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Abstract We consider the regret matching process with finite memory. For general games
in normal form, it is shown that any recurrent class of the dynamics must be such that the
action profiles that appear in it constitute a closed set under the “same or better reply” cor-
respondence (CUSOBR set) that does not contain a smaller product set that is closed under
“same or better replies,” i.e., a smaller PCUSOBR set. Two characterizations of the recurrent
classes are offered. First, for the class of weakly acyclic games under better replies, each re-
current class is monomorphic and corresponds to each pure Nash equilibrium. Second, for a
modified process with random sampling, if the sample size is sufficiently small with respect
to the memory bound, the recurrent classes consist of action profiles that are minimal PCU-
SOBR sets. Our results are used in a robust example that shows that the limiting empirical
distribution of play can be arbitrarily far from correlated equilibria for any large but finite
choice of the memory bound.

Keywords Regret matching · Nash equilibria · Closed sets under same or better replies ·
Correlated equilibria

1 Introduction

We consider the regret matching process based on finite memory. Each player remembers
the last m action profiles used in the game. Regret is calculated with respect to the average
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payoff obtained in those m periods. With respect to the last action chosen, the player cal-
culates his or her regret from not having used other actions, when those actions replace the
last action each time it was used in the m periods that the player recalls. The player switches
with positive probability to those actions associated with positive regret but continues to
play the same action also with positive probability. This process corresponds to the regret
matching of Hart and Mas-Colell [11], except that our players’ memory is not unbounded.

A typical state of the m-period memory regret learning process is a list of m action pro-
files. It is shown that any recurrent class of the dynamics must be such that the action profiles
that appear in it constitute a closed set under the “same or better reply” correspondence (CU-
SOBR set) that does not contain a smaller product set that is closed under “same or better
replies,” i.e., a smaller PCUSOBR set. We shall refer to such a set as an ω-set, for short. We
discuss below the relationships between our CUSOBR sets, PCUSOBR sets, and ω-sets and
previous concepts in the literature, such as closed sets under rational behavior (curb sets) or
the set of rationalizable action profiles. The investigation of all the properties of ω-sets is
beyond our scope here, but they seem to be sets that are distinct from the previous solution
concepts mentioned.

Since our first finding is only a necessary condition, in general games we are not able
to offer a characterization of the recurrent classes of the m-period memory regret learning
process. However, we offer two possible ways out that yield a characterization. First, for the
class of weakly acyclic games under better replies, each recurrent class is monomorphic and
corresponds to each pure Nash equilibrium of the game. Second, for a modified process in
which agents sample at random from their bounded memory, if the sample size is sufficiently
small with respect to the memory bound, the recurrent classes consist of action profiles that
are minimal PCUSOBR sets.

Foster and Vohra [3] and Fudenberg and Levine [8] obtain learning procedures for which
the empirical distribution of play converges to the set of correlated equilibria. These proce-
dures are complex, requiring sophisticated updating of beliefs. Hart and Mas-Colell’s regret
matching was the first particularly simple and intuitive procedure leading to the set of corre-
lated equilibria in all games, a striking result. It turns out, however, that the regret matching
process with finite memory may give a long-run prediction far from the set of correlated
equilibria, in the following sense. We use our first results to show that for any finite memory
bound m, there exists a game such that the limiting empirical distribution of play concen-
trates with probability arbitrarily close to 1 on an action profile that is not in the support
of the game’s unique correlated equilibrium. Thus, the main result in Hart and Mas-Colell
[11] seems to depend crucially on the unbounded memory assumption. Nevertheless, we do
not know whether our finding will be robust to the opposite order of limits. That is, we do
not know whether, for a given game, the limit as m → ∞ of the empirical distribution of
play in the corresponding limiting process will converge to the set of correlated equilibria.
This remains an important open question. On the other hand, our findings are robust to the
memory bounds being player dependent.

1.1 Related Literature

Our process is part of the no-regret learning literature (e.g., [4, 6, 9, 11]).1 In related pro-
cesses, Young [24] shows that if players have bounded recall and play a myopic best reply to
a sample drawn from their memory, where the sample is sufficiently small compared to the

1See Fudenberg and Levine [7], Hart [10], Young [26], or Sandholm [19] for surveys of learning and related
areas.
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memory, then in games that are weakly acyclic (under “single best reply”), per-period play
converges almost surely to a pure Nash equilibrium.2 Young [25] proves that this learning
dynamics converges almost surely to a minimal curb set for generic finite N -player games.
In contrast, we show that if the players calculate their regrets with respect to a randomly
drawn sample from their memory and the sample size is small enough, then the regret match-
ing dynamics converges almost surely in any finite N -player game to a minimal PCUSOBR
set.

Similar connections between limits of various learning dynamics and set-valued solu-
tion concepts have been discovered in the literature. For instance, Hurkens [12] provides a
learning dynamics that converges almost surely to a minimal curb set in all finite N -player
games. In Hurkens’ dynamics, players have bounded recall of m periods and play myopic
best replies to their beliefs, where the belief of player i about player j is any distribution
with its support in the set of actions played by player j during the last m periods. Instead
of myopic best reply, players in Josephson and Matros [13] use an imitation dynamics. That
is, players have bounded recall, and out of her memory, each player samples all past ac-
tions and the corresponding payoffs. She then plays the action that had the highest average
payoff in her sample. The recurrent classes of this dynamics in all finite N -player games are
monomorphic states, and the main result is that the set of stochastically stable monomorphic
states is a union of sets that are minimal closed sets under single better replies. Ritzberger
and Weibull [18] prove that the face of a product set (i.e., set of all mixed strategies with
support in the set) is asymptotically stable under any sign-preserving selection dynamics (in
continuous time) if and only if the set is closed under weakly better replies. Each such set
always contains an essential component of Nash equilibria that is strategically stable.

There are other better-reply dynamics that yield convergence to pure Nash equilibria in
some games. Young [26] considers a better-reply process with finite memory and inertia, in
which each player repeats her last action with an exogenous probability, and with the rest of
the probability, she chooses an action according to some distribution over the set of actions
with positive unconditional regret over the finite number of periods she remembers. Young
[26] proves that the better-reply process converges almost surely in per-period play to a pure
Nash equilibrium in games that are weakly acyclic under single-better replies. Friedman and
Mezzetti [5] obtain the same convergence result for their better-reply dynamics in which a
randomly selected player randomly samples her other actions and switches to the sampled
action if it is a better reply to the status quo action profile. Marden et al. [15] study a regret
based dynamics with fading—instead of finite—memory and inertia. That is, with a positive
probability each player repeats her last period’s action and with the rest of the probability
she updates her action as a function of her unconditional regrets where past regrets are
exponentially discounted. Their result is that if players use this learning rule, then in games
that are weakly acyclic under single-better replies and in which no player is indifferent
between distinct strategies, per-period play converges to a pure Nash equilibrium almost
surely. We argue in Sect. 4 that any game that is weakly acyclic under single-better replies
is also weakly acyclic under better replies but the converse is not true. Thus, for regret
matching with bounded recall, we provide the result of convergence to pure Nash equilibria
for a larger class of games.

A couple of other papers in the literature show that evolutionary dynamics need not con-
verge to the set of correlated equilibrium distributions. Viossat [22] gives an example of
a 4 × 4 game in which from an open set of initial conditions, the single action profile in

2“Single” means that only one player is allowed to change his or her action at a time.
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the support of the game’s unique correlated equilibrium is eliminated under the replicator
dynamics. Viossat [23] generalizes this result to an open set of games and many other de-
terministic evolutionary dynamics defined on continuous state spaces. However, the unique
correlated equilibrium in these games is a strict Nash equilibrium and hence remains asymp-
totically stable under those evolutionary dynamics. In contrast, we have a stochastic dynam-
ics on a discrete state space. As a result, we are able to show that for any initial condition,
the limiting empirical distribution of play is concentrated on an action profile that is not in
the support of the game’s unique correlated equilibrium distribution.

In Zapechelnyuk [27], an agent is playing against nature. The agent has recall m, and
her adaptive behavior is a function of her unconditional regrets over the last m periods. He
assumes that the agent plays according to a better-reply rule, which is defined by the follow-
ing weak requirement: whenever there exists an action with positive unconditional regret,
the agent does not play any action with nonpositive unconditional regrets. Unconditional
regret matching of Hart and Mas-Colell [11] is a particular better-reply rule. He provides a
2 × 3 game example, where the agent is the row player, and nature is the column player. He
assumes that nature plays according to fictitious play with recall m, i.e., in every period, it
plays a best reply to the agent’s average play over the last m periods. Under this assumption,
he proves that for any better-reply rule and for any large enough recall m, there exists an
initial history and period T such that for all t ≥ T , the probability that the agent’s maximum
unconditional regret over the last m periods is bounded away from 0 is bounded below by
a positive constant. That is, any better-reply rule of the agent with large enough bounded
recall is not universally consistent with nature’s strategy. Apart from adaptive play being a
function of unconditional regrets, the difference with respect to our example below is that
nature’s adaptive behavior (although a better-reply rule) is not the same as that of the agent.
In the work related to Zapechelnyuk [27], Lehrer and Solan [14] find an adaptive rule with
bounded recall that converges to the set of correlated equilibria by “restarting the memory.”

1.2 Plan of the Paper

The rest of the paper is organized as follows. Section 2 describes regret matching with
finite memory. Section 3 defines CUSOBR, PCUSOBR, and ω-sets. We provide the results
in Sect. 4. In Sect. 5, we discuss the connections with Hart and Mas-Colell [11]. Finally,
Sect. 6 collects the proofs.

2 Regret Matching with Finite Memory

Consider an N -person game in normal form G, with a finite set of actions Ai for each player
i ∈ N (we use N to denote both the set and the number of players). Let A = ∏

i∈N Ai , and let
πi(ai, a−i ) be the payoff of player i when she chooses ai and the other players choose a−i .

Suppose that the players remember the last m ≥ 1 action profiles. At the beginning of
period t +1, where t ≥ m, let (at−m+1, . . . , at ) be the history of action profiles played during
the last m periods (the initial history, when t < m, is formed arbitrarily). The average payoff
of player i over these m periods is given by Πi = 1

m

∑t

k=t−m+1 πi(a
k). Let at

i be the action
played by player i in period t . For all a′

i �= at
i , let Πi(a

′
i ) be the average payoff over the last

m periods that player i would have obtained had she played action a′
i every time she played

action at
i during the last m periods. That is, Πi(a

′
i ) = 1

m

∑t

k=t−m+1 υk
i (a

′
i ), where

υk
i (a

′
i ) =

{
πi(a

′
i , a

k
−i ) if ak

i = at
i ,

πi(a
k
i , a

k
−i ) if ak

i �= at
i .

(1)
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Define Ri(a
′
i ) = Πi(a

′
i ) − Πi . Then, player i switches to action a′

i in period t + 1 with
probability q(Ri(a

′
i )) > 0 if and only if Ri(a

′
i ) > 0, whereas she does not switch with the rest

of probability, which we assume to be positive, i.e.,
∑

a′
i
�=at

i
q(Ri(a

′
i )) < 1.3 This adaptive

behavior is regret matching à la Hart and Mas-Colell [11] but with finite recall.4

Define a state in a period to be the history of last m action profiles. Hence, the set of
states is H = Am.

Given G, for fixed q(·), regret matching with bounded recall describes an aperiodic
Markov process M̄G(q) on the state space H . We identify its recurrent classes. A recur-
rent class is a set of states such that if the process reaches one of them, it never leaves the
set, and such that it does not admit a proper subset of states with the same property. The
recurrent classes of M̄G(q) are closely related to the sets of action profiles in G that are
closed under “same or better replies” of the players. We define these sets in the next section.

3 CUSOBR, PCUSOBR, and ω-Sets

For any (ai, a−i ) ∈ A, the set of same-or-better replies for player i is

Bi(ai, a−i ) = {
a′

i ∈ Ai |either a′
i = ai or πi(a

′
i , a−i ) > πi(ai, a−i )

}
.

Let BG : A � A be the same-or-better-reply correspondence of the game G, i.e.,

BG(a1, . . . , aN) =
∏

i∈N

Bi(ai, a−i ).

Definition 3.1 A set of action profiles Â ⊆ A in G is closed under same-or-better replies
(CUSOBR set) if for all (a1, . . . , aN) ∈ Â, we have BG(a1, . . . , aN) ⊆ Â. A minimal
CUSOBR set is a CUSOBR set that does not contain a proper subset that is a CUSOBR
set.

For any nonempty Â ⊆ A, define

B̃G(Â) =
⋃

(a1,...,aN )∈Â

(∏

i∈N

Bi(ai, a−i )

)

.

Equivalently, Â is a CUSOBR set if and only if Â is a fixed point of B̃G, i.e., B̃G(Â) = Â.
Sets that are closed under weakly better replies [18] are CUSOBR sets. However, the

converse is not true, i.e., a CUSOBR set need not be closed under weakly better replies
since a player can have weakly better replies that have the same payoff and hence, do not
belong to the set of same-or-better replies. For the same reason, CUSOBR sets are not closed
under rational behavior (curb) sets [1].

3Several different specifications of q(·) are possible. For instance, let A∗ be the maximum number of actions
that any player has and Δ∗ = maxi (max(ai ,a−i )

(maxa′
i
πi (a

′
i
, a−i ) − πi(ai , a−i ))). Then any q(·) such that

q(r) ∈ [0, 1
A∗Δ∗ ) and q(r) > 0 ⇐⇒ r > 0 will fulfill these properties. In our analysis, we fix q(·) to be one

such function.
4Our specification of the switching probabilities is more general as it allows for several “sign-preserving”
functional forms. It is only in Sect. 5, where we compare our results with Hart and Mas-Colell [11], that we
consider the particular “proportional” functional representation used by Hart and Mas-Colell [11].
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Fig. 1 Games illustrating relationships between different set-valued concepts

Definition 3.2 Â ⊆ A is a product set of action profiles that is closed under same-or-better
replies (PCUSOBR set) if Â is a product set, i.e., Â = ∏

i∈N Âi , where ∅ �= Âi ⊆ Ai ∀i ∈ N ,
and for all (a1, . . . , aN) ∈ Â, we have BG(a1, . . . , aN) ⊆ Â. A minimal PCUSOBR set is a
PCUSOBR set that does not contain a proper subset that is a PCUSOBR set.

For any nonempty Â ⊆ A, define

B̂G(Â) =
∏

i∈N

( ⋃

(ai ,a−i )∈Â

Bi(ai, a−i )

)

.

Note that Â is a PCUSOBR set if and only if Â is a fixed point of B̂G, i.e., B̂G(Â) = Â.
Since G has a finite number of action profiles, there exist both minimal CUSOBR and

minimal PCUSOBR sets in G. It is also easy to see that (a1, . . . , aN) is a pure Nash equilib-
rium of G if and only if {(a1, . . . , aN)} is a singleton minimal CUSOBR set and a singleton
minimal PCUSOBR set.

Every minimal CUSOBR set that is a product set is a minimal PCUSOBR set. More-
over, every minimal PCUSOBR set contains a minimal CUSOBR set. Hence, the set of
minimal CUSOBR sets and minimal PCUSOBR sets coincide in games where all minimal
CUSOBR sets are product sets. However, in some games, the set of minimal CUSOBR
sets is a refinement of the set of minimal PCUSOBR sets. Game (a) in Fig. 1 has a unique
minimal CUSOBR set {(U,X), (M,X), (M,Y ), (D,X), (D,Y )}, which is a refinement of
its unique minimal PCUSOBR set that is equal to the set of all action profiles. On the
other hand, it is also possible that there exists a minimal CUSOBR set that is not a sub-
set of any minimal PCUSOBR set of the game. For example, Game (b) in Fig. 1 has a
unique minimal PCUSOBR set {(Û ,Z)}, but it has two minimal CUSOBR sets, {(Û ,Z)}
and {(U,X), (M,X), (M,Y ), (D,X), (D,Y )}.

We introduce one more class of sets before we present our results.

Definition 3.3 A set of action profiles Â ⊆ A in G is an ω-set if Â is a CUSOBR set that
does not contain a proper subset that is a PCUSOBR set.

Clearly, every minimal CUSOBR set or minimal PCUSOBR set is an ω-set. Thus, every
game has at least one ω-set. It is also possible that a game has an ω-set that is neither a
minimal CUSOBR set nor a minimal PCUSOBR set (see Example 4.3).

Every singleton ω-set is a singleton minimal CUSOBR set and a singleton minimal PCU-
SOBR set. Hence, a pure Nash equilibrium is a singleton ω-set and vice versa. Thus, the set
of pure Nash equilibria of any game G lies in the intersection of the set of its minimal CU-
SOBR sets and the set of its minimal PCUSOBR sets, and this intersection in turn lies in
the set of its ω-sets. In contrast, a pure Nash equilibrium is a curb set or a set that is closed
under weakly better replies only if it is strict.
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Fig. 2 Fashion Game X Y Z

X

Y

Z

1,0 0,0 0,1
0,1 1,0 0,0
0,0 0,1 1,0

Another solution concept that is weaker than Nash equilibrium is that of rationalizability
[2, 17]. However, there is no logical relation between the sets of actions of a player that
are supported in minimal CUSOBR sets, minimal PCUSOBR sets and ω-sets, and the set
of her rationalizable actions. Consider Game (a) in Fig. 1. It has two ω-sets, one equal to
its unique minimal CUSOBR set and the other equal to its unique minimal PCUSOBR set.
Thus, action U of the row player is supported in the game’s unique minimal CUSOBR set,
unique minimal PCUSOBR set, and both ω-sets. However, U is not rationalizable for the
row player since it is strictly dominated by the mixed strategy in which the row player plays
M with probability 0.25 and D with probability 0.75. On the other hand, consider Game
(c) in Fig. 1. This game has a unique ω-set (and hence, unique minimal CUSOBR set and
unique minimal PCUSOBR set) equal to {(D,Y )}. However, all actions of both players are
rationalizable in this game. Since action Y of the column player is weakly dominated by
action Z, this example further shows that the sets of actions of a player that are supported in
minimal CUSOBR sets, minimal PCUSOBR sets, and ω-sets need not intersect with the set
of her undominated actions.

As a final example, consider the game in Fig. 2, which was originally given by Shapley
[21] to prove that fictitious play need not converge to Nash equilibrium. Young [25] calls it
the Fashion Game. To give his description, let X, Y , and Z stand for red, yellow, and blue,
respectively. The row player is a fashion follower who likes to imitate the column player.
On the other hand, the column player is a fashion leader who prefers to wear a color that
contrasts with the other player’s choice. Thus, the column player prefers blue when the row
player wears red; the column player prefers red when the row player wears yellow, and the
column player prefers yellow when the row player wears blue.

In this game, {(X,X), (X,Z), (Z,Z), (Z,Y ), (Y,Y ), (Y,X)} is the unique minimal
CUSOBR set and, therefore, an ω-set of the game. This set corresponds to a fashion cy-
cle of red → blue → yellow → red in which the column player keeps defining new fashion
and the row player keeps catching up to the former. This game has one more ω-set, which
is the set of all action profiles (this is also the game’s unique minimal PCUSOBR set). The
larger ω-set coincides with the set of all rationalizable action profiles.

4 Results

For any set of states Ĥ ⊆ H , let A(Ĥ ) ⊆ A be the set of all action profiles that are played in
some state in Ĥ .

Proposition 4.1 (a) If Â is a minimal PCUSOBR set of G, then there exists a recurrent class
Ĥ of M̄G(q) such that A(Ĥ ) ⊆ Â.

(b) Ĥ is a recurrent class of M̄G(q) only if A(Ĥ ) is an ω-set.

Due to inertia in the dynamics, for any (a1, . . . , aN) ∈ A(Ĥ ), there exists a monomorphic
state (a1, . . . , am) ∈ Ĥ such that ak = (a1, . . . , aN) for all k = 1, . . . ,m. Hence, if Ĥ and Ĥ ′
are two recurrent classes of M̄G(q), then A(Ĥ ) ∩ A(Ĥ ′) = ∅. Therefore, according to the
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Fig. 3 For long memory lengths,
recurrent classes can support
action profiles outside minimal
CUSOBR sets

X Y Z

U

M

D

1,50 0,0 400,0
0,100 200,0 0,100

2,0 0,10 0,0

necessary condition in part (b) of Proposition 4.1, each recurrent class of the regret matching
with bounded recall dynamics corresponds to a distinct ω-set of G.

Saran and Serrano [20] provide a complete characterization of the recurrent classes of
the dynamics when players have only one-period memory.

Proposition 4.2 (Saran and Serrano [20]) Suppose m = 1. Ĥ is a recurrent class of M̄G(q)

if and only if A(Ĥ ) is a minimal CUSOBR set of G.

Thus, each recurrent class of the regret matching dynamics with one-period memory
corresponds to a distinct minimal CUSOBR set of G and vice versa. However, as shown in
the following example, for longer memory lengths, there can exist a recurrent class Ĥ such
that A(Ĥ ) is not a minimal CUSOBR set.

Example 4.3 Suppose m = 100. Consider the game in Fig. 3. Let the row and column play-
ers be denoted by i and j , respectively.

There are three CUSOBR sets in this game: (1) the set of all action profiles A, (2) A \
{(D,Z)}, and (3) A \ {(U,Y ), (D,Z)}. The last set A \ {(U,Y ), (D,Z)} is therefore the
unique minimal CUSOBR set of the game. Notice that A \ {(D,Z)} is an ω-set that is
neither a minimal CUSOBR set nor a minimal PCUSOBR set.

Since (D,X) belongs to all CUSOBR sets, Proposition 4.1 implies that the regret
matching process with memory of 100 periods has a unique recurrent class Ĥ such that
(D,X) ∈ A(Ĥ ). Due to inertia, the monomorphic state ((D,X), . . . , (D,X)) ∈ Ĥ . Suppose
that the dynamics is in this monomorphic state in some period t ≥ 100. We argue that in
finite time, the dynamics will reach a state in which (U,Y ) is played.

Period t : State is ((D,X), . . . , (D,X)
︸ ︷︷ ︸

100

).

In this state, Rj(Y ) > 0 since the average payoff of player j over the last 100 periods is
Πj = 0 but her average payoff had she played Y every time she played X in the last 100
periods is Πj(Y ) = 10. Thus, with a positive probability, player j switches to Y , and player
i continues to play D in period t + 1.

Period t + 1: State is ((D,X), . . . , (D,X)
︸ ︷︷ ︸

99

, (D,Y )).

In this state, Ri(M) > 0 since Πi = 1.98 and Πi(M) = 2. Thus, with a positive probabil-
ity, player i switches to M , and player j continues to play Y in period t + 2.

Period t + 2: State is ((D,X), . . . , (D,X)
︸ ︷︷ ︸

98

, (D,Y ), (M,Y )).

In this state, Rj(Z) > 0 since Πj = 0.1 and Πj(Z) = 1. Thus, with a positive probability,
player j switches to Z, and player i continues to play M in period t + 3.

Period t + 3: State is ((D,X), . . . , (D,X)
︸ ︷︷ ︸

97

, (D,Y ), (M,Y ), (M,Z)).
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In this state, Ri(U) > 0 since Πi = 3.94 and Πi(U) = 5.94. Thus, with a positive prob-
ability, player i switches to U , and player j continues to play Z in period t + 4.

Period t + 4: State is ((D,X), . . . , (D,X)
︸ ︷︷ ︸

96

, (D,Y ), (M,Y ), (M,Z), (U,Z)).

In this state, Rj(X) > 0 since Πj = 1.1 and Πj(X) = 1.6. Thus, with a positive proba-
bility, player j switches to X, and player i continues to play U in period t + 5.

Period t + 5: State is ((D,X), . . . , (D,X)
︸ ︷︷ ︸

95

, (D,Y ), (M,Y ), (M,Z), (U,Z), (U,X)).

In this state, Rj(Y ) > 0 since Πj = 1.6 and Πj(Y ) = 10.6. Thus, with a positive proba-
bility, player j switches to Y , and player i continues to play U in period t + 6.

Period t +6: State is ((D,X), . . . , (D,X)
︸ ︷︷ ︸

94

, (D,Y ), (M,Y ), (M,Z), (U,Z), (U,X), (U,Y )).

Therefore, (U,Y ) ∈ A(Ĥ ), but, as already shown, (U,Y ) does not belong to the unique
minimal CUSOBR set of the game.

4.1 Weakly Acyclic Games

A stronger result can be established if G is weakly acyclic under better replies. A better-
reply graph is defined as follows: each action profile of G is a vertex of the graph, and
there exists a directed edge from vertex (a1, . . . , aN) to vertex (a′

1, . . . , a
′
N) if and only if

(a1, . . . , aN) �= (a′
1, . . . , a

′
N) and (a′

1, . . . , a
′
N) ∈ BG(a1, . . . , aN). A sink is a vertex with no

outgoing edges. A better-reply path is a sequence of vertices (a1
1, . . . , a

1
N), . . . , (aL

1 , . . . , aL
N)

such that there exists a directed edge from each (al
1, . . . , a

l
N ) to (al+1

1 , . . . , al+1
N ). The game

G is weakly acyclic under better replies if from any action profile there exists at least one
better-reply path to a sink. Clearly, an action profile is a sink if and only if it is a pure Nash
equilibrium of G. Thus, the game G is weakly acyclic under better replies if from any action
profile there exists at least one better-reply path to a pure Nash equilibrium.

If G is weakly acyclic under better replies, then every CUSOBR set contains a pure Nash
equilibrium, which is a singleton PCUSOBR set. Hence, we easily obtain the following
corollary from Proposition 4.1:

Corollary 4.4 Suppose that G is weakly acyclic under better replies. Then, Ĥ is a recurrent
class of M̄G(q) if and only if A(Ĥ ) is a pure Nash equilibrium of G.

Given any directed edge from (a1, . . . , aN) to (a′
1, . . . , a

′
N) in the better-reply graph, we

have a′
i ∈ Bi(a1, . . . , aN) for all i ∈ N . Therefore, more than one players can switch their ac-

tions to better replies along any directed edge in the better-reply graph. A single-better-reply
graph is a spanning subgraph of the better-reply graph (i.e., has the same set of vertices) with
only those directed edges such that exactly one player switches her action to a better reply
along that edge. A game is weakly acyclic under single-better replies if in the single-better-
reply graph, there exists a path from any action profile to a pure Nash equilibrium.5 Since a

5Friedman and Mezzetti [5] call this the weak finite improvement property. A stronger condition called the
finite improvement property [16] is that there are no directed cycles in the single-better-reply graph.
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single-better-reply graph is a subgraph of the better-reply graph, the class of games that are
weakly acyclic under single-better replies is a subset of the class of games that are weakly
acyclic under better replies. As mentioned in the introduction, Friedman and Mezzetti [5],
Young [26], and Marden et al. [15] have studied better-reply dynamics that converge almost
surely to pure Nash equilibria in games that are weakly acyclic under single-better replies.
Corollary 4.4 implies that per-period play under regret matching with bounded recall con-
verges almost surely to pure Nash equilibria in games that are weakly acyclic under better
replies. Thus, we show convergence to pure Nash equilibria in a larger class of games.

Although it is possible to construct examples of several games that are weakly acyclic
under better replies but not weakly acyclic under single-better replies (see [20] for one such
game), it is nevertheless unclear how much larger the former class is. Some well-known
games that are weakly acyclic under single-better replies, and hence also weakly acyclic
under better replies and covered by our result, include ordinal potential games [16], super-
modular games [5], second-price and first-price auctions, and Bertrand duopolies [20].

4.2 Random Sampling

We are not able to strengthen Proposition 4.1 to an “if and only if” statement for games that
are not weakly acyclic under better replies, which is the reason to turn to a random sampling
version of the process next. That is, we thus far have assumed that players consider all the
past periods in the m-period history. Instead, suppose that each player i independently draws
a random sample of s periods (a1, . . . , as) from the m-period history (at−m+1, . . . , at ) and
calculates her regrets relative to the latest action in her sample, as

i (unlike earlier, where the
regrets are calculated relative to the latest action at

i ).
Formally, let Πs

i = 1
s

∑s

k=1 πi(a
k) be the average payoff of player i over her s-period

sample. For all a′
i �= as

i , let Πs
i (a

′
i ) be the average payoff over these s periods that player i

would have obtained had she played action a′
i every time she played action as

i during these
s periods. That is, Πs

i (a
′
i ) = 1

s

∑s

k=1 υk
i (a

′
i ), where

υk
i (a

′
i ) =

{
πi(a

′
i , a

k
−i ) if ak

i = as
i ,

πi(a
k
i , a

k
−i ) if ak

i �= as
i .

Define Rs
i (a

′
i ) = Πs

i (a
′
i ) − Πs

i . Then, player i plays action a′
i in period t + 1 with probabil-

ity q(Rs
i (a

′
i )) > 0 if and only if Rs

i (a
′
i ) > 0, whereas she does not switch with probability

1 − ∑
a′
i
�=as

i
q(Rs

i (a
′
i )) > 0.6 This adaptive behavior is regret matching with bounded recall

and random sampling.
As before, a state in a period is the history of last m action profiles. Hence, the set of

states is still H . Given G, for fixed q(·), regret matching with bounded recall and random
sampling describes an aperiodic Markov process M̃G(q) on the state space H .

Proposition 4.5 If s/m is sufficiently small, then Ĥ is a recurrent class of M̃G(q) if and
only if A(Ĥ ) is a minimal PCUSOBR set of G.

Thus, if the sample size is small enough, then per-period play under regret matching
with bounded recall and random sampling will almost surely in finite time enter a minimal
PCUSOBR set and then stay inside this set forever with every action profile in the set being
played infinitely often.

6Again, several specifications of q(·) are possible. See footnote 3.
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5 Connections with Hart and Mas-Colell’s Regret Matching

Hart and Mas-Colell [11] study the long-run behavior when the players use regret matching
but, in contrast to our model, have unbounded memory. Regret matching with unbounded
recall is defined as follows: at the beginning of period t + 1, let (a1, . . . , at ) be the history
of action profiles played. The average payoff of player i over this history is given by Πt

i =
1
t

∑t

k=1 πi(a
k). Let at

i be the action played by player i in period t . For all a′
i �= at

i , let Πt
i (a

′
i )

be the average payoff that player i would have obtained had she played action a′
i every time

she played action at
i in the history. That is, Πt

i (a
′
i ) = 1

t

∑t

k=1 υk
i (a

′
i ), where υk

i (a
′
i ) is as

in (1). Define Rt
i (a

′
i ) = Πt

i (a
′
i ) − Πt

i . Then, player i switches to action a′
i in period t + 1

with probability

1

c
max

{
Rt

i (a
′
i ),0

}
,

whereas she does not switch with probability

1 − 1

c

∑

a′
i
�=at

i

max
{
Rt

i (a
′
i ),0

}
,

which is positive for a sufficiently large constant c.
Let μt be the empirical distribution of play up to period t , i.e., for every (a1, . . . , aN),

μt(a1, . . . , aN) = 1

t

∣
∣
{
1 ≤ k ≤ t |ak = (a1, . . . , aN)

}∣
∣.

The main theorem in Hart and Mas-Colell [11] states the following: If the players use
regret matching with unbounded recall, then the empirical distribution of play μt converges
almost surely as t → ∞ to the set of correlated equilibrium distributions of G. Nevertheless,
as Hart and Mas-Colell [11, p. 1132] themselves point out, we know little about additional
convergence properties of μt under regret matching with unbounded recall. In particular, it
is not known whether μt converges to a “point,” i.e., a distribution over the set of action
profiles. We know that if there exists a finite time T such that for all t > T , μt lies in the
set of correlated equilibria, then μt must converge to a pure Nash equilibrium (because the
action profile does not change whenever μt is a correlated equilibrium as all regrets are
zero). Hence, if μt does not converge to a pure Nash equilibrium, then the sequence {μt }t≥1

must lie infinitely often outside the set of correlated equilibria. Therefore, if μt converges
to a point, then it can either converge to a pure Nash equilibrium or a correlated equilibrium
on the boundary of the set of correlated equilibria.7

To facilitate the comparison with regret matching with bounded recall (but no sampling),
let us fix q(·) to be such that player i switches to action a′

i in period t + 1 with probability
1
c

max{Ri(a
′
i ),0}, whereas she does not switch with probability 1− 1

c

∑
a′
i
�=at

i
max{Ri(a

′
i ),0},

where c is sufficiently large to ensure that the latter is positive.
In contrast to Hart and Mas-Colell [11], we have precise results about per-period play in

the long run under regret matching with bounded recall. If G is weakly acyclic under better
replies, Corollary 4.4 tells us that per-period play at will almost surely in finite time be a

7Hart and Mas-Colell [11] did not consider specific games, and it might well be that more precise convergence
results are obtained for some classes of games.
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Fig. 4 Empirical distribution of
play need not converge to
correlated equilibria when
players have bounded recall

X Y Z

U

D

0,20 50,15 60,20
10,30 40,35 60 + ε,25

pure Nash equilibrium—the particular equilibrium depends on the initial history. In gen-
eral, for any game, pointwise convergence of per-period play can only happen to pure Nash
equilibria. But in addition, Proposition 4.1 tells us that under regret matching with bounded
recall, per-period play at will almost surely in finite time enter some ω-set—again, the par-
ticular set depends on the initial history—and after that time, each of the action profiles that
belong to this set, and only this set, will be played infinitely often. Thus, μt will converge
almost surely as t → ∞ to a distribution with support over some ω-set. However, as the
following example illustrates, the empirical distribution of play need not converge to the set
of correlated equilibrium distributions when players have bounded recall.

Example 5.1 Suppose that there are two players who repeatedly play the game in Fig. 4,
where ε ≥ 0.

Fix m ≥ 1, and let M(m,ε) be the transition matrix of the Markov process when the
players use regret matching with bounded recall of m. Let Mhh′(m, ε) be the hh′ entry
in this matrix, i.e., the probability of transition from state h = (a1, . . . , am) to state h′ =
(a′1, . . . , a′m) in one period. Note that a′k = ak+1 for all k = 1, . . . ,m − 1. Let i and j

denote, respectively, the row and column players. Since the players choose their actions
independently, Mhh′(m, ε) = ihh′(m, ε)jhh′(m, ε), where ihh′(m, ε) and jhh′(m, ε) are the
probabilities that, respectively, the row player plays action a′m

i and the column player plays
action a′m

j during the next period conditional on state h. Since Rj(·) does not depend on ε,
jhh′(m, ε) does not depend on ε. Thus, jhh′(m, ε) = jhh′(m,0) for all ε. Similarly, if h is
such that ak

j �= Z for all k = 1, . . . ,m, then ihh′(m, ε) = ihh′(m,0) for all ε. So suppose that
h is such that player i played am

i in m̂ ≤ m periods and in those m̂ periods, player j played
X and Z, respectively, x and z times.

First, let am
i = U . Then, conditional on state h, Ri(D) = 10

m
(2x+z−m̂)+ε z

m
. Therefore,

if ε < min{ 10
m

, c−10} (note that c > 10 to ensure positive probability of inertia in the process
when ε = 0), then the probability that the row player switches to D the next period is

10
cm

(2x + z − m̂) + ε z
cm

< 1 if 10
m

(2x + z − m̂) ≥ 0,

0 if 10
m

(2x + z − m̂) < 0.

Hence, for all ε < min{ 10
m

, c − 10}, we have:

• if a′m
i = D, then

ihh′(m, ε) =
{

ihh′(m,0) + ε z
cm

< 1 if 10
m

(2x + z − m̂) ≥ 0,

ihh′(m,0) otherwise.

• if a′m
i = U , then

ihh′(m, ε) =
{

ihh′(m,0) − ε z
cm

> 0 if 10
m

(2x + z − m̂) ≥ 0,

ihh′(m,0) otherwise.

Next, let am
i = D. Then, conditional on state h, Ri(U) = 10

m
(m̂−2x−z)−ε z

m
. Therefore,

if ε < 10
m

and c > 10, then the probability that the row player switches to U the next period



172 Dyn Games Appl (2012) 2:160–175

is

10
cm

(m̂ − 2x − z) − ε z
cm

∈ (0,1) if 10
m

(m̂ − 2x − z) > 0,

0 if 10
m

(m̂ − 2x − z) ≤ 0.

Hence, for all ε < 10
m

, we have:

• if a′m
i = U , then

ihh′(m, ε) =
{

ihh′(m,0) − ε z
cm

> 0 if 10
m

(m̂ − 2x − z) > 0,

ihh′(m,0) otherwise.

• if a′m
i = D, then

ihh′(m, ε) =
{

ihh′(m,0) + ε z
cm

< 1 if 10
m

(m̂ − 2x − z) > 0,

ihh′(m,0) otherwise.

Thus, whenever ε < min{ 10
m

, c − 10}, there exists a Q(m) such that M(m,ε) =
M(m,0) + εQ(m).

If ε > 0, then the set of all action profiles is the game’s unique ω-set. Hence, it follows
from Proposition 4.1 that the Markov process defined by M(m,ε) has a unique recurrent
class and hence, a unique invariant distribution, μ(m,ε). Then,

μ(m,ε) = μ(m,ε)M(m,ε) = μ(m,ε)M(m,0) + εμ(m, ε)Q(m).

There exists a subsequence where μ(m,ε) converges pointwise to say μ(m) as ε → 0.
Hence, along this subsequence, we have

μ(m) = lim
ε→0

μ(m,ε) =
(

lim
ε→0

μ(m,ε)
)
M(m,0) = μ(m)M(m,0).

That is, μ(m) is an invariant distribution of the Markov process defined by M(m,0). But
if ε = 0, then {(U,Z)} is the game’s unique ω-set; the other CUSOBR sets are A and
A \ {(D,Z)}. Therefore, the Markov process defined by M(m,0) has a unique invariant
distribution, with support on the monomorphic state in which (U,Z) is played. Thus, we
conclude that for any memory m, there exists an εm > 0 such that the unique invariant dis-
tribution of the Markov process defined by M(m,εm) puts probability close to 1 on the
monomorphic state in which (U,Z) is played.

For any ε > 0, the game has a unique correlated equilibrium, in which each of the action
profiles (U,X), (U,Y ), (D,X), and (D,Y ) has probability equal to 0.25. Thus, it follows
from the above arguments that fixing a finite m as large as one wishes, there exists a small
enough ε such that the limiting empirical distribution of play in the corresponding game is
concentrated on the outcome (U,Z) a proportion of time close to 1: this is very “far” from
the unique correlated equilibrium distribution of the game.

On the other hand, for any ε > 0 and taking m = ∞, it follows from the result in Hart
and Mas-Colell [11] that the limiting empirical distribution of play must approximate the
unique correlated equilibrium. Our analysis shows that, in obtaining this result, the infinite
tail of memory is crucial.
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6 Proofs

Proof of Proposition 4.1 Suppose that Â is a PCUSOBR set. Let Pi(Â) be the projection of
Â on Ai . Pick any action profile (a1, . . . , aN) ∈ Â. Suppose that in period t , the dynamics
is in state (at−m+1, . . . , at ) ∈ H such that ak = (a1, . . . , aN) ∀k = t − m + 1, . . . , t . We
argue by induction that for all t ′ ≥ t , the state in period t ′, (at ′−m+1, . . . , at ′) is such that
ak ∈ Â ∀k = t ′ − m + 1, . . . , t ′. This is clearly true for t ′ = t . Now, suppose that this is
true for t ′′ ≥ t . Consider at ′′+1. It must be that for all i, either at ′′+1

i = at ′′
i , or there exists

a ak , where t ′′ − m + 1 ≤ k ≤ t ′′, such that ak
i = at ′′

i and πi(a
t ′′+1
i , ak

−i ) > πi(a
k
i , a

k
−i ). If

at ′′+1
i = at ′′

i , then obviously at ′′+1
i ∈ Pi(Â). On the other hand, since ak ∈ Â (follows from

the induction hypothesis) and Â is a PCUSOBR set, we again have at ′′+1
i ∈ Pi(Â). Since this

is true for all i, at ′′+1 ∈ ∏
i∈N Pi(Â) = Â, where the equality follows since Â is a product

set, which completes the induction argument.
This implies that starting from period t , any action profile that does not belong to Â is

played with zero probability. Hence, there exists a recurrent class Ĥ such that A(Ĥ ) ⊆ Â.
The first statement in the proposition follows from this fact.

Next, suppose that Ĥ is a recurrent class of M̄G(q). We first argue that A(Ĥ ) is a CU-
SOBR set. Pick any action profile (a1, . . . , aN) ∈ A(Ĥ ). There exists a (a1, . . . , am) ∈ Ĥ

such that ak = (a1, . . . , aN) ∀k = 1, . . . ,m (because there is inertia in the dynamics and Ĥ

is a recurrent class). Let (a′
1, . . . , a

′
N) ∈ BG(a1, . . . , aN). From state (a1, . . . , am) there is a

positive probability that the dynamics will move to the new state (a2, . . . , am, am+1), where
am+1 = (a′

1, . . . , a
′
N). Since Ĥ is a recurrent class, it must be that (a2, . . . , am, am+1) ∈ Ĥ

and hence, (a′
1, . . . , a

′
N) ∈ A(Ĥ ).

Now, suppose that A(Ĥ ) is a CUSOBR set that contains a smaller PCUSOBR set Â. Then
there exists a recurrent class H ′ of M̄G(q) such that A(H ′) ⊆ Â ⊂ A(Ĥ ), a contradiction.
This completes the proof of the second statement in the proposition. �

Proof of Proposition 4.5 As in the previous proof, we can argue that if Â is a PCUSOBR
set, then there exists a recurrent class Ĥ of M̃G(q) such that A(Ĥ ) ⊆ Â.

We argue that if Ĥ is a recurrent class of M̃G(q), then A(Ĥ ) contains a PCUSOBR set.
Pick any action profile (a1, . . . , aN) ∈ A(Ĥ ). Recall the definition of B̂G, and to simplify
notation, we instead write B̂ . Consider the iteration

B̂
({

(a1, . . . , aN)
}) ⊆ B̂2

({
(a1, . . . , aN)

}) ⊆ · · · ⊆ B̂l
({

(a1, . . . , aN)
}) · · · .

Since the set of action profiles is finite, there exists a finite l′ such that for all l ≥ l′,
B̂l({(a1, . . . , aN)}) = B̂l+1({(a1, . . . , aN)}) = Ã. By construction, Ã is a PCUSOBR set.

Let s|A| < m. Since Ĥ is a recurrent class, starting at any state in Ĥ , the action pro-
file (a1, . . . , aN) will be played after finite time. Then each player can repeatedly draw
a sample in which as = (a1, . . . , aN), and therefore, this action profile will be played
for the next m periods due to inertia, i.e., there exists an (a1, . . . , am) ∈ Ĥ such that
ak = (a1, . . . , aN) ∀k = 1, . . . ,m. Let (a′

1, . . . , a
′
N) ∈ B̂({(a1, . . . , aN)}) \ {(a1, . . . , aN)}.

Starting with state (a1, . . . , am) in period t , there is a positive probability that (a′
1, . . . , a

′
N)

is played for the next s periods. This is because in each t + k period, where 1 ≤ k ≤
s, each player can draw an s-period sample in which only (a1, . . . , aN) is played. Let
(a′′

1 , . . . , a′′
N) ∈ B̂({(a1, . . . , aN)}) \ {(a1, . . . , aN), (a′

1, . . . , a
′
N)}. Starting with period t + s,

there is a positive probability that (a′′
1 , . . . , a′′

N) is played for the next s periods. This is be-
cause in each t + s + k period, where 1 ≤ k ≤ s, each player can again draw an s-period
sample in which only (a1, . . . , aN) is played. It is clear that in finite time, we will obtain
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a history h in which each action profile in B̂({(a1, . . . , aN)} is played for at least s peri-
ods. Let (ã1, . . . , ãN ) ∈ B̂2({(a1, . . . , aN)}) \ B̂({(a1, . . . , aN)}). Hence, for all i, there exists
an (ã′

i , ã
′
−i ) ∈ B̂({(a1, . . . , aN)}) such that ãi ∈ Bi(ã

′
i , ã

′
−i ). In each of the s periods follow-

ing history h, there is a positive probability that player i will draw an s-period sample in
which only (ã′

i , ã
′
−i ) is played. Hence, there is a positive probability that (ã1, . . . , ãN ) will

be played during these s periods. Continuing the argument, we see that we will obtain a
history h̃ in which all action profiles in Ã are played at least s times. Since Ĥ is a recurrent
class, history h̃ ∈ Ĥ . Hence, Ã ⊆ A(Ĥ ).

So far we have argued that: (i) if Â is a PCUSOBR set, then there exists a recurrent class
Ĥ such that A(Ĥ ) ⊆ Â, and (ii) if Ĥ is a recurrent class, then A(Ĥ ) contains a PCUSOBR
set. It follows from these statements that a minimal PCUSOBR set Â contains a A(Ĥ ),
where Ĥ is a recurrent class, which in turn contains a PCUSOBR set Ã. Since Â is a minimal
PCUSOBR set, it must be that Â = A(Ĥ ). On the other hand, if Ĥ is a recurrent class,
then A(Ĥ ) contains a PCUSOBR set and hence a minimal PCUSOBR set Ã, which in turn
contains A(H̃ ), where H̃ is a recurrent class. But H̃ = Ĥ , and hence, A(Ĥ ) = Ã. Thus, the
proposition is established. �
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