;

– Concepts like tuples, objects and classes are unavoidable
even with such simple Pygame examples;

– Drawing images on screen requires a minimal under-
standing of coordinates, but here it also requires knowing
about technical concepts like Surface objects and buff-
ering, and that drawing images in Pygame is not really
drawing pixels on screen, and that images will be visible

on screen only after having updated the screen buffer
(another Surface object);

– Even rather low-level concepts like image transparency
and alpha channel figure explicitly in the code, and would
require some explanation and possibly be included in the
Pygame’s NOM.

The Pygame solution of task 2 in Fig. 3 is similar to solution
1, but it involves more concepts such as: events and polling,
lists, as well as loops, nested loops, and endless looping with
breaking. This program waits by repeatedly polling events
from the event queue, and when a mouse click is detected
by the endless while loop in line 8, the program terminates,
effectively breaking out of the loop. The use of endless loops
with breaking is typical of certain coding styles, inspired
by similar practices used in C and derived languages, and

Fig. 3 All Python listings. From the top: solutions to tasks 1 and 2 using Pygame, then using PygameZero, and Medialib

24 KI - Künstliche Intelligenz (2022) 36:17–33

1 3

in this case we kept it because it was in many of the exam-
ples in book [19]; however, we find it to be a coding style
that supports bad habits and invites non-algorithmic ways of
thinking. The lines from 8 to 12 require the NOM to address
events and how they work; learners will also need to know
about queues, polling and busy-waiting. Since multiple
events might occur at the same time, e.g. typing a key on
the keyboard and simultaneously clicking the mouse but-
ton, Pygame requires a nested for loop, in line 9, to visit all
the elements of the event queue. Line 10 detects the mouse
button being released, and triggers lines 11 and 12, which
close the Pygame window and terminate the program. The
dot notation used in event.type reveals that the variable event
is in fact structured and has attributes (i.e. it is an object).
Finally, MOUSEBUTTONUP is a constant that exists in
the module pygame, so NOMpg has to provide a rather com-
prehensive explanation of how external modules work. The
NOM for Python with Pygame would then have to include
all or most of the concepts listed above, and be quite com-
plex. This is perhaps not surprising when considering that
Pygame is meant as a library to efficiently code 2D games,
and not simplified with novice programmers in mind.

On the other hand, the PGZ library was created specifi-
cally to support learning, however, the solutions with PGZ
still require the programmer to understand quite a number
of complex concepts such as:

– Function definitions, functional programming concepts
like callbacks, and consequently scope rules;

– Data-types like tuples and quite a few built-in objects;
– Concurrency, given that the PGZ code goes beyond

sequential programming

Solution 1 for PGZ starts with a function definition (in line
3); however, this is a special function that must be named
draw, and PGZ will automatically call this function repeat-
edly, multiple times per second. Therefore, NOMpgz has to
include function definitions and calls, and possibly the idea
of callbacks. Talking about functions makes the code non-
flat and potentially requires the introduction of local and
global variables, scope and execution stack. This program
uses the variable screen (in line 4 and 5s) that according to
[22] it’s an object that represents the screen, and it is one
of many build-in objects that form the API of PGZ. Since
PGZ is based on Pygame, the screen object is a Pygame
Surface, and in fact PGZ inherits from Pygame the need
to add objects, classes and dot paths to its NOM. Line 6
starts the Pygame Zero runtime, and this is the last line in
most examples on the official PGZ web page [22]. Inter-
estingly, this program cannot be understood as sequential
instructions; moreover, the draw function is never called
explicitly, and yet it will execute multiple times. NOMpgz will
also have to include a description of the hidden update-draw

loop at the core of PGZ. Solution 2 is very similar to solu-
tion 1, but in lines 5 and 6 there is another function with a
mandatory name, on_mouse_down(), which is automatically
executed every time a mouse button is pressed. The dovetail-
ing between the draw() and on_mouse_down() functions is
not evident from the code, and could require a concurrent or
asynchronous execution model to be added to NOMpgz , since
event-based programming cannot be described by a simple
sequential execution model. At this stage we can see that
the NOMs for Pygame and PGZ are similar in complexity.
It might seem that NOMpgz could be simpler with respect to
its handling of user input, thanks to the change from poll-
ing to event-based. Unfortunately this change also requires
adding rules and a model for asynchronous programming
(or concurrency).

Medialib is also based on Pygame, but aspires at reduc-
ing the number and complexity of the concepts needed in
its NOM, i.e. NOMml . Looking at the two solutions imple-
mented with Medialib in Fig. 3 we find the following:

– The code only uses primitive data types, i.e. numbers and
strings;

– Drawing images is done without explicitly using dot
notation, objects or classes. The complexity of loading,
storing and drawing images on screen is hidden, so to
appear as atomic instructions to the learner;

– User input processing is done via a mix of explicitly
blocking instructions and simplified manual polling
(when non-blocking solutions are needed);

– Sequential thinking is enough to understand (and men-
tally execute) these programs;

– The need to discuss details of Python’s importing mecha-
nism is minimized by only importing the entire Medialib
library as the first line of most code examples, and by
never using dot paths.

Medialib solution 1 starts by importing Medialib in such
a way that effectively pollutes the global namespace: this
might be considered a bad practice for a Python library
to be used by professionals, but it is perfectly in line with
our didactic purpose. Medialib then automatically starts
Pygame and opens a graphic window. Line 3 draws the
image by name, at the position 100,150, using only strings
and numbers. To hide the complexity of loading, storing
and drawing the image on screen, the Medialib keeps a
table of already loaded+ images. This results in a slightly
uneven performance of the drawing function, however, we
designed Medialib with the idea that performance is an
advanced concept in programming and belongs with algo-
rithm complexity analysis, not in the beginners’ very first
NOM. Moreover, considering the small-to-medium size
of the images typically used in beginners examples, the
variation in performance is imperceptible. Once the image

25KI - Künstliche Intelligenz (2022) 36:17–33

1 3

is loaded, Medialib blits it on screen and automatically
updates the screen surface. Transparency is also automati-
cally managed. Medialib is designed to degrade gracefully,
so in case of errors in loading an image a small white rec-
tangle is drawn where the image should be, no exceptions
are thrown and the program continues its execution. This
allows learners to visually tell if their programs work as
intended, and supports sense making in testing and debug-
ging (as discussed in the previous section). All operations
in Medialib are designed to look atomic to the program-
mer, including the draw() function, so that the learner can
be sure that her sequential model of execution is always
respected: the next instruction, in line 4, will be executed
only when the image is completely drawn on the screen.
Solution 2 only adds one line to the code of solution 1:
a call to the wait_mouse_press() function, which blocks
the program until the user clicks the mouse button. What
appears as a blocking, atomic instruction to the program-
mer, is in fact just a wrapper for a busy-wait that polls
Pygame events, but with the advantage of keeping the code
completely sequential and the NOM minimal.

To summarize, NOMml is rather similar to our initial
NOM for Python with numbers and strings, i.e. NOM

1
 .

NOMml only needs rules for sequential execution, blocking
operations and primitive data-types; moreover, Medialib
adds only a few instructions to the imperative Python frag-
ment defined by NOM

1
 , to work with images, audio and

user input. And of course NOMml needs to be extended
with conditionals, booleans, loops and possibly lists, as
they are needed in more complex examples we used in our
courses based on Medialib (see next section). But with our
approach we can avoid, or at least postpone, the discus-
sion of object-oriented concepts, event-handling and func-
tion definitions, scope of variables, and still write short,
working and readable multimedia programs. NOMml can

effectively be used as the start of the spiral of incremen-
tally more complex NOMs.

4.3 Medialib Commands and Programming Style

The main inspiration for the Medialib design came from Pro-
cessing [8], a language aimed at enabling designers to rap-
idly prototype visual and multimedia programs. Processing
is not implemented as a standalone programming language,
but as a simplification of Java: the result is an Embedded
Domain Specific Language (or EDSL for short, as discussed
in [7]) for Java, which offers a rather elegant programming
style and is quite different and simpler than its host language.
We see a strong connection between the idea of an EDSL
and the concept of a NOM, therefore we decided to follow
the same approach with Medialib, and only implement a
minimal set of commands designed to cover the typical tasks
that we needed to discuss in our introductory programming
courses. These few commands are meant to appear to the
beginner programmer as build-in instructions, and Medialib
only uses primitive types and avoids complex parameters in
the commands parameters, such as Python lists, tuples or
objects. Table 1 shows all the commands of the latest version
of Medialib, grouped in four categories.

Medialib has commands for input such as keystrokes
and mouse clicks or mouse positions, and they exist in two
versions: a blocking and a reading version. The program-
mer can have her program block and wait for any keystroke,
or decide to retain control and use a reading command to
check whether there is a key pressed at a specific point in
the execution. This second solution allows implementing
more responsive programs, in which things can happen even
if the user has not provided any input (typical of interac-
tive programs or games). Providing both versions of input
commands helps maintain a simple and intuitive sequen-
tial interpretation of programs’ execution. Given that most

Table 1 Complete table of
commands in the Medialib
library

26 KI - Künstliche Intelligenz (2022) 36:17–33

1 3

programs written in beginner’s courses are short and shal-
low (with respect to cyclomatic complexity), we adopted a
specific programming style in the examples we provide to
the learners: we write flat code (i.e. avoid user-defined func-
tions) to keep a single, global scope, and we avoid complex
data structures in favour of multiple simple-typed variables.
Functions can easily be introduced as code-reuse devices, in
later, more refined iterations of the NOM.

5 Case Studies

We developed the Medialib tool as an exemplar of our under-
standing of how programming could be simplified for non-
technical university students (as discussed in [34]). Our mul-
timedia library was developed through a loose participatory
design method [3], as it addressed specifically the need of
our colleague from Kyushu University (in Fukuoka, Japan),
Jingyun Wang, who had much experience in conducting
a Python course for non-technical students, and asked us
for help to cope with recurring issues. This collaboration
between us and Jingyun became the first case study for the
Medialib; she was in charge of a general introductory to
programming course at KU, where bachelor exchange stu-
dents from many different educations, mostly non-technical
ones, get introduced to programming and Python. During
the course, our colleague sent us requests to improve specific
features or fix bugs, so that new versions of the Medialib
were released as the KU course ran. Our second case study
was a course held in Odense, Denmark, at the University of
Southern Denmark (SDU) by one of us. The students at SDU
were in the first year of their master, and their course was an
introductory course in Data Science called Digital Method-
ologies, which included elements of CT and enabled us to
introduce basic programming in Python with the Medialib,
focusing on basic competences in Data Science. The Medi-
alib was further improved to solve minor usability issues and
introduce new features needed in the Data Science course, in
particular there was a need to add basic support for fonts and
graphical text, in connection to the creation of interactive
infographics. Considering both case studies, the Medialib
was developed and tested in a series of four iterations, based
on data gathered through the feedback of our colleague Jin-
gyun, her KU students, and the SDU students.

Because of Covid-19 restrictions, both courses ran online
through video conference, email, and local Content Manage-
ment Systems for the distribution of course material and
students’ assignments. This caused additional issues with
the quality of the courses, hindering the teachers’ ability
to closely follow the students’ technical issues and learn-
ing difficulties. Both case studies were organized as induc-
tive, qualitative, research through design investigations [38],
and given the circumstances, we adopted a netnographic

approach to our study [4, 16], collecting data through: video
conference and note taking during online classes, analysis
of the students’ assignment during the class, questionnaires,
and a series of final video interviews conducted with a small
focus group from the students at KU. The students of both
courses were presented with the same questionnaire, with
minor changes in relation to the course structure; the ques-
tionnaire included multiple choice questions, Likert scale
and open-ended questions, in which the students had for
instance to write about their major, list the software they
use and how often. The collected data were analyzed through
an interpretive thematic analysis of the students responses,
regarding what they found easy to understand or challenging
in the use of the Medialib, the tasks we gave them, as well as
new design requirements for the improvement of the library.

Our plan is to continue to develop and test our theoretical
approach and our Medialib library, to gain a deeper under-
standing on the matter of simplifying programming for
non-technical students and to improve the Medialib tools
for future employment in universities and high schools.

5.1 Introductory Programming Course in Fukuoka

The Medialib was developed and tested for the first time
during a generic, introductory CT course at KU, targeting
exchange students enrolled in various non-technical educa-
tions. The class was composed of 22 students, from differ-
ent Asian countries and enrolled in their first year of their
master studies. The course was centered on the Python lan-
guage and the book “Think Python” and it ran for 15 lec-
tures, each lasting 90 minutes, through the spring semester
2019. Data was gathered through the teacher’s observations
of classes, note taking, questionnaires and a series of final
interviews with a subgroup of the students. The question-
naire was proposed twice, during the course and at the end,
to compare responses and to evaluate how the students’ per-
ception of the course and the Medialib tool changed over
time. The final interviews were conducted with 16 students
in a semi-structured form [4], starting from an initial set
of five questions on their experience of the Medialib and
of the course structure, they were also asked to comment
on specific answers they gave to the final questionnaire in
order to gain more details on their experience (details on
the study can be found in [34]). The course was manda-
tory and aimed at providing exchange students with basic
programming skills in Python and the students perceived
it as a way to gain technical skills that could improve their
CV, and might be useful in their future studies. According to
data from the questionnaire, the students came from differ-
ent educations, mostly related to biology and business, and
only one student had taken programming courses before.
The students were proficient in the use of different software
systems beside the Office Suite, a few of them had tried

27KI - Künstliche Intelligenz (2022) 36:17–33

1 3

HTML, software packages for audio-video editing and statis-
tics. All the students also said that they did not feel confident
in their mathematical knowledge; moreover, 35% said that
they struggled with mathematics and preferred avoiding it.
In general, the students participated actively in the lectures
and in doing the assignments, demonstrating engagement
and asking for help or clarifications on several occasions.
The original structure of the course, from previous years,
was based on the topics covered in introductory program-
ming courses for technical students, covering simple algo-
rithms for mathematical problem-solving very much in line
with the TCS outlined in Sect. 2. Even in the restructured
instance of the course that we studied, the first lectures still
revolved around presenting Python without the Medialib,
and the teacher assigned classic introductory Computer Sci-
ence tasks to the students. The main challenge of this course
was its generalist nature: programming is a vast practice,
addressing a variety of problems and fields of inquiry, each
requiring specific set of skills. For instance, programming
to create a web page or to scrape data online represent two
rather distant and different practices, requiring specific lan-
guages, data structures, algorithms, and possibly different
NOMs (as discussed in Sect. 4). When restructuring the KU
course materials, our goal was to concretize programming to
make it more accessible to the students with largely different
backgrounds, therefore, we adopted multimedia as a generic
and known field on which the students were expected to
be able to leverage their experience of multimedia as users
[34]. As a result the course materials focused around com-
position of and interaction with images and audio, through
algorithmic thinking, leveraging student cultural and senso-
rial preunderstanding, to enable the them to make sense of
their code without having to recall or understand too many
mathematical notions.

Results from the study suggest that the students were
able to quickly make sense of their code and engage in
debugging, which was turned into a self-questioning prac-
tice. The students argued in the questionnaires and inter-
views that they started to spontaneously wonder “what
could I do next?” with their code, conducting trial and
error experiments. During the interviews, all the students
said that they found it easier to do their exercise with the
Medialib, than with the initial Python exercises without
our library. A female student from biology said: “It is
easier, it requires to write less, so I can better think of the
problem!”. A male student from business said:“It is of
course important to be able to use the language per se, but
when I moved to the Medialib I could better understand the
problem, I think I can move to the language with a clearer
understanding of [...] how it works!” During the inter-
views, the students were asked about the exercise that they
found most appealing or interesting, and all of them agreed
on the last one in the course, which required to make a

game, combining various materials encountered during
the whole course. Another girl from biology said that:“[I
liked] The game! It put all the lectures into perspective!”,
a boy and a girl from Agriculture said that:“[the game
exercise] made everything more clear,[...] how the differ-
ent parts of the language work together!”. Several students
commented that it was exciting or interesting to see how
games are made. Moreover, during the interviews three
students said that they felt “proud” when the code worked,
especially when mistakes were made and they were able to
correct them on their own. A critical point was raised by
three students in biology and one from business, regarding
how and if they will use what they learned in their future
studies, but that it was a nice experience, and they might
want to learn more about programming.

Our choice of multimedia as the main domain for the
course and our Medialib was dictated by our hermeneutic
approach: we tried to compensate for the lack of a com-
mon focus among the students, picking media as a familiar
domain that could enable them to access the hermeneutic
spiral, leveraging their preunderstanding of digital media
as users [9, 33]. And according to our findings the students
were in fact able to connect elements of their code to specific
features and behaviors, leading them to make sense of their
code, and providing a sense of achievement.

5.2 Digital Methodologies Course in Odense

During the spring semester of 2021, the Medialib was
deployed and tested with a class of 24 students, enrolled in
their first year of the master programme in Media Studies
at SDU in Denmark. The test took place during the Digital
Methodologies course, which targets digital competences in
the field of Data Science aimed at conducting inquiries in
media sociology. The course covered topics such as: research
design, netnography, online interviews and surveys, content
and thematic analysis, use of software to scrape data from
the Internet, and visual representation of data through dia-
grams and infographics.

This course provided a less challenging context to test our
approach and the Medialib with respect to the KU course, as
it had already a clear focus on Data Science and the students
had a similar background: they were all Danish and human-
ists, twenty from the BA in Media Studies, two from the BA
in multimedia design, and other two from English Literature.
In this way, it was relatively easy to find a grounding to tailor
the course so that it would concretely support their educa-
tion, providing practical skills in Python that they could use
later in their master projects and in their professional life as
communication and media professionals. The course ran for
twelve, three-hour lectures, with one weekly lecture. The
course was divided in three modules of 4 lectures each:

28 KI - Künstliche Intelligenz (2022) 36:17–33

1 3

– Module 1: an introductory module on research design
for Data Science, qualitative and quantitative methods,
including some initial exercises in netnography and the-
matic analysis with the tool Nvivo;

– Module 2: a programming module, covering basic coding
in Python, graphics via the Medialib, and Data Science
via a few standard Python libraries and data structures;

– Module 3: thematic, content and network analysis.

As part of the course, the students were also expected to
conduct an inquiry on a topic of their choice, from the
domain of Media Sociology, applying relevant methods and
software tools presented during the course. Their inquiry
would be discussed in a report following the structure of a
research paper circa 20 pages in length; in fact, this course
is considered essential in preparing the students to tackle
the methodological part of their master thesis project and
to provide an opportunity to practice scientific writing. The
main challenge for us was to organize the course, since we
could use only one third of the course (i.e. four lectures)
for teaching basic programming in Python, introduce graph-
ics programming as well as scraping and cover some of the
most common data formats for Data Science, like CSV files.
Therefore, we decided to cover the following topics in the
programming module: basic imperative programming, algo-
rithmic data visualization, interactive visualizations that can
react to key-presses or mouse clicks, automatic data analysis
with simple statistics computed on mock or offline data sets,
and web-scraping through API. As in the KU course, on the
last lecture of the programming module the students were
given a recapitulating exercise, which they had to personal-
ize and deliver together with their final report.

Because of the lockdown in Denmark, the course was
conducted online: the students were given the lecture mate-
rial through the SDU Content Management System and we
had class through video conference. We gathered data by
taking notes during the lectures, and the students were sent
an online questionnaire in the end of the course. The ques-
tionnaire was the same used to gather data on the Japanese
case study, with a few alterations according to the framework
of the new course. Furthermore, the Media students got the
questionnaire only once, while KU students got it twice,
as the Media module was too short to allow for multiple
data gathering on the students experience with the Medi-
alib. Regarding the students’ experience with software, all
the students used professional software package beside the
Office Suite, mostly statistical software and the video editing
tools from the Adobe Suite, as film shooting and editing is a
core part of the Media Studies programme. However, none
of them had ever tried programming before and their expec-
tations for the course were rather vague, such as discovering
a new knowledge field and trying new specialized software
(according to our questionnaire).

During the course the students engaged actively with
the material, a few issues were encountered by the students
who used Mac laptops. Some instructions were given also
through the chat, which we consider as a summarized log of
the classes. A student needed specific guidance to open the
terminal and locate Python on her computer to check that it
was the right version, she said with pride: “Oh, I have never
done it before!”. Being the course online, it was difficult to
make sure that all the students were active, we could only be
sure when they asked for help and this happened on several
occasions during each lecture. Other issues emerged with
Mac laptops, for instance one of the initial code examples
was supposed to show a pop-up window with images of cup-
cakes, but it kept freezing for Mac users; a student asked:
“Anyone with a MacBook having issues with the pop-up
freezing?”. Other students said they had the same problem
and another student proposed a solution:“Cmd+space search
for terminal [...] check top of screen [...] options is on top of
screen in Mac”. Accidents like these were made more com-
plicated by the absence of physical presence, as we could
not act on the students’ computers, and neither of us has a
Mac, so it was helpful that the students found ways to help
each other even online. A few students were eager to show
that they were in control and as soon as they finished their
task they would write in the chat: “Done” or even “Done
:)”. A female student also wrote: “It works well :D”. The
students habitually added an emoji to communicate their
sense of accomplishment, a behavior that we encouraged
adding emojis to our own replies in the video-lecture chat. In
this way we aimed at reinforcing an informal and reassuring
atmosphere in the class, so that the students could feel free
to discuss their difficulties with the exercises and technical
issues without fearing negative judgement on our side. The
lack of physical presence, prevented us from walking among
the desks of the students to find out about any issues, so
we tried to use the chat to create a more discreet space for
students with issues to come forward without feeling too
exposed. Some students for instance would write to us in
private in the chat, and in some occasions we managed to
talk in the breakout room or during breaks. In one instance a
group had issues with an exercise and wrote privately in the
chat; we remained connected after class and we were able to
solve the issue together. However, in other occasions the stu-
dents would just come forward presenting an issue, openly
discussing eventual mistakes. In this sense, the video-lecture
chat provided protection for shy students, who could opt to
contact us in private.

During the course we received positive feedback from
the students, who pointed out how the course was different
from the typical courses in humanities, which are centered
on reading and analyzing written texts. At the end of the
second programming class a female student commented in
the chat: “It has been cool. I really enjoyed it :) [...] It’s nice

29KI - Künstliche Intelligenz (2022) 36:17–33

1 3

to have some practical stuff. It differentiates from what we’re
used to :D”. The students showed particular interest for the
coding exercises, which turned into forms of self-question-
ing practice, and triggered trial-and-error experiments when
things did not work as expected. The students showed or
expressed pride when they could solve their issues on their
own, spontaneously engaging in debugging practice. A
group of female students wrote us an email asking for help
and to meet online before the class; they wrote again a few
hours later, saying that they managed to make their code
work:“I just managed to make it work :-) [...] It just teases
you now and then ;-)”.

In conclusion, even from our preliminary analysis of the
data in this second case study, the course seems to have
enabled the students to engage with coding in a gradual way,
as we leveraged Data Science as a topic to enable them to
enter the hermeneutic spiral with respect to programming.

6 Discussion

The main contribution of this study is theoretical: a peda-
gogical approach in simplifying programming which com-
bines hermeneutics and NOMs. the approach is embodied by
the Medialib library, a design exemplar (in line with [38]).
The two case studies described in the previous section show
how our approach can be used to restructure introductory
programming courses, taking advantage of our library. The
two studies carry distinctive differences that provided us
with specific and complementary insights.

6.1 Different Structures

As already mentioned (see previous section) the courses
in the two case studies had a different structure, as the
first one was a general purpose introductory course to pro-
gramming in Python, addressing non-technical exchange
students and lasting for an entire semester, while the other
was a 4-weeks programming module, conducted within a
course in Data Science for 1st semester master students in
Media Studies. In the first course, we lacked a common
ground among the students’ interests and cultural back-
ground, which could provide a concretizing foundation
to the course, hence we found in multimedia a common
ground to provide a gradual access to programming prac-
tice, in the terms of the hermeneutic spiral [13]. As rec-
ommended in hermeneutical pedagogy [30, 33] we took
advantage of the students’ cultural preunderstanding and
their sensorial preunderstanding. In fact, the focus on mul-
timedia leveraged the students’ cultural preunderstanding,
as we counted on their personal experience with images,
audio and video as users of digital technologies. The sen-
sorial preunderstanding was central to the design of the

Medialib and the exercises we developed. Most exercises
(in particular the early ones) focused on placing, com-
posing or moving images on screen, or playing audio file
when certain user inputs are detected. In this way, the stu-
dents we able to form simple and intuitive expectations of
what their programs should do, in terms of seen or hear-
ing media, and that allowed them to be very effective in
debugging their code. Multimedia proved a rich enough
source of CT tasks and exercises, that we could avoid tra-
ditional mathematical and logical problems, yet still have
learners engage with programming features like condition-
als, loops, data-structures and debugging.

On the other hand, the second case study came already
with a common ground among the students, who were all
Media Students and had to learn about Data Science. In
this case, we had since the start a clearer selection of top-
ics to cover, such as infographics and algorithmic data
visualization, user interaction, and scraping via WebAPIs.
However, we had less time at our disposal as the program-
ming module only lasted 4 weeks, and these students had
no prior programming experience. We decided to structure
the programming module as shorter, compact version of
the hermeneutic spiral, that instead developed through-
out the entire course in the first case study. Therefore, we
used our Medialib to both introduce them to Python and
programming in general, and to show them how to visu-
alize data with short, readable programs. From the first
programming lecture, the students were provided with pre-
made code to be run and later edited, to alter code’s the
behavior. In some of these pre-made examples simple bar
charts would be drawn on screen: data was used to change
the width of strips of colored rectangles. These programs
generate infographics by drawing a series of diagrams,
made of rectangles, showing different grouping of the
data and relations among them. In hermeneutic terms, the
diagrams that these code examples generate represented
wholes composed of parts [9, 33] whose properties are
based on a data set. The students could easily link altera-
tions in size, color and placing of the rectangles to specific
lines of the code; furthermore, they could see where to edit
the code to change its behavior and the resulting diagrams.
In other exercises, the students had to work on web scrap-
ing: they were provided with code that could extract data
from a web site, and save the data into a CSV file, to be
later analyzed. Thanks to the pre-made examples, the stu-
dents were able to start coding from the very beginning of
the programming module, leveraging their preunderstand-
ing of Data Science, introduced to them during their BA
and in the first module of the course. Moreover, focusing
on how simple data sets could be algorithmically visual-
ized through diagrams and infographics, the students could
use their visual and intuitive understanding of the data to
verify the behavior of the code was as expected.

30 KI - Künstliche Intelligenz (2022) 36:17–33

1 3

6.2 Findings

Comparing the two case studies, we found that it is easier
to approach programming for non-technical students within
the context of a specific course than within a generic course,
simply aiming at introducing programming. In our expe-
rience, it is necessary to first consider the question: “pro-
gramming what?”. Hence, we suggest proceeding by finding
an application field (i.e. a domain) for the programming,
which can act as a common ground for the students. Generic
courses are generally shaped on introductory courses for
technical students, and implicitly on the TCS we outlined in
Sect. 2. However, those students must develop a deep knowl-
edge of programming, therefore, they need to get a solid
theoretical basis, which will become useful while exploring
different forms of programming on their path of becoming
professional programmers. On the contrary, non-technical
students are in the process of developing other professional
profiles, in this respect programming for them will be a tool
to be used in solving specific problems, delimited within
specialized areas of their fields, and often in collabora-
tion with technical professionals, as part of working teams.
Therefore, providing non-technical students with generic
introductory knowledge in programming might be less use-
ful than providing basics knowledge of programming target-
ing specific fields, and result in a longer unproductive phase,
when the generic knowledge cannot be applied to any field-
relevant problems. Grounding programming on a specific
field has the added benefit to suggest to the students how
and in which area of their future studies programming might
be useful, hence, elicit motivation to learn. In hermeneutic
terms, the field in which the course is grounded will also
provide a resource for preunderstanding, leveraging what the
students have started to learn in the parts of the course that
are more familiar to them and also in other courses in their
programme, hence smoothing their path towards a fusion
of horizon between their more familiar areas of knowledge
and programming.

During our observations we also noticed that students felt
a sense of accomplishment when they were able to read the
code, i.e. understanding which instructions did what. In this
way, they started spontaneously to zoom in and out of the
code, and back and forth between the code and its (visual)
behavior, acquiring a broader perspective on the whole of
the code, accessing the hermeneutic spiral on their own.
Through this dynamic, the students engaged in forms of self-
regulated inquiry, setting questions to themselves on how
they could alter the code to change its result. In this sense,
we find that sensorial preunderstanding and employing
multimedia in introductory programming courses for non-
technical students is a precondition to enable the students
to spontaneously engage in exploratory inquiries on their
code. This is in line with current research on CT, already

starting from Wing [37], which proposes to concretize CT
learning activities through designerly inquiries. However,
we find that there is a need to further understand how non-
technical students experience coding and come to develop
an understanding of their code as a complex text, shifting
from its whole and its part, and from the text to its behavior.

6.3 Future Support and AI

On a more technical level, working with Python and spe-
cific libraries can be challenging for teachers. While tools
exist that can visualize and help explain how code executes
(brilliant examples are Python Tutor [11], Jeliot [20] and
BlueJ [2]), and are sometimes based on explicit NOMs,
many of these tools work only for the core language they
support, recognizing possibly a few of the main standard
libraries, but they cannot cope with external libraries. So,
a teacher interested in showing to her students the execu-
tion of a Python program that uses Pygame Zero, cannot in
fact rely on execution visualization tools. We see a need for
better integration of pedagogical libraries in existing IDEs;
for example, next-generation IDEs could provide ways to
declare, recognize NOMs and external libraries, and support
execution visualization modules that can be customized and
abstracted with respect to given NOMs.

Moreover, based on our experience in designing and
teaching programming courses for beginners, as well as
from other studies we are conducting in the orchestration of
hybrid classrooms [15],we know that programming teachers
using specific libraries with beginners (such as PGZ or our
Medialib) typically need support in 2 areas:

– The generation of multiple variations of an exercise, all
with similar complexity and characteristics;

– Support to validate submitted solutions.

The first problem can benefit from AI-supported example-
based generation of multiple programming exercises with
similar characteristics; the teacher could present a code
example, possibly annotated to better express certain sty-
listic choices or constraints to consider when mutating the
code. The example could then be mutated using refactoring-
like operators, and following smart heuristics to ensure the
resulting variations are still meaningful and in the same
complexity class of the original code. Even if tools exist that
are capable of similar code mutations, we are not aware of
systems that can take in consideration external libraries, and
that could work for instance with Python and our Medialib.
The second problem is a long-standing one: real-time, semi-
automatic validation of submitted solutions to programming
tasks, given one or a few valid solutions as reference. Also
here we expect that AI could help. Unit testing could offer
a good initial metaphor: it is written by a programmer, in

31KI - Künstliche Intelligenz (2022) 36:17–33

1 3

the form of assertions or test suites, but it can be checked
automatically and eventually produce a descriptive summary
of the problems and fail points within the code. A more auto-
matic, AI-enhanced version of a unit testing system could
be able to take a set of submitted solutions and an official
solution, suitably annotated by the teacher, and test-check
each submitted solution against the actual behavior of the
teacher’s solution. Interactive programs are usually the most
complex to compare in this way, therefore we propose that
annotations should refer to expectations circa the user inputs,
and possibly constraints on the use of memory resources or
types of data in the code.

Finally, our approach in the creation of the Medialib
could be regarded as a high-level recipe to create domain-
specific libraries for beginners, that can be fruitfully applied
to teaching AI itself in beginners’ courses. According to our
approach the first step would be an analysis of the typical,
most commonly adopted teaching material and textbooks,
their structures and types of exercises. A minimal NOM
could then be built starting from a small but powerful
enough fragment of the Python language, and extended to
include a minimal number of central concepts needed to
express the typical material and exercises. From our experi-
ence we would suggest avoiding event-based mechanisms
and OOP in the initial NOM, and focus instead on a few
powerful (and possibly modular) imperative commands
that can be given a clear meaning, i.e. that allow the NOM
to explain their semantics in a straightforward way. Data
structures should also be reduced to a minimum in favor of
build-in types. Libraries that attempt to simplify AI exist,
and a good example is simpleai (official web page https://
simpleai.readthedocs.io) which is based on material from
the classic Russel and Norvig AI book [23]. The documenta-
tion and examples show that the focuses of simpleai are code
readability, reusability and modularity of AI algorithms, and
to work with a library that is

[...] made with a more “pythonic” approach [...]

Therefore, it is natural that the library designers leverage
on classes and inheritance. However, this approach is con-
trary to our hermeneutic spiral approach and would require a
rather complex “minimal NOM” to be defined. Considering
these problems, we regard a library like ml5.js to be perhaps
a better starting point for creating a simplified, beginner’s
friendly AI library in Python. The ml5.js library (see https://
ml5js. org/) is implemented to work on the web, with the p5js
programming language, which in turn is related to the Pro-
cessing language, and it builds on top of the powerful and
modern TensorFlow.js machine learning library. The main
challenge in creating a Medialib-style version of ml5.js in
Python would be in finding ways to reduce the conceptual
complexity of machine learning and TensorFlow’s entities
and operations; fitting such powerful and complex ideas in

a minimal NOM, usable by beginners, would require work-
ing together with machine learning experts and deconstruct
textbooks and exercises together.

7 Conclusion

A central concern to the field of CT deals with how to sim-
plify programming, to make it accessible to individuals
without a technical background. Programming is generally
regarded as a complex professional practice, aimed at the
making of software and framed within a design process.
Although it has been stated that CT is not only programming
(Wing [37]), yet programming remains the main challenge in
the design of CT pedagogical approaches and tools. In our
study, we explored how programming can be simplified for
non-technical university students and we propose a double
contribution:

1. A knowledge contribution represented by our new peda-
gogical approach in simplifying programming, grounded
on hermeneutics and NOMs;

2. The Medialib library, which represents a design exem-
plar of our approach [38].

Our approach to simplify programming was to find a theo-
retical lens that could describe the learning path of beginner
programmers in terms of knowledge distance. In our case,
that lens was hermeneutic (and the hermeneutic spiral), and
we proceeded by combining it with a more operational coun-
terpart, notional machines (or NOMs). NOMs can be used to
define the cognitive complexity of algorithms [6], but here
instead we needed a way to define and assess the complexity
(or by opposition, the simplicity) of pedagogical approaches
to CT. We analyzed typical code examples used in textbooks
and video-courses and at the various libraries for begin-
ners (in particular for Python). We then developed our own
library, called Medialib, based on the assumption that the
first NOM presented to beginners programmers should be
as simple and small as possible, in terms of number of con-
cepts and their interconnections. To investigate how simple
our library was, we defined a NOM for a minimal impera-
tive fragment of Python. This fragment is powerful enough
that beginners can use it to mentally execute flat, imperative
programs of a complexity comparable to the typical exam-
ples used in beginners’ textbooks and online material. We
then proceeded to define possible initial NOMs for differ-
ent, popular approaches, and in this way we could establish
that the Medialib has indeed a rather small NOM, possibly
smaller than most other approaches. In fact, the Medialib’s
NOM is not much more complex than the NOM for our
minimal Python fragment.

https://ml5js.org/
https://ml5js.org/

32 KI - Künstliche Intelligenz (2022) 36:17–33

1 3

Medialib simplifies programming also by using multime-
dia as the main domain to introduce CT: this idea spawns
directly from the hermeneutic spiral and the concepts of
cultural and sensorial preunderstanding. The early Medi-
alib programs that we present to the learners are about vis-
ualizing images, and that provides them with an intuitive
grounding to explore their code and its resulting outcome,
specifically linking specific instructions to characteristics of
the visualization such as: sizes, placing, colors, repetition
of elements. We argue that the Medialib enables non-tech-
nical students to build, from the very beginning, an intui-
tive understanding of their code, leveraging sensorial and
cultural preunderstanding of digital media.

Our Medialib was created and tested as part of the
restructuring of two different programming courses for non-
technical university students. Data from those case studies
suggests that simplifying programming is most effective if
a specific application field, i.e. a domain, can be found, that
can act as a common ground for the students. This is in line
with the hermeneutic spiral, since it is a way to leverage on
the learners’ cultural preunderstanding: in one of our case
studies the domain was multimedia programming itself,
while in the other it was Data Science.

Finally, we found that the hermeneutic spiral and notional
machines proved to be a very compatible and productive
combination, which allowed us to approach code as a par-
ticular form of text aimed at problem-solving, and provided
us with an interpretive perspective, respectful of the needs
of non-technical students, who need to approach program-
ming and code from their own perspective. We believe that
the approach presented in this paper can be used to create
“simplified” libraries also for other domains, for example
machine learning. We also identify the need for better pro-
gramming environments for non-technical students, that
could support incremental NOMs and offer a smoother
learning curve. We see AI playing an important role in
making such environments effective, by supporting learners
and teachers in areas like intelligent semi-automatic assess-
ment, and example-based generation of tasks of comparable
complexity.

Acknowledgements We would like to thank Jingyun Wang (from Dur-
ham University, UK) for providing the initial problem that brought us to
create the Medialib, and for supporting its testing and deployment. We
would also like to thank Marco Ragni and Nina Bonderup Dohn (from
SDU, Denmark) for the very productive and stimulating discussions
that helped frame and improve this paper.

References

 1. Balzer W, Eleftheriadis A, Kurzawe D (2018) Digital humanities
and hermeneutics. Philos Inquiry 42(3/4):103–119

 2. Berry M, Kölling M (2016) Novis: a notional machine
implementation for teaching introductory programming. In:

International conference on learning and teaching in comput-
ing and engineering, LaTICE 2016, Mumbai, March 31–April
3, 2016, pp. 54–59. IEEE Computer Society . https:// doi. org/
10. 1109/ LaTiCE. 2016.5

 3. Björgvinsson E, Ehn P, Hillgren PA (2010) Participatory design
and “democratizing innovation”. In: Proceedings of the 11th Bien-
nial participatory design conference, pp 41–50

 4. Drotner K, Iversen SM (2017) Digitale metoder: at skabe, ana-
lysere og dele data. Samfundslitteratur

 5. Duran R (2019) Blog post “notional machines” . https:// compe
donli ne. school. blog/ 2019/ 07/ 26/ notio nal- machi nes

 6. Duran R, Sorva J, Leite S (2018) Towards an analysis of pro-
gram complexity from a cognitive perspective. In: Proceedings
of the 2018 ACM conference on international computing educa-
tion research, ICER ’18, pp 21–30. Association for Computing
Machinery, New York. https:// doi. org/ 10. 1145/ 32309 77. 32309 86

 7. Fowler M (2010) Domain-specific languages. Addison-Wesley,
Upper Saddle River

 8. Fry B, Reas C (2021) The processing language, official website .
https:// proce ssing. org/

 9. Gadamer HG (1989) Truth and method (J. Weinsheimer & DG
Marshall, Trans.). New York: Continuum

 10. Grondin 2017 (2017) Gadamer’s interest for legal hermeneutics.
Law’s hermeneutics: other investigations. Routledge, Oxford, pp
48–62

 11. Guo PJ (2013) Online python tutor: embeddable web-based pro-
gram visualization for CS education. In: Proceeding of the 44th
ACM technical symposium on Computer science education, pp
579–584

 12. Heidegger M (1962) Being and time (J. Macquarrie & E. Robin-
son, Trans.)

 13. Horban O, Maletska M (2019) Basic hermeneutic approaches to
interpretation of videogames. Skhid 163(5):5–12

 14. Iordache C, Mariën I, Baelden D (2017) Developing digital skills
and competences: a quick-scan analysis of 13 digital literacy mod-
els. Ital J Sociol Educ 9(1):6–30

 15. Jakobsen M, Nyborg M, Valente A (2021) Towards a new tool for
individualized content delivery in classrooms. In: Learning and
Collaboration Technologies (HCII 2021). Springery

 16. Kozinets RV (2015) Netnography. Int Encycl Digital Commun
Soc 39:1–8

 17. Kristensen K, Marchetti E, Valente A (2021) The global challenge
of designing e-learning tools for computational thinking: a com-
parison between east asia and scandinavia. In: e Lecture Notes in
Computer Science (LNCS). Springer, Germany . http:// 2021. hci.
inter natio nal/

 18. Malan DJ (2019) Cs50 2019-lecture 0-computational thinking,
scratch . https:// www. youtu be. com/ watch?v= jjqgP 9dpD1k

 19. McGugan W (2007) Beginning game development with python
and pygame: from novice to professional (beginning from novice
to professional). Apress, New York

 20. Moreno A, Myller N, Sutinen E, Ben-Ari M (2004) Visualizing
programs with jeliot 3. In: Proceedings of the working conference
on advanced visual interfaces, pp 373–376

 21. Piotrowski M, Neuwirth M (2020) Prospects for computational
hermeneutics. In: Atti del IX Convegno Annuale AIUCD

 22. Pope D (2021) Pygame zero—official webpage . https:// pygame-
zero. readt hedocs. io/ en/ stable/ intro ducti on. html

 23. Russell SJ, Norvig P (2003) Artificial intelligence: a modern
approach. Pearson Education . http:// portal. acm. org/ citat ion. cfm?
id= 773294

 24. Schleiermacher F (1998) Hermeneutics and criticism and other
writings. Cambridge University Press, Cambridge

 25. Seppälä O, Duran R, Becker B, Denny P, Barik T, Ball T,
Velázquez-Iturbide Á, Sorva J (2019) Notional machines for
scratch and python. In: Dagstuhl Seminar 19281, pp. 18–19

https://doi.org/10.1109/LaTiCE.2016.5
https://doi.org/10.1109/LaTiCE.2016.5
https://compedonline.school.blog/2019/07/26/notional-machines
https://compedonline.school.blog/2019/07/26/notional-machines
https://doi.org/10.1145/3230977.3230986
https://processing.org/
http://2021.hci.international/
http://2021.hci.international/
https://www.youtube.com/watch?v=jjqgP9dpD1k
https://pygame-zero.readthedocs.io/en/stable/introduction.html
https://pygame-zero.readthedocs.io/en/stable/introduction.html
http://portal.acm.org/citation.cfm?id=773294
http://portal.acm.org/citation.cfm?id=773294

33KI - Künstliche Intelligenz (2022) 36:17–33

1 3

 26. Severance CR (2021) Online course—programming for everybody
(getting started with python) . https:// www. cours era. org/ learn/
python? speci aliza tion= python

 27. Severance CR, Blumenberg S, Hauser E (2016) Python for eve-
rybody: exploring data in python 3. CreateSpace Independent
Publishing Platform, North Charleston

 28. Shiffman D (2021) Online video course—the coding train . https://
www. youtu be. com/ watch?v= yPWkP OfnGsw

 29. Sorva J (2013) Notional machines and introductory programming
education. ACM Trans Comput Educ 13(2):8. https:// doi. org/ 10.
1145/ 24837 10. 24837 13

 30. Sotirou P (1993) Articulating a hermeneutic pedagogy: the phi-
losophy of interpretation. J Adv Compos 13(2):365–380

 31. Sweigart A (2016) Invent your own computer games with python,
4th Edition-free online book. No Starch Press. https:// inven twith
python. com/ inven t4thed/

 32. Tedre M, Denning PJ (2016) The long quest for computational
thinking. In: Proceedings of the 16th Koli calling international
conference on computing education research, pp 120–129

 33. Tomkins L, Eatough V (2018) Hermeneutics: interpretation,
understanding and sense-making. SAGE handbook of qualitative
business and management research methods pp. 185–200

 34. Valente A, Marchetti E, Wang J (2020) Design of an educational
multimedia library to teach python to non-technical university
students. In: P. Zaphiris, A. Ioannou (eds.) Proceedings of the 9th
International Congress on Advanced Applied Informatics (IIAI-
AAI), pp. 169–175. IEEE. https:// doi. org/ 10. 1109/ IIAI- AAI50
415. 2020. 00041

 35. Vorderman C (2017) Computer coding python projects for kids: a
step-by-step visual guide. Computer coding. Dorling Kindersley
Limited . https:// www. dk. com/ uk/ book/ 97802 41286 869- compu
ter- coding- python- proje cts- for- kids/

 36. Vorderman C (2018) Computer coding python games for kids.
Dorling Kindersley Limited, London

 37. Wing J (2017) Computational thinking’s influence on research and
education for all. Ital J Educ Technol 25(2):7–14

 38. Zimmerman J, Forlizzi J (2014) Research through design in HCI.
In: Ways of knowing in HCI, pp. 167–189. Springer

https://www.coursera.org/learn/python?specialization=python
https://www.coursera.org/learn/python?specialization=python
https://www.youtube.com/watch?v=yPWkPOfnGsw
https://www.youtube.com/watch?v=yPWkPOfnGsw
https://doi.org/10.1145/2483710.2483713
https://doi.org/10.1145/2483710.2483713
https://inventwithpython.com/invent4thed/
https://inventwithpython.com/invent4thed/
https://doi.org/10.1109/IIAI-AAI50415.2020.00041
https://doi.org/10.1109/IIAI-AAI50415.2020.00041
https://www.dk.com/uk/book/9780241286869-computer-coding-python-projects-for-kids/
https://www.dk.com/uk/book/9780241286869-computer-coding-python-projects-for-kids/

	Simplifying Programming for Non-technical Students: A Hermeneutic Approach
	Abstract
	1 Introduction
	2 Related Work
	2.1 CT and Programming
	2.2 How is Programming Simplified
	2.3 Notional Machines and Simplicity

	3 Hermeneutic Grounding
	4 Python NOMs and Medialib’s Design
	4.1 Extending Python with Multimedia and Comparing NOMs
	4.2 Three NOMs:  , and
	4.3 Medialib Commands and Programming Style

	5 Case Studies
	5.1 Introductory Programming Course in Fukuoka
	5.2 Digital Methodologies Course in Odense

	6 Discussion
	6.1 Different Structures
	6.2 Findings
	6.3 Future Support and AI

	7 Conclusion
	Acknowledgements
	References

