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Abstract The price of anarchy (PoA) has been widely used in static games to quantify

the loss of efficiency due to noncooperation. Here, we extend this concept to a general

differential games framework. In addition, we introduce the price of information (PoI)

to characterize comparative game performances under different information structures,

as well as the price of cooperation to capture the extent of benefit or loss a player accrues

as a result of altruistic behavior. We further characterize PoA and PoI for a class of

scalar linear quadratic differential games under open-loop and closed-loop feedback

information structures. We also obtain some explicit bounds on these indices in a large

population regime.

Keywords Differential games · Nash equilibria · efficiency · price of anarchy · price
of information · price of cooperation · linear-quadratic games · information structures

1 Introduction

It is well known that the non-cooperative Nash equilibrium in nonzero-sum games is

generally inefficient [11], which means that it would be possible for all players to do

better in terms of attaining higher utilities or lower costs (than they would attain under

Nash equilibria, even if the equilibrium is unique) through a cooperative behavior. This

is true for static deterministic games, and naturally also for stochastic games as well

as dynamic and differential games. In these latter of classes of games, one could bring
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up additional issues with regard to Nash equilibria beyond efficiency or lack thereof,

such as whether an increase in information to one player (or all or a subset of the

players) would be advantageous to that player (or groups of players), in terms of

attaining higher utilities or lower costs, or whether acquiring more information would

be undesirable for a player. In the special class of games where all players have the

same utility function or cost function (that is, team problems) and what is sought is

the global maximum or global minimum of these functions, the answer to such a query

is clean, which is that additional information (defined as expansion of sigma fields)

can never hurt. The same is true for the special class of zero-sum games. In stochastic

games, or dynamic and differential games which are not team problems or zero-sum

games, however, the answer is not that clean, and one could encounter quite surprising

and at the outset counter-intuitive results. Perhaps the first demonstration of this

was reported in [5] and [8], where two classes of two-player stochastic static games

were considered, one a linear-quadratic-Gaussian (LQG) model and the other one a

stochastic Cournot duopoly model, both of which admit unique Nash equilibria. It was

shown that for the LQG model better information (on some stochastic variables) for

only one player leads to lower average Nash equilibrium costs for both players, but in the

duopoly model only the player whose information is improved benefits while the other

one hurts (in the sense that his average Nash equilibrium cost increases). Another way

of comparison would be in terms of the relative values of the average Nash equilibrium

costs attained by the players, when one player has informational advantage over the

other. It was again shown in [5] that, in an otherwise completely symmetric game,

the player who has better information attains higher cost than the other player in

the LQG model (the counter-intuitive result), whereas he attains lower cost in the

duopoly model (the intuitive result). Several manifestations of these conclusions can

be seen also in dynamic and differential games; for example time-consistent open-loop

Nash equilibrium is not necessarily inferior to the strongly time-consistent closed-loop

feedback Nash equilibrium [9].

Now coming back to inefficiency of Nash equilibrium in a fixed nonzero-sum game,

one question of interest is exploration of the extent of this inefficiency, that is how

far off is a Nash equilibrium from the socially optimal solution, which is obtained as

the maximum of the sum of the utilities of the players, or some convex combination

of the utilities (or minimum in the case of cost functions). The notion of the price of

anarchy (PoA)was introduced in [19] as a quantification of this offset, as a utility ratio

between the worst possible Nash solution (among multiple Nash equilibria) and the

social optimum. In a way, this index serves to quantify the loss of efficiency due to

competition. It has been shown that in routing games and resource allocation games

(see, [19] and [16]), PoA is bounded by a constant, allowing agents to achieve some

level of efficiency despite being suboptimal.

The idea of quantifying the gap between social optimality and game equilibrium

solutions sparked many follow-up work in that same vein. In [20], price of simplicity has

been introduced for a pricing game in communication networks as the ratio between the

revenue collected from a flat pricing rule and the maximum possible revenue. In [15],

price of uncertainty has been introduced to measure the relative payoff of an expert user

of a security game under complete information to the one under incomplete information.

In [22], price of leadership has been proposed as a measure of comparison of utilities in

a power control game between Nash equilibria and Stackelberg solutions. In all of these

works, primarily communication networks have been used as a backdrop application

domain, be it routing, resource allocation, power control, or security. Game-theoretical
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methods along with Nash equilibrium have found many applications in communication

networks, with some selected recent references being [1–3,7,16–18,23]

In this paper, we discuss several indices which quantify variations or offsets in the

payoff values or costs attained under Nash equilibria in the context of differential games

(DGs). We first extend the notion of PoA to DGs, which heretofore has been primarily

limited to static continuous kernel games. We provide a characterization of PoA for a

class of scalar linear-quadratic (LQ) DGs, and quantify the efficiency loss in the long

run when the players behave non-cooperatively under the Nash equilibrium concept.

We consider both open-loop (OL) and closed-loop (CL) information structures (ISs).

We show that for the class of scalar LQ DGs with CL IS using the strongly time-

consistent CL feedback Nash equilibrium, the PoA has some appealing computable

upper bounds, which can further be approximated when the number of players is

sufficiently large (that is, the large population regime), whereas, under the OL IS, it is

possible to obtain an expression for the PoA in closed form.

As mentioned earlier, going from static to dynamic (differential) games brings in

the possibility of various ISs, which add richness to the (Nash equilibrium) solution of

a game. Different ISs (generally) yield different equilibrium solutions, and hence IS is

a crucial factor in the investigation of PoA in DGs. Motivated by this, we introduce

another index, the price of information (PoI), which is a result of the comparison of the

equilibrium utilities or costs under different ISs. For the class of scalar LQ DGs above,

we show that the PoI between the feedback and open-loop ISs is shown to be bounded

from below by
√
2/2 and from above by

√
2, again in the large population regime.

Finally, motivated by some recent results reported in [4] on the level of cooperation

between players in a routing game, captured by the degree of willingness of a player to

place partial weight on other players’ utilities in his utility function, we introduce the

price of cooperation (PoC) as a measure of benefit or loss to a player on his base Nash

equilibrium payoff due to cooperation.

The structure of the paper is as follows. In Section 2, we introduce a general N-

player DG framework with different ISs, and define in this context the indices, PoA,

PoI, and PoC. In Section 3, we investigate the PoA for a class of scalar LQ feedback

DGs. In Section 4, we study the LQ DGs under open-loop IS, and in Section 5, we

establish bounds on the PoI. We conclude and identify future directions in Section 6.

An earlier version of some of the results in this paper can be found in the recent

conference paper [21].

2 General Problem Formulation

In this section we first introduce the general nonzero-sum differential games framework

along with the Nash equilibrium solution, and then introduce the three indices: prices

of anarchy, information, and cooperation.

Let N = {1, 2, · · · , N} be the set of players, and [0, T 〉1 be the time interval of

interest. At each time instant t ∈ [0, T 〉, each player, say Player i, chooses an mi-

dimensional control value (action) ui(t) from his set of feasible control values Ui ⊂ R
mi ,

where we also make the standard assumption that as a function of t the control function

ui(·) is piecewise continuous on [0, T 〉. The state variable x is of dimension n, and takes

1 The notation “〉” is introduced to capture two cases: finite horizon when T is finite (in
which case we have [0, T ]), and infinite horizon when T is infinite (in which case we have
[0,∞)).
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values in R
n; as a function of time, t, we assume x(·) to be piecewise continuously

differentiable on [0, T 〉, and evolving according to the differential equation:

ẋ(t) = f(x(t), u1(t), · · · , uN (t), t) , x(0) = x0 ,

where x0 ∈ R is the initial value of the state and the system dynamics f(·) : Ω → R
n

is defined on the set

Ω = {(x, u1, · · · , uN , t)|x ∈ R
n, t ∈ [0, T 〉, ui ∈ Ui, i ∈ N} ,

as a jointly piecewise continuous function which is also Lipschitz in x, and also possibly

Lipschitz in the ui’s, depending on whether the underlying information structure (IS)

is open loop of closed loop feedback.

We will consider two different ISs: Open loop (OL),, where the controls are just

functions of time, t (and also of initial state x0, which however is assumed to be fixed

and a known parameter of the game), and closed-loop state-feedback, where the controls

are allowed to be functions of current value of the state and of time, that is, for Player

i, ui(t) = γi(t;x(t)). In the latter case, γi : [0, T 〉 × R
n → Ui is known as the policy

variable (strategy) of Player i, which is a mapping from the set of information available

to the player to his control (action) set.2 We require each γi(t; ·) to be Lipschitz in x,

in addition to being jointly piecewise continuous in its arguments, and denote the class

of all such mappings by Γi. We further require that f be Lipschitz not only in x but

also in {u1, . . . , uN}, so that the differential equation generating the state,

ẋ(t) = f(x(t), γ1(t;x(t)), · · · , γN (t;x(t)), t) , x(0) = x0 ,

admits a unique piecewise continuously differentiable solution for each γi ∈ Γi, i ∈ N .

Clearly, when a particular γi does not depend on x (such as the OL IS), then it would

be captured as a special case, and hence to capture this also notationally, we will write

γi ∈ Γi as γηi ∈ Γ η
i , where η stands for the underlying IS (which for the discussion in

this paper is either OL or CL SF).3

Each player i ∈ N is a cost-minimizer, with the objective function for Player i, as

defined on the state and action spaces, is given by

Li(u) =

∫ T

0

Fi(x(t), u1(t), · · · , uN (t), t)dt+ Si(x(T ))

when T < ∞, and

Li(u) =

∫ ∞

0

Fi(x(t), u1(t), · · · , uN (t), t)dt

when T = ∞, where u := {u1, . . . , uN}. In the expressions above, for each i ∈ N , the

function Fi : Ω → R is Player i’s instantaneous (running) cost function, and in the first

2 One can introduce more general ISs, such as those that involve memory, but here we will
restrict the discussion to only OL and CL state-feedback (SF) structures so as not to encounter
informational non-uniqueness of Nash equilibria [9].

3 Even though in general different players can have different ISs, we will consider here only
the case when the IS in the entire DG is either OL or CL SF. Otherwise, derivation of Nash
equilibrium becomes complicated, and one has to introduce small noise robustness in order
to eliminate informational non-uniqueness, even in LQ DGs [6], [9]. At the conceptual level,
however, the analysis in this paper, and the indices introduced, equally apply to the mixed IS
case.
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expression Si : R
n → R is the terminal value function. Substituting ui(t) = γi(t;x(t))

in the above, we arrive at the ėm normal or strategic form of the DG, where now

the dependence in Li is on γi’s instead of ui’s. Let us denote this new cost function

representation by Ji, for Player i, which we write more explicitly (showing its argument)

as Ji(γ
η), where γη := {γη1 , . . . , γ

η
N} ∈ Γ η := Γ η

1 × · · · × Γ η
N , where again this covers

also the OL IS as a special case; we will occasionally drop the superscript η when the

IS is clear from context.

Let γη−i denote the collection of policies of all players except Player i, i.e., γη−i =

(γη1 , . . . , γ
η
i−1, γ

η
i+1, . . . , γ

η
N ) , in a game with IS η. If γη−i is fixed as γη∗−i, Player i is

faced with the dynamic optimization (optimal control) problem: 4

(OC(i)) min
γi∈Γη

i

Ji(γi, γ
η∗
−i) :=

∫ T

0

Fi(x, γi(η), γ
η∗
−i(η), t)dt+ Si(x(T )) (1)

s.t. ẋ(t) = f(x, γi(η), γ
η∗
−i(η), t) , x(0) = x0 .

In the case of infinite horizon, the problem remains the same with Si ≡ 0 and

T = ∞. If we denote the solution to OC(i) by γηi
∗
, and carry out the optimization for

each i, then what we have is a Nash equilibrium compatible with the IS that defines

the DG. This is made precise below.

Definition 1 [η-Nash equilibrium] For a DG with IS η, the policy N-tuple {γηi
∗
, i ∈

N} =: γη∗ is an η−Nash equilibrium if, for each i ∈ N , γη∗i solves the optimal control

problem (OC(i)). Let Γ η∗ be the set of all η−Nash equilibria, as a subset of Γ η.

Now, for the CL IS case, one has to further refine the Nash equilibrium, in order

to eliminate informational non-uniqueness. Consider a family of DGs, structured the

same way, but defined over the time interval [s, T 〉, where s > 0 is the parameter that

identifies different elements of the family. We say that an η-Nash equilibrium, when

η is the CL IS is strongly time consistent if its restriction to [s, T 〉 is also an η-Nash

equilibrium, and this being true for each s and all x(s). Such Nash equilibria could

also be called sub-game perfect equilibria, by direct analogy with a similar concept in

finite games. We will henceforth consider only strongly time consistent Nash equilibria

when η is CL, but will suppress that refinement in the development below.

Let J
η∗
i , i ∈ N , denote the achieved values of the objective functions of the players

under a particular η−Nash equilibrium γη∗, and a corresponding total cost achieved

(as a convex combination of the individual costs) be given by Jη∗
µ =

∑
i∈N µiJ

η∗
i ,

where µi is a positive weighting factor on Player i’th cost, satisfying the normalization

condition
∑

i∈N µi = 1. We assume, without any loss of generality, that Jη∗
i > 0 for

all i ∈ N , and hence a fortiori Jη∗
µ > 0.

Now as a benchmark, let us consider the case of full coordination, where the players

agree on minimizing a single objective function, which is a convex combination of

the individual cost functions. We may call this also a socially optimal solution. The

corresponding underlying optimization problem is the optimal control problem: 5

(COC) min
γ∈Γ

N∑

i=1

µi

{∫ T

0

Fi(x(t), γ(η), t)dt+ Si(x(T ))

}

s.t. ẋ(t) = f(x, γ(η), t) , x(0) = x0 ,

4 We use “OC(i)” to denote Player i’s individual optimal control problem.
5 The acronym “COC” stands for “Centralized Optimal Control”.
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where the optimization could also be carried out with respect to control values, u,

that is in an open-loop fashion, since the problem is deterministic and also is not

strategic. Hence, the optimal value of this optimal control problem is independent of

the IS, which we denote by J◦
µ, and the corresponding (open-loop) optimal control by

u◦ = [u◦1, . . . , u
◦
N ]. Note that we necessarily have 0 < J◦

µ 6 Jη∗
µ , where Jη∗

µ is under

any Nash equilibrium solution out of Γ η∗.

Definition 2 (Price of Anarchy) Consider an N-person DG as above and its asso-

ciated optimal control problem (COC) with J◦
µ > 0. The price of anarchy for the DG

is6

ρηN,µ,T = max
γη∗∈Γη∗

Jη∗
µ /J◦

µ (2)

as the worst-case ratio of the total game cost to the optimum social cost.

In addition to its dependence on the cost functions, PoA depends on the number of

players in the game, the IS, the weights on individual players and the time horizon.

Note that the PoA as defined in (2) is lower-bounded by 1.

Definition 3 (Price of Information (PoI)) Let η1 and η2 be two ISs. Consider two

N-person DGs which differ only in terms of their ISs, with game 1 having IS η1, and

game 2 having η2. Let the values of a particular µ convex combination of the objective

functions be Jη1

µ
∗
and Jη2

µ
∗
, respectively, achieved under the Nash equilibria γη1∗ and

γη2∗. The price of information between the two ISs (under cost minimization) is given

by

χη2

η1
(µ) = max

γη∗
2∈Γη∗

2

J
η∗
2

µ / max
γη∗

1∈Γη∗
1

J
η∗
1

µ . (3)

The PoI compares the worst-case costs under two different ISs for the same convex

combination, and quantifies the relative loss or gain when the DG is played under a

different IS. Clearly, when χη2

η1
(µ) < 1, the IS η2 is superior to its counterpart η1 . The

connection between PoI and PoA can be captured by χη2

η1
(µ) = ρη2

N,µ,T /ρη1

N,µ,T .

Before introducing the third index (price of cooperation), let us define another

class of DGs, which is an intermediate case between full cooperation and full non-

cooperation. Consider the case where Player i, even though his cost function is Ji,

adopts an altruistic mode and minimizes instead a cost function that places some

weight on other players’ costs. Let λi := {λji , j ∈ N} be a set of nonnegative parameters

adding up to 1,
∑

j∈N λji = 1. Let J̃i(γ
η;λi) , i ∈ N be defined by

J̃i(γ
η;λi) :=

∑

j∈N
λjiJj(γ

η) , i ∈ N

Consider the η IS DG with cost functions J̃ ’s, and let Γ̃ η be the set of all its η-Nash

equilibria. For γ̃η ∈ Γ̃ η, Player i achieves an actual cost of Ji(γ̃
η), which may be

better (lower) or worse (higher) than Jη∗
i defined earlier. Note that if λji = µi for all

i, j ∈ N , then all players have the same cost function, and every η-Nash equilibrium

solution of the altruistic game is a solution to COC, assuming that person by person

optimal solutions of COC are globally optimal. Hence, in this limiting case we have

full cooperation. This now brings us to the third index, which is keyed to individual

players.

6 If the maximum below does not exist, then it is replaced by supremum in the definition of
PoA.
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Definition 4 (Price of Cooperation (PoC)) Consider an N-player DG with a fixed

IS η, and with a fixed set of cooperation vectors λ := {λi, i ∈ N}. Let J̃i, i ∈ N , and

Γ̃ η be as defined above, and Γ η be the set of all Nash equilibria of the original game.

Then, the price of cooperation for Player i under the cooperation scheme λ is given by

νηi (λ) = max
γ∈Γ̃η

Ji(γ)/ max
γ∈Γη

Ji(γ) . (4)

As indicated earlier, if λi = µ for all i, where µ = {µi, i ∈ N} as in PoA, then

every NE of {J̃i, i ∈ N} is a person-by-person optimal solution of the COC with cost

function Jµ, which would also be globally optimal under some appropriate convexity

conditions. If γ0 is one such solution, minimizing Jµ, then the PoC is given by

νηi (µ) = Ji(γ)/ max
γ∈Γη

Ji(γ) ,

which can be viewed as the reciprocal of individualized PoA, where the latter is a

measure of the loss or gain an individual player incurs on his individual cost when

he (along with other players) plays the worst NE strategy as opposed to the globally

minimizing strategy (again along with other players).

3 Scalar LQ Feedback Differential Games

The analysis of the price of anarchy is complex for general DGs as there often exist

more than one Nash equilibrium, which show strong dependence on the underlying IS.

For specific game structures, however, its analysis may be tractable provided that we

avoid informational non-uniqueness. One such class is scalar linear quadratic DGs with

state feedback IS, which is what we focus on in this section. These games also enjoy

wide applications in economics and communication networks; see, [10], [2]. We first

state our model and recall some important relevant results on LQ feedback DGs; for

details, see [9], [14].

3.1 Game Model

As a special case of the class of DGs considered in the previous section, consider the

infinite-horizon scalar N−person LQ DGs, with quadratic cost function

Li(u) =

∫ ∞

0

(
qix

2(t) + riu
2
i (t)

)
dt, i ∈ N , (5)

ẋ(t) = ax(t) +

N∑

i=1

biui(t), x(0) = x0 , (6)

where qi > 0, ri > 0, x0 6= 0, bi 6= 0 are all scalar quantities. Let b := [b1, . . . , bN ]. We

are interested in strongly time-consistent state-feedback (SF) Nash equilibrium (NE),

where further the NE policies are required to be stationary (that is time invariant). We

will refer to such equilibria in short as Feedback NE. The following theorem provides

their characterization.
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Theorem 1 [Feedback NE, [9], [14]] Let {ki, i ∈ N} solve the set of coupled algebraic

Riccati equations

2


a−

N∑

j=1

sjkj


 ki + qi + sik

2
i = 0, i ∈ N (7)

satisfying the stability condition a −∑N
i=1 siki < 0 , where si := b2i /ri. Then, the

N-tuple of policies γ∗i (x) = − bi
ri
kix, i ∈ N , constitutes a feedback NE, with the corre-

sponding cost for Player i being J∗
i = kix

2
0. Furthermore, the positively weighed total

cost is J∗
µ = k̄x20, where k̄ =

∑N
i=1 µiki.

If the set of coupled algebraic Riccati equations do not admit a solution which is also

stabilizing, then the DG does not have a feedback NE. ⋄
The main challenge in computing the feedback NE solution for this DG is that

equation (7) is a nonlinear coupled system of equations. The fact that we have a

scalar problem alleviates the difficulty somewhat, since it is possible to turn it into a

linear problem through a change of variables, as outlined in [12], [13]. Let σi = siqi,

σmax = maxi σi, pi = siki, i = 1, . . . , N , and

λ =

N∑

i=1

pi − a. (8)

Multiplying (7) by si, we rewrite it as

p2i − 2λpi + σi = 0, i = 1, . . . , N. (9)

Let Ω ⊂ N be an index set, Ω−i = Ω\{i}, and nΩ = |Ω|. For every Ω 6= ∅, we have
(after some manipulations)

∏

j∈Ω

pjλ =
1

2nΩ − 1





∑

i∈Ω

σi

∏

j∈Ω−i

pj −
∑

i/∈Ω

∏

j∈Ω

pjpi + a
∏

j∈Ω

pj



 . (10)

When Ω = ∅, we define

∏

j∈Ω

pjλ := λ =

N∑

j=1

pj − a. (11)

Hence, for every Ω, we have an equation in the form of either (10) or (11). Let p =

[1, p1, p2, . . . , pN , p1p2, . . . , p1pN , p2p3, . . . , pN−1pN , . . . ,
∏N

i=1 pi]
T . We can write (10)

and (11) into

M̃p = λp. (12)

Let p := [1, k1, k2, . . . , kN , k1k2, . . . , k1kN , k2k3, . . . , kN−1kN , . . . ,
∏N

i=1 ki]
T and D =

diag{1, s1, s2, . . ., sN , s1s2, . . ., s1sN ,s2s3, . . . , sN−1sN , . . . ,
∏N

i=1 si} . Hence, we can

rewrite p = Dk and (12) into

Mk = λk, where M := D−1M̃D . (13)

Equation (13) is an eigenvalue problem with each index set Ω corresponding to a row

enumerated starting from the empty set. It has maximum 2N distinct eigenvalues and

2N eigenvectors. The vector formed by the second entry to the N + 1-st entry of the

eigenvectors yields the solution to (7) when the first entry of the vector is normalized

to 1 and they satisfy the stability condition of Theorem 1. This leads to:
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Theorem 2 [Feedback NE Computation, [14]] Suppose M is a nondefective matrix

with distinct eigenvalues. Let (λ,k) be an eigenvalue-eigenvector pair such that λ ∈ R+

and λ > σmax. Then, a feedback NE γ∗i (x) = − bi
ri
ki x, i ∈ N , is yielded by k∗ = 1Tk

provided that the resulting solution is stabilizing, where 1 = [0, 1, . . . , 1, 0, . . . , 0]T is a

vector whose 2nd to N + 1-st entries are 1’s.

Theorem 3 [Uniqueness of Feedback NE] Let p̄ :=
∑

j∈N pj , p−i :=
∑

j∈N ,j 6=i pj.

There exists a unique feedback NE for the LQ DG described by (5) and (6) under

either one of the following two conditions:

(i) N is sufficiently large such that p−i > a,∀i, or (ii) a = 0.

Furthermore, the solutions to the coupled algebraic Riccati equations that characterize

the feedback NE are of the following forms under the corresponding conditions above:

(s-i) pi = (p̄− a)−
√

(p̄− a)2 − σi ;

(s-ii) pi = p̄−
√

p̄2 − σi, where

p̄− a =
1

N − 1

(
N∑

i=1

√
(p̄− a)2 − σi + a

)
. (14)

Moreover, the stability condition a−
∑N

i=1 siki < 0 is satisfied, and hence the FB NE

is stabilizing.

Proof From (9), we obtain

p2i + 2(p−i − a)pi − σi = 0, (15)

which admits the solutions:

pi = (a− p−i)±
√

(a− p−i)2 + σi. (16)

Since we need pi > 0, we retain the one with “ + ” sign. By rearranging the positive

solution of (16), we arrive at

(p̄− a)2 = (p−i − a)2 + σi , (17)

and, therefore, in terms of p̄, we have

pi = (p̄− a)±
√

(p̄− a)2 − σi. (18)

Under condition (i), we have pi − p̄+ a < 0, hence we obtain the unique solution (s-i).

Under scenario (ii), (18) reduces to pi = p̄±
√

p̄2 − σi. Since, pi < p̄, we again obtain

the unique solution (s-ii).

By summing over (18), we have a fixed point equation (14). Let

P̄ (p̄) :=
1

N − 1

(
N∑

i=1

√
(p̄− a)2 − σi + a

)
− (p̄− a) .

Its derivative is given by

dP̄

dp̄
= −1 +

p̄− a

N − 1

(
N∑

i=1

1√
(a− p̄)2 − σi

)
.
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Since σi > 0 and p̄− a > 0, it follows that

dP̄

dp̄
> −1 +

p̄− a

N − 1

(
N

(p̄− a)

)
(19)

=
1

N − 1
> 0, for N > 2. (20)

This says that P̄ is a monotonically increasing function, and hence the solution to

P̄ = 0 is unique. Hence, under (i) or (ii), there exists a unique feedback NE.

The fact that the solution is stabilizing follows directly from (7), where the first

term has to be negative because the second and third terms are positive.

3.2 Team Model

When players form a team to achieve an optimal social objective, a specific total cost

is minimized. Let q̄µ =
∑N

i=1 µiqi, Rµ = diag{µ1r1, . . . , µN rN}, and consider

(FOC) min
u(t)

∫ ∞

0

(
q̄µx

2(t) + uT (t)Rµu(t)
)
dt

s.t. ẋ(t) = ax(t) +

N∑

i=1

biui(t) , x(0) = x0 6= 0 .

The solution to this optimal control problem is standard, and is given below for

future reference (where we suppress the dependence of q̄ and R on µ).

Theorem 4 [Centralized Optimization] The optimal control problem (FOC) admits a

unique feedback solution which is further stabilizing. The optimal policies are

γ◦i (x) = − bi
µiri

k̂µ x , k̂µ :=
a+

√
a2 + q̄b̄

b̄
, (21)

with b̄ :=
∑N

i=1(b
2
i /µiri), and minimum cost is J◦

µ = k̂µx
2
0.

The optimal control can also be expressed in open-loop form, as:

u◦i = − bi
µiri

k̂µΦ(t, 0)x0,

where Φ(t, 0) is the unique solution to

Φ̇(t, 0) =

(
a−

N∑

i=1

b2i
µiri

k̂µ

)
Φ(t, 0), Φ(0, 0) = 1.
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3.3 Price of Anarchy (PoA)

Here, we provide a closed-form expression for the PoA in the feedback LQ DG, where

we make the natural assumption that x0 6= 0, as otherwise the costs are all zero.

Theorem 5 The PoA of the LQ feedback DG described by (5) and (6) is characterized

by the following:

(i) Given a weight vector µ, the PoA ρµ is equal to

ρFB
µ = max

k∈K
[µTk ] /k̂ , (22)

where µ = [0, µT , 0, . . . , 0]T and K is the set of all eigenvectors of the matrix M.

(ii) Suppose µi = µ̄i := si /
∑N

j=1 sj , i ∈ N . Then,

ρFB
µ̄ 6 [ ̺(M) + a ] /

N∑

i=1

sik̂ ,

where ̺(M) is the spectral radius of M.

(iii) Let µs
max = maxi∈N µi/si. Given a weight vector µ that satisfies

∑N
i=1 µi = 1,

the PoA is bounded by

ρFB
µ 6 µs

max(̺(M) + a) /k̂. (23)

Proof The proof is a direct application of the results in Theorem 1 and Theorem 4.

PoA is the worst-case ratio of the game cost under feedback NE to the optimum social

cost as defined in (2). Under the feedback IS, an LQ DG has

ρFB
µ = max

k∗

∑N
i=1 µik

∗
i (x0)

2

k̂(x0)2
= max

k∈K
µTk

k̂
.

This leads to statement (i). The price of anarchy under µ̄ is

ρFB
µ̄ = max

k

∑N
i=1 µ̄iki

k̂
= max

k

siki∑N
i=1 sik̂

= max
λ

λ+ a
∑N

i=1 sik̂
. (24)

The last equality is due to (8). Hence, by taking the largest eigenvalue, we obtain (ii).

The equality is achieved when ̺(M) is an eigenvalue in the eigenvalue-eigenvector pair

that yields the equilibrium from Theorem 2. For an arbitrarily picked µ, (22) yields

ρFB
µ̄ = max

k

∑N
i=1

µi

si
siki

k̂
6 max

k

usmax
∑N

i=1 siki

k̂

= max
λ

usmax(λ+ a)

k̂
6

usmax(̺(M) + a)

k̂
. (25)

Using (8) and taking the worst case, we obtain statement (iii). Since

max
i∈N

µ̄i

si
=

1
∑N

j=1 sj
,

the last inequality is achieved when µ = µ̄.
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The next corollary further characterizes the bound on PoA.

Corollary 1 The following follow from Theorem 5:

(i) Given a µ and a 6= 0, PoA is bounded above by

ρFB
µ 6

(
1 +

1

2a
(N + σmax − 1)

)
s•, (26)

where σmax = maxi∈N σi, and

s• :=

N∑

i=1

si
minj∈N sj

.

The upper-bound is independent of µ.

(ii) If a = 0, PoA is bounded above by

ρFB
µ 6

µs
max√

q̄
√

µs
min

√
N(N + σmax − 1), (27)

where µs
min = mini∈N µi/si.

Proof The matrices M = [mij ] and M̃ = [m̃ij ], i, j = 1, . . . , 2N , share the same set of
eigenvalues. From Gersgorin theorem, we can obtain

̺(M̃) 6 min



max

i

2N∑

j=1

|m̃ij |,max
j

2N∑

i=1

|m̃ij |



 6 max

i

2N∑

j=1

|m̃ij |.

From (10) and (11), the absolute row sum RSk, k = 1, . . . , 2N , can easily be evaluated

by letting pi = 1:

RSk = [a+
∑

i∈Ω

σi + (N − nΩ)] / [2nΩ − 1],

where k is the row index corresponding to the set Ω. When Ω = ∅, we let RS1 = N+a.

From (23),

ρFB
µ 6 [ ̺(M) + a ]/(k̂/µs

max).

The numerator is upper-bounded by (skipping some steps):

̺(M) + a 6 max

{
max

16nΩ6N

(2a+ σmax − 1)nΩ +N

2nΩ − 1
, 2a+N − 1

}

6 max {2a+N + σmax − 1, 2a+N − 1}
6 2a+N + σmax − 1. (28)

The second inequality holds because the quantity

(2a+ σmax − 1)nΩ +N

2nΩ − 1

increases with nΩ . The denominator has a lower bound:

2a

b̄µs
max

>
2a

∑N
i=1

(
maxi∈N µi/si

µi

)
b2i
ri

>
2a

∑N
i=1

si
mini∈N si

=
2a

s•
. (29)
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The last inequality is due to maxi µi/si 6 maxi µi maxi
1
si
. Combining (28) and (29),

we have, for a 6= 0,

ρFB
µ 6

(
1 +

1

2a
(N + σmax − 1)

)
s•

When a = 0,

k̂ =

√
q̄/b̄ =

√
q̄∑N

i=1
si
µi

>

√
q̄µs

min√
N

.

Using this together with (28), we arrive at the inequality (27).

The upper bound on price of anarchy in the preceding corollary provides a worst

case of efficiency loss.

The next result studies the large population game and its proof relies on the Taylor

series expansion of the square-root term in (18).

Theorem 6 Suppose the number of players in the LQ DG is sufficiently large so that

(C-i) p−i > a,∀i ∈ N , (C-ii) a ≪ N , (C-iii) σmax ≪ σ̄ ,

where σ̄ =
∑N

i=1 σi. Then, the following quantities can be approximated as given:

(i) pi ∼
σi√
2σ̄

, (ii) ui ∼ − σi

bi
√
2σ̄

x ,

(iii) J∗ ∼ q̄√
2σ̄

(x0)
2 , (iv) J∗ ∼ q̄√

2σ̄
(x0)

2 ,

(v) ρFB
µ ∼ q̄

k̂
√
2σ̄

, and for a = 0, ρFB
µ ∼

√
q̄b̄

2σ̄
.

Proof By Taylor series expansion, (18) can be written as

pi = (p̄− a)

[
1−

√
1− σi

(p̄− a)2

]

=
σi

2(p̄− a)

[
1 +O

(
σi

(p̄− a)2

)]
, (30)

where O(·) is a function such that limx→0 O(x) = 0. In a similar way, (14) can be

rewritten as (skipping some steps):

p̄− a =
p̄− a

N − 1

(
N∑

i=1

√
1− σi

(p̄− a)2
+ a

)

=
p̄− a

N − 1

[
Nσ̄

2(p̄− a)2

(
1 +O

(
σmax

2(p̄− a)2

))
+ a

]
. (31)

Hence, we obtain for large N

p̄− a =

√
σ̄

2

[
1 +O

(
σmax

2(p̄− a)2

)]
(32)
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Note that p̄ − a > 0 due to the stability condition. Let σ̄ =
∑N

i=1 σi, as before. Let a

solution of (32) be p̄ =
√

σ̄/2 + a, i.e.,

p̄− a =

√
σ̄

2

[
1 +O

(
σmax

σ̄

)]
. (33)

(33) is consistent provided that σmax ≪ σ and a ≪ N . Since, by Theorem 3, the

solution is unique under (C-i), p̄ can indeed be approximated by p̄ ∼ a+
√

σ̄/2, which

leads to pi ∼ σi√
2σ̄

from (30). Hence, (ii)-(v) follow.

4 Open-Loop LQ Differential Games

In this section, we go back to the DGs described by (5) and (6), but with open-loop

information. Each player knows only the value of the initial state of the system. Since

the cost runs from zero to infinity, we are interested in controls that yield finite costs.

Accordingly, we restrict the controls of the players to belong to the set

UOL(x0) = {u ∈ L2[0,∞) | Ji(x0, u) < ∞, ∀i ∈ N} ,

where L2[0,∞) is the space of square-integrable functions on [0,∞).

Theorem 7 [Open-Loop NE, [9], [14]] Consider the N−person LQ DG in (5) and (6),

and assume that there exists a unique solution ξ⋆ to the set of equations

0 = 2aξi + qi − ξi




N∑

j=1

sjξj


 , (34)

such that a −∑N
j=1 sjξ

⋆
j < 0, where si := b2i /ri. Then, the game admits a unique

open-loop Nash equilibrium for every initial state, given by

u⋆i (t) = − bi
ri
ξ⋆i exp




a−

N∑

j=1

sjξ
⋆
j


 t


x0 . (35)

The optimal cost to player i using u⋆i is J⋆
i = k⋆i x0, where k⋆i is the unique solution

to

2


a−

N∑

j=1

sjξ
⋆
j


 ki + qi + si(ξ

⋆
i )

2 = 0. (36)

The quantities in Theorem 7 can be made more explicit as we discuss below. By

a slight abuse of notation, let pi := siξi as in the state-feedback information case.

Multiplying (34) and (36) by si, we obtain 0 = 2api + σi − pip̄ , and 0 = 2siki(a −
p̄) + σi + p2i , where p̄ =

∑N
i=1 pi. Hence we can solve for pi, ki, and obtain

pi = σi / (p̄− 2a) (37)

ki = σi + p2i / (2si(p̄− a)). (38)

To obtain p̄, we sum (37) over i and arrive at the quadratic equation p̄ = σ̄
p̄−2a . Thus,

p̄ =
√

a2 + σ̄ + a , (39)



15

where we have retained only the positive solution of the quadratic equation for obvious

reasons. It should be pointed out that since the relevant p̄ is unique, we have a unique

open-loop NE. Using (39), we can determine the expression for ξ⋆i (and thus the OL

NE strategies of the players 35), as

ξ⋆i =
qi√

a2 + σ̄ − a
. (40)

Note that these are necessarily stabilizing, that is a−∑N
j=1 sjξ

⋆
j < 0, in view of (36).

Now using (39) and (37) in (38), we arrive at the closed-form expression for k⋆i :

k⋆i =
1√

a2 + σ̄

(
qi
2

+
σiqi

2(
√
a2 + σ̄ − a)2

)
. (41)

When a = 0, k⋆i is reduced to

k⋆i =
1√
σ̄

(
qi
2

+
σiqi
2σ̄

)
. (42)

Given weighting µ, the open-loop NE yields a total cost of

J⋆
µ =

N∑

i=1

µiJ
⋆
i =

N∑

i=1

µik
⋆
i (x0)

2 =: k⋆µ(x0)
2 .

Since the open-loop NE solution is unique, the PoA under open loop IS can thus be

easily found to be:

ρOL
µ = k⋆µ / k̂µ . (43)

We now capture all this in the corollary below.

Corollary 2 The OL LQ DG of Theorem 7 admits a unique OL NE given by (35)

and (40), which is also stabilizing. Furthermore, the OL PoA is given by (43).

5 Price of Information (PoI)

In the previous sections, we have introduced PoA as a measure of efficiency in going

from cooperative to noncooperative framework, and obtained expressions for it for FB

and OL LQ DGs . Here, we study the price of information (PoI) as a measure of

efficiency with respect to the ISs for again the LQ DG. Following Definition 3, PoI

between open-loop and feedback ISs is defined by

χOL
FB = max

k⋆
JOL⋆ /max

k∗
JFB∗ , (44)

which can also be expressed in terms of the PoAs under the two ISs:

χOL
FB = ρOL

µ / ρFB
µ .

Using Theorem 5, we can obtain a bound on PoI:

χOL
FB >

k⋆

µs
max(̺(M) + a)

.

The following theorem further characterizes the PoI in a special case.
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Theorem 8 Suppose a = 0, and the number of players is large so that N satisfies (C-

i), (C-ii), and (C-iii). Then, the PoI is bounded from above and below by two constants:

√
2/2 6 χOL

FB 6
√
2. (45)

Proof Under conditions (C-i), (C-ii), and (C-iii), we have a unique feedback NE that

can be approximated as in statement (iv) of Theorem 6. Hence, from (39) we obtain

χOL
FB =

JOL⋆

JFB∗ =

√
2

2

(
1 +

∑N
i=1 µiqiσi

q̄σ̄

)

=

√
2

2

(
1 +

∑N
i=1 µiqiσi∑N

i=1 µiqi
∑N

i=1 σi

)
6

√
2 ,

where the last inequality is obtained by noting that

N∑

i=1

µiqiσi >

N∑

i=1

µiqi

N∑

i=1

σi .

The lower bound can be achieved by noting that σi, qi, µi are all nonnegative.

Theorem 8 is useful in the design of games via access control or pricing mechanisms.

Let χ̄ ∈ (
√
2
2 ,

√
2] be some target PoI to achieve so that χOL

FB 6 χ̄. For example, when

χ̄ = 1, it means the game needs to be designed so that the open-loop NE yields no

larger cost than the feedback NE. Hence, a necessary condition to meet such a design

criterion is: ∑
i∈N µiqiσi

q̄σ̄
6

√
2χOL

FB − 1. (46)

An access control is to admit a set N of players so that (46) is satisfied when all

the system and player parameters are given. When set N is fixed and not adjustable,

we may use “pricing” mechanisms to control the parameters ri or qi, which reflect the

unit “price” of penalty on the control effort and the state, respectively. In the following

corollary, we capture the special case of homogeneous players.

Corollary 3 Suppose the LQ DG satisfies the conditions in Theorem 8. In addition,

let the players be symmetric so that σi = σ, pi = p,∀i ∈ N . When N > 3, the open-

loop IS yields better total optimal cost; otherwise the FB information does better. In

addition, as N → ∞, limN→∞ χOL
FB =

√
2
2 at the rate of O

(
1
N

)
.

Proof The proof directly follows from Theorem 8. The price of information under

the additional assumptions becomes χOL
FB = 1√

2

(
1 + 1

N

)
. It is independent of the

parameters of the players and approaches
√
2
2 as N → ∞. By letting χOL

FB 6 1, we

obtain N > 1 / (
√
2− 1) . Hence, since N is an integer, the open-loop NE does better

than the feedback NE when there are 3 or more players.

Theorem 8 and Corollary 3 have implications in the design of games via access

control when open loop is the preferred mode of play.
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6 Applications and Illustrations

In this section, we apply the results obtained heretofore to two classes of application

scenarios in flow control.

6.1 Multiuser Rate-Based Flow Control

We adopt here the communication systems model described in [2], where the players are

the users or sources, and the action (control) variables are the flows into the network.

If a link receives more total flow than what it can accommodate (measured by its

capacity), then packets queue up. Having long queues is not desirable, because it leads

to delays in transmission. We call such links which are congested bottleneck links, and

formulate the game around one such link. Let ql(t) denote the queue length at such a

bottleneck link and let s(t) denote the total effective service rate available at that link.

Assume that each user is assigned a fixed proportion of the available bandwidth; more

specifically, the traffic of source i, i = 1, 2, . . . , N , has an allotted bandwidth of wis(t),

where wi’s are positive parameters which add up to 1. We assume that the users have

perfect measurement of s(t), but occasionally exceed or fall short of the bandwidth

allotted to them due to fluctuations. Hence, if di(t) denotes the rate of source i at

time t, we can introduce ui(t) := di(t)−wisr(t) as the control (action) variable of the

source. Then, queue build-up is governed by the differential equation

q̇l(t) =

N∑

i=1

ui(t) , (47)

where we assume that queue is relatively tightly controlled so that end effect constraints

(starvation and exceeding an upper limit) do not become active. The goal is to ensure

that the bottleneck queue size stays around some desired level q̄l, and good tracking

between input and output rates is achieved. Toward that end, we consider the shifted

variable x(t) := ql(t) − q̄l, which satisfies the following differential equation which is

the shifted version of (47):

ẋ(t) =

N∑

i=1

ui x(0) = x0 . (48)

We now consider a noncooperative scenario in which each source determines a linear

feedback policy (or an open-loop policy) to minimize its own individual cost function

Li(u) =

∫ ∞

0

(
|x(t)|2 + |ui(t)|2

)
dt, (49)

which is consistent with the overall goal of keeping x and ui’s small. We can also

consider a related team problem in which sources minimize cooperatively a common

cost under the same information structure (where as we know actually the IS does not

make a difference in this case):

L(u) =

∫ ∞

0

(
N |x(t)|2 +

N∑

i=1

|ui(t)|2
)

dt. (50)
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This is now within the framework of LQ DGs studied earlier, with the correspon-

dences being a = 0, x0 = 1, σi = si = qi = ri = bi = 1 in (5) and (6). To obtain some

numerical results, let us take x0 = 1.

In the case of the 2-person LQ feedback game, the M matrix introduced earlier

becomes

M2 =




0 1 1 0

1 0 0 −1

1 0 0 −1

0 1/3 1/3 0




and if N = 3, we have

M3 =




0 1 1 1 0 0 0 0

1 0 0 0 −1 −1 0 0

1 0 0 0 −1 0 −1 0

1 0 0 0 0 −1 −1 0

0 1/3 1/3 0 0 0 0 −1/3

0 1/3 0 1/3 0 0 0 −1/3

0 0 1/3 1/3 0 0 0 −1/3

0 0 0 0 1/5 1/5 1/5 0




.

The positive eigenvalue ofM2 is λ2 = 1.1547 and the corresponding vector is p2 = k2 =

[1.0000, 0.5774, 0.5774, 0.3333]T . The sum of the optimal costs under equal weights is

J∗
2 = 0.5774 while the optimal common cost is J◦

2 = 0.5, yielding the price of anarchy

value ρFB
µ,2 = 1.1547. For the case with 3 players, the eigenvector is found to be p3 =

k3 = [1.0000, 0.4472, 0.4472, 0.4472, 0.2000, 0.2000, 0.2000, 0.0894]T corresponding to

λ3 = 1.3416. Again under equal weights, the total NE cost is J∗
3 = 0.4472 and the

minimum social cost is J◦
3 = 0.3333. Hence, the price of anarchy is given by ρFB

µ,3 =

1.3416. When the number of players becomes large, ρFB
µ ∼

√
N
2 from Theorem 6.

In the case of open-loop flow control, we obtain k⋆i = 1√
N

(
1
2 + 1

2N

)
and total NE

cost as J⋆
N = k⋆. In the 2-user game, J⋆

2 = 0.5303 yielding the price of information

χOL
FB = 0.9184. The open-loop NE thus yields 8.16% less cost in comparison to the

closed-loop FB one. In a 3-user game, J⋆
3 = 0.3849, leading to a price of information

value of χOL
FB = 0.8607, which yields a 13.93% more cost for the FB IS case. We also

note that as the number of players increases, the open-loop IS yields a cost approaching

0, i.e., limN→∞ J⋆
N = 0, while in the feedback case, even though it still converges to

0, the rate is slower: J∗ ∼ 1√
2N

→ 0. We observe that χOL
FB goes to

√
2
2 at a rate of 1

N

as N gets large, i.e.,

lim
N→∞

χOL
FB =

√
2

2
+

1

2N
→

√
2

2
.

It is also noted that open-loop NEs always yield less equilibrium costs even though

they require less information.

Due to the symmetry of players in the flow control problem, we can obtain exact

closed-form solutions to the equilibrium costs using (18) and (14) without approxima-

tion. It is not hard to show that under equal weights,

J∗
OL = ki =

1√
2N − 1

, J⋆
FB =

1√
N

(
1

2
+

1

2N

)
and J◦ =

1

N
.
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Fig. 1 Price of Information

In Figure 1, we show the price of information under open-loop and feedback information

structures, and in Figure 2, we show the corresponding prices of anarchy. By exact

calculation, we find when N = 4, the open-loop NE cost to be J⋆
4 = 3

8 = 0.3125, which

catches up with and becomes better than the feedback NE cost: J∗
4 = 1√

7
= 0.378.This

is consistent with our earlier observation based on large population approximation.

We observe in Figure 1 that the NE costs are the same at N = 1 (as they should

be), and as N increases, both open-loop and feedback NE costs decrease. AsN becomes

large, both costs approach 0. This happens because the queue length is fixed. When

the number of players goes to infinity, the contribution from each user is negligible.

Moreover, the state x(t) can be driven to zero very fast as the amount of total con-

trol effort increases with the number of players. The cost incurred from the transient

behavior of x(t) then goes to zero. In addition, for N > 2, open-loop NE yields better

costs. The price of information χOL
FB is always below 1 but maintains its level above√

2
2 . In Figure 2, the price of anarchy starts at 1 when N = 1 and increases as the

number of players grows. The cost under the feedback NE grows faster than the one

under open-loop NE.

6.2 Normalized Flow Control Dynamics

In this section, we investigate a general flow control dynamics, which differs from (48)

by inclusion of a population-dependent normalization factor f(N), where f(·) is an

increasing function of N :

ẋ(t) =
1

f(N)

N∑

i=1

ui , x(0) = 1 . (51)

The introduction of a normalization factor is to adjust the queue length proportionally

when the number of users increases.
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Proposition 1 The prices of anarchy ρOL
µ , ρFB

µ , and the price of information χOL
FB

are independent of the normalization factor f(N), as summarized in Table 1.

Table 1 Various indices for normalized flow control game

J∗ (FB) J◦ (TP) J⋆ (OL) ρFB
µ ρOL

µ χOL
FB

f(N)√
2N−1

f(N)
N

f(N)√
N

(
1
2
+ 1

2N

)
N√

2N−1

√
N

(
N+1
2N

) √
2− 1

N

(
1
2
+ 1

N

)

Proof Using (18) and (14), we obtain pi for a given N as follows:

p̄ =
N

f(N)

1√
2N − 1

,

pi =
1

f(N)
√
2N − 1

,

ki =
pi
si

=
f(N)√
2N − 1

,

J∗ =

N∑

i=1

1

N
kix

2
0 = ki.

The team problem yields an optimal cost of

J◦ =

√
q̄

b̄
=

f(N)

N
. (52)
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Table 2 Indices under two normalization factors using the large population approximation

f(N) J∗ (FB) J◦ (TP) J⋆ (OL) ρFB
µ ρOL

µ χOL
FB

1 1√
2N

1
N

1√
N

(
1
2
+ 1

2N

) √
N
2

√
N

(
1
2
+ 1

2N

) √
2

2
+

√
2

2N

1
N

√
N
2

1
√
N

(
1
2
+ 1

2N

) √
N
2

√
N

(
1
2
+ 1

2N

) √
2

2
+

√
2

2N

Hence, the price of anarchy ρFB
µ under the state-feedback information structure is

independent of f(N), and is given by

ρFB
µ =

N√
2N − 1

(53)

The open-loop price of anarchy is also independent of the factor f(N). Since J⋆ =
f(N)√

N

(
1
2 + 1

N

)
, it is given by

ρOL
µ =

√
N

(
N + 1

2N

)
. (54)

The price of information is also independent of f(N), and given by

χOL
FB =

√
2− 1

N

(
1

2
+

1

N

)
. (55)

As a case study, we let f(N) = 1
N . Then, bi = 1

N , si = σi = 1
N2 , for all i ∈ N .

When the population is large, we have J∗ ∼
√

N
2 and J⋆ =

√
N
(
1
2 + 1

N

)
. The price of

anarchy remains ρ ∼
√

N
2 . The price of information remains χOL

FB =
√
2
2 +

√
2

2N →
√
2
2 as

N → ∞. It can be shown that χOL
FB does not change with the factor f(N). In Figures 3

and 4, we show the prices based on the exact closed form solution obtained in the same

fashion as in the previous section based on (18) and (14). We observe that the open-

loop NE always outperforms the feedback equilibrium. It should be pointed out that

(i) in Figure 3, the open-loop and feedback costs increase with the number of users.

This is due to the introduction of normalization factor into the system dynamics. We

allocate the queue length as an increasing function of the number of users; (ii) Figures

4 and 2 are identical due to the above proposition.

If we set f(N) =
√
N , we have the open-loop and feedback optimal costs approach

1
2 and

√
2
2 respectively, as N → ∞. Figure 5 demonstrates that result.

A summary of the results with f(N) = 1 and f(N) = 1
N under large population

approximation is provided in Table 2.

7 Conclusion

In this paper, we have introduced the notions of price of anarchy, price of information,

and price of cooperation for nonzero-sum differential games, have studied the first two

extensively for a class of scalar linear-quadratic differential games, and have obtained

bounds and approximations on them, with computable bounds available in the large
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population regime. Future promising work is to extend these results to non-scalar

differential games as well as to obtain their counterparts for the price of cooperation.

Also computing these indices for specific models from communication networks and

economics would be a fruitful area of research.
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1. T. Alpcan, T. Başar, R. Srikant, and E. Altman, “CDMA uplink power control as nonco-
operative game,” Wireless Networks, 8:659-690, 2002.



23

0 5 10 15 20 25 30 35 40
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
PoI: Open−loop vs. Feedback Information

N

C
os

t

 

 
J ∗ (FB)
J ⋆ (OL)

χ O L
F B

χO L
F B = 1

Fig. 5 Price of Information in the Normalized System, f(N) =
√
N
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8. T. Başar and Y.C. Ho, “Informational properties of the Nash solutions of two stochastic
nonzero-sum games,” J. Economic Theory, 7(4):370-387, April 1974.
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