
Cloud Data Management for Online Games:
Potentials and Open Issues

Ziqiang Diao, Eike Schallehn

Department of Technical and Business Information Systems
Otto-von-Guericke University Magdeburg, Germany

diao, eike@iti.cs.uni-magdeburg.de

Abstract: Popular massively multiplayer online role-playing games (MMORPG) typ-
ically have millions of players and are played throughout the world. Worldwide rev-
enues for MMORPGs have increased to billions of dollars each year. Unfortunately,
the complex architecture of MMORPGs make them hard to maintain, resulting in con-
siderable costs and development risks. For normal operation, MMORPGs have to
access huge amounts of diverse data. With increasing numbers of players, managing
growing volumes of data in a relational database becomes a big challenge, which can-
not be overcome by simply adding new servers. Cloud storage systems are emerging
solutions, focusing on providing scalability and high performance for Cloud applica-
tions, social media, etc. However, Cloud storage systems are in general not designed
for processing transactions or providing high levels of consistency. In this paper, we
analyze the existing architecture of MMORPGs, classify data, highlight the design re-
quirements, identify the major research challenges, propose a Cloud-based model for
MMORPGs, and present a series of data management solutions.

1 Introduction

A massively multiplayer online game (MMOG) can generally support hundreds or thou-
sands of players from all over the world in parallel. In a virtual game world, players can
choose a new identity, establish a new social network, compete or cooperate with other
players, or even realize dreams that cannot be completed in real-life. Because of these at-
tractiveness, in 2011 US Americans overall spend 26 million hours per day and 2.6 billion
dollars in total for playing MMOGs[New13a]. The game industry is developing rapidly,
and the global MMOG market volume has grown to $13 billion in 2012[New13b].

Different from some types of MMOGs such as first-person shooters and real-time strategy
games, MMORPGs keep the virtual game environment running even in the case of no play-
ers. In addition to the account information, the state data of objects and characters must
be recorded on the server side in real-time, so that players can quit and continue the game
at any time. All of the player behavior in the game should be monitored and backed up
in order to maintain the order of the virtual world. Furthermore, MMORPGs usually have
more concurrent players than any other MMOGs, (for example, World of Warcraft has
millions of concurrent players), which also exacerbates the burden of managing data. A
qualified database system for data persistence in MMORPGs must guarantee the data con-
sistency, and also be efficient and scalable [ZKD08]. However, existing RDBMS cannot

Account
Database

Game
Database

State
Database

Log
Database

Client

Gateway Server Chat Server

Logic
Server

Map
Server

Zone Server

In-Memory DB

Login Server

Figure 1: A simplified architecture of MMORPGs

fully satisfy all these requirements simultaneously [WKG+07, Cat10]. Therefore, with the
increasing data volume, the storage system becomes a bottleneck, and solving scalability
and availability issues become a major cost factor and development risk.

Cloud storage systems, which have the ability to support highly concurrent data accesses
and huge storage, may become a solution. Unfortunately, in contrast with the conventional
DBMS, cloud systems are generally designed for Web applications that have different
access characteristics and require lower or different consistency levels. Therefore, we need
to analyze MMORPGs in more detail, to assess the usability of Cloud storage systems for
MMORPGs, open issues, and possible solutions.

In this paper, we focus on MMORPGs, and propose to customize a Cloud-based data
management for them. The rest of the paper is structured as follows. In Section 2, we
analyze the existing architecture and data management of MMORPGs. In Section 3, we
classify data of MMORPGs into four groups and discuss their requirements. In Section 4,
we propose a Cloud-based data management model for MMORPG, and, finally, conclude
and summarize this paper in Section 5.

2 A short Analysis of MMORPG’s current Data Management

In order to support player interaction and ensure system security [ZKD08] the MMORPG
typically employs a Client-Server model or a Browser-Server model. However, MMORPGs
usually have a similar architecture on the server side. Figure 1 shows a simplified archi-
tecture of MMORPGs [WKG+07, Ale03].

A player sends a request to the login server, which is responsible for determining the va-
lidity of the request. The login server cooperates with an account database that stores user
account information. If the validation is passed, the login server encrypts the user ID,

generates a token, and then returns it to the player. The player uses this token to commu-
nicate with the gateway server, which is an information transit station. The gateway server
is generally composed by multiple servers, the main functions of which are to maintain
the connection state of a player, monitor the player’s requests and transmit it to a zone
server or a chat server. MMORPGs need to satisfy the connection requests from global
players, so these servers are usually deployed in parallel in several data centers around the
world. Note that only one zone server provides services in one session. The zone server
is responsible for maintaining a global virtual game world for players, executing the game
rules, simulating interactions among characters, and synchronizing the simulation results
to the relevant players. In order to balance the server workload, a zone server is composed
by multiple map servers and logic servers. The zone server reads game scripts and rules
from a game database, and accesses state data of characters from a state database. When
a player starts an MMORPG, all character state data of this player must be read from the
state database at one time, and then cached in an in-memory database. During the game,
the zone server manages data in memory in real-time, and writes them to the disk peri-
odically. When a player quits the game, the character state data of this player is persisted
to the state database and deleted from the active game data in memory. The log database
in this architecture records all player operations and sometimes also the chat history. The
data is collected for purposes of data mining and intrusion detection.

Currently, MMOPRGs apply distributed RDBS for data persistence, which can commit
complex transactions and are proved to be stable. As an example, consider MySQL
Cluster[Ora13] and it’s characteristics. MySQL Cluster adopts a shared nothing architec-
ture to ensure the system scalability. It automatically partitions data within a table based on
the primary key across all nodes. Each node is able to help clients to access correct shards
to satisfy a query or commit a transaction. For the purpose of guaranteeing availability,
data is replicated to multiple nodes. MySQL Cluster applies a two-phase commit (2PC)
mechanism to propagate data changes to the primary replica and one secondary replica
synchronously, and then modifies other replicas asynchronously. In this case, at least one
secondary replica has the consistent and redundant data, which can be used as a fail-over
server while the primary server fails. When MySQL Cluster maintains tables in memory,
it can support real-time responses. The result is that it can also be used as an in-memory
DBS in MMORPGs.

3 Data Management Requirements of MMORPGs

From a system’s point of view, the essence of a game is data processing, storage, and
transmission among databases, servers, and players. According to data management re-
quirements, for our following considerations we classify data into four data sets because
these different classes should be managed according to their requirements.

Account data: this category of data include user account information, such as user ID,
password, recharge records, and account balance. This data is usually only used
when players log in or log out of a game or for accounting purposes.

Game data: data such as world geometry and appearance, object and NPC (Non Player
Character) metadata (name, race, appearance, etc.), system logs, configuration and

Data Consistency Performance Availability Scalability Partitioning Flexible model Simplified processing Security
Account Data ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆

Game Data ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆

State Data ☆

Log Data ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆

Table 1: Data classification and requirements analysis

game rules/scripts in an MMORPG are generally only modified by game developers.
Some significant part of the game data is often stored on the client side to minimize
network traffic for unchangeable data.

State data: as we discussed above, PC (Player Character) metadata, position and state
of characters and objects, and inventory in MMORPGs are modified constantly.
Currently, the change of state data is executed by an in-memory database in real-
time and recorded in a disk resident database periodically.

Log data: analyzing user chat history and operation logs in an MMORPG is the most
objective and direct way for game providers to evaluate a game, find out the operat-
ing habits of players, explore the game development trends, and even supervise the
financial system of the game world.

For these classes we summarize data management requirements in Table 1 and discuss
them in the following.

Support for different levels of consistency: in a collaborative game players interact
with each other. Changes of state data must be synchronously propagated to the relevant
players within an accepted period of time. For this purpose we need a continuous con-
sistency model in MMORPGs [LLL04]. The state data and account data changes must be
recorded in the database. It is intolerable if players are surprised to find that their last game
records are lost when they log in the game again. As a result, a strong or at least a Read
Your Writes consistency [Vog08] is required for such data. However, strong consistency
is not necessary for log data and game data, for example, the existence of a tree in the
map, the synchronization of a bird animation, or the clothing style of a game character
can be different in the client side. Log data is generally not analyzed immediately. Hence,
eventual consistency [Vog08] is sufficient for these two classes of data.

Performance/real-time: state data is modified constantly by millions of concurrent play-
ers, which brings a large amount of data throughput to game servers and thousands of con-
current database connection operations. Such changes must be executed in real-time and
persisted on disk efficiently. It becomes a challenge to the database performance.

Availability: as an Internet/Web application, an MMORPG system should be able to
respond to each user request within a certain period of time. The system also needs to
have the ability to tolerate data loss. This can be achieved by increasing data redundancy
and setting up fail-over servers.

Scalability: typically, online games start with a small or medium number of users. If the
game is successful, the number can grow extremely. To avoid problems of a system laid

out for too few users or the costs of a system initially laid out for too many users, the data
management needs to be extremely scalable [GDG08]. Furthermore, log data will be ap-
pended continually and retained in the database statically for a long time [WKG+07]. The
expansion of data scale should not affect the database performance. Hence, the database
should have the ability to accommodate the growth by adding new hardware [IHK04].

Data partitioning: performing all operations on one node can simplify the integrity
control, but that may cause a system bottleneck. Therefore, data must be partitioned into
multiple nodes in order to balance the workload, process operations in parallel and reduce
processing costs. Current partitioning schemes are most often based on application logic,
such as partial maps (map servers). This does not easily integrate with the requirement
of scalability, i.e. re-partitioning is not trivial when new servers are added. Accordingly,
suitable partitioning schemes are a major research issue.

Flexible data model: part of the state data does not have a fixed schema, for example
PCs have dynamic skills, tasks, and inventory and MMORPGs are typically bug-fixed and
extended during their runtime. Therefore, it is difficult to adopt the relational model to
manage such data. A flexible data model without a fixed schema is more suitable.

Simplified data processing: In MMORPGs only changes of account data and a part
of state data must be executed in the form of transactions. In addition, the transaction
processing in a game database is very different from in a business database. For example,
in MMORPGs, there are many transactions, but most of the small size. Parallel operations
with conflicts occur rarely. Strong consistency is not always necessary. Hence, a simplified
data processing mechanism is possible.

Security: game developers always have to be concerned about data security. User-
specific data, such as account data and chat logs, must be strongly protected. Furthermore,
it must be possible to recover data after being maliciously modified.

Ease of use, Composability, and Re-usability: The DMS should be easy for developers
to use, and can be applied to other MMORPGs. Companies developing and maintaining
MMORPGs should be able to re-use or easily adapt existing data management solutions to
new games, similar to the idea separating the game engine from the game content currently
widely applied. This requirement is independent of the class of data.

4 The case for Cloud-based Data Management for MMORPGs

Currently, MMORPGs apply RDBMS for data persistence. However, RDBMS cannot
fulfill some data management requirements well, or there must be some provisos[Ale03,
Cat10]. In contrast to RDBMS, Cloud-based storage systems have inherent advantages
regarding their major characteristics like scalability and availability. Nevertheless, some
typical requirements are neither fully supported by any of the two alternatives. Accord-
ingly, we discuss key requirements and the suitability of the RDMS vs. Cloud-based
storage systems.

High performance: traditional RDBMS are not designed for managing data with a large
number of attributes, such as PC state data. If we create a wide table, i.e. with hundreds

of columns, RDBMS often fail to manage it well. If we partition a wide table into several
tables, the massive join operations would bring a great impact on the system performance.
Different from RDBMS, Cloud-storage systems can manage all attributes by applying a
simplified data model as well as data redundancy. Although this solution increases the
storage burden on the system, it improves the query performance.

Scalability: for large-scale Internet/Web applications, a single or a few servers cannot
satisfy the user demand for data access. The only solution is scaling out. Although some
RDBMS (e.g. MySQL Cluster, Oracle RAC, etc.) also have used the shared-nothing ar-
chitecture, the system scalability is limited by its complex schema. Furthermore, data
set volume growth has a significant impact on the system performance [FMC+11, Cat10].
With their simplified data model, Cloud storage systems are proven to have a great poten-
tial for scalability [FMC+11].

Flexible data model: the relational model of RDBMS is good at normalizing table
schema and removing data redundancy, but not at adapting to a dynamic schema and pro-
cessing big data. Cloud storage systems typically adopt a flexible data model, such as a
key-value data model. There is no fixed schema for items. Each item consists of a key and
a dynamic set of attributes.

Simplified data processing: RDMS usually follow a strict transaction mechanism, such
as a table-level or a row-level atomicity, multi-version concurrency control mechanism,
transaction isolation, and rollback. As we discussed above, this is not necessary for all
data in MMORPGs. Cloud systems are designed for Web applications, in which strong
consistency is not as necessary as it in business applications. For this reason, they generally
do not support transaction processing.

4.1 Proposal of an Architecture for Cloud-based MMORPGs

For these reasons, we propose a set of Cloud services to improve the existing game ar-
chitecture. The main idea is that subsets of data having strong requirements to system
scalability or flexible data model are persisted in a Cloud-based distributed file system or
in a Cloud-based structured data system; other data sets are provided Cloud services that
are similar with existing solutions. Figure 2 shows the new Cloud-based architecture for
MMORPGs.

Account data must be processed carefully because that an operation error may cause an
economic dispute or a player’s information disclosure. As a result, each operation needs
to be executed in the form of a transaction. Furthermore, the scale of account data is not
large. Accordingly, we suggest storing account data in RDBMS as a service. We do not
suggest managing the account data in a public Cloud for the data security reasons. Before
the public Cloud providers bring trustworthy data security solutions, we recommend game
providers to build a private Cloud, which employs Cloud architecture and is maintained
and protected by game providers themselves.

Log data has a large scale. Once the log data has been written to disk, they do not need
to be modified. In addition, log data is usually analyzed after a long time, so strong
consistency is not important. Generally speaking, in addition to the demand for scalability,

Client

Gateway Server Chat ServerLogin Server

Cloud Storage System
(State Data)

HDFS/Cassandra
(Game Data and Log Data)Logic Server Map Server

Zone Server

In-Memory DB

Data Access Server

RDBMS as a Service
(Account Data)

Figure 2: A Cloud based architecture of MMORPGs

management requirements of log data are not difficult to meet. Therefore, there are some
existing Cloud storage systems that can be used directly, such as Cassandra[Apa13] or
the Hadoop Distributed File System (HDFS) [SKRC10]. Both of them can provide high
throughput to access data across a large number of servers and have the feature of high fault
tolerance. Cooperating with Hadoop MapReduce, both of them can process and analyze
large data set in parallel.

Game data processing does not pose a challenge to the existing solutions. Unless they are
stored on the client side, we can manage them in a traditional distributed file system or in
HDFS because these data exist typically in the form of documents.

As discussed above, managing the state data in real-time is a big challenge for a disk resi-
dent RDBMS. Unfortunately, Cloud storage systems with their shared nothing architecture
are not intended to provide real-time support. Although some Cloud storage systems man-
age data in the memory of each node, we cannot limit all related data to one node. The
changes of data must be propagated to other nodes in the form of messages, which will
increase the response time. Therefore, we continue applying an in-memory database in
each zone server.

Note that state data must be persisted to the disk. In this process, a flexible data model,
simplified data processing, and a high performance for concurrent data access are required,
all of which are weaknesses of RDBMS. State data is backed up to disk in frequent inter-
vals, typically every 5 to 10 minutes. Consequently, the database in MMORPGs is write-
intensive. Cassandra is designed for Web applications that perform more equal shares of
write and read operations, such as a social networking website. Cassandra ensures that
it is always writable. Nevertheless, Cassandra can only partially meet the demand of the

state data. It is a plan for our future research, to customize a new Cloud storage system for
MMORPGs based on Cassandra. In the following, we discuss some features of Cassandra.

4.2 Using Cassandra for MMORPGs

Cassandra has a decentralized (peer-to-peer) structure [Lak10], i.e., each node is identical
and is able to initiate reads and writes independently. Data are automatically replicated
to multiple nodes. Therefore, there is no network bottleneck and single points of fail-
ure, which can satisfy the write performance requirements of state data. This is different
with RDBMS (e.g., MySQL Cluster) and some other Cloud storage systems (e.g., Google
Bigtable [CDG+06]), which usually adopt a primary/secondary model (the primary node
may become a system bottleneck).

Cassandra provides a column family based data model, which is richer than a simple key-
value store. Every row in a super column family in Cassandra consists of a row key
and a dynamical set of super columns, each of which maintains a different number of
columns. In this way, we can manage the PC data of one player in a single row, and
partition data based on row key across multiple nodes in the cluster. Hence, there is no
more join operation during reading data, and the read performance can be increased.

Cassandra adopts a shared-nothing architecture and a simplified data model as we men-
tioned above. As a result, it can scale out easily by adding new hardware, and reach a
linearly increasing read and write throughput. That is also the reason that we can manage
state and log data in Cassandra. Another advantage is that Cassandra provides a quorum
based data replication mechanism. That means as long as a write can receive a quorum
responses, it can complete successfully. In this way, Cassandra ensures availability and
fault tolerance. Additionally, by controlling the number of replicas that must respond to a
read request, Cassandra offers a tunable data consistency.

On the other hand, there are still some open problems that cannot be well solved by Cas-
sandra directly.

Data consistency: Cassandra employs Read Repair to guarantee data consistency. It means
that all replicas must be compared in order to return the up-to-date data to users. In
MMORPGs, state data may have hundreds of attributes and are distributed in multiple
data centers. Hence, such a feature will significantly reduce the read performance and in-
crease the network traffic. A common method for solving this problem is to limit the data
consistency in the application layer of the system[GeBS11]. Note that Cassandra records
timestamps in each column, and uses it as a version identification. Therefore, a possible
solution is that we record the timestamps from a global server (in this paper it is the ac-
cess server) in both server side and columns in Cloud storage system. When we read state
data from the Cloud, the timestamps recorded on the server side will be sent with the read
request. In this way, we can find out the most recent data easily. We set all columns in
a single row with the same timestamp, so that only one row key and one timestamp are
stored for a single row on the server side. In addition, these timestamps are partitioned and
managed by access servers in parallel. For these two reasons, accessing these timestamps
in the server side is not a challenge.

Customized functionality: We need to develop some new functions based on features of

MMORPGs. There are two examples: the task of the Cloud storage system is data backup.
Each value that has been written in the Cloud must be persistent until it is out of date.
Therefore, if an update operation fails in the committing process, values that have been
recorded in the database should be applied and other values must try to update again. To
comply with this rule, a column-level atomicity is sufficient (Cassandra offers an atomic-
ity at the column family level.); note that writes and queries in games are relatively fixed.
Hence, we propose to add a stored procedure to each node to optimize the system per-
formance. The stored procedure is also responsible for splitting a write operation into
column-level, which is convenient for offering a column-level atomicity.

Data partitioning: In order to get a high performance of accessing the entire state data of a
character or object, we manage these data in a single row and partition them based on row
key horizontally. However, this method increases the processing costs of querying data
across characters. We can partly relieve this problem by creating indexes. Unfortunately,
it increases the workload of write. A more efficient data partitioning method based on
semantics (e.g. map zones) or a mix of both has to be proposed.

Network traffic: In shared-nothing systems, nodes communicate with each other via mes-
saging. As a result, a large amount of messages and data are transmitted over the net-
work, which may lead to potential bandwidth bottlenecks. This risk is particularly high
for MMORPGs that need to backup the state data snapshot to the disk regularly. Here are
two possible proposals: If no or only some unimportant attributes (e.g., the position of a
character) of a state data are modified, the current round backup of this state data can be
skipped [ZK11, ZKD08]; only the timestamp, the row key, and the modified values are
sent as a message to the Cloud storage system.

5 Conclusion

In this paper, we proposed a Cloud-based data management for MMORPGs, which has
a high performance and scalability. We outlined the main criteria for this proposal, by
classifying and describing the typical requirements of MMORPGs. The proposed model
adopts a shared-nothing architecture to ensure scalability, and customizes a set of data
management solutions, so that the new system can operate efficiently. We classified data
into four groups, and found out that only the state data and the log data should be recorded
in the Cloud storage system and managed differently. For example, the model promises a
strong consistency guarantee to the state data, but only an eventual consistency guarantee
to the log data. To further improve the system’s performance, we also proposed some
solutions to reduce the number and size of messages. In our future work, we will focus
on the cooperation of multiple DMSs in one MMORPG and the customization of a new
Cloud storage system for MMORPGs.

References

[Ale03] Thor Alexander. Massively Multiplayer Game Development. Thomson Learning, 2003.

[Apa13] Apache. Cassandra, January 2013. http://cassandra.apache.org/.

[Cat10] Rick Cattell. Scalable SQL and NoSQL Data Stores. ACM Special Interest Group on
Management of Data (SIGMOD), 39(4):12–27, 2010.

[CDG+06] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach,
Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable: A
distributed storage system for structured data. In Proceedings of 7th Symposium on
Operating System Design and Implementation(OSDI), pages 205–218, 2006.

[FMC+11] Craig Franke, Samuel Morin, Artem Chebotko, John Abraham, and Pearl Brazier. Dis-
tributed Semantic Web Data Management in HBase and MySQL Cluster. In IEEE
International Conference on Cloud Computing, CLOUD 2011, pages 105–112, 2011.

[GDG08] Nitin Gupta, Alan Demers, and Johannes Gehrke. SEMMO : A Scalable Engine for
Massively Multiplayer Online Games [Demonstration Paper]. In ACM SIGMOD Con-
ference 2008, pages 1234–1238, 2008.

[GeBS11] Francis Gropengieß er, Stephan Baumann, and Kai-Uwe Sattler. Cloudy Transactions
Cooperative XML Authoring on Amazon S3. In Datenbanksysteme für Business, Tech-
nologie und Web (BTW), pages 307–326, 2011.

[IHK04] Takuji Iimura, Hiroaki Hazeyama, and Youki Kadobayashi. Zoned Federation of Game
Servers : a Peer-to-peer Approach to Scalable Multi-player Online Games. In Pro-
ceedings of the 3rd Workshop on Network and System Support for Games, NETGAMES
2004, pages 116–120, 2004.

[Lak10] Avinash Lakshman. Cassandra - A Decentralized Structured Storage System. Operating
Systems Review, 44(2):35–40, 2010.

[LLL04] Frederick W.B. Li, Lewis W.F. Li, and Rynson W.H. Lau. Supporting continuous con-
sistency in multiplayer online games. In 12. ACM Multimedia 2004, pages 388–391,
2004.

[New13a] Newzoo. 2011 MMO Trend Report, January 2013. http://www.newzoo.com/
trend-reports/mmo-trend-report/.

[New13b] Newzoo. 2012 MMO Games Market Report, Jan-
uary 2013. http://www.newzoo.com/infographics/
the-global-mmo-market-sizing-and-seizing-opportunities/.

[Ora13] Oracle. MySQL Cluster Overview, January 2013. http://dev.mysql.com/
doc/refman/5.5/en/mysql-cluster-overview.html.

[SKRC10] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The Hadoop
Distributed File System. In IEEE 26th Symposium on Mass Storage Systems and Tech-
nologies (MSST), pages 1–10, 2010.

[Vog08] Werner Vogels. Eventually consistent. ACM Queue, 6(6):14–19, 2008.

[WKG+07] Walker White, Christoph Koch, Nitin Gupta, Johannes Gehrke, and Alan Demers.
Database research opportunities in Computer Games. ACM Special Interest Group on
Management of Data (SIGMOD), 36(3):7–13, 2007.

[ZK11] Kaiwen Zhang and Bettina Kemme. Transaction Models for Massively Multiplayer
Online Games. In 30th IEEE Symposium on Reliable Distributed Systems (SRDS 2011),
pages 31–40, 2011.

[ZKD08] Kaiwen Zhang, Bettina Kemme, and Alexandre Denault. Persistence in Massively Mul-
tiplayer Online Games. In Proceedings of the 7th ACM SIGCOMM Workshop on Net-
work and System Support for Games, NETGAMES 2008, pages 53–58, 2008.

