
KURZ ERKLÄRT

https://doi.org/10.1007/s13222-021-00392-w
Datenbank Spektrum (2021) 21:245–249

Kurz erklärt: Measuring Data Changes in Data Engineering and their
Impact on Explainability and Algorithm Fairness

Meike Klettke1 · Adrian Lutsch1 · Uta Störl2

Received: 18 June 2021 / Accepted: 27 September 2021 / Published online: 27 October 2021
© The Author(s) 2021

Abstract
Data engineering is an integral part of any data science and ML process. It consists of several subtasks that are performed
to improve data quality and to transform data into a target format suitable for analysis. The quality and correctness of the
data engineering steps is therefore important to ensure the quality of the overall process.
In machine learning processes requirements such as fairness and explainability are essential. The answers to these must
also be provided by the data engineering subtasks. In this article, we will show how these can be achieved by logging,
monitoring and controlling the data changes in order to evaluate their correctness. However, since data preprocessing
algorithms are part of any machine learning pipeline, they must obviously also guarantee that they do not produce data
biases.
In this article we will briefly introduce three classes of methods for measuring data changes in data engineering and present
which research questions still remain unanswered in this area.

Keywords Data engineering pipelines · Reliability · Explainability · Data bias · Degree of data changes

1 Introduction

Especially when processes are automated, their correctness
and reliability is of particular importance. In data driven
science and in machine learning knowledge for decisions
is derived from data. In most cases, the starting points
are big datasets. In data engineering, the features used for
data science or machine learning are extracted from these
datasets. For large datasets, we need to consider various is-
sues besides the large volume of data, such as heterogeneity,
incompleteness, and noise. Most analytics algorithms can
only process regular and clean data. Therefore, raw data
sets are prepared for their use case.

Data engineering pipelines (such as Talend, IBM Info-
Sphere DataStage, and Tableau Prep) combine multiple

� Meike Klettke
meike.klettke@uni-rostock.de

Adrian Lutsch
adrian.lutsch@uni-rostock.de

Uta Störl
uta.stoerl@fernuni-hagen.de

1 University of Rostock, Rostock, Germany

2 University of Hagen, Hagen, Germany

steps to predict data ready-to-be-analysed and to improve
data quality. They review, correct and transform data from
raw structures into the target formats. During these data
preparation steps, several subtasks are solved. Often, these
subtasks are assembled into a data science or machine learn-
ing pipeline, starting with the data engineering subtasks
(data wrangling, different data cleaning methods and data
integration) followed by the analysis algorithms. The re-
sult of these sequentially executed data engineering tasks is
a dataset that differs from the original dataset.

In recent years, the requirements of explainability, re-
producibility and fairness have been established for ML
approaches and today they are some of the most important
research tasks of our time. Algorithm fairness has been dis-
cussed widely, for example in [1–6]. In most cases not the
machine learning algorithms themselves generate the bias,
but the bias is already contained in the data. For this reason
the requirements of correctness and ensuring freedom from
bias must be applied to the overall process and thus also to
data engineering.

There are two different reasons why data can have
a bias [7, 8]:

K

https://doi.org/10.1007/s13222-021-00392-w
http://crossmark.crossref.org/dialog/?doi=10.1007/s13222-021-00392-w&domain=pdf
http://orcid.org/0000-0003-0551-8389


246 Datenbank Spektrum (2021) 21:245–249

1. The real-world data sets already contain a bias. The algo-
rithms have been trained on biased human decision made
in the past.

2. Data bias may result from data engineering steps. Unbal-
anced selection of data, a combination of datasets, an au-
tomatic imputations of missing data and other data clean-
ing operations may skew the data.

The detection of data bias is particularly important in AI
systems because these systems tend to reproduce existing
trends and thus also increase the data bias. This behaviour
emerges because the results of the procedures cause future
biased decisions. If data from these decisions is used to
update the ML model, the system forms a vicious cycle of
self-reinforcing bias. Therefore, combating data bias and
ensuring fairness is an even more important task when it
comes to automatically executed procedures [7].

The second reason given above underlines that the re-
quirements explainability and fairness demand that all ar-
tificial intelligence subtasks, namely all data engineering
steps that prepare the data for the analysis have to be in-
cluded in this process. It has to be possible to specify, how
the data engineering algorithms change the dataset (e.g. the
amount of data and the distribution of certain values in the
data).

So, after clarifying the importance of the data engineer-
ing process for algorithm fairness, in this article we will
proceed to establish principled approaches to addressing
the underlying issues. In Sect. 2.1, we will introduce how
benchmarks are applied for solving this task, in Sect. 2.2
we will introduce methods for logging all data changes of
real-data sets and in 2.3 we will sketch which set of infor-
mation is necessary to foresee data changes for a specific
data engineering case. There are still many future tasks in
this area, and with these we conclude this article.

2 Methods Determining the Degree of Data
Changes

In the following section, we will suggest three different ap-
proaches to measuring the data changes introduced during
the data preparation:

1. A black-box approach based on a gold standard (a bench-
mark which contains input data and the expected correct
output data), can be used, applying the data engineering
algorithms of the pipeline for the benchmark data and
comparing the results against the results that have been
defined in the benchmark. This approach does not anal-
yse the algorithms itself but observes the input and output
data for one dataset from a benchmark. In case, the results
fulfil the requirements (delivers the same output data as

defined in the benchmark), then that serves as proof-of-
concept and the data engineering pipeline is applied onto
the new dataset. This method only uses the data.

2. It is possible to determine and protocol the degree and
amount of changes for a given dataset from an applica-
tion field and a given preprocessing pipeline which con-
sists of a sequence of data preprocessing algorithms. This
approach observes the data changes for a dedicated set-
ting and can be seen as a simulation with a concrete sub-
sequent order of algorithms. This method uses the algo-
rithms and the (real) data.

3. Another approach is an estimation of the expected data
changes that is bases solely on an in-depth analysis of
the algorithms. This white-box approach that inspects the
effects of the preprocessing algorithms requires that cer-
tain additional information (like contracts) are derived
from the algorithms and are stored in a repository of the
toolsets. The aim is to foresee the results of each algo-
rithm (sometimes relative to data characteristics, e.g. the
number of null values in the dataset) and their sequential
combination in a pipeline. This method makes an estima-
tion and uses only the algorithms for it.

The state-of-the-art for these three different variants is
described in the following.

2.1 Usage of Benchmarks

Whereas several benchmarks for dedicated data engineer-
ing subtasks are already available (e.g. for imputation of
missing data [9], for testing of data deduplication [10–13],
for outlier detection [14, 15], and for data integration [16])
the developments of benchmarks for complete data engi-
neering workflows is still an ongoing task. Currently, there
are joint activities in the data engineering community to
develop a benchmark for the overall data preprocessing
workflow. The availability of such a benchmark (in the best
case with data from many different science fields) would be
a very valuable opportunity for validating data engineering
tool boxes and processes.

Fig. 1 represents how a benchmark, defining a gold stan-
dard can be used. The whole data preprocessing pipeline
with all its algorithms is treated like a black box. Input data

Fig. 1 Application of a Data Engineering Benchmark for validating
Data Preprocessing Processes

K



Datenbank Spektrum (2021) 21:245–249 247

and the correct output data are predefined by the bench-
mark. The data engineering process is executed with the
input data and the results of the process are compared to the
output data (gold standard) in the benchmark. This method
provides a very objective opportunity for comparing differ-
ent pipelines and calculating recall and precision metrics.
A disadvantage is that only the predefined datasets (from
the standard) can be applied. For real applications (which
come with their own data), recall and precision can only
be estimated with this method assuming that the data engi-
neering algorithm behave for the real data set in the same
way as for the benchmark data.

2.2 Measuring Data Changes

The second option is to measure the data changes in a con-
crete data preparation pipeline in each step. This approach
does not require a gold standard dataset that provides the
correct results. Instead, it uses the real dataset and deter-
mines the data changes caused by the different preprocess-
ing algorithms (e.g. imputation of missing values, outlier
elimination, deduplication). Fig. 2 sketches this evaluation
in the sequential processing of data engineering algorithms.

Data engineering pipelines change the data. To observe
the degree of data changes, we have to apply an evaluation
on two different levels:

1. The data changes of each data engineering algorithm
have to be determined. In Fig. 2, the input and output data
of each algorithm are visualised by tables. The difference
between these tables are the data changes.

2. The data changes of the whole data preparation pipeline
has to be calculated. This can be achieved by aggregating
the data changes by each algorithm. The execution order
of the data engineering algorithms influences the result.

We describe both levels in the following. The data
changes of each single algorithm can be measured with the
following methods:

� Number of data changes: by comparing the input and
output datasets of an algorithm, the number of changed
entries is calculated. For tabular data, this is a count func-
tion of the number of added, changed or removed cells in
the table (comparable to the edit operations in the Lev-

Fig. 2 Estimation of the Data Changes for a Real Dataset in Data En-
gineering Pipeline

enshtein distance). In the case of updated values, we can
decide to either
– calculate the distance between old and new values or
– simply count the prevalence of specific changes.
In case of added or deleted cells, a calculation of differ-
ences is not possible because either new or the old value
is not available.

� Differences in data distributions: Another approach is
measuring and comparing the data distributions between
input and output datasets. It uses distance measures like
the earth mover’s distance [17] or the total variation dis-
tance to compare the distributions of the values inside
a column before and after each operation. Depending
on the metric, this method can be applied to one-di-
mensional distributions of single attributes or multi-
dimensional, joint distributions of multiple attributes. It
was already used for the detection of data engineering
methods generating technical data bias [7] or skewing
attribute distributions [17].

In Fig. 2 we showed one algorithm for each data engi-
neering subpart (like imputation of missing values, outlier
detection and elimination or correction, data de-duplica-
tion). Indeed, data engineering toolboxes provide several
different implementations for each subtask. The analysis of
algorithms defined above enables the comparison of the dif-
ferent implementations and thus can support the choice of
an algorithm for a concrete task and concrete dataset and
is an opportunity for reporting the degree of data changes
caused by each algorithm.

To determine the total data changes introduced by the
whole preparation pipeline, we have to consider that algo-
rithms can amplify or partially undo the data change effects
of previous steps. For example, if outlier values are cor-
rected and replaced by mean values, a subsequent duplicate
elimination algorithm may treat these added mean values
as identical and therefore combine the respective tuples.
For this reason, the interaction between algorithms must
be considered and procedures are needed to aggregate the
change degree across the sequential processes.

The total influence of the data preparation can be mea-
sured by aggregating the data changes applied by the single
algorithms. A solution for this aggregation that inherently
captures the interactions between subsequent algorithms is
change lineage tracking. It captures all changes to a dataset
by marking changed values. These markings can use differ-
ent semantics:

� Amarking may indicate that a value was changed at least
once.

� There may be different markings for every operation in
the data engineering pipeline, representing which values
were changed by which operations.

K



248 Datenbank Spektrum (2021) 21:245–249

� The markings may contain the old value or a distance
between old and current value.

In all cases, this method is limited to values inside the final
prepared data set. It is comparable to why and how prove-
nance but restricted to value changes. There is one differ-
ence between supervising data engineering as introduced in
this article and data provenance. In data engineering, we as-
sume that in the data cleaning steps data values are changed
and we are interested in the degree of changes. In contrast
to this, data provenance answers the question why and how
certain results are generated and which transformations the
data have been passed.

Directly comparing the raw data with the result dataset
might be an alternative solution. However, it can be infea-
sible without lineage information, for example if the prepa-
ration pipeline contains aggregation steps preventing direct
comparison of single values. We therefore suspect that the
step-wise aggregation is the more insightful approach.

2.3 Analysis of Algorithms and Specification of
Contracts

If we want to give certain guarantees for the correctness of
data engineering processes in advance without knowing the
concrete datasets, we have to know the behaviour and char-
acteristics of each of the algorithms. For machine learning
approaches, this idea has been introduced in [18] and [19].
In both cases, descriptions for machine learning algorithms
like care labels for textiles (or product labels for technical
devices like washing machines) have been suggested.

For data engineering tasks we need the same approach.
Each data engineering task has its own requirements and
data characteristics that must be made explicit (see Fig. 3),
these are comparable with the care labels in textiles.
The choice of the concrete data engineering algorithms
is a match between the requirements that serve as con-
tracts and the concrete algorithms that have to fulfil these
contracts.

Whereas the introduction of such contracts is a future
task, some data engineering tools (like ETL tools or Tableau
Prep) already now provide syntactical tests verifying the ap-
plicability of certain algorithms based on syntactical checks

Fig. 3 Defining Characteristics of Data Engineering Pipelines without
applying concrete (Test) Datasets

like compatible datatypes which can be seen as a first step
in this direction.

For the application in data engineering pipelines, each
algorithm could be required to guarantee certain contracts.
Issues of such contracts could include:

� determinism of the algorithm,
� classification of the changes: information preserving, ex-

tending, or reducing,
� changes in representations or additionally changes of

contents,
� input requirements:

– algorithm configuration (parameter setting),
– manual human input of data,
– usage of additional external data,

� dataset requirements:
– data model (relational databases, tuples, graphs) and

constraints onto the domains (e.g. numerical, categor-
ical, string),

– does the algorithm require redundancies in the data?
– necessary minimal data volume and data characteris-

tics, and
– maximal data volume (that can efficiently be pro-

cessed).
� replacement values: how does the algorithm repair val-

ues: based on statistics, rules, external data, additional
human correction?

This list is far from complete. It illustrates the need for
a comprehensive guide on algorithm usage and algorithm
combination potential for every data engineering algorithm.

Additionally metainformation describing how to sequen-
tially combine the different algorithms is necessary. Espe-
cially the specifications, which data engineering algorithms
and which machine learning methods can be combined is
a task for further investigations and have to be represented
in the contracts.

3 FutureWork – Open Research Questions

In this article, we have introduced the necessity to guaran-
tee that data engineering algorithms deliver reliable results
and do not add bias to data. In investigating this require-
ment, three different approaches are available: first is based
on data only (benchmark data), second is based on data
engineering algorithms and real data, and third is based on
inspecting the data engineering algorithms only.

For the first approach (see Sect. 2.1), the methodology of
using benchmarks for testing certain results is clear and has
been proven in many other computer science fields. Here,
a task for future work is the development of benchmarks
with certain characteristics: (i) containing real data (ii) from

K



Datenbank Spektrum (2021) 21:245–249 249

different sample applications (iii) which contain different
data cleaning and transformation problems.

In the second approach (see Sect. 2.2), (simulating se-
quences of data engineering steps with real datasets), there
are still lots of open research tasks. We need more ex-
pressive measures and descriptions for data changes, better
methods to aggregate them and effective approaches in-
tegrating removed values. Furthermore, we need a better
understanding of the interaction between different data en-
gineering steps.

In the third approach (see Sect. 2.3) it is the aim to guar-
antee certain characteristics of the data engineering without
knowing the concrete dataset. Here, we see four open re-
search questions: (i) the definition of the kinds of metadata
(contracts) which are necessary, (ii) the determination of
the metadata for each algorithms, (iii) based on these con-
tracts the proof which algorithms can be executed one after
the other and iv) the combination of these metadata for
sequences of algorithms.

To us, it is obvious that data preprocessing algorithms
must reliably generate output data with certain characteris-
tics (mainly not introducing a data bias). The application
of benchmarks for evaluating data engineering processes
(Sect. 2.1), the logging of all data changes through data en-
gineering algorithms (Sect. 2.2) and the estimation of data
change by analysing algorithm characteristics (Sect. 2.3)
are building blocks to protocol and control data engineer-
ing pipelines. The information which is collected in these
components can be used to guarantee explainability, check-
ing that data changes do not introduce a data bias and thus
indirectly to guarantee algorithm fairness. We believe these
task must be future research aims for the whole data engi-
neering community.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons At-
tribution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included
in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view
a copy of this licence, visit http://creativecommons.org/licenses/by/4.
0/.

References

1. Getoor L (2019) Responsible data science. In: SIGMOD
2. Getoor L (2020) Technical perspective: database repair meets algo-

rithmic fairness. SIGMOD Rec 49(1):33. https://doi.org/10.1145/
3422648.3422656

3. Salimi B, Howe B, Suciu D (2020) Database repair meets algorith-
mic fairness. SIGMOD Rec 49(1):34–41

4. Valera I (2019) Fairness in machine learning: from definitions to
mechanisms (Keynote LWDA)

5. Venkatasubramanian S (2019) Algorithmic fairness: measures,
methods and representations. In: PODS

6. Zweig K (2019) Ein Algorithmus hat kein Taktgefühl: Wo kün-
stliche Intelligenz sich irrt, warum uns das betrifft und was wir
dagegen tun können. Heyne, Munich

7. Schelter S, Stoyanovich J (2020) Taming technical bias in machine
learning pipelines. IEEE Data Eng Bull 43:39–50. (Special Issue
on Interdisciplinary Perspectives on Fairness and Artificial Intelli-
gence Systems)

8. Stoyanovich J, Howe B, Jagadish HV (2020) Responsible data man-
agement. Proc VLDB Endow 13(12):3474–3488

9. Lin WC, Tsai CF (2020) Missing value imputation: a review and
analysis of the literature. Artif Intell Rev 53(2):1487–1509

10. (2019) Benchmark Datasets for Entity Resolution. https://dbs.uni-
leipzig.de/research/projects/object_matching/benchmark_datasets_
for_entity_resolution. Accessed: 7 Oct 2021

11. Köpcke H, Thor A, Rahm E (2010) Evaluation of entity resolu-
tion approaches on real-world match problems. Proc VLDB Endow
3(1/2):484–493

12. Naumann F, Herschel M (2010) An introduction to duplicate detec-
tion. Synth Lect Data Manag. https://doi.org/10.2200/S00262ED1
V01Y201003DTM003

13. Saeedi A, Peukert E, Rahm E (2017) Comparative evaluation of dis-
tributed clustering schemes for multi-source entity resolution. In:
ADBIS

14. Campos GO, Zimek A, Sander J, Campello RJGB, Micenková B,
Schubert E, Assent I, Houle ME (2016) On the evaluation of un-
supervised outlier detection: measures, datasets, and an empirical
study. Data Min Knowl Disc 30(4):891–927

15. Rayana S (2016) ODDS library. http://odds.cs.stonybrook.edu. Ac-
cessed: 7 Oct 2021

16. Poess M, Rabl T, Jacobsen H, Caufield B (2014) TPC-DI: the
first industry benchmark for data integration. Proc VLDB Endow
7(13):1367–1378

17. Dasu T, Loh JM (2012) Statistical distortion: consequences of data
cleaning. Proc VLDB Endow 5(11):1674–1683

18. Seifert C, Scherzinger S, Wiese L (2019) Towards generating con-
sumer labels for machine learning models. In: Proc. CogMI. IEEE

19. Morik K, Kotthaus H, Heppe L, Heinrich D, Fischer R, Mücke S et
al (2021) Yes we care! – Certification for machine learning meth-
ods through the Care Label Framework. CoRR. https://arxiv.org/
abs/2105.10197

K

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3422648.3422656
https://doi.org/10.1145/3422648.3422656
https://dbs.uni-leipzig.de/research/projects/object_matching/benchmark_datasets_for_entity_resolution
https://dbs.uni-leipzig.de/research/projects/object_matching/benchmark_datasets_for_entity_resolution
https://dbs.uni-leipzig.de/research/projects/object_matching/benchmark_datasets_for_entity_resolution
https://doi.org/10.2200/S00262ED1V01Y201003DTM003
https://doi.org/10.2200/S00262ED1V01Y201003DTM003
http://odds.cs.stonybrook.edu
https://arxiv.org/abs/2105.10197
https://arxiv.org/abs/2105.10197

	Kurz erklärt: Measuring Data Changes in Data Engineering and their Impact on Explainability and Algorithm Fairness
	Abstract
	Introduction
	Methods Determining the Degree of Data Changes
	Usage of Benchmarks
	Measuring Data Changes
	Analysis of Algorithms and Specification of Contracts

	Future Work – Open Research Questions
	References


