Datenbank Spektrum (2021) 21:179-189
https://doi.org/10.1007/s13222-021-00387-7

SCHWERPUNKTBEITRAG

®

Check for
updates

Collecting and visualizing data lineage of Spark jobs

Digesting Spark execution plans to surface lineage graphs via a full-stack application

Alexander Schoenenwald' - Simon Kern? - Josef Viehhauser? - Johannes Schildgen’

Received: 14 May 2021 / Accepted: 4 September 2021/ Published online: 4 October 2021
© The Author(s) 2021

Abstract

Metadata management constitutes a key prerequisite for enterprises as they engage in data analytics and governance. Today,
however, the context of data is often only manually documented by subject matter experts, and lacks completeness and
reliability due to the complex nature of data pipelines. Thus, collecting data lineage—describing the origin, structure,
and dependencies of data—in an automated fashion increases quality of provided metadata and reduces manual effort,
making it critical for the development and operation of data pipelines. In our practice report, we propose an end-to-end
solution that digests lineage via (Py-)Spark execution plans. We build upon the open-source component Spline, allowing
us to reliably consume lineage metadata and identify interdependencies. We map the digested data into an expandable data
model, enabling us to extract graph structures for both coarse- and fine-grained data lineage. Lastly, our solution visualizes
the extracted data lineage via a modern web app, and integrates with BMW Group’s soon-to-be open-sourced Cloud Data
Hub.

Keywords Data Lake - Metadata - Data Engineering - Data Provenance - Amazon Web Service

1 Introduction data lakes do not effectively collect metadata [1], as it is

easier to create and dump data than to curate it. Hence, a

With the increased adoption of cloud services over the last
few years, organizations have found easy means to col-
lect, store, and analyze vast amounts of structured and
unstructured data from heterogenous sources. Starting in
the 2010s, distributed-data-processing frameworks such as
Apache Spark have increasingly gained momentum to help
data engineers and scientists process data at the scale of
petabytes. Gartner states, however, that about 80 percent of

Alexander Schoenenwald
alexander.schoenenwald @st.oth-regensburg.de

Simon Kern
simon.kern @bmwgroup.com

Josef Viehhauser
josef.viehhauser @bmwgroup.com

P4 Johannes Schildgen
johannes.schildgen @oth-regensburg.de
OTH Regensburg, Ratisbon, Germany
2 BMW Group, Munich, Germany

major part of preparing data consists of handling missing
and erroneous metadata [2].

As a response to this, organizations introduce data cat-
alogs to document (previously) ungoverned data on their
platforms, maintaining an inventory of and providing doc-
umentation capabilities for data [1]. While this helps data
consumers to better understand and grasp the context of
data, such catalogs are often not able to sufficiently cap-
ture the provenance of datasets given the complex set of
variables involved—even with thriving data communities
in place.

Data lineage, also referred to as data provenance, sur-
faces the origins and transformations of data and provides
valuable context for data providers and consumers [3].
We typically differentiate between coarse-grained and
fine-grained lineage for retrospective workflow prove-
nance. While the former describes the interconnections of
pipelines, databases and tables, the latter exposes details on
applied transformations that generate and transform data [4,
5]. Hence, fine-grained lineage enables our platform users
to monitor, comprehend, and debug complex data pipelines

@ Springer

https://doi.org/10.1007/s13222-021-00387-7
http://crossmark.crossref.org/dialog/?doi=10.1007/s13222-021-00387-7&domain=pdf
http://orcid.org/0000-0002-2450-0152

180

Datenbank Spektrum (2021) 21:179-189

[6]. In technical terms, it includes the origin, sequence of
processing steps, and final state of a dataset. Applying the
concept of lineage tackles the aforementioned drawbacks
by extending largely manually curated data catalogs with
rich, human-readable, and automatically generated context
on datasets.

In the context of data lakes, there typically exist two
types of pipelines:

e Stream-based: ingestion and transformation pipelines
process and act on an unbounded stream of data close to
real time.

e Batch-based: ingestion and transformation pipelines op-
erate on more traditional sources of data (typically rela-
tional data).

While the pure volume of data is driven by stream-based
ingestion, we find that 80 percent of datasets require (some
sort of) batch processing at the BMW Group. Moreover, our
experience shows that lineage is inherently less complex in
stream processing, where we are mostly using a sequence
of stateless event transformation steps. Hence, we are fo-
cusing on data lineage in batch-based Extract Transform
Load (ETL) jobs by tracking the transformations that read,
transform, and persist data to our data lake. Based on that,
we add context on a dataset’s provenance to meet the re-
quirements of data engineers and scientists to be able to
trust, discover, and comprehend the types of transforma-
tions for data passing through our system. As a side effect,
we collect adjacent metadata including, but not limited to,
job health and data quality metrics [3]. Lastly, we expose
the resulting lineage graphs in a consumable web frontend.

We structure our research around the Cloud Data Hub
(CDH), which represents BMW Group’s cloud-based data
lake. At the scale that we operate, data availability, dis-
coverability, and usability are quintessential, and platform
users demand an increased level and quality of metadata to
be able to understand dependencies between datasets and
associated ETL jobs.

Use case example: A data engineering team needs to
calculate sales metrics for the management team based on
a dataset that contains multiple tables. The team found a
dataset X within our platform, but it is unclear how it was
created. By exploiting lineage for this dataset, the sequence
of operations to generate this dataset can be inspected and
analyzed. While browsing the individual transformations of
the underlying ETL jobs, the team can, e.g., ensure that the
pipeline did not filter or remove critical data for calculating
the aforementioned metrics. Based on this exploration, the
team has gained trust in the data and proceeds to calculate
the metrics.

@ Springer

2 Related research

This section provides an overview of the current state of
research, focusing on how data lineage can be collected,
modeled and visualized.

2.1 Collecting lineage: An inherently complex
endeavor

Broadly, there exist the following approaches to collect data
lineage [6]:

o Compiler-based instrumentation extracts logic based
on the application code, requiring extended knowledge
about the source code. For example, SPROV [7] tracks
data lineage and other metadata by adding a wrapper to
the standard C I/O library.

o Dynamic instrumentation describes the extraction of
data lineage by changing or explicitly modifying the
program code to do so. Titian [8] and Pebble [9] track
lineage of Spark jobs on tuple-level and support in the
more efficient debugging during the development of data
pipelines. Another approach for dynamic instrumenta-
tion is the usage of APIs [10, 11]. Both Spline [12] and
Atlas [13] follow this pattern.

e Scavenging instrumentation leverages generated logs
and transforms these into provenance data. BeepBeep
[14] and Google’s data lake Goods [15] are centered on
the analysis of event logs and extract coarse-grained data
lineage by digesting these. They are therefore not bound
to a specific processing engines (e.g. Spark).

In practice, data lineage mostly builds upon dynamic and
scavenging instrumentation. Besides Spline and Atlas, there
is (to the best of our knowledge) no other solution to extract
data lineage directly from Spark jobs. The other mentioned
approaches require significant engineering efforts and will
therefore not be considered further.

2.2 Modeling data lineage

Many approaches model data lineage via the Resource De-
scription Framework (RDF), following a predefined ontol-
ogy for the definition of entities. Open Provenance Frame-
work (OPM) [16] and its successor W3C PROV! are stan-
dardized ontologies to model data lineage via the RDF and
aim to provide interoperability for as many entities and
systems as possible. The described ontologies resonated in
related work for coarse-grained data lineage, such as Colt
[11], Provenance Map Orbiter [17], or Karma [18]. While
approaches that implement W3C PROV or OPM typically
only include coarse-grained data lineage [19], Karma is

! https://www.w3.org/TR/prov-overview/.

https://www.w3.org/TR/prov-overview/

Datenbank Spektrum (2021) 21:179-189

181

one of the few that models different levels of granularity in
compliance with OPM within its two-layered information
model.

However, organizations typically demand flexibility,
simplicity, and analytical capability when modeling lin-
eage. This can be achieved by using non-standard data
models built upon property graphs, where one sacrifices on
interoperability, formalism, and standardization [20, 21].

2.3 End users require easy-to-use lineage
visualizations

We place an emphasis on the visual representation of the
lineage graph, as it is paramount to extract value from and
leverage the collected metadata. Visualizing data lineage
has been subject of various research.

Provenance Map Orbiter [17] attempts to simplify
provenance graphs by nesting nodes. Nodes can be sum-
marized within one node and expanded to visualize each
node by its own, depending on the zoom level. Once users
zoom into the graph, more detailed information is exposed.

Chen et al. [22] summarize three aspects to visualize
complex (data) lineage graphs. First, nodes should be styled
in accordance to their entity type, such that users can eas-
ily distinguish these in the graph. Second, nodes should
dynamically expand to allow users to obtain more informa-
tion about a node. Third, hierarchical structures built upon
layers improve readability, and can be used in conjunction
with a breadth-first search algorithm (to determine the lay-
ers) [22].

The lineage tool Octopai® visualizes the schema of op-
erations directly within the nodes, which we perceive as an
unfavorable design principle, as it introduces unnecessary
complexity. The technical overview in the Spark UPF allows
users to monitor the status and resource consumption of
the executions, which is far off from providing consumable
lineage to end users.

While we can derive guiding principles on how to visu-
alize data lineage based on existing research, we identified
a gap in the holistic representation and visualization of both
coarse- and fine-grained lineage via a graph-based structure.

3 Architecture

In this section, we will discuss our design decisions and
outline our approach towards collecting data lineage, the
architecture of our prototype, and the data model.

2 https://www.octopai.com/.

3 https://spark.apache.org/docs/latest/web-ui.html.

3.1 A brief overview of BMW Group’s data stack

Starting in the 2010s, the BMW Group started to embark
on its journey of introducing a central platform to provide
answers for its analytical demands. Starting in 2019, we
migrated these workloads onto the so-called CDH to lever-
age the rich portfolio of cloud services from AWS to store,
access, and explore data at scale. Our platform currently
houses more than two petabytes of data, and we ingest ten
terabyte daily into our system on average. Our data cata-
log hosts more than 1,000 datasets across the entire value
chain, which are used by thousands of data engineers and
stewards of the BMW Group.

The stack will be open sourced until end of 2021,
and an overarching architecture can be retrieved via
data.bmwgroup.com. We provide end users with intuitive
means to interact with the platform’s features by using the
Data Portal, which is a modern web portal that features a
data catalog, use case-catalog, query editor, and options for
orchestrating infrastructure required for data preparation
and analyses.

The most fundamental entity on our platform is repre-
sented by a dataset. Datasets are defined by a unique ID
and have exactly one associated S3 bucket. We distinguish
between two types of metadata for this entity [2]: Active
metadata, collected manually via subject matter experts,
provides contextual information to end users and includes,
but is not limited to, a dataset’s friendly name, maturity
level, and owner. Passive metadata, which is automatically
inferred by the system, provides information about, for ex-
ample, the physical storage location, format, and (database)
schema. On our platform, we organize database-, table-, and
column-level metadata via Glue Data Catalog, AWS’ fully
managed metadata catalog.

3.2 Discussion of data-lineage collection
mechanisms

On our platform, we orchestrate Spark jobs as depicted
in Fig. 1 and implement data transformations using
(Py-)Spark, commit these to a code repository that lever-
ages pre-baked Terraform modules, and then orchestrate
and trigger the job via AWS Glue*. Based on this setup, we
identified three viable data collection strategies:

o We could use static code analysis to extract lineage di-
rectly from the source code. However, with increasing
code complexity this is difficult to achieve. Furthermore,
Spark optimizes the sequence of operations and might ex-
ecute the pipeline in a changed sequence. It might even
skip operations that do not have any effect. There is also

4 https://aws.amazon.com/de/glue.

@ Springer

https://www.octopai.com/
https://spark.apache.org/docs/latest/web-ui.html
https://aws.amazon.com/de/glue

182

Datenbank Spektrum (2021) 21:179-189

Fig. 1 Orchestration of a Spark
job on the Cloud Data Hub
(CDH)

deploy
logic

Spark Logic

no knowledge extraction during job runtime. Summariz-
ing, we can only collect partial information about the data
lineage with this complex approach.

e We could facilitate our system to analyse S3 access logs
via CloudWatch®. We can hence track read and write ac-
cess to data and correlate these events to other datasets
and/or jobs, meaning that we can generate coarse-grained
lineage. This approach constitutes a complex engineering
endeavor, and we are in addition to that not able to extract
details on the logic of Spark jobs (which means that fine-
grained lineage cannot be generated).

o We could use Spark’s built-in API to extract details on a
job’s execution plan, meaning that we are able to process
the transformation steps on the data itself. Open-source
tools such as Spline automatically transform these exe-
cution plans and hence provide a solid foundation for the
data lineage extraction.

The latter can be further leveraged to formulate fine-
grained data lineage, which is why we decided to embark
on this path.

3.3 Lineage tracking via Spline

Spline®, which is derived from Spark Lineage, constitutes
an open-source project and tracks lineage of Apache Spark
jobs [12]. It consists of an agent, a RESTful API, and a
web-based Ul

3 https://aws.amazon.com/de/cloudwatch.
6 https://absaoss.github.io/spline.

@ Springer

AWS Glue

store

access logs
Amazon S3
Read Target(s)
read from

: \

Amazon
CloudWatch
write to
store
access logs
Amazon S3
Write Target

The Spline Agent is a complementary module to the
Spline project and captures runtime lineage information
from Spark SQL jobs. As a Scala library embedded into
the Spark driver, it listens to Spark SQL events and cap-
tures logical execution plans [12]. It utilizes Spark’s inter-
face QueryExecutionListeners to pass query execution ob-
jects to specified handlers. These objects contain the plans
that Spark SQL creates during the evaluation and optimiza-
tion of the job execution. Once an execution is successfully
evaluated, Spline utilizes the analyzed (logical execution)
plan and emits a JSON object, in which it structures the
sequence of the transformations to the structure via an or-
der ID and, if applicable, the IDs of the preceding children.
The object also provides details on the type’ and expres-
sion of executed transformations. Additionally, read and
write operations contain the target Uniform Resource Iden-
tifier (URI). The Projection type can be further exploited
into sub-types®. Calls of custom transformations via user
defined functions in Spark SQL are also documented in the
plan, even though their transformation logic is not included.
Lastly, the JSON object and subsequently also correspond-
ing metrics are sent to our Producer API, which is specified
while initializing the Spline Agent as displayed in Fig. 2.

Although the Spline project already ships with a server
and UI component to help surface lineage, we decided to
use merely the Spline Agent within our Data Portal and the

7 These include Projection, Repartition, Join, Filter, Sort, and Aggre-
gate.

8 These include more fine-grained transformations including, but not
limited to, Rename and Drop.

https://aws.amazon.com/de/cloudwatch
https://absaoss.github.io/spline

Datenbank Spektrum (2021) 21:179-189 183
8@ Central lineage account
8® Data provider account CDH API
get metadata
n% & for da‘taset
schedule gk id
T ETL -> or —provice, {—send
<X plan plan
AWS Glue Spline Agent L_, 0 __ store _, % (_gxtract_ 0 | _request_
lineage lineage lineage React
eact
Producer API Amazon Consumer API Application
get metadata for Neptune
Glue tables

Fig.2 Architecture of the implemented lineage tool

corresponding backend components. However, our solution
is inspired by Spline’s overall architecture in respect to
taxonomy, core functionality, and interfaces.

3.4 Abirds-eye view on our architecture

Our overarching goal is to connect fine-grained data lin-
eage collected via Spline’s agent and use a custom-built
architecture to digest and connect the obtained metadata
with datasets and workflows built upon Glue ETL on our
platform CDH.

We structured our architecture into the following com-
ponents:

o Our Producer API receives data lineage from execution
plans of Spark jobs via the Spline Agent, and subse-
quently parses, transforms, and stores this metadata.
Also, it adds a reference to the corresponding CDH
dataset. Lastly, the performance metrics for executed
Spark jobs from both the Spline Agent as well as the
(AWS) Glue API are added.

o The Consumer API constitutes the foundation to serve
a react.js-based web application for our users and helps
extracting lineage data.

e Inspired by Spline, we are using a graph database built
upon Amazon Neptune® for modeling and storing lineage.
Each object represents a sequence of operations, which
can be modeled efficiently using our database.

o Our React web app queries the Consumer API to re-
trieve lineage metadata and display a graph, in combina-
tion with other context from our platform. Our visualiza-
tion facilitates users to interactively explore the resulting
metadata.

As depicted in Fig. 2, our platform leverages a multi-
tiered account setup. The Glue ETL job, Spark execution,
and Spline Agent reside in the (upstream) data provider

° https://aws.amazon.com/de/neptune.

account as outlined in Fig. 2. Account owners can au-
tonomously schedule jobs while being able to integrate
the Spline Agent to emit job-level metadata to our (Pro-
ducer) API, where we further process the metadata in an
account where the aforementioned components are orches-
trated. Consequently, while the tracking of lineage is feder-
ated across data providers, we centralize processing, stor-
age, and provisioning of at platform-level to capture the
complete transformation path.

4 Data model

In order to map the resulting lineage objects, we decided
to use a property graph instead of RDF, since properties of
an entity can be stored directly within a node. This enables
us to maintain a significantly more compact graph. Further-
more, we can comfortably utilize the rich feature set of the
graph traversal language Gremlin'®, which provides out-of-
the-box capabilities for, e.g., recursive graph traversals to
efficiently and effectively analyze graph structures [23].

As outlined in Section 2.2, ontologies for lineage were
subject to previous research. While these help mitigate
graph ambiguity by validating the consistency of entities, a
custom-built data model enables us to combine coarse- and
fine-grained lineage without compromising on user experi-
ence and graph complexity. Also, it guarantees flexibility
and adaptability, helping us in turn to model lineage in
accordance to those use cases that matter most from our
perspective.

4.1 Brief overview on our data model
Our resulting data model is based on entities and relation-
ships in accordance to our platform, which are represented

both as nodes or edges within our database and use labels

10 https://tinkerpop.apache.org/gremlin.html.

@ Springer

https://aws.amazon.com/de/neptune
https://tinkerpop.apache.org/gremlin.html

184

Datenbank Spektrum (2021) 21:179-189

attribute write execution job_run
+ attribute_name + order_id executes + execution_id creates +job_run_id
< <
+ datatype + target + job_id +ts
+ origin +table_vertex ~ [totmmomooooo) +metrics
A H schedules
+ table_name ! + input_uri
+ dataset_vertex ~ [TT7777C \ : + output_uri K
1 H - job
+ dataset_name ! H + spline_version
' ! + name
uses ; + spark_verison
y follows ! H
. H + input
transformation ' ! 0
: . + output
+ order_id ! | P
L = ;
+ operation_details i '
+ output_schema : t_provides
) — ! ' d_isConsumedBy:
+ input_schema H H
' ! |_provides——
follows | + operation_type :
+ operation_params E E t_isConsumedBy
follows E E \ 4
Y \ 1
\ p ' ! dataset table
rea i H
der id ' H + dataset_id + table_path
+order_j '
¢ ; : > + dataset_details ——consistsOf—»{ + table_name
) + '
—> Direct edge arge H
+table vertex ! + bucket_path + columns
---» \ertex reference +table name . . +uri + dataset_vertex
- Lo X AR
o + dataset_vertex HEEN : ! '
|:| Execution independent - v TTTTTTTTToTToTmmoomeos yTTTTTTTTmmmmmmmmmmmmmmmmmmees !
+ dataset_name B R EE LR ‘ ;

|:| Execution dependent

Fig.3 Data model for the storage of Spark-based data lineage

to distinguish between types. We are differentiating entities
as follows:

1. Execution-dependent entities—such as job run, execu-
tion, write, transformation, read, and attribute—are cre-
ated per execution and describe the transformation steps
including the attributes and expressions for Spark jobs.
These entities are used for fine-grained lineage.

2. Execution-independent entities—such as job, dataset,
and table—are created only once, with the first occur-
rence in an execution plan. For every other occurrence
of the resource, only the properties or the edges will be
updated. This sub-graph represents the coarse-grained
data lineage.

4.2 Job runs and executions
Running a Spark job via Glue ETL leads to the creation

of job run entities, which is reflected in our data model via
schedule relationships to jobs (cf. Fig. 3). These job runs are

@ Springer

identified by their job_run_id and contain the corresponding
creation timestamps as well as at least one execution. The
respective executions are depicted by a creates relationship
via job runs.

As illustrated in Fig. 4, the job JI consumes table 7/
from dataset DI and provides table 72 into dataset D2.
While this corresponds to coarse-grained lineage, we re-
trieve fine-grained lineage by traversing the most recent
job run and extracting the connected execution entities, as
depicted in Fig. 5.

Moreover, we are using Spline’s /execution-events API
endpoint, which allows us to obtain (performance) metrics
on executions. These metrics are reflected in the property
metrics of the entity execution. The performance of job runs
can be aggregated via the referenced executions.

As part of our data model, we deliberately accept redun-
dancies to be able to efficiently extract and visualize data
lineage in our graph. This can be also found within the ex-
ecution entity, in which the input property represents the
vertex and name of the dataset and table of the respective

Datenbank Spektrum (2021) 21:179-189

185

d_isConsumedBy d_provides
dataset: D1 » dataset: D2
| - |
consistsOf job: J1 consistsOf
A
table: T1 - - » table: T2
t_isConsumedBy t_provides
Fig.4 Coarse-grained lineage mapping
execution: 1 > read
¢ »| attribute: x
transformation
¢ » attribute: y
transformation
write » attribute: z

Fig.5 Fine-grained lineage mapping

inputs. The output provides the same information for the
respective outputs.

4.3 Mapping operations to our data model

We distinguish between three broad categories of operations
that execution plans contain: read, transform, and write.
The data model structures the operation entities in accor-
dance to their sequence in the execution plan, which is in
reverse logical order, meaning that the structure starts with
write. We then establish a relationship executes from the
entity execution to write, and connect each operation to its
preceding operation with the follows relationship until we
reach the beginning of the execution with one or multiple
read entities.

Spline offers a variety of describing properties for oper-
ations out-of-the-box, which we store as part of the graph
(e.g., operation_type, operation_params). Moreover, we
deconstruct the abstract syntax tree of the expression and
transform it to a human-readable string-based format and
store it in the property operation_details. This allows us to
display the expression of an operation in a human-readable
format.

Lastly, and similarly to our deliberately modeled redun-
dancies for executions, we are storing the schemas of input
and output datasets (i.e. Spark DataFrame) directly within
operations to simplify the extraction process. In order to
achieve that, we rely on the attribute entity.

Attributes are unique entities within the context of single
executions, and (multiple) operations may contain a uses re-
lationship to these. The ID of the first operation to utilize an
attribute is stored within the property origin. Thus, the first
origin of an attribute can be easily identified within complex
operation sequences. Moreover, we are able to identify the
usage of an attribute across a sequence of operations in a
given execution. The relationship between attribute and the
respective operations is based on the output schema of each
operation, which is provided by default from the execution
plan.

4.4 Connecting the dots: Jobs, datasets, and tables

The entity job constitutes the foundation of the coarse-
grained lineage, as it connects datasets and tables and also
provides an entry point to fine-grained lineage via a rela-
tionship towards its job run entities.

Those jobs that we track are mapped to our platform’s
definition of datasets, and we are obtaining further meta-
data via the CDH API to enrich the graph’s context. The
retrieved metadata is persisted into the dataset_details prop-
erty of the dataset entity. Moreover, the dataset’s ID is used
for the property dataset_id.

We also designed our approach to work with jobs that
process data outside of our platform (e.g. relational source
databases). In this case, we do not leverage metadata
from a CDH dataset and automatically omit the properties
dataset_details and dataset_id. Instead, the property uri is
set to the connection string of the respective database.

By creating relationships between jobs, datasets, and ta-
bles, we are able to visualize a graph as depicted in Fig. 3.
In theory, we (implicitly) know which datasets are accessed
by a single job, as these details are contained in the read and
write operations. However, given the traversal complexity
in (often) complex graphs, we pre-compute these relation-
ships beforehand to avoid potential performance impedi-
ments downstream in the Ul Hence, if users are interested
in coarse-grained lineage instead of individual table de-
tails, the traversal may follow the edges d_provides and
d_isConsumedBy.

5 Visualizing lineage

We focus on implementing a web app that provides intuitive
means for end users to consume and digest lineage metadata
on our platform. Our react.js app effectively combines fine-
and coarse-grained lineage, and hence provides rich context
on a dataset’s upstream and downstream provenance as well
its operations.

@ Springer

179-189

Datenbank Spektrum (2021) 21

186

JELE U
JELE
JEL V]
a|qnop
Buiys

s|gnop

sjinu

a3eour] paurei3-asieod pue -ouy Jurke[dsip s[1oear uodn 3ing dde qopn 9 *b14

veoet 6 o1e)s io soulnoud SHMESEONS
ulls I
! uio
022+ B B or <
Buis ajep isebuid o1ebaIbby <
0c-ce-+
s|qnop Buoj ulop <
apnilie| 10—,
Buus uoiBbai— 10~ Aiunod 3@ = uoibeii0~Anunoo
10 IA
arelsT 0" vduInoud aid~ood ebeaul 0ip :19seleq o4 A
o, _ = Ead apnie| :8Inqu; addol
Buo |[eWs1S8) SaseoUId)S o} PIIREL SINAURY P a
was~ood abeaul"olp :}oselRQ aid"ood"ebeaul"oip :1oseleq Qo‘_ﬁ_ L2 SOSBO PAWLIU0D B}
A < !
SOSBOPaWIIU0D 8} SOSBO POWIU0D) sweusy <
8|qeL —JQ:._O so|qe] indu| >_mEF_3w uonnoax3y 00-0ljueWas-o0d-abeaul| 10} suonndax3y

SNOILND3IX3 SNNY 9or STIv.13a gor

D T SInUIsal g e
S95B0 UIOYS O} ———

\ siinu-10s
aor
-onuewas-ood-abeaul| siinu siinu

“ysers05E0 @ _sinusel g “Jsersese
wio%s e} 58580 Laxs 8 uioxys e}

1501 sesE0 1s8] S0SED

soseo™
pauLIyuoo 8}

IO T ouewos &
181 9od ebesurt B

®

ydesn Aydwis

“wiexs e} 1591 “uieys o)
S9sBO WIeNS o) @

seseo WS 9} &

saseo™

-}
-opuewes-ood-abeauy - \ pawyu0 8}
soseo
| __leus “pawyuose) & —
\ 159] SosED = 159 S85B0
= = — “uIoys 9} “wies 8}
UsyMaseD — uﬁ \‘ z
sueueY & ajeboIBbY g7 -z

lldoN T posedoid & S WG & IloN T ooinos &
1501 00d obeaurt & 1501 90d 0Beaur] B

99-ouewWes-ood-abesul -

pesedasd-o0d-abeauy| | sor

® @ ©)

paiedeid &
:SN204 JualND sjesejep 104 yorees

1s8] Dod obesurm B

pringer

A's

Datenbank Spektrum (2021) 21:179-189

187

5.1 Choosing a suitable layout

Since the graph layout determines the position of nodes
and edges, choosing a user-centric and intuitive approach
to visualize lineage is quintessential. A high quality layout
excels in its readability, and as lineage can be arbitrarily
complex, the layout is essential for usability.

A popular method to layout directed graphs is the
Sugiyama algorithm [24]. The goal of the algorithm is to
find a hierarchical layout for a given directed graph ac-
cording to the readability requirements. ELKjs!! is a library
that offers a Sugiyama implementation and is applied in the
recently open sourced library Reaflow'?. We use Reaflow
to build graphs efficiently with visually appealing layouts,
and customize the nodes as we see fit. By utilizing the
Sugiyama fundamentals, we achieved the following layout
properties for the graph:

o The graph is structured hierarchically from left to right,
and the direction of edges represents the data flow be-
tween nodes.

e Nodes on the same hierarchy are centered and balanced
evenly and dynamically.

o Edges are drawn (mostly) directly with Bezier curves.

A key concept for building the graph is to represent
coarse- and fine-grained data lineage in conjunction as de-
picted in Fig. 6. Initially, the coarse-grained data lineage is
extracted from Neptune with the execution of the latest job
run for each job. Each execution can then be dynamically
expanded by clicking on it. The expanded execution will
then show the steps to transform the data. These transfor-
mation steps can then also be investigated further for the
transformation expression or the input and output schema.

We constrain our lineage graph to provide context on a
single dataset, which is a behavior that we refer to as lin-
eage focus. Moreover, we can plot the lineage of a dataset’s
corresponding Spark jobs that either provide or consumes
data from the lineage focus.

5.2 Establishing a curated navigational experience

While statically inspecting data lineage constitutes a valid
starting point, users demand interactivity to explore differ-
ent levels of granularity of such metadata. Thus, we believe
that providing a curated navigational experience for effec-
tively consuming (potentially arbitrarily complex and rich)
lineage graphs is key.

We annotated the foundational UI components in Fig. 6
with numbers and will directly refer to these while describ-
ing functionality in more detail:

11 https://github.com/kieler/elkjs.

12 https://github.com/reaviz/reaflow.

e Lineage focus: We constrain the displayed lineage graph
to a single dataset, which we indicate prominently via
an orange node. We also display related metadata as de-
picted in @, and users are able to change the lineage fo-
cus by searching for and selecting other datasets as refer-
enced in @.

o Attribute search: We also offer users to search for in-
dividual attributes above @, which increases the lineage
graph’s usability by indicating searchable attributes. The
suggested attributes are based on those occurring in the
current graph, and users benefit from type-ahead sugges-
tions based on their provided input to quickly find the
right attributes. As a result of a user selecting an attribute,
each node in the graph containing the attribute is high-
lighted. For example, we highlight tables if the attribute
is associated with it, and we similarly highlight execu-
tions and operations if the attribute is contained in the
input or output schema.

e Simplify graph: The toggle as depicted in @ enables
users to switch between fine- and coarse-grained lin-
eage. While the graph in Fig. 6 constitutes a composition
of fine- and coarse-grained lineage including datasets,
tables, jobs, and operations, the coarse-grained lineage
simplifies the graph and only displays datasets and jobs.

o Details: Below ®, we display more context depending on
the selected node within the graph. For example, while
the executions tab offers additional details on individual
job runs when selected, the tables tab provides context on
the parent dataset and schema metadata. Moreover, we
display the concrete expressions for selected operations
in a human-readable format (e.g., a Drop operation will
provide details on those attributes that were dropped).

As part of our user interviews, we received positive res-
onance on the features of our application and its design. We
acknowledge, however, that there is still room for improve-
ment with regards to, e.g., the navigation between datasets
and depth of visible neighbors.

6 Outlook

Prospectively, we will place our emphasis on analyzing and
visualizing changes of underlying data pipelines, given that
our data model is capable of storing and mapping multiple
job runs and executions already today. Hence, users will
be able to inspect metadata in retrospective, based on his-
toricized executions. Similar to Marquez'3, we may also
introduce versioned schemas and transformations to sup-
port further analytical use cases based on lineage metadata.
Our assumption is that versioning will accelerate investi-

13 https://marquezproject.github.io/marquez.

@ Springer

https://github.com/kieler/elkjs
https://github.com/reaviz/reaflow
https://marquezproject.github.io/marquez

188

Datenbank Spektrum (2021) 21:179-189

gating previous job runs drastically, providing state-of-the-
art means to comprehend the evolution of datasets. Lastly,
users may also compare different versions to easily detect
deviations. Hence, users will find easy means to, for ex-
ample, identify how filter conditions changed or whether
attributes disappeared.

7 Conclusion

Our solution provides an end-to-end perspective on collect-
ing, mapping, and visualizing lineage on our platform. We
showed how to effectively work with existing (open source)
components such as Spline, and proved that the dynamic
instrumentation for Spark jobs provides a solid foundation
for extracting lineage metadata. Since flexibility (in stor-
ing lineage) and ease of extraction are key in our context,
we chose to implement a non-standard model based on a
property graph, covering our needs for modeling coarse-
and fine-grained lineage. We additionally utilized a graph
database in conjunction with the traversal language Grem-
lin, which helps us to efficiently store and extract lineage.

In order to provide a practical solution to help discover
and operate complex datasets, we integrated a dynamic ex-
ploration of the lineage graph that is exposed via a react.js-
based web application. Our approach places emphasis on
interactive capabilities and can be expanded to integrate
with additional metadata including, but not limited to, job
monitoring and versioning. We acknowledge, however, that
the current state of our approach only provides a starting
point, and we merely scratched the surface of how much
value our users will be able to extract from data lineage in
the foreseeable future.

Choosing Spline to collect lineage from Spark jobs came
natural, as more than 80% of our jobs build upon Spark ETL
and their corresponding execution plans contain all context
we require. We faced a more complex decision in regard to
our data model, where we decided to prioritize flexibility
over interoperability (by choosing a property graph). De-
ciding to store our metadata in a graph database proved
to be rewarding during extracting the relevant details, and
we only required minimal preprocessing to visualize our
graphs. We learned that visualizing graphs intuitively con-
stitutes a major challenge, and we identified that an inter-
active navigation should be used as an overarching theme
in our app.

Lastly, we want to emphasize that our approach copes
with lineage metadata of Spark jobs; however, the reality is
that organizations typically use a plethora of tools to ingest,
transform, and analyze data. Although the insights of this
implementation will help us develop our platform further to
support displaying lineage of Spark jobs, the overarching

@ Springer

value proposition of data lineage will only unfold when all
employed tools are able to expose their lineage similarly.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons At-
tribution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included
in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view
a copy of this licence, visit http://creativecommons.org/licenses/by/4.
0/.

References

1. Zaidi E, De Simoni G, Edjlali R, Duncan AD (2017) Data catalogs
are the new black in data management and analytics. Gartner Re-
search, pp 1-16. https://www.gartner.com/en/documents/3837968/
data-catalogs-are-the-new-black-in-data-management-and-a

2. Beyer M, De Simoni G, Dayley A, Jain A (2021) The state of
metadata management : data management solutions must become
augmented metadata platforms. Gartner Research, pp 1-14. https://
www.gartner.com/en/documents/3837968/data-catalogs-are- the-
new-black-in-data-management-and-a

3. Herschel M, Diestelkimper R, Ben Lahmar H (2017) A sur-
vey on provenance: What for? What form? What from? VIdb J
26(6):881-906. https://doi.org/10.1007/s00778-017-0486- 1

4. Tan WC (2007) Provenance in databases: past, current, and future.
IEEE Data Eng Bull 30(4):3-12 (http://sites.computer.org/debull/
A07dec/issuel.htm)

5. Carata L, Akoush S, Balakrishnan N, Bytheway T, Sohan R,
Seltzer M, Hopper A (2014) A primer on provenance. ACM Queue
12(3):1-14. https://doi.org/10.1145/2602649.2602651

6. Zafar F, Khan A, Suhail S, Ahmed I, Hameed K, Khan HM, Jabeen
F, Anjum A (2017) Trustworthy data: a survey, taxonomy and fu-
ture trends of secure provenance schemes. Journal of Network and
Computer Applications 94:50-68. https://doi.org/10.1016/j.jnca.
2017.06.003

7. Hasan R, Sion R, Winslett M (2009) The case of the fake Picasso:
preventing history forgery with secure provenance. In: Proceedings
of the 7th USENIX Conference on File and Storage Technologies,
FAST 2009

8. Interlandi M, Ekmekji A, Shah K, Gulzar MA, Tetali SD, Kim
M, Millstein T, Condie T (2018) Adding data provenance support
to Apache Spark. V1db J 27(5):595-615. https://doi.org/10.1007/
s00778-017-0474-5

9. Diestelkdmper R, Herschel M (2019) Capturing and querying struc-
tural provenance in spark with pebble. In: Proceedings of the ACM
SIGMOD International Conference on Management of Data, pp
1893-1896 https://doi.org/10.1145/3299869.3320225

10. Beheshti A, Benatallah B, Nouri R, Tabebordbar A (2018) CoreKG.
Proc Vldb Endow 11(12):1942-1945. https://doi.org/10.14778/
3229863.3236230

11. Aggour KS, Williams JW, McHugh J, Kumar VS (2017) Colt: con-
cept lineage tool for data flow metadata capture and analysis. Proc
V1db Endow 10(12):1790-1801. https://doi.org/10.14778/3137765.
3137783

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.gartner.com/en/documents/3837968/data-catalogs-are-the-new-black-in-data-management-and-a
https://www.gartner.com/en/documents/3837968/data-catalogs-are-the-new-black-in-data-management-and-a
https://www.gartner.com/en/documents/3837968/data-catalogs-are-the-new-black-in-data-management-and-a
https://www.gartner.com/en/documents/3837968/data-catalogs-are-the-new-black-in-data-management-and-a
https://www.gartner.com/en/documents/3837968/data-catalogs-are-the-new-black-in-data-management-and-a
https://doi.org/10.1007/s00778-017-0486-1
http://sites.computer.org/debull/A07dec/issue1.htm
http://sites.computer.org/debull/A07dec/issue1.htm
https://doi.org/10.1145/2602649.2602651
https://doi.org/10.1016/j.jnca.2017.06.003
https://doi.org/10.1016/j.jnca.2017.06.003
https://doi.org/10.1007/s00778-017-0474-5
https://doi.org/10.1007/s00778-017-0474-5
https://doi.org/10.1145/3299869.3320225
https://doi.org/10.14778/3229863.3236230
https://doi.org/10.14778/3229863.3236230
https://doi.org/10.14778/3137765.3137783
https://doi.org/10.14778/3137765.3137783

Datenbank Spektrum (2021) 21:179-189

189

12.

14.

15.

17.

Scherbaum J, Novotny M, Vayda O (2018pp) Spline: spark lineage,
not only for the banking industry. In: Proceedings—2018 IEEE
International Conference on Big Data and Smart Computing, Big-
Comp 2018, pp 495-498 https://doi.org/10.1109/BigComp.2018.
00080

. Cloudera Spark entities created in Apache Atlas. https://docs.

cloudera.com/runtime/7.2.2/atlas-reference/topics/atlas- spark-enti
ties.html. Accessed 1 Feb 2021

Halle S (2020) Explainable queries over event logs. In: Proceed-
ings - 2020 IEEE 24th International Enterprise Distributed Object
Computing Conference, EDOC 2020, pp 171-180 https://doi.org/
10.1109/EDOC49727.2020.00029

Halevy A, Korn F, Noy NEF, Olston C, Polyzotis N, Roy S,
Whang SE (2016) Goods: organizing Google’s datasets. SIGMOD
7(1):107-122. https://doi.org/10.5840/pom20087110

. Moreau L, Plale B, Miles S, Goble C, Missier P, Barga R, Simmhan

Y, Futrelle J, Mcgrath RE, Myers J et al (2008) The open prove-
nance model (v1. 01)(2008), no. 3

Macko P, Seltzer M (2011) Provenance map orbiter: interactive ex-
ploration of large provenance graphs. In: 3rd Workshop on the The-
ory and Practice of Provenance, TaPP 2011

. Jensen S, Plale B, Aktas MS, Luo Y, Chen P, Conover H (2013)

Provenance capture and use in a satellite data processing pipeline.

19.

20.

21.

22.

23.

24.

IEEE Transactions on Geoscience and Remote Sensing 51(11):5090—
5097. https://doi.org/10.1109/TGRS.2013.2266929

Dibowski H, Schmid S, Svetashova Y, Henson C, Tran T (2020)
Using semantic technologies to manage a data lake: data catalog,
provenance and access control. CEUR Workshop Proceedings, vol
2757, pp 65-80

Goyal S, Chan W Real-time data lineage at UBS. https://neo4j.com/
blog/real-time-data-lineage-ubs/. Accessed 10 Jan 2021

Albertus Donkers AJ, Yang D, Baken N (2020) Linked data for
smart homes: comparing RDF and labeled property graphs. CEUR
Workshop Proc 2636:23-36

Chen P, Plale B, Cheah YW, Ghoshal D, Jensen S, Luo Y (2012)
Visualization of network data provenance. In: 2012 19th Interna-
tional Conference on High Performance Computing, HiPC 2012
(May 2014) https://doi.org/10.1109/HiPC.2012.6507517
Rodriguez MA (2015) The gremlin graph traversal machine and
language. In: DBPL 2015 - Proceedings of the 15th Symposium
on Database Programming Languages, pp 1-10 https://doi.org/10.
1145/2815072.2815073

Sugiyama K, Tagawa S, Toda M (1981) Methods for visual un-
derstanding of hierarchical system structures. IEEE Transactions
on Systems, Man, and Cybernetics. https://doi.org/10.1109/TSMC.
1981.4308636

@ Springer

https://doi.org/10.1109/BigComp.2018.00080
https://doi.org/10.1109/BigComp.2018.00080
https://docs.cloudera.com/runtime/7.2.2/atlas-reference/topics/atlas-spark-entities.html
https://docs.cloudera.com/runtime/7.2.2/atlas-reference/topics/atlas-spark-entities.html
https://docs.cloudera.com/runtime/7.2.2/atlas-reference/topics/atlas-spark-entities.html
https://doi.org/10.1109/EDOC49727.2020.00029
https://doi.org/10.1109/EDOC49727.2020.00029
https://doi.org/10.5840/pom20087110
https://doi.org/10.1109/TGRS.2013.2266929
https://neo4j.com/blog/real-time-data-lineage-ubs/
https://neo4j.com/blog/real-time-data-lineage-ubs/
https://doi.org/10.1109/HiPC.2012.6507517
https://doi.org/10.1145/2815072.2815073
https://doi.org/10.1145/2815072.2815073
https://doi.org/10.1109/TSMC.1981.4308636
https://doi.org/10.1109/TSMC.1981.4308636

	Collecting and visualizing data lineage of Spark jobs
	Abstract
	Introduction
	Related research
	Collecting lineage: An inherently complex endeavor
	Modeling data lineage
	End users require easy-to-use lineage visualizations

	Architecture
	A brief overview of BMW Group’s data stack
	Discussion of data-lineage collection mechanisms
	Lineage tracking via Spline
	A birds-eye view on our architecture

	Data model
	Brief overview on our data model
	Job runs and executions
	Mapping operations to our data model
	Connecting the dots: Jobs, datasets, and tables

	Visualizing lineage
	Choosing a suitable layout
	Establishing a curated navigational experience

	Outlook
	Conclusion
	References

