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Abstract An important feature of a dynamic game is its monitoring structure
namely, what the players effectively see from the played actions. We consider
games with arbitrary monitoring structures. One of the purposes of this paper
is to know to what extent an encoder, who perfectly observes the played actions
and sends a complementary public signal to the players, can establish perfect
monitoring for all the players. To reach this goal, the main technical problem
to be solved at the encoder is to design a source encoder which compresses the
action profile in the most concise manner possible. A special feature of this
encoder is that the multi-dimensional signal (namely, the action profiles) to be
encoded is assumed to comprise a component whose probability distribution is
not known to the encoder and the decoder has a side information (the private
signals received by the players when the encoder is off). This new framework
appears to be both of game-theoretical and information-theoretical interest. In
particular, it is useful for designing certain types of encoders that are resilient
to single deviations and provide an equilibrium utility region in the proposed
setting; it provides a new type of constraints to compress an information source
(i.e., a random variable). Regarding the first aspect, we apply the derived result
to the repeated prisoner’s dilemma.
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1 Introduction

The set of equilibrium utilities of a non-cooperative dynamic game is
strongly related to the observation capabilities of the players. For instance,
in a long-run repeated prisoner’s dilemma where the two players do not
see anything from the played actions (blind players), the only equilib-
rium point corresponds to the inefficient outcome where both players defect
[Aumann(1981a)][Sorin(1992)]. On the other hand, when players perfectly ob-
serve all the actions which have been played (perfect monitoring assumption),
efficient equilibria can be sustained; in particular, the social optimum is an
equilibrium point of the infinitely repeated dilemma or its version with dis-
count factor. This special case illustrates the potential need for being able to
transform the monitoring structure of a repeated game into a new one. The
relevance of such a transformation may appear in other types of settings such
as stochastic games, multi-agent learning, or networked optimization. For ex-
ample, perfect monitoring (PM) can be targeted to implement the standard
fictitious play or best-response algorithms (see e.g., [Peyton(2004)]). The de-
sired final monitoring structure (i.e., after transformation) does not necessarily
need to be PM and, for example, ensuring that the players observe (thanks to
the transformation) a certain public signal can be sufficient to obtain efficient
outcomes for the game. The solution proposed in this paper is to implement
this monitoring structure transformation by adding an external agent or en-
coder (whose role is not strategic but only to encode signals and send them
to the players to improve their observation capability) to the initial game.
For the sake of clarity and simplicity, the encoder is assumed to perfectly ob-
serve the actions played and the desired structure, after transformation, is PM.
Note that PM at the encoder is not always necessary to ensure PM for the
players (see [LeTreust and Lasaulce(2011a)]). Interestingly, there exist some
practical scenarios where assuming PM at a terminal is relevant. In wireless
communications, the decentralized multiple access channel case is known to
be very important [LeTreust and Lasaulce(2010)]. In this scenario, there are
one receiver (e.g., a WiFi access point or a base station) and several transmit-
ters (e.g., mobile terminals) which choose freely their transmission policy (say
their power allocation policy) in order to optimize some performance metric
such as the individual transmission rate. Considering that the base station
has a computational and observation capability much larger than the mo-
bile transmitters is a typical assumption in wireless communications (see e.g.,
[Kowalewski(2000)][DaSilva et al(2011)DaSilva, Taffin, Lasaulce, and Buljore]).
As a consequence, the receiver can, in particular, have the role of an encoder
which sends a feedback on the played actions to the transmitters. Another
important scenario of practical interest for which the framework proposed in
this paper is fully relevant is the case of sensor networks with a fusion center
(see e.g., [I. F. Akyildiz and Cayirci(2002)]).

One of the main issues addressed in this paper is the design of an encoder
which is capable of transforming a monitoring structure by sending comple-
mentary public signals to the players. The problem comes from the fact that
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the set of public signals has a fixed cardinality. One of the consequences of
this assumption is the existence of an information constraint on the played
action profiles and more precisely on their distribution, and therefore on the
feasible players’ utilities. As explained further, characterizing this information
constraint amounts to designing an encoder which represents the information
source (namely, the action profile) in a manner as concise as possible. How-
ever, to make the source encoder able to operate at equilibrium (and therefore
characterize equilibrium utilities), the encoder has to possess a certain prop-
erty, called the resilience property [LeTreust and Lasaulce(2011b)], which has
a cost in terms of compression efficiency. In terms of communication, such a
property ensures that, even when one player uses a distribution on his action
sequences which is arbitrary and unknown to the encoder, PM remains guar-
anteed. In strategic terms, if we consider the case of repeated games (which is
the case study chosen in this paper), it means that grim-trigger-like plans can
be implemented.

The paper is structured as follows. A state of the art on the problem under
investigation is done in Sec. 2. Sec. 3 exploits information-theoretic tools to
derive one of the central two results of this paper which is the information con-
straint (9) stated in Theorem 1 and explains how this constraint translates into
a set of action profile distributions (and therefore into feasible utilities) that
are compatible with the perfect monitoring assumption. Sec. 4 provides the
second important result, stated in Theorem 2, which is an achievable equilib-
rium utility region for encoder-assisted infinitely repeated games with signals.
The paper is concluded in Sec. 5.

2 Related works

Before mentioning some relevant works related to the one reported here, it is
useful to define at this point a monitoring structure. A monitoring structure
is a conditional or transition probability defined by :

k : A −→ ∆(S) (1)

where A = A1 × A2 × ... × AK is the discrete set of action profiles, K is
the number of players, Ak is the discrete set of actions of player k ∈ K =
{1, 2, ...,K}, S = S1×S2× ...×SK, Sk is the discrete set of signals received by
player k, and the notation ∆(S) stands for the set of probability distributions
on S (unit simplex).

The first relevant body of related works comprises papers providing lossless
[Shannon(1948)] and zero-errors [Shannon(1956)][Witsenhausen(1976)] source
coding theorems. Indeed, the role of the encoder in this paper is to encode a
sequence (or block) of action profiles into a sequence of public signals which is
observed by the players. As already mentioned, making this in a concise man-
ner is of prime interest to characterize the information constraint. The con-
sidered source coding problem has two main features : the decoders (namely,
the players) have a side information on the source (the private signal) and we
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want the encoder to be resilient to single deviations that is, the past action
profiles are decoded reliably even when the probability distribution of the ac-
tion of a given player varies arbitrarily over time and remains unknown to
both the encoder and decoders. Remarkably, the information theory litera-
ture provides the right framework to design such encoders. The corresponding
framework is the one of arbitrary varying sources (AVS) : the source distribu-
tion Pv(a) ∈ ∆(A) can vary from sample to sample, depending on a parameter
or state v ∈ V which represents, in our setting, the probability distribution
of the deviator’s action. The most relevant works on AVS is based on graph
coloring [Bondy and Murty(1976)] and can be found in [Ahlswede(1979)] and
[Ahlswede(1980)]. Indeed, the latter references deal with the scenario of two
correlated sources either in the case where the destination is informed with
the sequence of states or in the case where it is not known. The work re-
ported in this paper is precisely related to the scenario of two arbitrary vary-
ing correlated sources of actions a and private signals sk with a destination
(i.e. player k ∈ K) uninformed of the state (i.e. strategy of an eventual de-
viator) ; this scenario is described by Fig. 3.1. One of our contributions, in
addition to establishing a link between equilibrium utility regions and the
AVS literature, is to show that the entropy positiveness condition (EPC) in
[Ahlswede(1979)][Ahlswede(1980)], under which source coding rates (i.e. op-
timal compression level) can be characterized, can be removed and replaced
with another mathematical condition which is of strong game-theoretic in-
terest namely, the resilience property. Additionally, it holds for some useful
special cases for which the EPC is not met, the case of deterministic channels
in particular.

The second body of works concerns works on folk theorems. The stronger
results have been obtained for one of the simplest classes of dynamic
games namely, the one of repeated games (see e.g., [Sorin(1992)] for a
survey). The standard approach consists in assuming a given monitoring
structure (e.g., standard-trivial monitoring [Lehrer(1991)], public monitor-
ing [Fudenberg et al(1994)Fudenberg, Levine, and Maskin], or almost-perfect
monitoring [Hörner and Olszewski(2006)]) and, then, deriving a folk theorem.
Compared to these works, our approach is different since we do not try to char-
acterize the equilibrium utilities of a repeated game with an arbitrary monitor-
ing structure (which is an open problem [Renault and Tomala(2011)]). Rather,
our approach aims at transforming, with an additional encoder, an arbitrary
monitoring structure of any dynamic game into a new monitoring structure
for which the equilibrium utilities can be fully characterized ; in this paper,
PM is the targeted final structure. Even though the final monitoring structure
is PM, there are still some differences between a dynamic game with PM (the
focus will be on repeated games here) and a dynamic game where players have
PM thanks to the encoder :

– there exists an internal information constraint on the action distribution
due to the fact that the set of public signals has a fixed cardinality ;
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– action profiles are encoded by blocks by the encoder and each player de-
codes a block of played actions from a whole block of observations. There-
fore PM is established with a delay ;

– only i.i.d equilibrium utilities (and convex combinations of them) are stud-
ied. This assumption on the action profiles is well motivated in the paper
and does not prevent us from deriving useful results which may be extended
if needed.

For all of these reasons, we will use the term “virtually perfect monitoring”
(VPM) to refer to such a framework.

To conclude on the most relevant references related to the work re-
ported in this paper, we will mention a couple of references at the intersec-
tion between game and information theory. For instance, in [Lehrer(1988)],
[Bavly and Neyman(2003)], [Peretz(2011)] entropy-based information con-
straints are used to characterize the individually rational levels of repeated
games with bounded recall. In [Gossner and Tomala(2007)], the authors char-
acterize the maximum utility a team can guarantee against another in a
class of repeated games with imperfect monitoring by exploiting a constraint
on possible correlation schemes expressed in terms of entropy variation. In
[Gossner et al(2006)Gossner, Hernandez, and Neyman], the authors are ex-
ploiting an information constraint in the sense of the present work that is,
the source coding rate has to be less than the channel capacity, although the
constraint is not interpreted this way in their work. This leads to a charac-
terization of equilibrium utilities a team of two players can implement when
only one player is (noncausally) informed of the i.i.d. sequence of states of the
repeated game.

3 Virtual perfect monitoring of an arbitrarily varying information
source

3.1 Methodology

The scenario under consideration is as follows (see Figure 3.1). Let us fix a
family of probability distributions P⋆

k ∈ ∆(Ak) with k ∈ K. When a given
action profile a = (a1, a2, ..., aK) ∈ A is drawn from the product probability
P⋆ = P⋆

1 ⊗ . . .⊗ P⋆
K ∈ ∆(A), player k ∈ K receives a symbol sk ∈ Sk with a

probability given by the conditional probability

k(sk|a) =
∑

s−k∈S−k

k(sk, s−k|a). (2)

An encoder C, who perfectly monitors the played actions, encodes the observed
action profiles by blocks or sequences of size n ≥ 1 into a sequence of public
signals s0 ∈ S0 which are received by all the players. These public signals form
a perfect channel of capacity log2 |S0|, which is orthogonal to the one defined
by k that is, player k actually receives a pair of signals (sk, s0) for every played
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action profile. Note that player k recall it’s own action ak. The purpose of the
encoder is to use the minimal amount of additional information, in order for
every player to acquire the information which is missing to have PM. In what
follows, we first define a code in our setup. Second, we define the notion of
virtually perfect monitoring (VPM) of actions profile a = (a1, a2, ..., aK) ∈ A
defined as an arbitrarily varying information source (AVS). Third, we prove
a theorem which state an information constraint on the action profile distri-
bution which is due to the fact that the communication channel between the
encoder and players has a limited capacity. Denote An (resp. A∞) the set of
sequences an ∈ An of length n ∈ N (resp. of sequences a∞ ∈ A∞ of infinite
length).

#1

#2

#K

b

b

b

a1

a2

aK

(a1, a2, . . . , aK)
b b k

s1

s2

sK

a1

a2

aK

#1

#2

#K

b

b

b
a

C

s0

s0

s0

Fig. 1 Each action profile of the game a = (a1,a2, . . . ,aK) generates a signal profile
(s1, s2, ...sK) through a condition probability k. Player #k (represented twice here above)
only observes sk from this action profile a. The encoder C, who perfectly monitors the played
action profiles a, builds a complementary public signal s0 which is observed by all the players.
Each player has to reconstruct virtual perfect monitoring (VPM) from a sequence of pairs
of signals (sk, s0) and the knowledge of the sequence of its individual actions ak.

3.2 Information constraint for resilient coding with side information at the
decoder

Here, we assume that the distribution of the source may vary from stage (or
action profile) to stage (or action profile) ; this is the framework of arbitrarily
varying source (AVS) coding.
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Definition 1 (Arbitrarily Varying Source (AVS)) Let P⋆ ∈ ∆(A) a
probability distribution (mixed strategy) and V the set of states of the source:

V = ∪k∈K∆(A∞
k ). (3)

The arbitrarily varying (AVS) information source a ∈ A is at a certain state
v ∈ V , when one component of the action profile has a distribution which may
vary arbitrarily over time and is fully unknown to the coder. For example,
when the sequence of the states is v = Qi ∈ ∆(A∞

i ) ⊂ V , the sequence of
actions an = (an

1 , . . . , a
n
K) is drawn following a probability distribution given

by :

Pv(a
n
1 , . . . , a

n
i , . . . , a

n
K) =

[

P⋆ ⊗n
1 ⊗ . . .⊗Qi ⊗ . . .⊗ P⋆ ⊗n

K

]

(an). (4)

Now, we formally define the notion of code for the AVS represented by Fig.
3.1.

Definition 2 A code λ of size n for the encoder C and decoders K consists of
an encoding function f0 and K decoding functions (gk)k∈K defined as :

f0 : An −→ Sn
0

gk : Sn
0 × Sn

k ×An
k −→ An, ∀k ∈ K

. (5)

Denote by Λ(n), the set of codes for which the length n ∈ N of the code-words
is fixed.

Pe(λ) =
∑

k∈K

max
i∈K

max
vi∈∆(A∞

i )
Pvi(a

n 6= gk(s
n
k , s

n
0 , a

n
k )), (6)

The error probability Pe(λ) of the code λ ∈ Λ(n) is defined by equation (6)
and corresponds to the sum of the error probability for each decoder k ∈ K,
considering every possible deviation vi ∈ ∆(A∞

i ) of player i ∈ K (i.e. any
variation of the source).

Definition 3 (Virtually Perfect Monitoring (VPM)) Players K have a
virtually perfect monitoring (VPM) of the information source a ∈ A if for all
ε > 0, there exists a parameter n ∈ N, and a code λ ∈ Λ(n) such that:

Pe(λ) ≤ ε, (7)

The condition (7) means that it is possible to find coding and decoding
functions to represent any sequence of n realizations of the K−dimensional
random variable a with 2n log2 |S0| indices or sequences of public signals in
such a way that, any decoder k, based on the knowledge of (sn0 , s

n
k , a

n
k ), can

find the sequence an with an arbitrarily small probability of error. In a game
theoretical framework, the players virtually perfect monitor the sequences of
past actions played.

At this point, the main issue is to be able to characterize the set of AVS
information source that are compatible with the VPM of the players K. The
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AVS hypothesis guarantee that the past actions played will be observed by
all the players even if one of them deviates, manipulates the coding scheme
λ ∈ Λ(n) in order to break reliability. Theorem 1 provides an information
constraint which guarantee VPM for the AVS information source of player’s
actions a. To state this theorem, an auxiliary graph needs to be defined first.

Definition 4 (Auxiliary graph) For each player i ∈ K, an auxiliary graph
Gi is defined as follows Gi = (Ai, Ei). The actions ai ∈ Ai of player i ∈ K are
the vertices of the graph. There exists an edge ei = (ai, a

′
i) ∈ Ei between two

actions ai ∈ Ai and a′i ∈ Ai if :

∃ a−i ∈ Supp P⋆
−i, ∃k ∈ K, ∃sk ∈ Sk, ∃δ > 0, s.t.

min(k(sk|ai, a−i),k(sk|a
′
i, a−i)) ≥ δ

where Supp P⋆
−i is the support of the probability distribution P⋆

−i defined by
P⋆
−i =

⊗

j 6=i P
⋆
j ∈

∏

j 6=i ∆(Aj).

Two vertices ai ∈ Ai and a′i ∈ Ai are neighbors in the graph Gi if the prob-
ability that these actions lead, through k, to the same signal sk ∈ Sk for
at least one player k ∈ K is not zero. Now, to define the chromatic number
[Bondy and Murty(1976)] of the graph Gi, we define the notion of coloring in
our context.

Definition 5 (Coloring) Let Φi a set of colors. A coloring of the graph Gi

is a function φi : Ai −→ Φi which satisfies :

∀ei = (ai, a
′
i) ∈ Ei, we have that φi(ai) 6= φi(a

′
i). (8)

A minimal coloring of the graph Gi is a coloring φi for which the cardinality
of the set of colors Φi is minimal. The chromatic number χi of the graph Gi

is the cardinality |Φi| of the set of colors of the minimal coloring of the graph
Gi. This is precisely this quantity which is used in the next theorem.

Theorem 1 (Coding result for AVS) Players K have a virtually perfect
monitoring (VPM) of the arbitrarily varying (AVS) information source a ∈ A
if the following condition is met :

R
⋆ = max

i∈K

[

max
k∈K,
ai∈Ai

H(a−i,k|sk(ai),ak) + log2 χi

]

< log2 |S0|, (9)

where :

• a−i,k is the action profile without the components i and k. It is distributed
as P⋆

−i,k ∈
∏

j 6=i,
j 6=k

∆(Aj) ;

• sk(ai) is the signal received by player k when the action ai is fixed. It is
induced by a−i and the transition probability k :

kai : A−i −→ ∆(Sk) (10)

a−i −→ kai(sk|a−i) = k(sk|ai, a−i)

=
∑

s−k∈S−k

k(sk, s−k|ai, a−i) ; (11)
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• log2 |S0| is given by the cardinality of the set of public signals and corre-
sponds to the capacity of the perfect channel between the encoder C and the
players K.

Several comments are in order. First, let us comment on the main assump-
tions. The i.i.d assumption over time made on the source to be encoded is
common in the information theory literature and will only be briefly com-
mented. Solving the i.i.d. case might not only be helpful but even sufficient for
solving the case with arbitrary correlation between consecutive source samples.
To be more specific, if the source generates B blocks of ℓ correlated symbols
for B sufficiently large, ℓ < +∞, and i.i.d. blocks, then the information con-
straint directly follows from the original i.i.d case (concerning i.i.d symbols)
by considering vectors of symbols instead of symbols. Beyond this framework,
the source coding literature comprises works dealing with refinements such
as universal coding [Gallager(1976)] and information-spectrum based coding
[Han(2003)]. Now, from a game-theoretic perspective, studying sequences of
i.i.d profiles (up to one component) is not only an intermediate case which can
be challenging technically (think of repeated games with arbitrary monitor-
ing structures) but also to design implementable equilibrium action plans. As
for relaxing the i.i.d assumption over space (over the components), provided
the resilience property is relaxed and the joint distribution on the actions is
known to the encoder, it only consists in changing scalar quantities into vec-
tors (of size K). When resilience to single deviations is required, the spatial
i.i.d assumption is useful to derive information constraint (as advocated by
the proof provided in App. A) but studying necessity is a possible extension
of this work. At last note that the spatial i.i.d assumption allows one to study
mixed strategies which is known to be important.

Now, let us comment on the result i.e., the information constraint defined
by (9). The presence of the maximum over i is due to the fact that the loca-
tion of the component (which corresponds to the deviator in a game), whose
distribution is unknown, is itself unknown to C. The second maximum over k

and ai indicates the case where the deviator i chooses the worst action ai in
terms of coding efficiency for to the worst decoder k. The conditioning w.r.t.
(sk(ai), ak) in the entropy translates the knowledge of the decoder in terms
of side information, which therefore reduces the entropy. The isolated term
log2 χi corresponds to the amount of information needed by C to encode a
component separately ; since the probability distribution of ai is unknown,
symbol-by-symbol coding is optimal here. Without side information at the
decoder i this quantity would be log2 |Ai|. At last, the righthandside term
log2 |S0| corresponds to the channel capacity of a broadcast channel with a
public message and for which the decoders directly observe the signal sent by
the encoder (see e.g., [Cover and Thomas(2006)]).

To conclude this section, let us comment on the proof of this theorem.
Although the detailed proof of this theorem is provided in Sec. A, we would
like to mention here some technical differences w.r.t the derivation made by
Ahlswede in [Ahlswede(1980)]. The imposed condition is totally different. Im-
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posing resilience to single deviations to the source encoder requires to trans-
mit without error the sequence of actions of the deviating player. Our proof
is based on a sequence of coloring where the vertices are the symbols whereas
Ahlswede [Ahlswede(1980)] use a coloring where the vertices are the sequences
of symbols. To exploit the law of large numbers for the sequences of symbols,
his proof requires an additional condition which is EPC. In our framework,
this condition is removed and replaced with a condition over the admissible
sequences of states (3) and by the feature that the random signal s depends
on the state v only through the action a. Our result is applicable to the case of
deterministic transition probability k whereas this special type of transition
probabilities does not meet EPC.

4 Equilibrium utilities of an encoder-assisted repeated games with
signals

The goal of this section is to characterize equilibrium utilities of an infinite
repeated game with signals where an additional encoder establishes VPM. To
this end, notations, definitions and results of the preceding section are used.

4.1 Game formulation and main result

We consider an encoder-assisted repeated game with signals. The stage or con-
stituent game is given by the triplet (K, (Ak)k∈K, (uk)k∈K), where uk ∈ R is
the utility function of player k ∈ K. The private monitoring structure is given
by the conditional probability k(s|a) : A −→ ∆(S). The encoder C is assumed
to perfectly monitor the past action profile a ∈ A and send a public message
s0 ∈ S0 to the players.
A strategy for the encoder (by abuse of language we use the term strat-
egy here even though in this paper the encoder has no utility in the game-
theoretic sense) is a sequence of causal functions or mappings σ = (σt)t≥1 with
∀t ≥ 1, σt : At−1 × St−1

0 → S0 ; t stands for the stage index and at is the
profile played at stage t ; the set of strategies of the encoder will be denoted
by Σ.
A behavior strategy for a player is a sequence of causal functions or map-
pings (τ tk)t≥1 with ∀t ≥ 1, τ tk : (Ak × Sk × S0)

t−1 → ∆(Ak) ; the notation
τ = (τ1, τ2, ...τK) will stand for a profile of behavior strategies for the repeated
game ; the set of behavior strategies will be denoted by T =

∏

k∈K Tk.
At last, we will denote by Pσ,τ the probability distribution on the infinite
sequences of actions, private and public signals ((a∞k )k∈K, (s

∞
k )k∈K, s

∞
0 ) ∈

A∞ × S∞ × S∞
0 induced by the pair of strategies (σ, τ) ∈ Σ × T . At this

point, one can define a uniform equilibrium of the encoder-assisted repeated
game with signal.

Definition 6 (Equilibrium points) A pair of strategies (σ, τ) ∈ Σ × T
of the encoder C and the players K is a uniform equilibrium of the encoder-
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assisted repeated game with signals if :

(i) For each player k ∈ K, the expected utility,

γT
k (σ, τ) = Eσ,τ

(

1

T

T
∑

t=1

uk(at)

)

, (12)

has a limit when T → +∞;

(ii) ∀ε > 0, ∃T̄ > 0, ∀T ≥ T̄ , ∀k ∈ K, ∀τ ′k ∈ Tk, such that,

γT
k (σ, τ

′
k, τ−k) ≤ γT

k (σ, τk, τ−k) + ε. (13)

The point U⋆ = (U⋆
1 , U

⋆
2 , ..., U

⋆
K) ∈ RK is a vector of equilibrium utilities if

there exists a pair of strategies (σ⋆, τ⋆) such that:

∀k ∈ K, lim
T→+∞

γT
k (σ

⋆, τ⋆) = U⋆
k . (14)

The set of the equilibrium points of the encoder-assisted repeated game with
signals will be denoted by NE∞

enc.

Definition 7 (Individually rational points) The independent min-max
level υk of player k ∈ K is defined by (15) and is also called punishment or
defense level. The individually rational IR utilities are defined by (16) and
correspond to the utilities that Pareto-dominate the min-max levels defined
as

υk = min
P−k∈

∏

i6=j ∆(Aj)
max

Pk∈∆(Ak)
EPk,P−k

[

uk(ak, a−k)

]

, k ∈ K, (15)

IR =

{

(xk)k∈K ∈ R
K

∣

∣

∣

∣

xk ≥ υk ∀k ∈ K

}

. (16)

Definition 8 (Information constraint set) The set R of mixed actions
that satisfy the information constraint (9) is defined by :

R =

{

P ∈
∏

k∈K

∆(Ak)

∣

∣

∣

∣

max
i∈K

[

max
k∈K,
ai∈Ai

H(a−i,k|sk(ai), ak) + log2 χi

]

< log2 |S0|

}

.

(17)

Theorem 2 (Folk theorem with VPM) The set of utilities conv u(R)∩IR
is included in the set of uniform equilibrium utilities for the encoder-assisted
repeated game with signals :

conv u(R) ∩ IR ⊂ NE∞
enc. (18)

Moreover, for any utility vector in this set, VPM can be implemented by the
encoder C and the players K.
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The proof is provided in Sec. B and is based on Theorem 1. The framework
of AVS is exploited to characterize the communication possibilities for the
encoder. The first feature of the problem is that the coding scheme must be
reliable even if one of the players deviates. The second main feature is that
the coding scheme must also take into account the private signals received
by the players. These two hypotheses allow us to determine the amount of
additional information needed from the encoder in order to implement VPM.
Interestingly, the proof of Theorem 2 relies on classical grim-trigger strategies
but implemented in a blockwise manner and by exploiting VPM and strong
typicality [Cover and Thomas(2006)] as a statistical test whose result indicates
to every player whether to keep on following the main plan.

4.2 Application to the repeated prisoner’s dilemma

We consider a prisoner’s dilemma whose matrix form is given by Tab. 1. Let
|A| = 4 and |S0| = 3. Note that the encoder cannot send the action profile
profile directly to the players. The goal of this section is to describe the mixed
strategies P⋆ ∈ ∆(A) that are compatible with the information constraints
(9). If this constraint is satisfied, the encoder can compress the sequence of

L R

T (3, 3) (0, 4)
B (4, 0) (1, 1)

Table 1 The prisoner’s dilemma in a matrix form.

past actions, encode it into a sequence of public signals and the players can
decode the sequence of past action with an error probability that goes to zero
when the length of the sequences goes to infinity. Denote A1 = {T,B} and
A2 = {L,R}.

b b b

#2

#1

#2

#1

C

k

|S0| = 3|A| = 4

an
2

an
1

an = (an
1 ,a

n
2 )

ân = (ân
1 , â

n
2 )

ân = (ân
1 , â

n
2 )

sn2 ,a
n
2

sn1 ,a
n
1

sn0

Fig. 2 This figure illustrates the encoder-assisted monitoring structure for the repeated
version of the prisoner’s dilemma. The Theorem 2 provide a set R of mixed strategies
P⋆ ∈ ∆(A) that allow the encoder C to establish VPM and the players K to implement an
equilibrium strategy.
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To have a better understanding on how the results derived in Sec. 3 and 4.1
are exploited here, we consider a particular monitoring structure k described
by Fig. 3 with δ ∈ [0, 1]. This means that if the action a−k ∈ A−k was played,

b

b

b

b

b

b

b

b

a′1

a1

a′2

a2

s′2

s2

s′1

s1

1− δ
2

1− δ
2

1− δ
2

1− δ
2

δ
2

δ
2

k

Fig. 3 Private monitoring structure k that depends on the parameter δ ∈ [0, 1].

player k ∈ {1, 2} observes the right signal sk ∈ Sk with probability 1− δ
2 and

observes the wrong signal s′k ∈ Sk with probability δ
2 . When δ = 0, all the

players have perfect monitoring. On the other hand, when δ = 1, they cannot
distinguish anything from the signal they observe (trivial monitoring). For this
monitoring structure k(s1, s2|a1, a2) with δ ∈ [0, 1], we want to determine the
set conv u(R)∩IR of utility profiles which are compatible with the information
constraint (9). For the scenario under investigation, the information constraint
(9) for δ > 0 rewrites as :
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R⋆ = maxi∈K

[

max k∈K,
ai∈Ai

H(a−i,k|sk(ai), ak) + log2 χi

]

< log2 |S0|

(a)
⇔ max

[

H(a2|s1) + log2 χ1,
H(a1|s2) + log2 χ2,

]

< log2 |S0|

(b)
⇔ max









∑

a2∈A2,
s1∈S1

P⋆(a2)k(s1|a2) log2

∑

ã2∈A2
P⋆(ã2)k(s1|ã2)

P⋆(a2)k(s1|a2)
+ log2 χ1,

∑

a1∈A1,
s2∈S2

P⋆(a1)k(s2|a1) log2

∑

ã1∈A1
P⋆(ã1)k(s2|ã1)

P⋆(a1)k(s2|a1)
+ log2 χ2









< log2 |S0|

(c)
⇔ max























































P⋆(a2)(1 − δ
2
) · log2

(

P⋆(a2)(1−
δ
2
)+P⋆(a′

2)
δ
2

P⋆(a2)(1−
δ
2
)

)

+ P⋆(a′2)
δ
2
· log2

(

P⋆(a2)(1−
δ
2
)+P⋆(a′

2)
δ
2

P⋆(a′
2)

δ
2

)

+ P⋆(a2)
δ
2
· log2

(

P⋆(a2)
δ
2
+P⋆(a′

2)(1−
δ
2
)

P⋆(a2)
δ
2

)

+ P⋆(a′2)(1 − δ
2
) · log2

(

P⋆(a2)
δ
2
+P⋆(a′

2)(1−
δ
2
)

P⋆(a′
2)(1−

δ
2
)

)

,

P⋆(a1)(1 − δ
2
) · log2

(

P⋆(a1)(1−
δ
2
)+P⋆(a′

1)
δ
2

P⋆(a1)(1−
δ
2
)

)

+ P⋆(a′1)
δ
2
· log2

(

P⋆(a1)(1−
δ
2
)+P⋆(a′

1)
δ
2

P⋆(a′
1)

δ
2

)

+ P⋆(a1)
δ
2
· log2

(

P⋆(a1)
δ
2
+P⋆(a′

1)(1−
δ
2
)

P⋆(a1)
δ
2

)

+ P⋆(a′1)(1 − δ
2
) · log2

(

P⋆(a1)
δ
2
+P⋆(a′

1)(1−
δ
2
)

P⋆(a′
1)(1−

δ
2
)

)

,























































< log2 |S0| − 1

where (a) follows from the fact that a2 and s1 are independent of a1 and
then the entropy H(a2|s1, a1) reduce to H(a2|s1). Using the same argument,
H(a1|s2, a2) reduce to H(a1|s2). (b) follow from the definition of the condi-
tional entropy and (c) follow the fact that the chromatic number of the graphs
G1, G2 of both players are equals to χ1 = χ2 = 2 as soon as δ > 0.

Setting δ to 1, 0.35, 0.31 and 0.2, the above information constraint can
be translated into Fig. 4. This figure represents the set of feasible average
utility profiles which are both individually rational and compatible with the
information constraint (9). Let us interpret these numerical results that depend
on the precision parameter δ ∈ [0, 1] of the private monitoring k.

◦ Trivial monitoring: δ = 1. The players have no information from their
private signal, about the actions of their opponent. Theorem 2 show that for
some utility vectors represented by the blue hatched region conv u(R)∩IR,
the encoder is able to send to both players, the sequences of past actions
(with |A| = 4) using an alphabet of 3 = |S0| symbols of public signals.

◦ Noisy imperfect monitoring: 0.31 < δ < 1. The private signals received
by the players reveal a partial information about the past actions of the
opponent. Only a portion of the utility region is compatible with the infor-
mation constraint (9). The virtual perfect monitoring and the equilibrium
condition are not always implementable.
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Fig. 4 The repeated version of the prisoner’s dilemma is considered. The encoder-assisted
monitoring structure of the game is described in Fig. 2 where the private monitoring
k of the players is described by Fig. 3 and depends on a parameter δ ∈ [0, 1]. For
δ = {0.2, 0.31, 0.35, 1}, the blue region represents the set u(R) ∩ IR of utilities that sat-
isfy the information constraint (9). The hatched blue region represents the convexe hull
conv u(R)∩IR of the utility that can be supported by a uniform equilibrium strategy (The-
orem 2). In that case, the encoder can maintain virtually perfect monitoring even if one of
the players deviates. Note that for δ ≤ 0.31, the precision of the private monitoring is suffi-
cient to guarantee the same equilibrium utility region as for the Folk theorem with perfect
monitoring.

©
�
×

△
�

�

�

Nash Equilibrium utility
Pareto-optimal utility
Social optimum utility
Min-max levels
Deviation utilities
conv u(A)
u(R) ∩ IR
conv u(R) ∩ IR ⊂ NE∞

enc

◦ Less noisy imperfect monitoring: 0 < δ ≤ 0.31. The blue hatched utility
region conv u(R) ∩ IR is equal to the utility region of the Folk theorem
[Aumann(1981b)] with perfect monitoring conv u(A) ∩ IR.

◦ Perfect monitoring: δ = 0. The utility region coincides with the set of
feasible and individually rational utilities.

The proposed approach provides an equilibrium strategy (σ⋆, τ⋆) ∈ Σ×T that
supports any utility profile in the blue hatched region U⋆ = conv u(R)∩ IR of
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Fig. 4, while ensuring that the encoder can maintain VPM even in the presence
of single deviations.

5 Conclusion

This paper considers games where players have both a private signals they
receive through the initial monitoring structure and a public signal which is
sent by an encoder. The encoder is assumed to perfectly monitors the played
actions and to send a public signal to the players. The purpose of the encoder
is to establish virtual perfect monitoring. Technically, the encoder to be de-
signed takes into account the side information at the receiver and possesses
the property of resilience to single deviations. It is shown that, the internal
information constraint imposes a restriction in terms of feasible utilities in or-
der to establish virtual perfect monitoring and provide an equilibrium utility
region (as proved in the case of infinitely repeated games).

The proposed work can be extended in many respects. The targeted moni-
toring structure can be chosen to be different (e.g., a 2−connected observation
graph or a given public signal). The proposed information constraint might be
relaxed by assuming that the encoder sends complementary private signals.
An interesting result would be to establish a converse, proving that the infor-
mation constraint is necessary and sufficient. The i.i.d assumption might be
relaxed with the aim to characterize equilibrium utilities which do not assume
i.i.d action profiles.

A Proof of Theorem 1

We construct a coding scheme based on graph coloring and statistical tests. Two points have
to be considered carefully. First, the side information snk ∈ Sn

k may provide some relevant
information for player k even if another player i ∈ K deviates. Second, the transition prob-
ability k that generates the side information sk ∈ Sk is controlled by the actions ak ∈ Ak

of each player k ∈ K.

Parameter. We choose a parameter ε > 0 such that:

R⋆ + 2ε = max
i∈K

[

max
k∈K,
ai∈Ai

H(a−i,k |sk(ai),ak) + log2 χi

]

+ 2ε ≤ log2 |S0|. (19)

Encoding function f0. The encoder proceeds to the statistical test provided by (20) and
constructs for a given sequence of actions an = (an1 , . . . , a

n
K) ∈ An, the following set :

arg min
k∈K

∑

a−k∈A−k

∣

∣

∣

∣

N(a−k |a
n
−k)

n
− P⋆

−k(a−k)

∣

∣

∣

∣

. (20)

It chooses one component i ∈ K that minimizes (20). The symbols of the component i ∈ K
will be encoded using the minimal coloring φi : Ai −→ Φi (Def. 5) of the graph Gi defined
by Def. (4). Denote by χi the chromatic number of the graph Gi and

• encode the index of the chosen component i ∈ K using |K| sequences sn0 ∈ Sn
0 of public

signals ;
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• encode the sequence of colors cni ∈ Φn
i that corresponds to the sequence of actions

ani ∈ An
i with at each stage ci = φi(ai) using χn

i sequences sn0 ∈ Sn
0 of public signals.

The other components an−i ∈ An
−i will be encoded depending on the transition probability

k and on the sequence ani ∈ An
i . For example, if the symbol ai ∈ An

i has been used at
a high enough frequency, the sequences of signals (snk (ai))k∈K, drawn from the transition
probability kai : A−i −→ ∆(Sk), are sufficiently long to use a source coding scheme of
the type Slepian and Wolf [Slepian and Wolf(1973)]. Otherwise, the information an−i ∈ An

−i
should be encoded directly, without any compression. The encoder splits the sequences
snk ∈ Sn

k into sub-sequences (s
nai
k )ai∈Ai

indexed by the symbols ai ∈ Ai where nai =

N(ai|a
n
i ). The sub-sequence s

nai
k ∈ S

nai
k has length nai ∈ N and is drawn i.i.d. from the

joint probability P⋆
−i ⊗ kai ∈ ∆(A−i ×S). The encoder evaluates the partition (Ãi, Ã

c
i ) of

the symbols ai ∈ Ai defined as follows. For each ε > 0, there exists an n̄1 such that the
error probability of the Slepian and Wolf [Slepian and Wolf(1973)] coding is upper bounded
by ε > 0 :

• ai ∈ Ãi, if N(ai|ani ) = nai ≤ n̄1 and then the sequence a
nai
−i ∈ A

nai
−i is encoded with

|A−i|
nai sequences sn0 ∈ Sn

0 of public signals.

• ai ∈ Ãc
i if N(ai|ani ) = nai > n̄1 and then the sequence a

nai
−i ∈ A

nai
−i is encoded using

the "random binning technique" of Slepian and Wolf [Slepian and Wolf(1973)].

The random binning technique [Slepian and Wolf(1973)] consists in randomly assign the
2nai

H(a−i) typical sequences a
nai
−i ∈ A

nai
−i to one of the 2nai

(maxk∈K H(a−i,k|sk(ai),ak)+ε)

bin. Note that H(a−i,k|sk(ai), ak) = H(a−i|sk(ai), ak). Each bin B(sn0 ) is indexed by a

sequence sn0 ∈ Sn
0 of public signals and contains 2nai

(mink∈K I(a−i;sk(ai),ak)−ε) typical se-

quences a
nai
−i ∈ A

nai
−i . The encoder C observes a sequence of realized actions a

nai
−i ∈ A

nai
−i .

If this sequence is typical, then it send to all the players K, the sequence of public signals
sn0 ∈ Sn

0 corresponding to the bin containing the sequence a
nai
−i ∈ B(sn0 ). If it is not, the

encoder C declares an error.

Decoding function gk of player k ∈ K. The decoding player receives the index i ∈ K
of the player chosen by the statistical test (20). Using the appropriate codebook, it de-
codes separately the information regarding the component i ∈ K and the other components
j ∈ K\{i}.

• Knowing component i ∈ K chosen by the statistical test, the side information sk ∈ Sk

and the color ci ∈ Φi, the decoding player k ∈ K decodes a unique stage symbol ai ∈ Ai

for component i ∈ K.

The decoding player k ∈ K knows the entire sequence of actions ani ∈ An
i and it characterizes

the partition Ãi and Ãi
c

of the set of symbols Ai.

• For the transition kai , controlled by the symbol ai ∈ Ãi, the sequence of symbols

a
nai
−i ∈ A

nai
−i is directly decoded.

• For the transition kai , controlled by the symbol ai ∈ Ãi
c
, the sequence of actions

a
nai
−i ∈ A

nai
−i is decoded using Slepian and Wolf decoding [Slepian and Wolf(1973)]. The

decoding player k ∈ K find into the bin B(sn0 ) corresponding to the sequence of public

signals sn0 ∈ Sn
0 , a sequence a

nai
−i ∈ A

nai
−i which is jointly typical with the sequence of

side information snk (ai) ∈ Sn
k for the probability distribution P−i⊗kai ∈ ∆(A−i ×Sk).

Cardinality of Sn
0 . Let n̄2 >

log |K|+n̄1|Ai| log |A−i|

ε
. Then for all n ≥ n̄2, the cardinality

of the set of sequences |S0|n is greater than the number of sequences of the coding scheme
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2n(R⋆+3ε).

log

(

|K| · χn
i · |A−i|

∑

ai∈Ãi
nai ·

∏

ai∈Ãi
c 2nai

(maxk∈K H(a−i,k|sk(ai),ak)+ε)

)

n

≤
log |K|

n
+ logχi +

n̄1|Ãi|

n
log |A−i|+

∑

ai∈Ãi
c

nai

n
(max
k∈K

H(a−i,k|sk(ai), ak) + ε)

≤ max
i∈K

[

max
k∈K,
ai∈Ai

H(a−i,k|sk(ai), ak) + logχi

]

+
log |K|+ n̄1|Ai| log |A−i|

n
+ ε

≤ max
i∈K

[

max
k∈K,
ai∈Ai

H(a−i,k|sk(ai), ak) + logχi

]

+ 2ε

= R
⋆ + 3ε (21)

≤ log2 |S0|. (22)

Error probability. Suppose that player i ∈ K chooses his sequence of actions ani ∈ An
i

with an arbitrary sequence of distribution. There are two possibilities. First, the statistical
test (20) returns the deviating player i ∈ K. Second the statistical test returns another
player j 6= i.

• Suppose that the statistical test (20) returns the deviating player i ∈ K. In that case,
the "random binning technique" of Slepian and Wolf [Slepian and Wolf(1973)] guaran-
tees that for all ai ∈ Ãc

i the sequence of vectors of actions a
nai
−i ∈ A

nai
−i is perfectly

reconstructed with large probability. Let us define the following events:

E1 = ∪ k∈K,
ai∈Ai

{

(a
nai
−i , s

nai
k ) /∈ A⋆n

ε (A−i × Sk)

}

. (23)

There exists a player k ∈ K for which the random sequences of actions and private
signals (a

nai
−i , s

nai
k ) ∈ A

nai
−i × S

nai
k are not typical.

E2 = ∪ k∈K,
ai∈Ai

{

∃a
′nai
−i 6= a

nai
−i ∈ B(s

nai
0 ), (a

′nai
−i , s

nai
k (ai), a

nai
k ) ∈ A⋆n

ε (A−i × Sk)

}

.

(24)

There exists another sequence a
′nai
−i in the bin B(s

nai
0 ) corresponding to the sequence

of public signals s
nai
0 ∈ S

nai
0 that is jointly typical with the sequences of private signals

s
nai
k (ai) and actions a

nai
k of the player k ∈ K.

◦ From Lemma 6 of App. C, the error probability P(E1) is lower than ε ·K · |Ai| > 0
as soon as n is sufficiently large.

◦ From Lemma 7 of App. C, the expected error probability Eλ[P(E2)] of the random
code µ ∈ ∆(Λ(n)) is lower than ε ·K · |Ai| > 0 as soon as n is sufficiently large and
the condition (25) is satisfied.

|B(s
nai
0 )| ≤ 2n(mink∈K I(a−i;sk(ai),ak)−ε) (25)

Lemma 7 applies because the random sequence a
′nai
−i is generated independently of

the random sequences (s
nai
k (ai),a

nai
k ). This ensures the existence of a code λ ∈ Λ(n)

such that the error probability Pλ(E2) ≤ 2ε is upper bounded.
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• Suppose that the the statistical test returns another player j 6= i ∈ K. This implies the
following inequality:

∑

a−j∈A−j

∣

∣

∣

∣

N(a−j |an−j)

n
−P−j(a−j)

∣

∣

∣

∣

≤
∑

a−i∈A−i

∣

∣

∣

∣

N(a−i|a
n
−i)

n
−P⋆

−i(a−i)

∣

∣

∣

∣

.

(26)

For every player j ∈ K\{i}, the sequence anj ∈ An
j is drawn i.i.d. from stage to stage

with the distribution P⋆
j ∈ ∆(Aj ). From Lemma 6, these action sequences are typical

with large probability as n goes to infinity. Then, the sequence of actions ani ∈ An
i is

typical with large probability and then correctly encoded and decoded. There exists n
sufficiently large such that the error probability Pe(λ) ≤ ε is upper bounded.

We therefore proved the existence a code λ ∈ Λ(n) such that the error probability of the
code Pe(λ) ≤ 2ε ·K · |Ai| is upper bounded.

B Proof of Theorem 2

We prove the following inclusion conv u(R) ∩ IR ⊂ NE∞
enc. First, we consider a utility

vector U ∈ u(R) ∩ IR and provide a pair of strategies for the encoder and the players
(σ⋆, τ⋆) ∈ Σ × T that forms a uniform equilibrium (see Def. 6. The first condition (i) is
satisfied when the asymptotic utility of the strategies (σ⋆, τ⋆) ∈ Σ × T converges toward
the utility U . The second condition (ii) is satisfied when no unilateral deviation τ ′k ∈ Tk
provides to player k ∈ K a gain larger than ǫ > 0.

B.1 Construction of strategies (σ⋆, τ⋆) ∈ Σ × T

B.1.1 Block coding scheme

The T > 0 stages of the repeated game are divided into B blocks of stages of length
n, represented by Fig. 5. Denote B the set of blocks, b ∈ B the index of one block and
B = |B| ∈ N the number of blocks. Denote snk (b) ∈ Sn

k the sequence of signals received during
the block b ∈ B. Fix the parameter ǫ > 0 and let us describe the strategies (σ⋆, τ⋆) ∈ Σ×T
that satisfy both conditions (27) and (28) for all T ≥ T̄ .

|γT
k (σ⋆, τ⋆)− U⋆

k | ≤ ǫ, ∀k ∈ K, (27)

γT
k (σ⋆, τ⋆) + ǫ ≥ γT

k (σ⋆, τ ′k, τ
⋆
−k), ∀k ∈ K, ∀τ ′k ∈ Tk. (28)

Suppose that the number of blocks B ∈ N satisfies condition (29) :

B ≥
8 ·maxa∈A |uk(a)|

ǫ
. (29)

B.1.2 Strategy of the encoder σ⋆ ∈ Σ

The coding strategy σ⋆ ∈ Σ consists in sending a sequence of public signals sn0 ∈ Sn
0 to

each player so that they can reconstruct the sequence an ∈ An of past actions. In order
to communicate, the encoder C and the players K implement a code λ = (f0, (gk)k∈K)
investigated in Sec. 3 and defined by :

f0 : An −→ Sn
0 ,

gk : Sn
0 × Sn

k ×An
k −→ An, ∀k ∈ K.

(30)
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Condition U ∈ conv u(R)∩ IR implies that the probability distribution P⋆ ∈
∏

k∈K ∆(Ak)
belong to the set R described by (17) and satisfies the condition (9) of the Theorem 1.
This coding result implies that for all ε > 0, there exists a parameter n ∈ N and a code
λ ∈ Λ(n) with λ = (f0, (gk)k∈K) such that the error probability of the coding scheme is
upper bounded by ε. Denote by ân(k) ∈ An the sequence of actions obtained as output by
the decoder k ∈ K.

Pe(λ) =
∑

k∈K

max
i∈K

max
vi∈∆(A∞

i )
Pvi (a

n 6= gk(s
n
k , s

n
0 , a

n
k )). (31)

The strategy of the encoder σ⋆ ∈ Σ is built as follows. At the beginning of the block b ∈ B
with b ≥ 2, the encoder C observes the sequence of actions an(b − 1) ∈ An over the block
b−1 ∈ B and choose the sequence of public signals sn0 (b) over block b ∈ B using the encoding
function f0 (30) provided by the code λ that satisfies the condition (31).

sn0 (b) = f0

(

an(b − 1)

)

∈ Sn
0 . (32)

Over the first block b1 ∈ B, the encoder send an arbitrary sequence s0(b1) ∈ Sn
0 .

B.1.3 Decoding scheme

At the end of the block b ∈ B with b ≥ 3, player k implements the decoding function gk (30)
provided by the code λ that satisfies the condition (31). The player k ∈ K recalls his own
actions ank (b − 1) ∈ An

k and observes the sequences of private signals snk (b − 1) ∈ Sn
k and

public signals sn0 (b) ∈ Sn
0 sent by the encoder C. The player k ∈ K evaluates the sequence

ân(k, b− 1) of actions of block b− 1 ∈ B using the decoding function gk.

ân(k, b− 1) = gk

(

snk (b − 1), sn0 (b), a
n
k (b− 1)

)

∈ An. (33)

Condition (31) guarantees that at the beginning of block b + 1 ∈ B, each player k ∈ K
observes the sequence of actions â(b−1) ∈ A of the other players during the block b−1 ∈ B
with an error probability arbitrarily low. Over the two first blocks b1, b2 ∈ B, no decoding
strategy is implemented.

an
k

TEST: â(k)n

snk

sn0

an

3n2nn1 T = n ·B

b1 b2 b3 b4 B

f0

gk

τ⋆k

b
b

b

b

b

f0

gk

τ⋆k

b
b

b

b

b

Fig. 5 The strategies of the encoder C and the players K (σ⋆, τ⋆) ∈ Σ × T are described
at sections B.1.2 and B.1.7. The actions an(b) over block b ∈ B are encoded over the next
block b + 1 ∈ B into a sequence of public signals sn0 (b + 1). At the end of block b + 1 ∈ B,
player k ∈ K decode the sequence of actions ân(b) over block b ∈ B from the sequences of
signals sn0 (b + 1) and snk (b). Player k ∈ K performs a statistical test in order to detect the
possible unilateral deviations. The result of this statistical test determines the sequence of
actions an

k (b+ 2) player k ∈ K will play during the block b+ 2 ∈ B.
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B.1.4 Statistical test

Each player k ∈ K performs a statistical test at the beginning of each block b+1 ∈ B. Define
the event Ei

k(b+ 1) using the set of typical sequences A⋆n
ε (P⋆

i ) stated by the definition 9.

Ei
k(b + 1) =

{

0 if âni (b − 1) ∈ A⋆n
ε (P⋆

i ),

1 if âni (b − 1) /∈ A⋆n
ε (P⋆

i ).
(34)

When Ei
k(b+1) = 1, player k ∈ K declare player i ∈ K deviates from the prescribed strategy

τ⋆i ∈ Ti, during block b− 1 ∈ B.

B.1.5 Main plan

The main plan consists in playing the same mixed action P⋆ i.i.d. from stage to stage.

P⋆(at) = P⋆(a1)⊗ . . .⊗ P⋆(aK) ∈
∏

k∈K

∆(Ak), ∀t ≥ 1. (35)

B.1.6 Punishment plan for player i ∈ K

The punishment plan P̄(i) = (P̄k(i))k 6=i ∈
∏

k 6=i ∆(Ak) of player i ∈ K consists of a vector
of mixed actions of other players that minimize the utility of player i ∈ K.

P̄(i) =

(

P̄k(i)

)

k 6=i

∈ argminP−i∈
∏

k 6=i ∆(Ak)

[

max
Pi∈∆(Ai)

EPi,P−i

[

uk(ai, a−i)

]]

, ∀i ∈ K.

(36)

The punishment plan for player i ∈ K by player k ∈ K is denoted P̄k(i) ∈ ∆(Ak) and is
given by (36). If all the players k 6= i play the strategy P̄(i) = (P̄k(i))k 6=i, the player i ∈ K
cannot obtain a utility greater than his min-max level υi ∈ R characterized by (15).

B.1.7 Equilibrium strategy τ⋆ = (τ⋆k )k∈K ∈ T

At the beginning of each block b ≥ 3 ∈ B, the equilibrium strategy is described as follows:

• Player k implements the decoding scheme (Sec. B.1.3) and reconstructs the actions
â−k(b− 2) ∈ An

−k played by the other players j 6= k during block b− 2 ∈ B.

• Player k implements the statistical test Ek
i defined section B.1.4, in order to detect

possible unilateral deviations.
• If the statistical test is negative, (∀b′ ≤ b, ∀i ∈ K, Ei

k(b) = 0), then player k ∈ K play
the main plan P⋆

k ∈ ∆(Ak) stated section B.1.5 during every stage of block b ∈ B.

• If the statistical test is positive, (∃b′ ≤ b, ∃i ∈ K, Ei
k(b) = 1), then player k ∈ K

play the punishment plan P̄k(i) ∈ ∆(Ak) stated section B.1.6 corresponding to the
player i ∈ K until the end of the last block B ∈ B. If several deviations are detected
simultaneously Ei

k(b) = Ej(b) = 1, then player k ∈ K punishes anyone of those players
who is the smaller, according to a total order over K, previously fixed.

Over the first two blocks b1, b2 ∈ B, players K play the main plan P⋆ ∈ ∆(A). The equilib-
rium strategy τ⋆ = (τ⋆k )k∈K ∈ T is defined at each stage t ≥ 1 as follows:

τ⋆tk (ht) =

{

P⋆
k ∈ ∆(Ak) while Ei

k(b) = 0, ∀i 6= k, ∀b ≤ ⌊ t
n
, ⌋

P̄k(i) ∈ ∆(Ak) otherwise.
(37)
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B.2 Condition (i) of definition 6: convergence of the utilities

Let us fix a parameter ǫ > 0 and prove that there exists a T̄ > 1 such that for all T ≥ T̄ ,
the utilities of the encoder and the players K (σ⋆ , τ⋆) ∈ Σ × T defined in Sec. B.1.2 and
B.1.7, are ǫ-closed to the utility U ∈ conv u(R) ∩ IR. Remark that ǫ > 0 and ε > 0 are two
distinct parameters. Define the following event:

E =

{

1 if ∃b ∈ B,∃i, k ∈ K such that Ei
k(b) = 1,

0 otherwise.
(38)

When E = 0, then no unilateral deviation is detected during the course of the game.

Lemma 1 Suppose that the encoder C and the players K implements the strategies
(σ⋆, τ⋆) ∈ Σ × T . Then for all ε > 0, there exists a block length n1 ∈ N, such that for
all n ≥ n1, the probability of event E = 1 is bounded as follows:

P(E = 1) ≤ 2ε ·B ·K2. (39)

The result of Lemma 1 is useful for the proof of Lemma 2.

Lemma 2 Suppose that the encoder C and the players K implement the strategies
(σ⋆, τ⋆) ∈ Σ × T . Then for all ε > 0, there exists a block length n1 ∈ N, such that for
all n ≥ n1, the expected utility satisfies the following equation :

∣

∣

∣

∣

γT
k (σ⋆, τ⋆) − EP⋆

[

uk(ak,a−k)

]
∣

∣

∣

∣

≤ 4ε ·max
a∈A

|uk(a)| · B ·K2, ∀k ∈ K. (40)

For the parameter ǫ > 0 and a fixed number of block B ∈ N, there exists a parameter ε > 0
and a block length n1 ∈ N such that 4ε ·maxa∈A |uk(a)| · B ·K2 ≤ ǫ. From Lemma 2, the
strategy defined over T = n ·B stages induce, for each player k ∈ K, a utility that satisfies:

∣

∣

∣

∣

γT
k (σ⋆, τ⋆)− U⋆

k

∣

∣

∣

∣

≤ ǫ, ∀k ∈ K. (41)

By repeating the strategies cyclically, we prove that there exists a T̄ ≥ N·B
ǫ

such that for

all T ′ ≥ T̄ and for all players k ∈ K, the expected T ′ stage utility γT ′
(σ⋆ , τ⋆) is ǫ-closed of

utility U ∈ conv u(R)∩IR. Strategies (σ⋆, τ⋆) ∈ Σ×T satisfy the condition (i) of definition
6.
Proof. [Lemma 1] Denote âk

i (b) the sequence of actions of player i ∈ K observed by player
k ∈ K over block b ∈ B. For all ε > 0, there exists n1 ∈ N such that for all n ≥ n1, we have:

P

(

an
i (b) /∈ A⋆n

ε (P⋆
i )

∣

∣

∣

∣

∩i,k∈K

{

Ei
k(b− 1) = 0, . . . ,Ei

k(b1) = 0

})

≤ ε, ∀i, k ∈ K, ∀b ∈ B,

(42)

P

(

ân
i (k, b) 6= an

i (b)

∣

∣

∣

∣

∩i,k∈K

{

Ei
k(b− 1) = 0, . . . ,Ei

k(b1) = 0

})

≤ ε, ∀i, k ∈ K, ∀b ∈ B.

(43)

Equations (42) and (43) come from the definition of strategies (σ⋆, τ⋆) ∈ Σ × T . When no
deviation is detected, the players implement the main plan (Sec. B.1.5) by playing i.i.d. the
mixed action P⋆ ∈ ∆(A).
Equation (42) is a consequence of Lemma 6 for the typical sequences and (43) is a conse-
quence of the coding result stated by Theorem 1 in Sec. 3.2 for an i.i.d. information source
P⋆ ∈ ∆(A). More precisely, this inequality is a consequence of (31) that guarantees at the
beginning of block b ∈ B, the players observe the sequence of actions played by the other
players over the block b− 2 ∈ B with probability 1− ε.
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Let us evaluate the probability of event E = 1.

P(E = 1) = P

(

∪ b∈B,
i,k∈K

{

E
i
k(b) = 1

})

(44)

≤
∑

b∈B

P

(

∪i,k∈K E
i
k(b) = 1

∣

∣

∣

∣

∩i,k∈K

{

E
i
k(b − 1) = 0, . . . ,E

i
k(b1) = 0

})

(45)

≤
∑

b∈B,
i,k∈K

P

({

a
n
i (b) /∈ A

⋆n
ε (P

⋆
i )

}

∪

{

â
n
i (k, b) 6= a

n
i (b)

}∣

∣

∣

∣

∩i,k∈K

{

E
i
k(b − 1) = 0, . . . ,E

i
k(b1) = 0

})

(46)

≤
∑

b∈B,
i,k∈K

P

(

a
n
i (b) /∈ A

⋆n
ε (P

⋆
i )

∣

∣

∣

∣

∩i,k∈K

{

E
i
k(b − 1) = 0, . . . ,E

i
k(b1) = 0

})

+
∑

b∈B,
i,k∈K

P

(

â
n
i (k, b) 6= a

n
i (b)

∣

∣

∣

∣

∩i,k∈K

{

E
i
k(b − 1) = 0, . . . , E

i
k(b1) = 0

})

(47)

≤ 2ε · B · K
2
. (48)

Equality (44) comes from the definition of error event provided by (38).
Inequality (45) comes from the property P(A ∪ B) = P(A) + P(B|Ac) · P(Ac).
Inequalities (46) and (47) comes from the inequality of Boole.
Inequality (48) comes from the inequalities (42) and (43).

As a conclusion, for all ε > 0, there exists a n1 ∈ N such that for all n ≥ n1, the con-
dition (39) is satisfied.
Proof. [Lemma 2] When the event E = 0 occurs, then all the statistical tests of players K
at the beginning of each block b ∈ B are negative (i.e. Ei

k(b) = 0, ∀b ∈ B, ∀i, k ∈ K). In
this case, the strategy τ⋆ ∈ T indicate that the sequence of actions are generated with the
same mixed strategy P⋆ ∈

∏

k∈K ∆(Ak) from stage to stage. From the proof of Lemma 1,
for all ε > 0, there exists n1 ∈ N such that for all n ≥ n1, the sequences of block actions are
typical with large probability. More precisely, because T = n ·B ≥ n ≥ n1, the sequences of
actions aT are typical with large probability.

P

(

an ∈ A⋆n
ε (P⋆)

∣

∣

∣

∣

E = 0

)

≤ ε, (49)

=⇒ P

(

aT ∈ A⋆T
ε (P⋆)

∣

∣

∣

∣

E = 0

)

≤ ε. (50)

Suppose that n ≥ n1 defined from Lemma 1. Recall the definition of the typical sequences
and some implications thereof:

aT ∈ A⋆T
ε (P⋆) (51)

⇐⇒
∑

a∈A

∣

∣

∣

∣

N(a|at)

T
−P⋆(a)

∣

∣

∣

∣

≤ ε (52)

=⇒
∑

a∈A

∣

∣

∣

∣

N(a|at)

T
uk(a) − P⋆(a)uk(a)

∣

∣

∣

∣

≤ ε ·max
a∈A

|uk(a)| (53)

=⇒

∣

∣

∣

∣

∑

a∈A

N(a|at)

T
uk(a) −

∑

a∈A

P⋆(a)uk(a)

∣

∣

∣

∣

≤ ε ·max
a∈A

|uk(a)| (54)

=⇒

∣

∣

∣

∣

1

T

T
∑

t=1

uk(a
t)− EP⋆

[

uk(a)

]
∣

∣

∣

∣

≤ ε ·max
a∈A

|uk(a)|. (55)

Inequality (52) comes from the definition 9 of typical sequences.
Inequalities (53) come from the homogeneity property.
Equation (54) comes from the triangle inequality.
Equation (55) is a reformulation of (54) and allows us to obtain the following equations :
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∣

∣

∣

∣

γT
k (σ⋆, τ⋆)− EP⋆

[

uk(a)

]
∣

∣

∣

∣

(56)

=

∣

∣

∣

∣

∑

aT ∈AT

Pσ⋆,τ⋆(aT ) ·
1

T

T
∑

t=1

uk(a
t)− EP⋆

[

uk(a)

]
∣

∣

∣

∣

(57)

=

∣

∣

∣

∣

∑

aT ∈A⋆T
ε (P⋆)

Pσ⋆,τ⋆ (aT ) ·
1

T

T
∑

t=1

uk(a
t) +

∑

aT /∈A⋆T
ε (P⋆)

Pσ⋆,τ⋆ (aT ) ·
1

T

T
∑

t=1

uk(a
t)− EP⋆

[

uk(a)

]
∣

∣

∣

∣

(58)

≤
∑

aT∈A⋆T
ε (P⋆)

Pσ⋆,τ⋆ (aT ) ·

∣

∣

∣

∣

1

T

T
∑

t=1

uk(a
t)− EP⋆

[

uk(a)

]
∣

∣

∣

∣

+
∑

aT /∈A⋆T
ε (P⋆)

Pσ⋆,τ⋆ (aT ) ·
1

T

T
∑

t=1

|uk(a
t)|

(59)

≤
∑

aT∈A⋆T
ε (P⋆)

Pσ⋆,τ⋆ (aT ) · ε ·max
a∈A

|uk(a)| +
∑

aT /∈A⋆T
ε (P⋆)

Pσ⋆,τ⋆(aT ) · ε ·max
a∈A

|uk(a)| (60)

≤ ε ·max
a∈A

|uk(a)| + P

(

aT /∈ A⋆T
ε

)

· ε ·max
a∈A

|uk(a)| (61)

≤ max
a∈A

|uk(a)| ·

(

ε+ P(aT /∈ A⋆T
ε |E = 0) · P(E = 0) + P(aT /∈ A⋆T

ε |E = 1) · P(E = 1)

)

(62)

≤ max
a∈A

|uk(a)| ·

(

ε+ P(aT /∈ A⋆T
ε |E = 0) + P(E = 1)

)

(63)

≤ max
a∈A

|uk(a)| ·

(

2ε+ P(E = 1)

)

(64)

≤ max
a∈A

|uk(a)| ·

(

2ε+ 2ε ·B ·K2

)

(65)

≤ 4ε ·max
a∈A

|uk(a)| ·B ·K2. (66)

Equalities (57) and (58) come from the definition of the expected T -stages utility, see (12).
Inequality (59) comes from the triangle inequality.
Inequality (60) comes from (55).
Inequalities (61), (62) and (63) are reformulation of (60).
Inequality (64) comes from (50) because by assumption T ≥ n ≥ n1.
Inequality (65) comes from Lemma 1 because by assumption n ≥ n1.
Inequality (66) is a reformulation with B ·K2 ≥ 1 which concludes the proof of Lemma 2.

As a conclusion, for all ε > 0, there exists n1 ∈ N such that for all n ≥ n1, the condi-
tion (71) is satisfied.

B.3 Condition (ii) of definition 6

In order to prove that the strategies (σ⋆ , τ⋆) ∈ Σ × T support a uniform equilibrium, we
suppose that player k ∈ K implement a deviating strategy τ ′k 6= τ⋆k and we prove that the
deviation gain is less than ǫ > 0.
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B.3.1 First case: non-typical deviations

Let b− 1 ∈ B the first action block over which the sequence of actions ak(b− 1) /∈ A⋆n
ε (P⋆

k )
of player k ∈ K is not typical. Denote t1(b) and tn(b) the indexes of the first and the last
stage of block b ∈ B.

Evaluate, for player k ∈ K, the utilities associated with the strategies τ⋆k and τ ′k.

γT
k (σ⋆, τ⋆k , τ

⋆
−k) = Eσ⋆,τ⋆

k
,τ⋆

−k

[

1

T

T
∑

t=1

uk(a
t)

]

, (67)

γT
k (σ⋆, τ ′k , τ

⋆
−k) =

1

T
Eσ⋆,τ ′

k
,τ⋆

−k

[ T
∑

t=1

uk(a
t)

]

(68)

=
1

T
Eσ⋆,τ ′

k
,τ⋆

−k

[ tn(b−2)
∑

t=1

uk(a
t) +

tn(b)
∑

t=t1(b−1)

uk(a
t) +

T
∑

t=t1(b+1)

uk(a
t)

]

.

(69)

Approximation of the utility associated with the strategies (σ⋆, τ⋆) ∈ Σ×T between
blocks b+ 1 ∈ B and B ∈ B.

Lemma 3 Suppose that the encoder C and the players K follow the strategies (σ⋆, τ⋆) ∈
Σ × T . Then for all ǫ > 0 and for all number of blocks B ∈ N, there exists a block length
n1 such that for all n ≥ n1, the following inequality is satisfied for all 1 ≤ b ≤ B − 1:

Eσ⋆,τ⋆
k
,τ⋆

−k

[ T
∑

t=t1(b+1)

uk(a
t)

]

≥ n(B − b) · (U⋆
k −

ǫ

2
). (70)

Proof. [Lemma 3] Let us fix the parameter ǫ > 0 and suppose that the encoder C and the
players K follows the strategies (σ⋆, τ⋆) ∈ Σ×T . This proof is built on Lemma 2 that prove
for all ε > 0, there exists a block length n1 ∈ N, such that for all n ≥ n1, the expected
utility satisfies the following equation :

∣

∣

∣

∣

γT
k (σ⋆, τ⋆)− EP⋆

[

uk(ak,a−k)

]
∣

∣

∣

∣

≤ 4ε ·max
a∈A

|uk(a)| ·B ·K2, ∀k ∈ K. (71)

For a fixed number of blocks B ∈ N, we choose ε > 0 such that ǫ ≥ 4ε·maxa∈A |uk(a)|·B·K2).
Using the same reasoning as in Lemma 2, we prove that for all ε > 0, there exists a block
length n1 ∈ N, such that for all n ≥ n1, the expected utility satisfies the following equation
for all k ∈ K:

∣

∣

∣

∣

Eσ⋆,τ⋆
k
,τ⋆

−k

[

1

n(B − b)

T
∑

t=t1(b+1)

uk(a
t)

]

− EP⋆

[

uk(ak, a−k)

]
∣

∣

∣

∣

≤ 4ε ·max
a∈A

|uk(a)| ·B ·K2,

(72)

=⇒

∣

∣

∣

∣

Eσ⋆,τ⋆
k
,τ⋆

−k

[ T
∑

t=t1(b+1)

uk(a
t)

]

− n(B − b) · U⋆
k

∣

∣

∣

∣

≤ n(B − b) · 4ε ·max
a∈A

|uk(a)| · B ·K2, (73)

=⇒ Eσ⋆,τ⋆
k
,τ⋆

−k

[ T
∑

t=t1(b+1)

uk(a
t)

]

≥ n(B − b) · (U⋆
k − 4ε ·max

a∈A
|uk(a)| ·B ·K2). (74)

For a fixed block number B ∈ N, we choose the parameter ǫ
2
≥ 4ε ·maxa∈A |uk(a)| ·B ·K2

and the block length n1 ∈ N that satisfies (42) and (43) of Lemma 1. We obtain the inequality
(70) of Lemma 3.

Upper bound on the deviation gain obtained by player k ∈ K using the deviation
strategy τ ′k ∈ Tk, over blocks b− 1 ∈ B and b ∈ B.
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Lemma 4 For every block b ∈ B, the following inequality is satisfied:

Eσ⋆,τ ′
k
,τ⋆

−k

[ tn(b)
∑

t=t1(b−1)

uk(a
t)

]

≤ 2n ·max
a∈A

|uk(a)|, ∀k ∈ K. (75)

Proof. [Lemma 4] The proof is direct.

Eσ⋆,τ ′
k
,τ⋆

−k

[ tn(b)
∑

t=t1(b−1)

uk(a
t)

]

≤ Eσ⋆,τ ′
k
,τ⋆

−k

[

(tn(b) − t1(b − 1) + 1) ·max
a∈A

|uk(a)|

]

(76)

≤ 2n ·max
a∈A

|uk(a)|, ∀k ∈ K. (77)

The deviation utility satisfies (75).
Upper bound on the utility of player k ∈ K during the punishment phase

induced by the prescribed strategies (σ⋆, τ⋆) ∈ Σ × T .

Lemma 5 Suppose that b − 1 ∈ B is the first block on which the sequence of actions
ak(b − 1) /∈ A⋆n

ε (P⋆
k ) of player k ∈ K is not typical. Suppose the block length satisfies

n ≥ n1, defined by (42) and (43). The prescribed strategies (σ⋆, τ⋆) ∈ Σ × T , induce the
following equation:

Eσ⋆,τ ′
k
,τ⋆

−k

[ T
∑

t=t1(b+1)

uk(a
t)

]

≤ ε ·max
a∈A

|uk(a)| + n(B − b) · υk. (78)

Lemma 5 is a consequence of the coding result stated by Theorem 1.
Proof. We suppose that the actions ak(b−1) /∈ A⋆n

ε (P⋆
k ) of player k ∈ K over block b−1 ∈ B

are not typical and the length of the block satisfies n ≥ n1, defined by (42) and (43). Define
the error event Ed related with the statistical test Ei

k(b+1) defined by (34). Ed = 0 means
that the statistical test of all the players j 6= k ∈ K reveals that player k ∈ K deviates during
block b− 1 ∈ B.

Ed =

{

0 if ∀j 6= k, Ek
j (b + 1) = 1,

1 otherwise.
(79)

The coding result stated by Theorem 1 allow us to bound the probability of event Ed = 1
knowing that ak(b − 1) /∈ A⋆n

ε (P⋆
k ). The following inequalities are valid for any deviation

strategy τ ′k ∈ Tk of player k ∈ K.

Pσ⋆,τ ′
k
,τ⋆

−k

(

Ed = 1

∣

∣

∣

∣

ak(b− 1) /∈ A⋆n
ε (P⋆

k )

)

(80)

= Pσ⋆,τ ′
k
,τ⋆

−k

(

∃j 6= k ∈ K, Ek
j (b+ 1) = 0

∣

∣

∣

∣

ak(b− 1) /∈ A⋆n
ε (P⋆

k )

)

(81)

≤ Pσ⋆,τ ′
k
,τ⋆

−k

(

∪j 6=k

{

Ek
j (b+ 1) = 0

}
∣

∣

∣

∣

ak(b− 1) /∈ A⋆n
ε (P⋆

k )

)

(82)

≤ Pσ⋆,τ ′
k
,τ⋆

−k

(

∪j 6=k

{

âj
k(b− 1) ∈ A⋆n

ε (P⋆
k )

}
∣

∣

∣

∣

ak(b− 1) /∈ A⋆n
ε (P⋆

k )

)

(83)

≤ Pe(λ) (84)

≤
∑

k∈K

max
i∈K

max
vi∈∆(A∞

i )
P(an 6= ân(k)|vi) (85)

≤ ε, ∀τ ′k ∈ Tk. (86)

Inequalities 81 and 82 come from the definition Ed and Boole’s inequality.
Inequality 83 comes from the definition of the statistical test 34 presented section B.1.4.
Inequality 84 come from the strategy of the encoder σ⋆ ∈ Σ and the decoding scheme of
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player j ∈ K, described in sections B.1.2 and B.1.3, based on the coding scheme λ ∈ Λ(n)
with n ≥ n1 during block b− 1 ∈ B.
Inequality 85 comes from the definition of the error probability of the code λ ∈ Λ(n).
Inequality 86 comes from the coding result given by the Theorem 1 for an arbitrarily varying
information source (AVS). When a player deviates, the actions are generated with an in-
certain probability distribution satisfying the hypothesis (3) and (4) of the definition 1. We
suppose the length of a block satisfies n ≥ n1 defined by (42) and (43). Therefore, from the
Theorem 1, there exists a code λ ∈ Λ(n) for which the error probability Pe(λ) is bounded
by ε > 0, for every unilateral deviation τ ′k ∈ Tk of player k ∈ K. This inequality allow us to
obtain an upper bound on the utility of player k ∈ K during the punishment phase stated
by the Lemma 5.

Eσ⋆,τ ′
k
,τ⋆

−k

[ T
∑

t=t1(b+1)

uk(a
t)

]

(87)

=
∑

aT
t1(b+1)

∈Atn(b)

·Pσ⋆,τ ′
k
,τ⋆

−k

(

aTt1(b+1),Ed = 1

∣

∣

∣

∣

ak(b− 1) /∈ A⋆n
ε (P⋆

k )

)

·

[ T
∑

t=t1(b+1)

uk(a
t)

]

+
∑

aT
t1(b+1)

∈Atn(b)

·Pσ⋆,τ ′
k
,τ⋆

−k

(

aTt1(b+1),Ed = 0

∣

∣

∣

∣

ak(b− 1) /∈ A⋆n
ε (P⋆

k )

)

·

[ T
∑

t=t1(b+1)

uk(a
t)

]

(88)

≤ Pσ⋆,τ ′
k
,τ⋆

−k

(

Ed = 1

∣

∣

∣

∣

ak(b− 1) /∈ A⋆n
ε (P⋆

k )

)

·max
a∈A

|uk(a)| +

[

n(B − b) · υk

]

(89)

≤ ε ·max
a∈A

|uk(a)| +

[

n(B − b) · υk

]

. (90)

Inequality 88 comes from the definition of the expectation 87 knowing that the sequence of
actions ak(b− 1) /∈ A⋆n

ε (P⋆
k ) is not typical over the block b− 1 ∈ B.

Inequality 89 comes from the punishment plan stated by the strategy τ⋆−k when all the
players j 6= k detect the deviation of player k ∈ K (Ed = 1). For each stage t1(b+1) ≤ t ≤ T ,
the utility of player k ∈ K is less than the min-max level uk(a

t) ≤ υk.
Inequality 90 comes from (83).
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Equilibrium condition. Hypothesis (29) over the number of blocks B ∈ R and the
results of Lemma 3, 4 and 5 allow us to obtain the following inequalities:

B ≥
8 · maxa∈A |uk(a)|

ǫ
(91)

=⇒ −Bǫ
2

+ Bǫ ≥ 4 · max
a∈A

|uk(a)| (92)

=⇒ (B − b) · U⋆
k

− Bǫ
2

+ Bǫ ≥ 4 · max
a∈A

|uk(a)| + (B − b) · υk (93)

=⇒ (B − b + 2) · U⋆
k −

(B−b)ǫ
2

+ Bǫ ≥ 2 · max
a∈A

|uk(a)| + ǫ + ε · max
a∈A

|uk(a)| + (B − b) · υk (94)

=⇒ n(B − b + 2) · U⋆
k − n

(B−b+2)ǫ
2

+ nBǫ ≥ 2n · max
a∈A

|uk(a)| + nε · max
a∈A

|uk(a)| + n(B − b) · υk (95)

=⇒ Eσ⋆,τ⋆
k
,τ⋆

−k

[

∑T
t=t1(b−1)

uk(at)

]

+ nBǫ ≥ 2n · max
a∈A

|uk(a)| + nε · max
a∈A

|uk(a)| + n(B − b) · υk (96)

=⇒ Eσ⋆,τ⋆
k
,τ⋆

−k

[

∑T
t=t1(b−1)

uk(at)

]

+ nBǫ ≥ E
σ⋆,τ′

k
,τ⋆

−k

[ tn(b)
∑

t=t1(b−1)

uk(a
t
)

]

+ nε · max
a∈A

|uk(a)| + n(B − b) · υk

(97)

=⇒ Eσ⋆,τ⋆
k
,τ⋆

−k

[

∑T
t=t1(b−1)

uk(at)

]

+ nBǫ ≥ E
σ⋆,τ′

k
,τ⋆

−k

[ tn(b)
∑

t=t1(b−1)

uk(a
t
)

]

+ E
σ⋆,τ′

k
,τ⋆

−k

[ T
∑

t=t1(b+1)

uk(a
t
)

]

(98)

=⇒ Eσ⋆,τ⋆
k
,τ⋆

−k

[

∑T
t=1 uk(at)

]

+ T · ε ≥ E
σ⋆,τ′

k
,τ⋆

−k

[ tn(b−2)
∑

t=1

uk(a
t
) +

tn(b)
∑

t=t1(b−1)

uk(a
t
) +

T
∑

t=t1(b+1)

uk(a
t
)

]

(99)

=⇒ γT
k (σ⋆, τ⋆

k , τ⋆
−k) + ε ≥ γ

T
k (σ

⋆
, τ

′
k, τ

⋆
−k). (100)

Inequality 91 comes from the hypothesis (29) over the number of blocks B ∈ R.
Inequality 92 comes from the reformulation of inequality (91).
Inequality 93 comes from the hypothesis of individual rationality U⋆

k ≥ υk stated by the
definition 7.
Inequalities 94 and 95 come from the reformulation of inequality (93) with ǫ ≤
maxa∈A |uk(a)| and ε ≤ 1.
Inequality 96 comes from Lemma 3 which provides an approximation of the utility associ-
ated with the strategies (σ⋆ , τ⋆) ∈ Σ × T .
Inequality 97 comes from the Lemma 4 which provides an upper bound on the deviation
gain obtained by player k ∈ K while playing the strategy τ ′k ∈ Tk.
Inequality 98 comes from Lemma 5 which is a consequence of the coding result stated by
Theorem 1. This result provides an upper bound over the utility of player k ∈ K during the
punishment phase.
Inequality 99 comes from the fact that b − 1 ∈ B is the first block on which the action
sequence ak(b− 1) /∈ A⋆n

ε (P⋆
k ) of player k ∈ K is not typical.

Inequality 100 comes from the definition of the utilities of the T -stages repeated game stated
equation (12).
We prove the strategies (σ⋆ , τ⋆) ∈ Σ × T satisfy the equilibrium condition stated by point
(ii) of the definition 6.

B.3.2 Second case: typical deviations

Let us fix ǫ > 0 and suppose player k ∈ K uses a deviating strategy τ ′k ∈ Tk such that the
action sequence of player k ∈ K over each block b ∈ B belong to the set of typical sequences
ak(b) ∈ A⋆n

ε (P⋆
k ). From the proof of Lemma 2, for all ε > 0, there exists n1 ∈ N such that

for all n ≥ n1 we have the following implication (102). Taking ε · maxa∈A |uk(a)| ≤ ǫ, we
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obtain the implication (103).

aT ∈ A⋆T
ε (P⋆) (101)

=⇒

∣

∣

∣

∣

1

T

T
∑

t=1

uk(a
t)− EP⋆

[

uk(a)

]
∣

∣

∣

∣

≤ ε ·max
a∈A

|uk(a)|. (102)

=⇒ γT
k (σ⋆ , τ ′k, τ

⋆
−k) ≤ γT

k (σ⋆, τ⋆k , τ
⋆
−k) + ǫ. (103)

The utility provided by the strategies (σ⋆, τ⋆) ∈ Σ × T satisfies the equilibrium condition
stated by point (ii) in definition 6.

B.4 Conclusion

We showed that by setting the parameter ǫ > 0, we obtain a condition on the number of
blocks B ∈ N given by (91), then a condition over the coding parameter ε > 0 given by (71)
and then a condition over the block length n ≥ n1 given by (42) and (43).
For all U ∈ u(R)∩ IR, these parameters allow us to construct a pair of strategies (σ⋆, τ⋆) ∈
Σ × T over T = n · B stages that satisfies the conditions (27) and (28). By repeating
these strategies cyclically, we show that any vector of utility U ∈ conv u(R) ∩ IR satisfy
both conditions (i) and (ii) (i.e. definition 6) of the uniform equilibrium. The utility U ∈
conv u(R) ∩ IR is a uniform equilibrium utility for the infinite repeated game Γ∞.

C Review of typical sequences

The achievability part of the coding theorems are based on the properties of the typi-
cal sequences. This section provides some recall on this notions that can also be found in
[Cover and Thomas(2006)] and [Csiszár and Körner(1981)].

Definition 9 (Typical sequences [Csiszár and Körner(1981)]) Let Q ∈ ∆(X × Y)
a probability distribution over X × Y . The typical sequences and the conditional typical
sequences are defined as follows:

An⋆
ε (X ) =







xn ∈ Xn;
∑

x∈X

∣

∣

∣

∣

N(x|xn)

n
−Q(x)

∣

∣

∣

∣

≤ ε, ∀x ∈ X , Q(x) = 0 =⇒ N(x|xn) = 0







.

An⋆
ε (X|yn) =

{

xn ∈ Xn;
∑

x∈X,
y∈Y

∣

∣

∣

∣

N(x, y|xn, yn)

n
−Q(x, y)

∣

∣

∣

∣

≤ ε,

∀(x, y) ∈ X × Y , Q(x, y) = 0 =⇒ N(x, y|xn, yn) = 0

}

. (104)

Lemma 6 (Properties of the typical sequences [Csiszár and Körner(1981)]) Let
Q ∈ ∆(X × Y) a probability distribution, Q⊗n a n-product of the probability distribution
and yn ∈ An⋆

ε (Y) a typical sequence. For all ε > 0, there exists n ∈ N such that:

1 = Q⊗n

(

x
n ∈ An⋆

ε (X )

)

, (105)

1 = Q⊗n

(

x
n ∈ An⋆

ε (X|yn)

∣

∣

∣

∣

yn
)

, (106)

2n(H(x)−cε) ≤ |An⋆
ε (X )| ≤ 2n(H(x)+cε), (107)

2n(H(x|y)−cε) ≤ |An⋆
ε (X|yn)| ≤ 2n(H(x|y)+cε). (108)

where c = log

(

maxx∈X
1

Q(x)

)

is constant.
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This result states that an i.i.d. sequence of symbols is almost surely typical when n goes to
+∞ and it provides an upper and a lower bound on the size of the sets of typical sequences.

Lemma 7 (Packing Lemma [El Gamal and van der Meulen(1981)]) Let Q ∈
∆(U × V) a correlated probability distribution, QU (resp. QV ) the marginal induced by
Q over U (resp. V), Q⊗n

U and Q⊗n
V the n-product of marginal probability. Let RI and RJ

real numbers,

• (un
i )i∈{1,...,2nRI }

∈ Un a family of sequences drawn with Q⊗n
U ,

• (vnj )j∈{1,...,2nRJ }
∈ Vn a family of sequences drawn with Q⊗n

V ,

If the condition (109) is satisfied,

RI +RJ < IQ(u; v), (109)

then for all ε > 0, there exists a n̄ ≥ 0 such that for all n ≥ n̄,

P

(

∪ i∈I,
j∈J

{

(un
i , v

n
j ) ∈ A⋆n

ε (U × V)

})

≤ ε. (110)

Where IQ(u; v) denote the mutual information [Cover and Thomas(2006)] with respect to
the probability distribution Q.
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