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Abstract

Supergames are repeated games in which a fixed known finite one-shot game is repeated
over and over. Information about the actions chosen at each stage is provided by a
signalling technology. This papers studies the main properties which are valid over this
whole class of games, it both surveys known results and provides new ones.
Key words. Repeated Games, Signals, Folk Theorem.

1 Introduction

The theory of repeated games dates back to the fifties-sixties-seventies with the
works of Shapley (1953), Aumann and Maschler (1965-66, re-edited in 1995),
Aumann and Shapley (1976, re-edited in 1994) and Rubinstein (1977). These
seminal papers have built a theory of dynamic games, where a set of players
interact repeatedly and along the play, collect payoffs and information about the
data of the game and about the behavior of their opponents. An important
sub-class is the set of repeated games with complete information, also named
supergames, where the players, the action sets and the payoff functions are known
to all players and fixed through time. The first important result for supergames
is the well known Folk Theorem1 which characterizes the equilibrium outcomes
of an infinitely repeated supergame with patient players and perfect observation.
These assumptions mean that each player maximizes the limit average payoff and
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1This result is generally attributed to Aumann and Shapley, 1976, and Rubinstein, 1977. It
has been later generalized to discounted repeated games (Sorin, 1986, Fudenberg and Maskin,
1986) and to finitely repeated games (Benoit and Krishna, 1987).
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that all players observe all the actions taken at each stage. The Folk Theorem
then says that any feasible payoff vector is an equilibrium outcome, provided
that it is individually rational. That is, each player gets at least his minmax level
which is the payoff obtained when all other players are adversarial. The proof
of this result is transparent. Players agree on which sequence of actions to take
and unilateral deviations from the agreement are punished by minmax strategies.
One sees directly how much this reasoning hinges on perfect observation. In the
general model of supergames, actions need not be directly observed. Instead,
there is a signalling structure modelled as a probability transition from actions
to sets of signals, that describes the information obtained by the players through
the play. These games are often called repeated games with imperfect monitoring
and have received a lot of attention due to their wide applicability. An important
challenge in the theory is to extend the characterization provided by the Folk
Theorem to this larger class of games, namely, to characterize the equilibrium
outcomes of the game, given the payoffs and the signalling structure.

This problem is difficult and unsolved in its full generality. The literature on
the topic is divided mainly in two branches: undiscounted and discounted games.
The study on undiscounted repeated games with imperfect monitoring has been
initiated by Lehrer (1989, 1990, 1992a, 1992b, 1992c) who studied two-player
games with general signals and n-player games with semi-standard information
(players’ action sets are divided in equivalence classes which are publicly ob-
served) and obtained characterizations there. The work of Lehrer had many
followers (among others Hillas and Liu, 1996, Tomala, 1998, 1999, Renault and
Tomala, 2004, Renault et al. 2005)2. The literature on discounted game generaly
studies a more stringent equilibrium concept than the Nash equilibrium, namely
subgame perfect or sequential equilibria. The extension of the Folk Theorem to
subgame perfect equilibria for games with perfect observation is due to Fudenberg
and Maskin (1986). This work was followed by a detailed study of discounted
repeated games with public signals and public strategies. These are games where
all players observe the same signals and condition their play on these signals only,
thereby forgetting their own past actions. This restriction of strategies allows,
on one hand, to give a concise definition of subgame perfection, and on the other
hand to use dynamic programming methods to characterize the equilibrium pay-
off set (Abreu et al., 1990, Fudenberg and Levine, 1994, Fudenberg et al., 1994,
2007). Sequential equilibria of repeated games without the assumption of public
monitoring are much harder to study and no general characterization is known
so far, even for a (reasonably large) subclass of games (see e.g. among others,
Kandori and Matsushima, 1998, Ely et al. 2005 and the survey book of Mailath
and Samuelson, 2006).

The aim of the present paper is to present in a systematic way the results that
are valid for any supergame (that is for any payoff and signalling structures). The
paper contains old as well as new results, and is structured as follows. Section

2Most of these works consider restricted setups, i.e. two-player games (Hillas and Liu, 1996),
specific signals or games (Tomala, 1998, 1999, Renault et al. 2005)
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2 presents the basic ingredients of supergames. In this section we first describe
the model, the notions of feasible and individually rational payoffs and the main
notions of repeated games and equilibrium payoffs (finitely repeated, discounted,
and uniform). We also review the classical Folk Theorem, and finally we present
several properties valid for any signalling structure, including a new result on
the convergence of the T -fold repeated equilibrium payoffs set when T goes to
infinity. In section 3, we review the result of Renault and Tomala (2004) which is
a characterization of communication equilibrium3 payoffs and which holds for any
supergame. This is the tightest upper bound on the set of Nash equilibrium payoff
known to date and valid in full generality. We also provide some new applications
of this result in subsections 3.5, 3.6, 3.7. Specifically, we spot conditions on
signals ensuring that, for any payoff function, communication equilibrium payoffs
are the feasible and individually rational payoffs. In section 4, we present some
extensions, specific results and open problems.

2 Basic ingredients

2.1 Description of the game

In all the paper we consider a repeated game with signals, or supergame, Γ defined
by:
• a finite stage game G = (N, (Ai)i∈N , (g

i)i∈N) given by a set of players N =
{1, ..., n}, and for each player i a finite non empty set of actions Ai and a payoff
function gi : A −→ IR, where A =

∏
iA

i stands for the set of action profiles. The
stage game G is also called the one-shot game.
• a signalling structure ((U i)i∈N , f) where for each player i, we have a finite

non empty set of signals U i, and a signalling function f : A −→ ∆(U), where
U =

∏
i U

i is the set of signal profiles and ∆(U) is the set of probability distri-
butions over U .

The game is played as follows: at each stage t = 1, 2, . . . , each player chooses
an action in his own set of actions, choices are simultaneous. If at = (ait)i∈N ∈ A
is the action profile chosen, a profile of signals ut = (uit)i is selected according to
the distribution f(at). Each player i then observes his signal uit and the game
proceeds to stage t + 1. The payoff for player i at stage t is then gi(at), but is
not necessarily observed by player i, all what player i learns before starting stage
t+ 1 is uit.

3A communication equilibrium is a Nash equilibrium of an extended repeated game where
players communicate costlessly with a trustworthy mediator between game stages. It allows for
almost all kinds of costless communication, for example the players may send and receive private
messages between the stages, send emails using the cc: and bcc: functions, etc... However, this
communication is disconnected from the fundamentals of the repeated game: player i may send
a message to player j saying he has just played action ai, but player i can not prove, or certify,
that he actually played ai.
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In this paper we aim at presenting results without any assumption on the
stage game G nor on the observation structure, nevertheless we discuss illustrative
examples.

Example 2.1. An example of a stage game is the famous following “prisoner’s
dilemma”: there are 2 players, A1 = {C1, D1} and A2 = {C2, D2}, and the
payoffs are given by the following matrix, with the first, resp. second, coordinate
being the payoff to player 1, resp. player 2:

C2 D2

C1

D1

(
(3, 3) (0, 4)
(4, 0) (1, 1)

)
The following particular cases of signalling structures are often met in the

literature. The most standard case is the one of perfect observation of actions
(also called perfect monitoring) when U i = A, and uit = at for each player i.
Player i is said to have trivial observation if U i is a singleton (such a player gets
no information on the other players’ actions). Payoffs are observable by player
i if this player can compute his current payoff based on his signal and his own
action (that is gi(a) = g̃i(ai, ui)). Signals are public when U i = U j and uit = ujt
for all players i and j and stage t.

Example 2.2. Consider the following 3-player minority game: 3 players have
to vote for one of two alternatives A and B, the player (if any) who vote for the
less chosen alternative receives a reward of one euro and other players receive
zero. The current majority alternative is publicly announced after each stage.
This defines a repeated game with public signals and observable payoffs.

We turn now to the definition of strategies in the repeated game.

Definition 2.3. A strategy for player i is an element σi = (σit)t≥1, where σit :
(Ai × U i)t−1 −→ ∆(Ai) gives the lottery played by player i at stage t depending
on his current information.

In words, a strategy defines the distribution of the next action of player i,
given his current information, i.e. his history of own actions and signals. Such
a strategy is usually called a behavior strategy: a player performs a local lottery
on his actions at every stage depending on his own past history. This shall be
the one and only concept of strategy used in this paper. A pure strategy is a
behavior strategy that chooses actions in a deterministic fashion and is thus a
particular behavior strategy4. In the whole paper we use the term strategy to
refer to behavior strategies.

4Perfect recall of the whole past is a feature of the supergame, thus according to Kuhn’s
theorem (Kuhn, 1953), mixed strategies (lotteries over the set of pure strategies, endowed with
the product sigma-algebra) are equivalent to behavior strategies here.
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The set of strategies for player i is denoted by Σi, and we write Σ =
∏

i∈N Σi.
A play is a sequence of profiles of actions and signals, ω = (a1, u1, a2, u2, . . .) in
(A×U)∞, with at being the action profile played at stage t and ut being the signal
profile observed at stage t. A strategy profile in Σ naturally induces a probabil-
ity distribution over the set of plays Ω = (A × U)∞ endowed with the product
σ-algebra. This probability distribution will be used to compute expected payoffs.

Notations 2.4. Throughout the paper, we use the following notations. The vector
payoff function is denoted by g, that is g(a) = (gi(a))i∈N for each action profile a.
M denotes an upper bound for all absolute values of payoffs: M = maxi,a |gi(a)|.
In general if (Ei)i∈N is a collection of sets indexed on players, E stands for∏

i∈N E
i. We denote by e−i the current element of E−i =

∏
j 6=iE

j and write

e = (ei, e−i) ∈ E when the i-th component is stressed. If E is a finite set, we let
|E| be its cardinality and ∆(E) be the set of probability distributions over E. An
element e in E is identified with the Dirac mass on e. For p = (p(e))e∈E in ∆(E),
supp p denotes the support of p. Given h : E → IR, we extend h to ∆(E) in the
usual fashion: h(p) =

∑
e∈E p(e)h(e) for p ∈ ∆(E). Regarding payoff vectors,

we use the Euclidean norm on IRN and the Hausdorff distance between compact
subsets of IRN : d(A,B) = max{maxa∈A minb∈B ‖a− b‖,maxb∈B mina∈A ‖a− b‖}.

2.2 Feasible and individually rational payoffs

We define now feasible and individually rational payoffs, which only depend on
the stage game G.

Informally, a payoff vector is feasible if it is induced by some strategy profile
in (some version of) the repeated game. This is captured by the set of payoff
vectors achievable with correlated strategies in the stage game, that is g(∆(A)) =
{g(P ), P ∈ ∆(A)} = convg(A). This set is the convex hull of the payoff vectors
achievable with pure strategies in the one-shot game, hence a polytope. This set
includes all equilibrium payoffs considered in this paper.

Definition 2.5. The set of feasible payoffs is F = g(∆(A)).

We introduce now individual rationality levels (or punishment levels, or min-
max levels) which measure the payoff that each player can secure to himself,
irrespective of the behavior of other players. Two levels are considered.

Definition 2.6. For each player i in N , the independent minmax level of player
i is:

vi = min
x−i∈

Q
j 6=i ∆(Aj)

max
xi∈∆(Ai)

gi(xi, x−i).

The correlated minmax level of player i is:

wi = min
x−i∈∆(

Q
j 6=i A

j)
max

xi∈∆(Ai)
gi(xi, x−i).
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The first one is what player i gets when all other players minimize his payoff
using mixed strategies. The second one is obtained when the other players can
correlate their actions. It always holds that wi ≤ vi, and there is an equality for
2-player games. We may have wi < vi if there are at least 3 players as shown by
the following example.

Example 2.7. In the following 3-player game where A1 = {T,B}, A2 = {L,R}
and A3 = {W,E}, we have v1 = v2 = v3 = w1 = w2 = 0 and w3 = −1/2.

L R L R
T
B

(
(0, 0, 0) (1,−1, 1)

(−1, 0, 1) (0, 1,−1)

) (
(1, 0,−1) (1,−1, 1)
(1, 0, 0) (2,−1, 0)

)
W E

Payoff vectors above the minmax levels are called individually rational.

Definition 2.8. The set of individually rational payoffs with respect to the inde-
pendent minmax levels is defined as: IR = {u = (ui)i∈N , u

i ≥ vi ∀i ∈ N}. The
set of individually rational payoffs with respect to the correlated minmax levels is
defined as: IRC = {u = (ui)i∈N , u

i ≥ wi ∀i ∈ N}.

2.3 Nash equilibrium payoffs

We define now the most common average payoff notions and the corresponding
equilibrium concepts.

2.3.1 Finitely repeated and discounted games: the sets ET and Eλ

Definition 2.9. Given a positive integer T , the T -stage average payoff for player
i induced by the strategy profile σ is:

γiT (σ) = IEσ

(
1

T

T∑
t=1

gi(at)

)
.

We denote by GT the T -stage repeated game, that is the game with strategy sets
Σi and payoff functions γiT for each player i in N , and by ET the set of Nash
equilibrium payoffs of GT .

Since only the first T stages matter in GT , it can be seen as a finite extensive-
form game.

Definition 2.10. Given a discount factor λ in (0, 1], the λ-discounted payoff for
player i induced by the strategy profile σ is:

γiλ(σ) = IEσ

(
∞∑
t=1

λ(1− λ)t−1gi(at)

)
=
∞∑
t=1

λ(1− λ)t−1IEσ
(
gi(at)

)
.
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We denote by Gλ the λ-discounted repeated game, that is the game with strategy
sets Σi and payoff functions γiλ for each player i in N , and we denote by Eλ the
set of Nash equilibrium payoffs of GT .

In the λ-discounted game, receiving a payoff of 1 − λ today is equivalent to
receiving a payoff of 1 tomorrow (the discounted game is often parametrized by
δ = 1 − λ ∈ [0, 1)). Notice that considering T = 1 in Definition 2.9 or λ = 1 in
definition 2.10 leads to the stage game G = G1. This game being finite, it has
a mixed Nash equilibrium by the Nash theorem. Repeating such an equilibrium
at each stage, independently of the past, constitutes a Nash equilibrium of any
finitely repeated game GT and of any discounted game Gλ. It follows that ET and
Eλ contain E1 and are non empty. By compactness of the strategy sets (endowed
with the product topology) and continuity of the payoff functions, ET and Eλ are
compact subsets of IRN . We have thus the following:

Lemma 2.11. For any T and λ, ET and Eλ are compact subsets of IRN , both
including E1.

The T -stage repeated game has a finite duration. For the λ-discounted game,
one can interpret λ as the probability that the game terminates at the current
period, so that 1/λ represents the expected number of repetitions. With this
interpretation the expected duration of Gλ is finite. In both cases, only finitely
many game stages have a significant impact on the average payoff. One way
to study long-run repeated games is to go for an asymptotic approach and to
consider limT→∞ET or limλ→0Eλ.

2.3.2 The set E∞ of uniform equilibrium payoffs, and the set E∗

The most common equilibrium notion for undiscounted infinitely repeated games
is the uniform equilibrium5 (see Sorin 1986, Fudenberg and Levine 1991), which
on the one hand allows for some arbitrary small error ε and on the other hand
requires a strong property of uniformity in time of the equilibrium strategies.

Definition 2.12. A strategy profile σ is a uniform Nash equilibrium of Γ if:
for each ε > 0, σ is an ε-Nash equilibrium of any finitely repeated game with
sufficiently many stages, and (γiT (σ))i∈N converges as T goes to infinity to a limit
called a uniform Nash equilibrium payoff. We denote by E∞ the set of uniform
Nash equilibrium payoffs.

The first condition formally writes:

∀ε > 0,∃T0 > 0,∀T ≥ T0,∀i ∈ N,∀τ i ∈ Σi, γiT (τ i, σ−i) ≤ γiT (σ) + ε.

5Another approach is to introduce the limit average payoff limT→∞
1
T

∑T
t=1 gi(at). More

precisely, since this limit may not exist for all sequences of actions, one may extend the limit
in some way (taking the limsup for instance) and study the game associated with the chosen
extension. We do not follow this approach here, except for a few comments in section 4.
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Notice that T0 depends only on ε and is uniform with respect to the strategies τ i,
that is the ε-Nash condition should be uniform in T . The following reformulation
is useful.

Lemma 2.13. (Mertens Sorin Zamir, 1994) Let x = (xi)i∈N ∈ IRN . The follow-
ing conditions are equivalent:

(i) x is a uniform equilibrium payoff,
(ii) ∀ε > 0, ∃σ = (σi)i∈N ∈ Σ, ∃T0, ∀T ≥ T0, ∀i ∈ N , ∀τ i ∈ Σi, γiT (τ i, σ−i) ≤

xi + ε and γiT (σ) ≥ xi − ε,
(iii) there exists a sequence (εk, Tk, σk)k≥1 such that (εk)k is a real sequence de-

creasing to 0, for each k, Tk is a positive integer and σk is an εk-Nash equilibrium
of GTk

with payoff εk-close to x.

We briefly recall the proof. The main argument is to construct a strategy
in the repeated game by concatenating ε-equilibria of finitely repeated games.
The implications (i) =⇒ (ii) =⇒ (iii) are clear and it is enough to show that
(iii) =⇒ (i). Choose for each k an integer lk large enough so that lkTkεk ≥ Tk+1.
A strategy profile σ is defined by playing σ1 cyclically l1 times, then σ2 cyclically
l2 times, . . . , σk cyclically lk times and so on (past history is reset to the empty
history whenever a new strategy starts). Simple computations show that σ is a
uniform equilibrium with payoff x.

Corollary 2.14. For each T , ET ⊆ E∞. The set E∞ is compact and convex.

The first properties follow immediately from Lemma 2.13, and convexity is ob-
tained by alternating between two uniform equilibria with equal time proportions.

Regarding discounted payoffs, the inclusion Eλ ⊆ E∞ seems likely to hold, but
to the best of our knowledge this is still an open problem. We have the following
lemma.

Lemma 2.15. Let σ be a uniform equilibrium. Then for each ε > 0, σ is an
ε-Nash equilibrium of any discounted game with low enough discount factor:

∀ε > 0, ∃λ0 ∈ (0, 1],∀λ ∈ (0, λ0],∀i ∈ N, ∀τ i ∈ Σi, γiλ(τ
i, σ−i) ≤ γiλ(σ) + ε,

and γλ(σ) converges as λ goes to 0 to limT→∞γT (σ).

Proof: First consider an arbitrary bounded sequence of real numbers (xt)t≥1, and
denote by x̄T the Cesaro mean 1

T

∑T
t=1 xt and by x̄λ the Abel mean

∑∞
t=1 λ(1− λ)t−1xt.

x̄λ =
∞∑
t=1

(
∞∑
T=t

λ(1− λ)T−1 − λ(1− λ)T
)
xt,

=
∞∑
T=1

(λ(1− λ)T−1 − λ(1− λ)T )
T∑
t=1

xt,

=
∞∑
T=1

T λ2 (1− λ)T−1 x̄T .
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As a consequence,

lim sup
T→∞

x̄T ≥ lim sup
λ→0

x̄λ ≥ lim inf
λ→0

x̄λ ≥ lim inf
T→∞

x̄T . (1)

and the convergence of x̄T easily implies the convergence of x̄λ to the same limit.

Let now σ be a uniform equilibrium, and write γi(σ) = limT→∞γ
i
T (σ) =

limλ→0γ
i
λ(σ). Consider ε > 0 and T0 such that: ∀T ≥ T0,∀i ∈ N,∀τ i ∈

Σi, γiT (τ i, σ−i) ≤ γi(σ)+ε. Define λ0 such that: ∀λ < λ0,
∑T0−1

T=1 T λ2 (1− λ)T−1 ≤
ε. Consider now λ < λ0, a player i in N and a strategy τ i in Σi. We have:

γiλ(τ
i, σ−i) =

∞∑
t=1

λ(1− λ)t−1IEτ i,σ−i

(
gi(at)

)
,

=
∞∑
T=1

T λ2 (1− λ)T−1 γiT (τ i, σ−i),

≤ ε M +
∞∑

T=T0

T λ2 (1− λ)T−1 (γi(σ) + ε
)
,

≤ γi(σ) + ε+ ε(2M + ε),

and the lemma is proved. �

Remark: All inequalities in (1) might be strict, but Hardy and Littlewood have
proved that the convergence of x̄λ also implies the convergence of x̄T to the same
limit (see e.g. Lippman 1969). This implies that for any strategy profile σ,
limT→∞γT (σ) exists iff limλ→0γλ(σ) exists, and in case of convergence both limits
are equal. Nevertheless, one can construct an example of a strategy profile σ
satisfying the conclusion of Lemma 2.15 without being a uniform equilibrium.

Uniform equilibria are approximations of Nash equilibria of finite but long
games. The concept is adapted to repeated games with long and uncertain du-
ration. The strategies should be approximately optimal independently of the
number of stages, provided it is large enough (or on the discount factor, provided
it is low enough, recall Lemma 2.15). By contrast, the equilibria in GT or Gλ

need not have such robustness property as they may crucially depend on the exact
value of T and λ. Another important difference when studying ET or Eλ is that
players’ strategies are exact best replies to the strategies of the other players.
With uniform equilibria, the players only play ε-best replies, where ε vanishes
as the number of stages goes to infinity. Most of the present paper focuses on
uniform equilibria which are easier to deal with and for which the sharpest char-
acterizations are known. Mathematically, the clearest results are obtained with
the set E∞ whereas results for limλ→0Eλ and limT→∞ET are more technical.
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We finally define another set of equilibrium payoffs which contains all the pre-
viously defined sets, and which is fully characterized when allowing for a mediator
(see Theorem 3.16).

Definition 2.16. Let E∗ be the set of vectors x in IRN satisfying: ∀ε > 0, there
exists σ in Σ and λ in (0, 1] such that σ is an ε-Nash equilibrium of the discounted
game Gλ with payoff ε-close to x.

The set E∗ clearly contains Eλ for each discount factor λ. By lemma 2.15, it
also contains E∞

6 and consequently ET for each T . To the best of our knowledge,
there is no example of game where the equality E∞ = E∗ does not hold.

2.4 Benchmark: the standard case of perfect observation

In this section, we assume perfect observation of the action profile and present
the main Folk theorems for Nash equilibrium payoffs. These results essentially
state that in repeated games with perfect observation and very patient players, the
set of equilibrium payoffs is the set of feasible and individually rational payoffs.

A first observation is that E∗, E∞, ET and Eλ are subsets of F ∩ IR. The
inclusion in F is clear. When actions are publicly observed at each stage, given a
strategy profile σ−i for players other than i, player i may choose a best-reply to
the mixed action profile of the others after each history. This secures a payoff no
less than vi to player i at each stage and thus there exists σi such that for each
T , IEσi,σ−i(gi(at)) ≥ vi. It follows that E∗, E∞, ET and Eλ are subsets of F ∩ IR.
The first Folk theorem is the following.

Theorem 2.1. “The” Folk theorem: In case of perfect observation, the uni-
form equilibrium payoffs are the feasible and individually rational payoffs: E∞ =
E∗ = F ∩ IR.

It is difficult to establish who proved this result. As Aumann wrote, it “has
been generally known in the profession for at least 15 or 20 years, but has not
been published; its authorship is obscure.” (R.J. Aumann, 1981). This is an “ev-
erything is possible” result: any reasonable payoff can be achieved at equilibrium.
We recall the basic and important proof.

Proof: Fix u ∈ F ∩ IR. There exists a play h = (a1, . . . , at, . . .) such that for
each player i, 1

T

∑T
t=1 g

i(at)→T→∞ ui. The play h is called the main path of the
strategy, and playing according to h for some player i at stage t means playing
the i-component of at. For each pair of distinct players (i, j), fix xi,j in ∆(Aj)
such that (xi,j)j 6=i achieves the minimum in the definition of vi.

We define now the strategy σi of each player i ∈ N . At stage 1, σi plays
according to the main path, and continues to play according to h as long as the
other players do so. If there is a first stage t ≥ 1 at which some player j does
not follow the main path, then σi plays the mixed action xj,i at all subsequent

6Theorem 3.1 in Fudenberg and Levine 1991, also implies E∞ ⊆ E∗
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stages (if several players leave the main path at the same stage, by convention
the punished player is the smallest according to a fixed linear order on N). It is
easy to see that σ = (σi)i∈N is a uniform equilibrium of the repeated game with
payoff u. �

For the Prisoner’s Dilemma (Example 2.1) with perfect observation, we have
v1 = v2 = 1, and obtain the following set of equilibrium payoffs:
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We now state the discounted and finitely repeated Folk theorems without
proof, the reader is referred to Sorin (1992).

Theorem 2.2. Discounted Folk theorem (Sorin 1986, Fudenberg Maskin
1986) Assume they are 2 players, or that there exists u = (ui)i∈N in E such that
for each player i, ui > vi. Then, in case of perfect observation, Eλ −−→

λ→0
F ∩ IR.

Compared with Theorem 2.1, a condition on the payoff of the stage-game is
required. This is mainly due to the fact that a profitable one-shot deviation may
be profitable in the discounted game, while in the infinitely repeated undiscounted
game, a one-shot gain is offset at the limit. There is thus a need to be able to
punish even “small” deviations. The following example (due to Forges, Mertens
and Neyman, 1986) is a counter-example to the convergence of Eλ to F ∩ IR, i.e.
to the conclusion of Theorem 2.2, when the assumption that there is a feasible
payoff which is strictly individually rational is not met. Consider the payoff
matrix, (

(1, 0, 0) (0, 1, 0)
(0, 1, 0) (1, 0, 1)

)
.

This is a 3-player game where player 1 chooses a row, player 2 chooses a column
and player 3 has no action. Essentially, this game is a zero-sum game between
players 1 and 2, and in each Nash equilibrium of Gλ each of these players indepen-
dently randomizes at each stage between his 2 actions with equal probabilities.
Therefore Eλ = {(1/2, 1/2, 1/4)} for each λ, whereas (1/2, 1/2, 1/2) ∈ F ∩ IR.
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Theorem 2.3. Finitely repeated Folk theorem (Benôıt and Krishna, 1987)
Assume that for each player i there exists x in E1 such that xi > vi.
Then in case of perfect observation, ET −−−→

T→∞
F ∩ IR.

As for Theorem 2.2, there is a condition on the stage-game7. It is now re-
quired that there is a strictly individually rational Nash payoff. This is mainly a
“boundary” effect, a one-shot Nash equilibrium has to be played at the last stage
of the game. Regarding the importance of the condition, there is a strong result
holding whenever each player receives no more than his independent minmax
payoff in any Nash equilibrium of the stage game.

Proposition 2.17. (Sorin, 1986) In case of perfect observation, if E1 = {v}
then ET = {v} for each T .

The proof is simple and by induction on T . The result applies to the Prisoner’s
Dilemma of Example 2.1: for each T , ET = {(1, 1)}, hence the Pareto-optimal
equilibrium payoff (3, 3) can not be approximated by equilibrium payoffs of finitely
repeated games, and there is no convergence of ET to F ∩ IR.

2.5 Beyond the perfect observation case, a few general
properties

How can we generalize the Folk Theorem to games with imperfect observation?
More precisely, a main open problem in repeated games is to compute the set of
Nash equilibrium payoffs E∞ for general stage games and observation structures.
It is clear that signals do matter, and that the proof of Theorem 2.1 is not valid
for general observation structures. We see five main obstructions for extending
the proof, which can be viewed as five main features of repeated games with
imperfect observation.

1) A deviation of a player from the main path may not be detected by the other
players. Consider for instance the Prisoner’s Dilemma with trivial observation
for both players. Clearly, no cooperation is possible there, and ET = Eλ = E∞ =
{(1, 1)} for all T and λ.

2) It follows from the above point that players should not be offered profitable
and undetectable deviations. The notion of detectable deviation is not straight-
forward though. It may be the case that a player is incentivized to follow his
equilibrium strategy, neither because his actions maximize his current payoffs,
nor because his actions induce correct current signals for the other players, but
because the strategy gives player i a superior information on the actions of the
players −i. This was first noticed by Lehrer (1989,1992), see Example 3.6 in
Section 3.

3) A deviation from the main path may be detected by some players, but not
by others. This happens for instance when the players are vertices of a graph and

7see Benoit Krishna 1985 and Gossner 1995 for a Folk theorem for subgame-perfect equilibria
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only observe after each stage the actions played by their neighbours (Ben-Porath
and Kahnemann 1996, Renault and Tomala 1998).

4) A deviation may be detected by all players, yet the identity of the deviator
remains unknown (Tomala 1999, Renault et al. 2005 and 2008).

5) The independent minmax vi is the punishment level of player i in case of
perfect observation. But the signals may create the possibility to correlate actions
and to punish player i below the level vi. This leads to new punishment levels
depending on the observation structure (see Gossner and Tomala, 2007).

Giving a general formula for E∞ is an open and difficult problem, even for
two players. In the next section, we show that allowing players to communi-
cate between game stages allows to give a full characterization of communication
equilibrium payoffs, which include all uniform equilibrium payoffs. The intuition
is two-fold. First, since players have asymmetric information about past his-
tories, they may want to communicate to coordinate their play. Second, their
continuation strategies are correlated, thus inducing a correlated equilibrium of
the continuation game. Therefore, using communication and correlation devices
smoothes the analysis. We recall that a correlated equilibrium (Aumann, 1974) of
a game G is a Nash equilibrium of any extension of G where players first receive
private signals and then choose actions and receive payoffs as in G. A correlated
equilibrium of the stage game G induces a correlated equilibrium distribution, that
is p ∈ ∆(A) such that,

∀i ∈ N,∀ai, bi ∈ Ai,
∑

a−i∈A−i

p(ai, a−i)gi(ai, a−i) ≥
∑

a−i∈A−i

p(ai, a−i)gi(bi, a−i).

A correlated equilibrium payoff of G is a vector g(p), where p is a correlated equi-
librium distribution. We conclude this section with a few general results valid for
any observation structure.

A. Feasibility and individual Rationality. Equilibrium payoffs have to be
feasible and individually rational but as mentioned in point 5) above, one has
to take care of the punishment level. Precisely, given a strategy profile σ−i of
the players different from i, player i can play at each stage a best reply to the
expected distribution of actions of the other players. Hence, there exists σi such
that for each t, IEσi,σ−i(gi(at)) ≥ wi. Thus,

Lemma 2.18. E∗, E∞, ET and Eλ are subsets of F ∩ IRC.

B. Finitely repeated games.

One may wonder if Proposition 2.17 extends directly to general observation
structures, the answer is negative.

13



Lemma 2.19. With imperfect monitoring, it may happen that E1 = {v} and
E2 6= {v}.

Proof: Such an example can be found in Mailath et al. (2002), we present here
a simple variant with deterministic public signals. The stage game is similar to
an example of Moulin and Vial (1978).

l m r
T
M
B

 (0, 0) (2, 1) (1, 2)
(1, 2) (0, 0) (2, 1)
(2, 1) (1, 2) (0, 0)


In the stage game there is a unique Nash equilibrium where each player plays each
action with probability 1/3, and we have E1 = {(1, 1)} = {v}. However, there is
a correlated equilibrium distribution where each entry with payoff (2, 1) or (1, 2)
has probability 1/6, yielding a correlated equilibrium payoff of (3/2, 3/2). Define
now the set of signals U1 = U2 = {Good,Bad}, and assume that the public signal
is Bad if the payoff is (0, 0) and Good if the payoff is (2, 1) or (1, 2).

Consider the following strategy profile in the 2-stage game. At the first stage,
the players play the mixed Nash equilibrium where each action is played with
probability 1/3. If the public signal is Bad, they play again this mixed Nash
equilibrium at the second stage, but if the signal is Good, each player repeats at
stage 2 the pure action he played at stage 1. This strategy profile is a Nash equi-
librium of the 2-stage game and its payoff is 1/2((1, 1)+1/3(1, 1)+2/3(3/2, 3/2))
= (7/6, 7/6). �

Sekiguchi (2001) gave specific conditions on the monitoring structure ensuring
that if E1 = {v}, then ET = {v} for all T . Without conditions on the monitoring
structure, the natural extension of Proposition 2.17 is the following result. Let
CT denote the set of communication equilibrium payoffs of the finitely repeated
game GT (see Section 3). For each T , CT is convex and compact, and ET ⊆ CT ⊆
F ∩ IRC. When T = 1, C1 simply reduces to the set of correlated equilibrium
payoffs of G.

Proposition 2.20. If C1 = {w}, then w = v and CT = ET = {v} for each T .

More general conditions on the stage game have been given by Sekiguchi (2005),
who studies correlated equilibrium payoffs in the case of full support8 stochastic
signals (all signals have positive probability under all action profiles).

Proof9 of proposition 2.20: The assumption clearly implies E1 = {w}, and
thus w = v. We proceed by induction, and assume CT = {w} for some T . Con-
sider a communication equilibrium σ of GT+1. The restriction of σ to the stages

8With this assumption, Nash equilibrium payoffs and sequential equilibrium payoffs of the
T -stage games coincide.

9The proof that ET = {v} remains correct by replacing “communication equilibrium” by
“correlated equilibrium” throughout.
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2,. . . , T + 1 defines a communication equilibrium of GT , hence by assumption we
have for each player i:

IEσ

(
1

T

T+1∑
t=2

gi(at)

)
= wi.

Suppose by contradiction that the strategy of stage 1 induced by σ is not a
correlated equilibrium of G. There exists a player i who can profitably deviate
at the first stage, and obtain an expected payoff no less than wi at all subsequent
stages, by playing a best reply to the expected distribution of actions of the other
players. Hence, player i has a profitable deviation in the T + 1-stage game, a
contradiction. It follows that σ plays a correlated equilibrium of G at stage 1, and

for each player i, IEσ (gi(a1)) = wi. As a consequence, IEσ

(
1

T+1

∑T+1
t=1 g

i(at)
)

=

wi for each i, and CT+1 = {w}. �

An immediate consequence of Proposition 2.20 is the following corollary: no
observation structure can yield cooperation in the finitely repeated prisoner’s
dilemma.

Corollary 2.21. In the finitely repeated Prisoner’s Dilemma, CT = ET = {(1, 1)}
for all T and all signalling structures.

The following proposition shows that the sequence (ET )T behaves somehow
like an increasing sequence, in that it always converges (for the Hausdorff dis-
tance) to the closure of

⋃
T≥1ET . In the statement below, TET denotes {Tx :

x ∈ ET}.

Proposition 2.22.
1) For all T and T ′, TET + T ′ET ′ ⊆ (T + T ′)ET+T ′,
2) cl (

⋃
T≥1ET ) is convex and compact (cl is the closure operator),

3) ET −−−→
T→∞

cl (
⋃
T≥1ET ).

It follows directly from 1) that ET ⊆ EkT for all integers k, T and thus ET ∪ET ′ ⊆
ETT ′ for all T, T ′.

Proof:
1) This is a concatenation property. Given an equilibrium payoff x in ET and

x′ in E ′T , one can construct an equilibrium payoff z of GT+T ′ by defining strategies
which first play an equilibrium of GT with payoff x and then independently play
an equilibrium of GT ′ with payoff x′ . We have z = 1

T+T ′
(Tx+ T ′x′), hence the

result.
2) Define E := cl (

⋃
T≥1ET ), which is clearly compact. Given x and x′ in⋃

T≥1ET , say x ∈ ET and x′ ∈ ET ′ , both x and x′ are in ETT ′ , thus (x+ x′)/2 ∈
E2TT ′ ⊆ E. Hence E is convex.

3) Consider now the space E of compact subsets of E endowed with the Haus-
dorff distance. E being compact metric, E is also a compact metric space, and to
obtain the convergence of ET to E, it is enough to prove that any cluster point
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of (ET )T is E (see e.g. Aubin, 1977). We thus consider a subsequence (Eϕ(T ))T
converging to some limit E ′ in E , and prove E ′ = E.

It is clear that E ′ ⊆ E, and we prove now the converse. Let x be in ET̂ for

some T̂ , and fix ε > 0. There exists T0 such that for all T ≥ T0, d(E ′, Eϕ(T )) ≤ ε.

Consider T ≥ T0 large enough so that ϕ(T ) = KT̂+r, with K and r non negative
integers such that K ≥ 2M

ε
and r < T̂ . Using property 1) with an arbitrary Nash

payoff e in E1, we have that u := KT̂x+re
ϕ(T )

∈ Eϕ(T ), and ‖x−u‖ ≤ r

KT̂
‖u− e‖ ≤ ε.

Hence d(x,E ′) ≤ 2ε for each ε, and x ∈ E ′. It follows that E ⊆ E ′ and the proof
is complete. �

C. Discounted repeated games.
There is also a concatenation property for discounted equilibrium payoffs.

Proposition 2.23. For all λ in (0, 1] and positive integer K,

E1 ⊆ Eλ ⊆ E1−(1−λ)1/K .

Proof: Fix λ and K, and define µ = 1 − (1 − λ)1/K ∈ (0, λ]. Divide the set of
stages into blocks B1, . . . , BK where Bk is the set of positive integers b which are
equal to k modulo K (i.e. b = sK + k for some integer s). The discounted payoff
of a strategy profile σ in the game with discount factor µ writes:

γµ(σ) =
K∑
k=1

∑
t∈Bk

µ(1− µ)t−1IEσ
(
gi(at)

)
,

γµ(σ) =
K∑
k=1

∞∑
s=0

µ(1− µ)sK+k−1IEσ(gi(asK+k)),

=
µ

λ

K∑
k=1

(1− µ)k−1
∞∑
s=0

λ(1− λ)s−1IEσ(gi(asK+k)).

Now consider an equilibrium σ of Γλ, and define the strategy profile τ which
plays independent copies of σ on each block B1, . . . , BK : at stage sK+k, τ plays
what σ plays at stage s + 1 after the history of the actions played at stages k,
K + k, . . . , (s− 1)K + k. By the previous computation, τ is a Nash equilibrium
of Γµ. Since µ

λ

∑K
k=1 (1− µ)k−1 = 1, the equilibrium payoff is the one induced by

σ in the game Γλ. �

A corollary of the above proposition is that if Eλ converges as λ goes to 0,
the limit must be cl (

⋃
λ>0Eλ). However, to the best of our knowledge, the

convergence of Eλ still is an open problem.

3 Communication equilibria

We study here a solution concept which includes Nash equilibria and for which
a full characterization obtains. A communication equilibrium of the repeated
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game is a Nash equilibrium of an extended repeated game in which players com-
municate with an exogenous device between game stages. The introduction of
communication devices eases the characterization of equilibria as it copes with
many problems inherent to games with imperfect observation. Namely, the de-
vice collects information from all players and may spread it, it also correlates
their strategies, as players condition their actions on the messages received from
it. It is straightforward to see that a Nash equilibrium is also a communication
equilibrium since the device may be silent. Characterizing communication equi-
librium payoffs thus yield a superset of Nash equilibrium payoffs. In this section,
we mainly subsume Renault and Tomala (2004) who characterized the set of
communication equilibrium payoffs, thereby providing the tightest upper bound
of Nash equilibrium payoffs known to date. We also provide some new examples
and applications.

3.1 Communication equilibrium payoffs

Communication equilibria have been introduced by Myerson (1986) and Forges
(1986). The idea is to add an exogeneous mediator who communicates with
the players between the stages. The mediator has no commitment power, no
interest in the game (constant payoffs), and may use any communication method
or communication device. For instance, the mediator may broadcast messages
(public communication) or allow the players to exchange emails, allow for cc or
bcc, and so on. A communication device defines a new (or extended) repeated
game, and a Nash equilibrium of the extended game is called a communication
equilibrium of the original game. A special kind of communication equilibrium
deserves our attention, these are called canonical communication equilibria which
bear the two following features.

1) The extended game is such that at each stage, the mediator first sends
privately to each player i, a recommended action in Ai. Then the stage game is
played and signals are observed. At the end of each stage, each player i sends
back a private message in U i to the mediator.

2) The equilibrium strategies for the players are faithful: each player plays
recommended actions and sends back the actually observed signals.

It can be shown that canonical communication equilibrium payoffs exhaust all
communication equilibrium payoffs. The idea is to start with an arbitrary com-
munication equilibrium and to construct an equivalent canonical communication
equilibrium by letting the mediator operate the device and the strategies of the
players. This reasoning is known at the revelation principle (see Myerson 1986 or
Forges 1986) and is mathematically simple, this is just a reformulation. In what
follows, we focus on canonical communication equilibria.

We now give formal definitions. To distinguish between recommendations and
actions, and between signals and messages, it is actually convenient to define, for
each player i: Ri = Ai (Ri is interpreted as the set of recommendations for player
i whereas Ai is the set of actions that player i can take), and similarly M i=U i
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(M i for messages sent back to the mediator, U i for signals observed by player i).

Definition 3.1. A canonical communication device is an element c = (ct)t≥1,
where c1 ∈ ∆(R) and for each t ≥ 2, ct is a mapping from (R×M)t−1 to ∆(R).

A canonical correlation device corresponds to a strategy of the mediator in
the extended game. Given a fixed canonical communication device c, we define
an infinitely repeated game Γc played as follows:

- stage 1: the mediator selects a joint recommendation (ri1)i∈N in R
according to c1, and sends privately the recommendation ri1 to each
player i. Then the players simultaneously choose actions and receive
signals as in the original game. To conclude stage 1, each player i
chooses a message mi

1 in M i that he sends privately to the mediator.

- stage t: the mediator selects a joint recommendation (rit)i∈N in R
according to ct((r

i
1,m

i
1)i∈N , . . . , (r

i
t−1,m

i
t−1)i∈N) and sends privately

rit to each player i. Then the players simultaneously choose actions
at = (ait)i∈N and observe signals (drawn from f(at)). To conclude
stage t, each player i sends back a private message mi

t to the mediator.

In Γc, each player i in N has a special strategy σi∗: at each stage, σi∗ plays
the recommendation just received, and sends back to the mediator the signal just
observed by player i. We will refer to σi∗ as the faithful strategy of player i.

Definition 3.2. If c is a canonical communication device and if the faithful strat-
egy σ∗ is a uniform equilibrium of Γc, the limit payoff (γic(σ

∗))i∈N ∈ IRN is called
a (canonical) communication equilibrium payoff of the original repeated game Γ .

We denote by C∞ the set of communication equilibrium payoffs of the repeated
game Γ .

C∞ clearly contains E∞: given a uniform equilibrium of the repeated game
Γ, one can define a canonical communication device mimicking the strategies of
the players. We stick to the uniform equilibrium paradigm for two reasons: 1)
this makes the analysis easier and 2) this includes all usual equilibrium payoffs.
For instance we show (see Theorem 3.16) that C∞ contains ET and Eλ for each
T and λ, and probably all equilibrium payoffs of any reasonable version of the
repeated game with signals.

This set is convex and compact and as in Lemma 2.18 we easily have:

Lemma 3.3. C∞ ⊆ F ∩ IRC.

In the case of perfect observation, the proof of the Folk Theorem 2.1 easily
adapts to communication equilibria. Note that the appropriate punishment levels
for communication equilibria are the correlated minmax levels wi, for i ∈ N .
Indeed, in a punishment phase, the mediator may send correlated recommended
actions and thus punish to the correlated minmax level.
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Theorem 3.1. In case of perfect observation: C∞ = F ∩ IRC.

In the sequel, we provide a characterization of C∞ which is valid in all cases.
We need the following definitions that pertain to the strategies of players at a
given stage of the extended game.

Definition 3.4. A decision of player i is an element of:

Di = {di = (αi, µi), with αi : Ri −→ Ai and µi : Ri × U i −→M i}.

The special decision di∗ = (αi, µi) such that αi(ai) = ai and µi(ai, ui) = ui for all
ai and ui, is called the faithful decision of player i.

A decision di = (αi, µi) of player i corresponds to a pure strategy of player i
in the one-shot extended game: if player i is recommended the action ri by the
mediator, he plays the action αi(ri), then if he observes a signal ui, he reports the
message µi(ri, ui). The faithful decision plays what is recommended and reports
what is observed. The next notations will be important in the sequel.

Notations 3.5. Assume that the mediator recommends the action profile a in
A, that the players j 6= i play faithfully whereas player i plays according to a
mixed decision δi ∈ ∆(Di), i.e. chooses a decision in Di according to δi and
plays according to it.

We denote by giδi(a) the expected payoff of player i under this scenario, and
by ψi(δi, a) ∈ ∆(U) the induced distribution of the profile of messages received by
the mediator.

Notice that giδi(a) does not depend on the message reported by player i under
δi. To select an element u according to ψi(δi, a), one may proceed as follows. First
draw di = (αi, µi) ∈ Di according to δi, then choose an element ũ = (ũk)k∈N in
U according to f(a−i, αi(ai)). Finally set u =

(
(ũk)k 6=i, µ

i(ai, ũi)
)
∈ U .

Our characterization is driven by the following ideas. Given recommended
actions and reported signals, can the mediator infer that there was a deviation?
When so, how should he adapt the future recommendations so as to punish the
deviation? This is the object of the next two subsections.

3.2 Undetectable deviations

If a player can deviate from the recommended action without changing the (dis-
tribution of) reported signals, he may have an incentive to do so. Inducing the
same reported signals means that other players get the same signals, whereas the
deviating player gets at least as much information, i.e. is able to infer the signal
he would have observed, had he played faithfully. We start with an example.

Example 3.6. Consider the Prisoner’s Dilemma with the following observation
structure. Player 1 has trivial observation whereas Player 2 has signal set U2 =
{a, b, c}. The payoffs and the signals of Player 2 are given by the following matrix:
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C2 D2

C1

D1

(
(3, 3) a (0, 4 )c
(4, 0) b (1, 1) c

)
We now prove that (3, 3) ∈ C∞. The strategy c of the mediator (canonical

communication device) has a main path and a punishment phase and is defined
as follows:

- On the main path at stage t, the mediator recommends Player 2 to play C2,
and Player 1 to play C1 with probability 1−1/

√
t and D1 with probability 1/

√
t.

- The mediator continues as above as long as Player 2’s reported signal matches
Player 1’s recommended action. Otherwise, he goes the punishment phase.

- In the punishment phase the mediator punishes forever, i.e. recommends
(D1, D2) at every stage.

The limit payoff under the faithful strategies is (3, 3). If Player 1 unilaterally
deviates from his faithful strategy, he is immediately detected and the punishment
phase starts, so no deviation of Player 1 can be profitable.

Assume now that Player 2 deviates from his faithful strategy. Denote by IP
the probability measure induced on plays by the deviation of Player 2, and by
IE the corresponding expectation operator. Consider a large number of stages T
and denote by Z the number of stages t in {1, . . . , T} where:

-Player 2 plays D2 at stage t and,
-the play is still on the main path at t + 1 (Player 2 manages to report the

correct signal).
The probability of reporting a correct signal while playing D2 at a given stage t ≥
2 is at most 1− 1√

T
. Since the recommendations of the mediator are independent

across stages, we have for each integer z:

IP (Z > z) ≤
(

1− 1√
T

)z
≤ e

−z√
T .

This yields an upper bound for the average payoff of Player 2:

IE

(
1

T

T∑
t=1

gi(at)

)
≤ IP (Z ≤ z)IE

(
1

T

T∑
t=1

gi(at) | Z ≤ z

)
+ 4 e

−z√
T

≤ 1

T
(3(T − z) + 4z) + 4 e

−z√
T = 3 +

z

T
+ 4 e

−z√
T .

Choosing z = T 3/4 yields: ∀ε > 0, ∃T0, ∀T ≥ T0, IE
(

1
T

∑T
t=1 g

i(at)
)
≤ 3 + ε.

This proves that σ∗ is a uniform equilibrium of Γc, and thus (3, 3) ∈ C∞.

Note that in this example, the deviation of Player 2 does not change the
(trivial) signal of Player 1. However, to be able to report the correct signal,
Player 2 must play C2. The incentive for Player 2 to play C2 is thus to get
information about the action of Player 1. Notice that the mediator is needed to
get cooperation here: we can show that E∞ = {(1, 1)}. �
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We explain now the role of undetectable deviations. Suppose that at some
stage, the mediator recommends the action profile a = (ai)i. Assume that some
player i has an action bi which does not change the signals of the other players and
gives player i as least as much information as ai. Then at equilibrium, bi should
not give a better payoff to player i than ai. Otherwise player i would profitably
deviate to bi without changing the continuation play. We now formalize this idea
due to Lehrer (1992a).

Definition 3.7. A correlated distribution of actions p ∈ ∆(A) is robust to un-
detectable deviations if ∀i ∈ N, ∀δi ∈ ∆(Di),

(∀a ∈ A, ψi(δi, a) = f(a)) =⇒ gi(p) ≥ giδi(p)

We denote P the set of those distributions. The set of feasible payoffs robust to
undetectable deviations is g(P).

If ψi(δi, ·) = f(·), then player i may deviate (from the faithful decision) and
play δi while inducing the same distribution of reported signals. Such a deviation
is undetectable by the mediator. g(P) is thus the set of payoffs feasible by a dis-
tribution for which there exists no profitable and undetectable deviaton. Clearly,
P contains the set of correlated equilibrium distributions of the stage game and
is thus non-empty. Also, P is a polytope. The equation ψi(δi, ·) = f(·) is linear
w.r.t. δi, gi(p) is linear w.r.t. p and giδi(p) is separately linear w.r.t. δi and p.
It follows that P can be represented as the “dual” of a polytope and is thus a
polytope.

Remark 3.8. The expression of P is simpler for deterministic signals. Assume
that each player i has a deterministic signalling function f i : A −→ U i, so that
player i observes f i(a) when a is played. The following notions are introduced
by Lehrer (1992a). Given two actions ai and bi of player i, we say that bi is
“greater” than ai, and write bi ≥ ai if:

(i) ∀a−i ∈ A−i, ∀j 6= i, f j(bi, a−i) = f j(ai, a−i) and
(ii) ∀a−i, b−i ∈ A−i, f i(ai, a−i) 6= f i(ai, b−i) =⇒ f i(bi, a−i) 6= f i(bi, b−i).

In this case,

P =
{
p ∈ ∆(A),∀i ∈ N, ∀bi, ai ∈ Ai s.t. bi ≥ ai,

∑
a−i∈A−i

p(ai, a−i)gi(ai, a−i) ≥
∑

a−i∈A−i

p(ai, a−i)gi(bi, a−i)
}
.

The condition bi ≥ ai means that both actions induce the same signals for all
other players (condition (i), bi is equivalent to ai) and that player i playing bi can
compute the signal he would have observed had he play ai (condition (ii), bi is
more informative than ai). It follows directly form this remark that P is the set
of correlated equilibrium distributions when signals are trivial for each player.
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This notion together with individual rationality is enough to characterize com-
munication equilibrium payoffs in the 2-player case. Lehrer (1992a) considered
2-player games with deterministic non-trivial observation (each player can learn
something from his signals10) and deterministic signals and showed that the set
of uniform correlated equilibrium payoffs is g(P) ∩ IR (recall that IR = IRC
for 2-player games). Mertens et al. (1994) showed that, under the same as-
sumptions, C∞ = g(P) ∩ IRC. Hillas and Liu (1996) extended Lehrer’s result
to non-trivial stochastic signalling. The following characterization of C∞ for any
2-player supergame extends those results and is in Renault and Tomala (2004).

Theorem 3.9. For 2-player games, the communication equilibrium payoffs are
the feasible payoffs that are robust to undetectable deviations and individually
rational:

C∞ = g(P) ∩ IRC.

3.3 Jointly rational payoffs

With three or more players, it may be the case that a player deviates from the
main path, all players (and the mediator) know that a deviation occurred but
players (and the mediator) do not know who has deviated. As a consequence,
several players have to be simultaneously punished. Since such collective punish-
ments may not be possible, new constraints on the equilibrium payoffs appear. To
get an intuition on these constraints, we start by an example (variant of Example
3.1 in Renault and Tomala 2004).

Example 3.10.

L R L R L R

T
B

(
(0, 0, 0) (0, 3, 0)
(3, 0, 0) (1, 1, 0)

)(
(0, 2, 0) (0, 2, 0)
(0, 2, 0) (0, 2, 0)

)(
(2, 0, 0) (2, 0, 0)
(2, 0, 0) (2, 0, 0)

)
W M E

This is a 3-player game, Player 1 chooses the row, Player 2 chooses the column
and Player 3 chooses the matrix. Player 3 has trivial observation whereas Players
1 and 2 perfectly observe the moves of each other.

Note that Player 3 has constant payoffs and that the minmax levels are
w1 = w2 = w3 = 0, thus all feasible payoffs are individually rational. In the case
of perfect observation, we have C∞ = g(∆(A)) = {(x1, x2, 0) ∈ IR3

+, x
1 +x2 ≤ 3}.

In the case of trivial observation for each player, one can check that (T, L,W ),
(T,R,W ) and (B,L,W ) are played with probability 0 in any correlated equilib-
rium of the one-shot game. Thus, C∞ = {(x1, x2, 0) ∈ IR3

+, x
1 + x2 = 2}.

In the case where Player 3 has trivial observation and Players 1 and 2 observe
the moves of each other, we have

10For each player i, there exists an action ai ∈ Ai and two actions a−i, b−i of the other player
such that f i(ai, a−i) 6= f i(ai, b−i).
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Claim 3.11. C∞ = {(x1, x2, 0) ∈ g(∆(A)), x1 + x2 ≥ 2}.

Proof: Let c be a canonical communication device such that the faithful strategy
σ∗ is a uniform equilibrium of the extended game Γc with payoff x = (x1, x2, 0)
in IR3. Consider the deviation σ1 of Player 1 which plays B, and reports R
at every stage, after any history. Similarly, the deviation σ2 of Player 2 plays
R, and reports B at every stage after any history. The two strategy profiles
(σ1, σ2∗, σ3∗) and (σ1∗, σ2, σ3∗) induce the same profiles of messages reported by
the players to the mediator: Player 1 reports R, Player 2 reports B and Player
3 reports nothing. As a consequence, both profiles induce the same distributions
of sequences of actions played by Player 3. For any T , denote (λTW , λ

T
M , λ

T
E)

the expected empirical distribution of actions of Player 3, averaged over stages
1, . . . , T . At each stage, the payoff of Player 1 playing B is at least 1 if Player 3
plays W , and is 2 if Player 3 plays E, so:

γ1
T,c(σ

1, σ2∗, σ3∗) ≥ λTW + 2λTE.

Similarly,
γ2
T,c(σ

1∗, σ2, σ3∗) ≥ λTW + 2λTM .

Hence, γ1
T,c(σ

1, σ2∗, σ3∗) + γ2
T,c(σ

1∗, σ2, σ3∗) ≥ 2, and the equilibrium condition
implies x1 + x2 ≥ 2. Thus, C∞ ⊆ {(x1, x2, 0) ∈ g(∆(A)), x1 + x2 ≥ 2}.

Conversely, consider a feasible payoff x = (x1, x2, 0) such that x1 + x2 ≥ 2.
There exists λ ∈ [0, 1] such that x1 ≥ 2(1−λ) and x2 ≥ 2λ: Players 1 and 2 both
prefer the payoff x to the payoff induced by Player 3 playing λM + (1−λ)E. We
construct a communication equilibrium with payoff x as follows. The construction
is similar to the strategies used in the proof of the Folk theorem, using a main
path and a punishment phase. There is a main path of pure action profiles
leading to the payoff x, and the mediator recommends to play the actions of the
main path as long as the messages reported by Player 1 and 2 coincide with the
recommended actions. Otherwise, the play enters a punishment phase where the
mediator selects the recommendation of Player 3 by choosing M with probability
λ and E with probability 1− λ at each stage, independently across stages. This
is clearly a canonical communication equilibrium with payoff x and the proof of
the claim is complete. �

We now describe the constraints induced by simultaneous punishments in
the general case. In the previous example, we constructed a deviation of Player 1
and a deviation of Player 2 inducing the same reported messages to the mediator.
First, we generalize this idea.

Definition 3.12. Given a subset of players J ⊆ N , the set of similar decisions
of the players in J is defined as:

SD(J) =

{
(δi)i∈J ∈

∏
i∈J

∆(Di),∀i, j ∈ J,∀a ∈ A,ψi(δi, a) = ψj(δj, a)

}
.
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In Example 3.10, consider the decision d1 in D1 which plays constantly B and
reports constantly R, and similarly d2 in D2 which plays constantly R and reports
constantly B. Then (d1, d2) is a pair of similar decisions of the first two players.
The interpretation is that if (δi)i∈J ∈ SD(J), then the deviation δj of player in
j ∈ J induces the same reported signals as the deviation δk of player k ∈ K. It
follows that the mediator considers any player in j as a potential deviator and
thus must punish simultaneously all the players in J .

SD(J) is defined by linear inequalities and includes the faithful decision profile
(δi∗)i∈J , thus is a non empty polytope. For each player i, SD({i}) = ∆(Di), which
may be interpreted as: every deviation of player i makes player i a suspect.

Given a probability distribution q on J , we consider the value of the zero-sum
game between the mediator who minimizes the payoff g · q :=

∑
i∈J q

igi and a
fictitious adversary who selects an element in SD(J).

Definition 3.13. For each q in ∆(N), the punishment level associated to q is:

l(q) = max
δ∈SD(supp q)

min
a∈A

∑
i∈N

qigiδi(a) = min
p∈∆(A)

max
δ∈SD(supp q)

∑
i∈N

qigiδi(p).

The set of jointly rational payoffs is JR =
{
x ∈ IRN ,∀q ∈ ∆(N), x · q ≥ l(q)

}
.

A possible interpretation is that the mediator forms a “belief” on the identity
of the deviator and punishes this deviator “on average”. A sharper interpretation
invokes Blackwell’s approachability theory. The condition ∀q ∈ ∆(N), x ·q ≥ l(q)
ensures the existence of a strategy of the mediator such that for each player i, the
average payoff of player i is asymptotically no more than xi, when other players
play faithfully.

Note that the second equality in the definition of l(q) is due to the minmax
theorem. Also, remark that if q is the Dirac measure on i, then l(q) = wi: the
associated punishment level is the correlated minmax of player i. As a conse-
quence a payoff x ∈ JR satisfies xi ≥ wi for each player i, i.e. JR ⊆ IRC. In
the perfect observation case, we simply have JR = IRC since the only similar
decisions are the faithful ones. Also, in the 2-player case, JR = IRC for any
signalling structure (consider the mixed action profile where each player plays a
minmax strategy against the other).

3.4 Main result: the general characterization

Theorem 3.14. (Renault and Tomala, 2004) For any supergame, the communi-
cation equilibrium payoffs are the feasible payoffs which are both robust to unde-
tectable deviations and jointly rational,

C∞ = g(P) ∩ JR.

The set g(P) ∩ JR is clearly convex and compact, but since the definition of
JR involves infinitely many linear inequalities, g(P)∩JR might not be a polytope
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(see example 3.7 of Renault and Tomala, 2004). In the case of perfect observation,
we recover Theorem 3.1: C∞ = F ∩IRC, in the 2-player case we recover Theorem
3.9 and in the case of trivial observation, C∞ is the set of correlated equilibrium
payoffs of the stage game, that is C∞ = C1.

The proof of this result relies on the construction of an auxiliary 2-player
repeated game with incomplete information and signals. In this game, player I
represents the deviator in the original game, player II represents the mediator, the
state of nature is the identity of a deviating player in N which is known by player
I only. A particular subclass of uniform equilibria of the auxiliary game is one-to-
one mapped to communication equilibria of the original game. These equilibria
are characterized via approachability techniques using a result of Kohlberg (1975)
and statistical tests à la Lehrer (see Lehrer, 1989), similarly as in Renault, 2000.

We now slightly extend Theorem 3.14. Define a set of communication equi-
librium payoffs C∗ by analogy with the set E∗ of Definition 2.16.

Definition 3.15. C∗ is the set of vectors x in IRN satisfying: ∀ε > 0, there
exists a canonical correlation device c and a discount factor λ in (0, 1] such that
the faithful strategy σ∗ is an ε-Nash equilibrium of the λ-discounted extended game
Γc with payoff ε-close to x.

Theorem 3.16. C∗ = g(P) ∩ JR.

Clearly, E∗ ⊆ C∗ and it follows from Lemma 2.15 that C∞ ⊆ C∗. Thus,
g(P) ∩ JR ⊆ C∗. An immediate corollary is that E∞, E∗, Eλ for any discount
factor λ and ET for any T are subsets of g(P)∩JR. Hence all usual11 equilibrium
payoffs of the repeated game are included in g(P) ∩ JR.

Proof: We prove now C∗ ⊆ g(P)∩JR. We start by introducing some notations.
Let c be a canonical communication device and λ be a discount factor. For each
action profile a, denote µ(c, λ)(a) the discounted expected number of times where
a is recommended by the mediator when all players play the faithful strategies.
That is,

µ(c, λ)(a) = IEc,σ∗

(∑
t

λ(1− λ)t−11{at=a}

)
where 1{at=a} equals 1 if a is recommended at stage t and 0 otherwise. This defines
a correlated distribution of actions µ(c, λ) ∈ ∆(A) such that the discounted payoff
of player i under (c, σ∗) is gi(µ(c, λ)).

For x ∈ C∗, for all ε > 0 there exists a correlation device cε and a discount
factor λε such that ‖x− g(µ(cε, λε))‖ ≤ ε. Choose a sequence εm → 0 such that
µm := µ(cεm , λεm) converges to some µ ∈ ∆(A). Then, x = g(µ).

Assume x /∈ g(P) thus µ /∈ P . There exists a player i and δi ∈ ∆(Di) such
that ∀a ∈ A, ψi(δi, a) = f(a) and giδi(µ) > gi(µ). By continuity, there exists η > 0
and an integer m0 such that for all m ≥ m0, giδi(µm) > gi(µm) + η. Consider the

11One may a fortiori consider subgame-perfect or sequential equilibria.
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strategy τ i of player i which plays δi at every stage. Since ψi(δi, a) = f(a) (∀a),
the distribution of signals reported to the mediator is the same under the faithful
strategies or under this unilateral deviation of player i, thus the distribution of
recommended actions is also the same. The discounted payoff of player i under
(cm, τ

i, σ∗−i) is thus giδi(µm) ≤ gi(µm) + εm, as σ∗ is an εm−Nash equilibrium of
the λm−discounted extended game. This contradicts giδi(µm) > gi(µm) + η for all
m large enough.

Assume now x /∈ JR. Then there exist q ∈ ∆(N), δ ∈ SD(q) such that
minp∈∆(A)

∑
i q
igiδi(p) >

∑
i q
igi(µ). By continuity again, there exists η1 > 0 and

an integer m1 such that for all m ≥ m1 and for all p ∈ ∆(A),
∑

i q
igiδi(p) >∑

i q
igi(µm) + η1. For each i in the support of q, consider the strategy τ i of

player i which plays δi at every stage. Since for all i, j in the support of q,
ψi(δi, a) = ψj(δj, a) (∀a), the distribution of signals reported to the mediator
and of recommended actions does not depend on the choice of i in the support of
q. For each m, let µm(δ) be the expected discounted frequency of actions when the
communication device is cm and some player i in the support of q plays τ i. The
discounted payoff of player i under (cm, τ

i, σ∗−i) is thus giδi(µm(δ)) ≤ gi(µm)+εm,
as σ∗ is an εm−Nash equilibrium of the λm−discounted extended game. Thus,∑

i q
igiδi(µm(δ)) ≤

∑
i q
igi(µm) + εm. But from the choice of δ,

∑
i q
igiδi(µm(δ)) >∑

i q
igi(µm) + η1 for m ≥ m1, a contradiction. �

3.5 Applications to neighbouring networks

We provide now examples of computation of the set C∞. A class of signalling
structures of interest is described by neighbouring networks, where each player
perfectly observes the actions of a subset of players, namely his neighbours. This
model is studied by Ben-Porath and Kahnemann (1996) and Renault and Tomala
(1998). It is shown in these papers that if the neighbouring graph has good
connectivity properties, then any feasible and individually rational payoff is an
equilibrium payoff. In particular, strong 2-connectedness12 of the graph is nec-
essary. We now apply Theorem 3.14 to compute equilibrium payoffs for some
graphs which are not strongly 2-connected.

The oriented circle. Assume that there are three players N = {1, 2, 3}, and
for each i in N the observation of player i + 1 is the action of player i (by
convention if i = 3, player i+ 1 is player 1). Then g(P) = g(∆(A)), and SD(N)
is a singleton reduced to the faithful decision profile.

An element (δ1, δ2) in SD({1, 2}) can be parametrized by a mapping α :
A1 → ∆(A1) such that δ1 plays α(a1) if recommended a1 by the mediator, and
reports faithfully the action played by player 3, whereas δ2 plays faithfully the
recommendation of the mediator but if a1 is played by player 1, it reports to

12For any two vertices i, j, there exists two directed and disjoint paths from i to j.
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the mediator a message drawn from the probability distribution α(a1). For q =
(q1, q2, 0) in ∆({1, 2}) we have,

l(q) = min
p∈∆(A)

(
q2g2(p) + q1 max

α:A1→A1

∑
a∈A

p(a)g1(a−1, α(a1))

)
.

For instance, with the payoffs of example 3.10, we get l(1/2, 1/2, 0) = 1. For the
3-player oriented circle with arbitrary payoffs, Theorem 3.14 yields :

C∞ =
{
x = (x1, x2, x3) ∈ g(∆(A)),∀λ ∈ [0, 1],

λx1 + (1− λ)x2 ≥ min
p∈∆(A)

(λg2(p) + (1− λ) max
α:A1→A1

∑
a∈A

p(a)g1(a−1, α(a1))),

λx2 + (1− λ)x3 ≥ min
p∈∆(A)

(λg3(p) + (1− λ) max
α:A2→A2

∑
a∈A

p(a)g2(a−2, α(a2))),

λx3 + (1− λ)x1 ≥ min
p∈∆(A)

(λg1(p) + (1− λ) max
α:A3→A3

∑
a∈A

p(a)g3(a−3, α(a3)))
}
.

Independent rooms. Assume that there is a partition of the set of players C1,
. . . , CK , and that for each i in N , the observation of player i is the actions of the
other players in the partition cell Ck(i) containing i. One can interpret C1, . . . , CK
as independent rooms and each player observes what happens in his own room
only. Denote K1 (resp. K2, resp. K3+) the set of indexes k ∈ {1, . . . , K} such
that room Ck contains exactly 1 player (resp. exactly 2 players, resp. at least 3
players).

A player alone in his room may play a best reply at each stage without affecting
the observation of any other player. Thus,

P =
{
p ∈ ∆(A),∀i ∈ ∪k∈K1Ck,∀ai ∈ Ai, bi ∈ Ai,

∑
a−i∈A−i

p(ai, a−i)gi(ai, a−i) ≥
∑

a−i∈A−i

p(ai, a−i)gi(bi, a−i)
}
.

Let J be a subset of players with at least 2 elements. If J contains players
from separate rooms, or if J contains players in a room with at least 3 players,
then SD(J) reduces to the faithful decision profile. We are thus left with the
case J = Ck for some 2-player room Ck = {i, j}. In this case, similar decisions
δ = (δi, δj) in SD(J) can be parametrized by two mappings αi : Ai → ∆(Ai)
and αj : Aj → ∆(Aj). Under δi, player i receiving the recommendation ri in Ai

plays an action ai according to αi(ri), observes the action aj played by player j
and chooses a reported message according to αj(rj). Similarly under δj, player
j receiving the recommendation rj in Aj plays an action aj according to αj(rj),
observes the action ai played by player i and chooses a reported message according
to αi(ri). The distribution of the messages (ri, rj) reported to the mediator is the
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independent distribution αj(rj) ⊗ αi(ri), both under the deviation δi and under
the deviation δj. We get for q = (qi, qj) ∈ ∆({i, j}):

l(q) = min
p∈∆(A)

max
αi,αj

∑
a∈A

p(a)
(
qigi(a−i, αi(ai)) + qjgj(a−j, αj(aj))

)
.

We obtain C∞ = g(P) ∩ JR, where:

JR =
{
x = (xi)i∈N ∈ IRC, ∀k ∈ K2,∀i, j ∈ Ck,∀λ ∈ (0, 1),

λxi + (1− λ)xj ≥ min
p∈∆(A)

max
αi,αj

∑
a∈A

p(a)
(
λgi(a−i, αi(ai)) + (1− λ)gj(a−j, αj(aj))

)}
.

In the particular case where there is no single room, K1 = ∅, we have:

C∞ =
{
x = (xi)i∈N ∈ g(∆(A)) ∩ IRC, ∀k ∈ K2, ∀i, j ∈ Ck,∀λ ∈ (0, 1),

λxi + (1− λ)xj ≥ min
p∈∆(A)

max
αi,αj

∑
a∈A

p(a)
(
λgi(a−i, αi(ai)) + (1− λ)gj(a−j, αj(aj))

)}
.

3.6 The Folk Theorem for communication equilibria

Now, we apply Theorem 3.14 to find conditions ensuring that the Folk Theorem
extends to the supergame, namely all feasible and individually rational payoffs are
communication equilibrium payoffs: C∞ = F ∩ IRC. Intuitively, this is the case
if no player has a profitable and undetectable deviation from any distribution
of actions, and if the mediator can punish any detected deviation. A simple
condition is the following.

Lemma 3.17. Assume that there are at least 2 players and for all distinct players
i, j, for all decisions δi in ∆(Di), δj in ∆(Dj):(
∀a ∈ A,ψi(δi, a) = ψj(δj, a)

)
=⇒

(
∀a ∈ A, giδi(a) ≤ gi(a) and gj

δj (a) ≤ gj(a)
)
,

then C∞ = F ∩ IRC.

In words, the condition states that if the decision δi cannot be distinguished
from δi by the mediator, then δi (resp. δj) is not a profitable deviation for player
i (resp. player j).

Proof: The condition implies that,

(∀a ∈ A,ψi(δi, a) = f(a)) =⇒ (∀a ∈ A, giδi(a) ≤ gi(a)).

That is, an undetectable deviation of player i does not increase his payoff. It
follows that P = ∆(A).
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Let us compute JR. From the expression of punishments levels in Definition
3.13, l(q) ≤ minp∈∆(A)

∑
i q
igi(p) for each q ∈ ∆(N) with at least two points in

its support. It follows that F ∩ IRC ⊆ JR and thus C∞ = F ∩ IRC. �

We deduce a condition on signals such that C∞ = F ∩IRC for all payoff func-
tions. Let D∗i be the set of mixed decisions of player i which play recommended
actions faithfully with probability one. That is, under δi ∈ D∗i, α(ai) = ai almost
surely. Note that this decision may report signals arbitrarily.

Proposition 3.18. Assume that there are at least 2 players and for all distinct
players i, j, for all decisions δi in ∆(Di), δj in ∆(Dj):(

∀a ∈ A,ψi(δi, a) = ψj(δj, a)
)

=⇒
(
δi ∈ D∗i and δj ∈ D∗j

)
.

Then, C∞ = F ∩ IRC for any payoff function.

The proof follows directly from the preceding lemma. The condition of this
proposition states that if the mediator cannot distinguish δi from δj, then these
decisions always play actions faithfully. To get a better feeling of signalling struc-
tures for which this condition is fulfilled, we consider now deterministic signals
(ui)i = (f i(a))i for which we are able to provide simpler conditions.

No Undetectable Deviation. ∀i ∈ N , ∀ai, bi ∈ Ai, (bi ≥ ai =⇒ bi = ai).

This condition says that if bi 6= ai, either there exist j 6= i and a−i such that
f j(ai, a−i) 6= f j(bi, a−i), or there exist a−i, b−i such that f i(ai, a−i) 6= f i(ai, b−i)
and f i(bi, a−i) = f i(bi, b−i).

This means that either there is an action profile and a player j who gets
different signals under ai and bi, or player i may acquire finer information about
a−i by playing ai rather than by playing bi. In both cases, the deviation from ai

to bi is detectable by the deviator: player j or player i will report an unexpected
signal.

No Similar Deviations. For each pair (i, j) of distinct players, there exists (ai, aj)
in Ai × Aj such that:
∀(bi, bj) 6= (ai, aj), ∃k 6= i, j, ∃a−ij ∈

∏
k′∈K A

k′ s.t. fk(bi, aj, a−ij) 6= fk(ai, bj, a−ij).

This condition expresses the ability of the mediator to distinguish the deviations
of player i from those of player j. If the mediator recommends (ai, aj), then if
player i (resp. player j) deviates to some bi (resp. bj), there is another player
k who gets different signals under the deviation of player i and that of player
j. Then, the mediator gets different reported signals under these two deviations.
This is satisfied for instance if the actions of each player are directly observed by
at least two other players (see Ben-Porath and Kahnemann, 1996).
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Proposition 3.19. (1) Assume that there are two players. The (deterministic)
signals satisfy No Undetectable Deviation if and only if C∞ = F ∩ IRC for all
payoff functions.

(2) Assume that there are at least three players. If the (deterministic) signals
satisfy No Undetectable Deviation and No Similar Deviations, then C∞ = F ∩
IRC for all payoff functions. If No Undetectable Deviation is not satisfied, then
there exists a payoff function for which C∞ 6= F ∩ IRC.

The conditions here are reminiscent of those found in Fudenberg et al. (1994)
and Kandori and Matsushima (1998). In both of these works, the Folk Theo-
rem obtains whenever all deviations can be detected and the deviator is iden-
tified. However, the conditions given in these papers are more stringent than
ours, because they study a stronger equilibrium concept, namely the sequential
equilibrium of discounted games.

To see that No Undetectable Deviation is necessary, assume that bi ≥ ai and
bi 6= ai. One may then construct a payoff function that mimics the Prisoner’s
Dilemma of Example 2.1 where bi is the defect action Di and ai is the cooperate
action Ci. Since bi strictly dominates ai and bi ≥ ai, ai is never played by player
i thus excluding some payoff in F ∩ IRC from C∞. To see that it is sufficient for
two-player games, remark that there exists a correlated action profile such that
each player gets no more than his minmax value.

We leave as an open question the finding of necessary and sufficient conditions
on signals to get C∞ = F ∩ IRC for all payoff functions in games with at least
three players.

3.7 Applications to public signals

In this section, we study supergames with public signals. That is, there is a set
of public signals U and a transition f : A → ∆(U), and when the action profile
a is played, a signal u is drawn from f(a) and publicly announced.

Claim 3.20. In a supergame with public signals extended by communication, one
may assume without loss of generality that the mediator observes the actually
realized public signals.

The intuition is that anything that is publicly known can be assumed to
be known by the mediator as well. To prove this claim, we construct a (non-
canonical) communication device where the mediator issues a vector of recom-
mendations at each stage, one recommendation for each possible public signal,
and players’ strategies are required to follow the recommendation attached to
the actually observed public signals. This shows that allowing the mediator to
observe the public signals does not increase the set of equilibrium outcomes. Con-
versely, in the extended game where the mediator does observe the realized public
signals, he may well ignore this additional information, thus the set of equilibrium
outcomes does not decrease either.
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We assume for the rest of this section that the mediator observes the public
signals, so that a decision of each player i is now parametrized by the mapping αi

only. A mixed decision δi is then identified with a mapping αi : Ai → ∆(Ai), and
for each action profile a, the distribution of reported signals ψi(δi, a) is identified
with f(αi(ai), a−i).

Definition 3.21. Two mixed actions xi, yi ∈ ∆(Ai) of player i are equivalent if
∀a−i ∈ A−i, f(xi, a−i) = f(yi, a−i). We write then xi ∼i yi.

That is, the distribution of the public signal is the same under xi and under
yi, irrespective of a−i. The formula of g(P) ∩ JR is simplified as follows.

Proposition 3.22. In a game with public signals,

P =
{
p ∈ ∆(A),∀i ∈ N, ∀αi : Ai → ∆(Ai) s.t. αi(ai) ∼i ai(∀ai),∑

a∈A

p(a)gi(ai, a−i) ≥
∑
a∈A

p(a)gi(αi(ai), a−i)
}
.

For each J ⊆ N , a tuple of similar decisions (δi)i∈J ∈ SD(J) is represented by a
tuple of mappings (αi)i∈J with αi : Ai → ∆(Ai) such that,

∀i, j ∈ J,∀a ∈ A, f(αi(ai), a−i) = f(αj(aj), a−j).

For each q ∈ ∆(N),

l(q) = min
p∈∆(A)

max
SD(supp q)

∑
i∈N

qi
∑
a

p(a)gi(αi(ai), a−i).

The proof is straightforward given that the mediator knows the public signals
and that decisions are viewed as mappings αi : Ai → ∆(Ai). The condition
ψi(δi, a) = f(a) (∀a) then reduces to αi(ai) ∼i ai (∀ai). Theorem 3.14 then
applies so that C∞ = g(P) ∩ JR, but the expression of this set is simpler. As an
application, we get simplified conditions for the Folk Theorem for communication
equilibria of supergames with public signals.

No Undetectable Deviation. ∀i ∈ N , xi, yi ∈ ∆(Ai), (xi ∼i yi =⇒ xi = yi).

No Similar Deviations. For all i 6= j, for all αi, αj,

(∀a ∈ A, f(αi(ai), a−i) = f(αj(aj), a−j) ) =⇒ (∀(ai, aj), αi(ai) = ai and αj(aj) = aj ) .

Proposition 3.23. (1) Assume that there are two players. The public signals
satisfy No Undetectable Deviation if and only if C∞ = F ∩ IRC for all payoff
functions.

(2) Assume that there are at least three players. If the public signals satisfy
No Undetectable Deviation and No Similar Deviations, then C∞ = F ∩ IRC for
all payoff functions. If No Undetectable Deviation is not satisfied, then there
exists a payoff function for which C∞ 6= F ∩ IRC.
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The necessity of No Undetectable Deviation is as in Proposition 3.19. We
leave again as an open question the finding of necessary and sufficient conditions
on public signals to get C∞ = F ∩ IRC for all payoff functions in games with at
least three players.

4 Extensions and conjectures

4.1 Discounted payoffs and open problems

We already mentioned a few open problems related to discounted equilibrium
payoffs. We conjecture the following statements, for any repeated game with
signals.

C1: Eλ converges, as λ goes to 0, to cl (
⋃
λ>0Eλ) ?

C2: Eλ ⊆ E∞ ?
C3: E∞ = E∗ ?

4.2 Getting rid of the mediator

An important open problem is to give a characterization of E∞ for any supergame
without mediator. The first results in this direction are due to Lehrer. In par-
ticular, Lehrer (1989) finds a class of signals for which E∞ is fully characterized.
Signals are semi-standard if each player’s action set is endowed with an equiva-
lence relation ∼i and when the action profile a is played, the profile of equivalence
classes is publicly announced. These signals have the following special features:
they are public, the information on player i’s action is the same for every player
j 6= i. It follows that all actions of player j are equally informative on the action
of player i. As a consequence bi ≥ ai if and only if bi ∼i ai. Denote D the set of
distributions p ∈ P generated by mixed action profiles, i.e. which are products
of independent mixed actions. Lehrer (1989) shows that:

Theorem 4.1. (Lehrer, 1989) In a supergame with semi-standard signals,

E∞ = convg(D) ∩ IR.

So far, semi-standard signalling is the only non-trivial specification of sig-
nalling structures for which E∞ is characterized for n-player games and any payoff
function. The extension to any supergame is difficult. As an interesting example,
even the specific and apparently simple case of two players where one of them
has trivial observation is still unsolved. Here are two open questions of interest.

1. Give conditions on signals that ensure E∞ = C∞. Similarly, find conditions
for which C∞ coincides with uniform correlated equilibrium payoffs, where
the mediator sends message only once, at a pre-play stage.

2. Find non-trivial conditions on signals, other than semi-standard, for which
E∞ can be characterized for any payoff function.
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Another interesting sub-problem pertains to the punishment level in the re-
peated game. Say that player i can be forced to the payoff zi in IR if: ∀ε >
0, ∃σ̄−i ∈ Σ−i, ∃T̄ s.t.: ∀σi ∈ Σi, ∀T ≥ T̄ , γiT (σi, σ̄−i) ≤ zi + ε. The punishment
level vi∞ of player i in the supergame is defined as follows (see Renault Tomala
1998):

vi∞ = inf{zi ∈ IR, player i can be forced to zi}.

In general, punishment levels depend on the stage game but also on the sig-
nalling structure. The following example from Renault Tomala (1998) is solved
in Gossner and Tomala (2007).

Example 4.2. This is a 3-player game where Player 1 chooses the row, Player
2 chooses the column and Player 3 chooses the matrix. The payoff of Player 3 is
the following.

A B A B

A
B

(
−1 0
0 0

) (
0 0
0 −1

)
W E

The signalling structure is such that Players 1 and 2 have perfect observation
whereas Player 3 observes the action of Player 2 only.

On this example, one has v3 = −1
4

and w3 = −1
2
. The independent minmax

is obtained when Players 1 and 2 randomize independently and evenly. The
correlated minmax is obtained when Players 1 and 2 play (A,A) and (B,B) with
respective probabilities (1

2
, 1

2
). Let us denote v3

∞ the minmax in the repeated
game, that is the smallest number v such that for all ε > 0, Players 1 and 2 have
a strategy forcing the average payoff of Player 3 below v + ε, in all long enough
repeated games. It is easy to see that v3

∞ ≤ −3
8

by considering the following
strategy. Players 1 and 2 randomize independently and evenly at odd stages, and
at even stages they play the action selected by Player 1 at the previous stage.
Under this strategy, the payoff of Player 3 is −1

4
at odd stages. At every even

stage, the distribution of actions of Players 1 and 2, conditional on the signals of
Player 3, is (A,A) with probability 1

2
and (B,B) with probability 1

2
.

Using tools borrowed from Information Theory, Gossner and Tomala (2007)
show that v3

∞ = (x2 + (1− x)2)/2, where x is the unique solution in [0, 1
2
] of the

equation −x log2 x − (1 − x) log2(1 − x) = 1
2
. Gossner and Tomala characterize

the punishment level of a single player in repeated games as the value of a static
optimization problem on a set of probability distributions under entropy con-
straints. Therein, the following assumptions are used: all players j 6= i have the
same information which includes the information of player i, the signal of player
i does not depend on his own action. Computing the punishment level without
these assumptions is an open problem.

33



4.3 Banach limits

An approach to undiscounted infinitely repeated games, alternative to uniform
equilibria, is to define a limit payoff for any stream of stage payoffs, usually by
extending the limit operator to all bounded sequences.

Definition 4.3. Let L be a bounded measurable real-valued mapping defined on
bounded sequences of real numbers and which coincides with the limit for con-
verging sequences. The L-payoff for player i induced by the strategy profile σ is

γiL(σ) = IEσ(L(ḡi)), where ḡi is the sequence
(

1
T

∑T
t=1 g

i(at)
)
T

. An L-equilibrium

of Γ is a Nash equilibrium of the game with strategy sets Σi and payoff functions
γL.

An example is when L is a Banach limit, i.e. a linear mapping defined on real
bounded sequences such that lim inf ≤ L ≤ lim sup. The existence of Banach lim-
its can be proved using the Hahn-Banach Theorem. One can also define equilibria
using the lim inf or the lim sup, see for instance Lehrer (1989). A lower equilibrium
is a strategy profile σ such that for each player i, γiT (σ) converges as T goes to in-
finity, and for each player i and strategy τ i, lim infT γ

i
T (τ i, σ−i) ≤ limTγ

i
T (τ i, σ−i).

The upper equilibrium is defined similarly using the limsup. Denote E the set of
lower equilibrium payoffs, E the set of upper equilibrium payoffs and EL the set
of equilibrium payoffs for the Banach limit L. It is straightforward that for any
Banach limit L:

E∞ ⊆ E ⊆ EL ⊆ E

and that all these sets equal F ∩ IR for supergames with perfect observation.
Lehrer (1989) showed that for supergames with signals, the set of lower equi-

librium payoffs can be a strict superset of the other equilibrium payoff sets. A
simple example, somewhat different from the one given by Lehrer, is provided by
Example 3.10. In this example, we claim that C = F ∩ IRC while C∞ is a strict
subset. The equilibrium construction is as follows. The mediator recommends
actions following a pure sequence of actions achieving the target limit payoff.
Upon observing a deviation, the mediator recommends player 3 to punish either
player 1 (play M) or player 2 (play E) in the following deterministic way. First,
play M for a large number N1 of stages. Then, play E for a much larger number
N2 of stages in such a way that N1 is negligible with respect to N2. Then, revert
to playing E for N3 stages with N1 +N2 negligible with respect to N3. Continue
to alternate like this, each time making the sum of sizes of past blocks negligible
with respect to the size of the new block. Then, the liminf of player 1’s payoff
is found by computing the average at the end of an odd numbered block, and is
close to 0.

It is an open problem to decide whether E∞ = EL for any supergame. Lehrer
(1989) proved that it is the case for semi-standard signalling. The proof of The-
orem 3.14 (Renault and Tomala, 2004) shows that C∞ = CL. Both proofs rely
on the characterization. In lack of a characterization of E∞, another kind of
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proof should be found, using the specific structure of supergames, where the
same known stage game is repeated over and over.
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