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Abstract We extend the notion of Evolutionarily Stable Strategies introduced by Maynard
Smith and Price (Nature 246:15–18, 1973) for models ruled by a single fitness matrix A,
to the framework of stochastic games developed by Lloyd Shapley (Proc. Natl. Acad. Sci.
USA 39:1095–1100, 1953) where, at discrete stages in time, players play one of finitely
many matrix games, while the transitions from one matrix game to the next follow a jointly
controlled Markov chain. We show that this extension from a single-state model to a mul-
tistate model can be done on the assumption of having an irreducible transition law. In
a similar way, we extend the notion of Replicator Dynamics introduced by Taylor and
Jonker (Math. Biosci. 40:145–156, 1978) to the multistate model. These extensions fa-
cilitate the analysis of evolutionary interactions that are richer than the ones that can be
handled by the original, single-state, evolutionary game model. Several examples are pro-
vided.

Keywords Evolutionary games · Stochastic games · Evolutionarily stable strategy ·
Replicator dynamics

1 Introduction

In his early 1928 work on Game Theory, John von Neumann [9] showed that all matrix
games have a value and both players have optimal strategies. A quarter century later Lloyd
Shapley [13] wrote his ancestral paper on the stochastic game model, in which at each of
a possibly infinite number of stages two players play one of finitely many different matrix
games, where at each stage the transition probabilities to go from one matrix game to the
next are determined by the specific matrix game played and the specific actions chosen at
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that stage. In the same paper, Lloyd Shapley shows that, assuming there is a strictly positive
probability of stopping for each pair of actions, whenever they are played, these stochastic
games have a value and the players have stationary optimal strategies, i.e. strategies for
which a player’s action choices at each stage only depend on the specific matrix game being
played while neither the stage number nor the history of play leading to that state, needs to
be taken into account.

Evolutionary game theory, as started by the seminal paper of Maynard Smith and Price
[6] in 1973, studies the dynamic development of populations. Here, a population consists of
randomly interacting individuals of finitely many different types. Interactions between indi-
viduals lead to ‘fitness payoffs’ for these individuals depending on their types (e.g. number
of offspring), where these fitness payoffs are given by a single fitness matrix A. Every entry
of A gives the fitness payoff to the row player. When taking the Darwinian viewpoint that
the fractions of types that are doing better than average increase, while those doing worse
than average decrease, we see that the population distribution is changing over time. The
most widely studied dynamics is the so called Replicator Dynamics introduced by Taylor
and Jonker [16] in 1978 that builds on the assumption that the rate of change of a popula-
tion fraction of a specific type is proportional to the size of that fraction as well as to the
difference between the fitness for individuals of that type and the current population average
fitness.

In this paper, we extend the evolutionary game model to achieve an evolutionary stochas-
tic game model. In this evolutionary stochastic game model, we consider a population of
individuals from different types, where at every stage these individuals are interacting with
each other in one of finitely many environments (or circumstances). The transition proba-
bilities between the environments determine the impact of each of these environments on
the fitness of the individuals from specific types. Then, like in the single-state model, the
fractions of those types that have a higher fitness than the population average fitness will
increase, while the fractions of types that are doing less good decrease. In Sect. 2, we give
precise definitions and in the subsequent sections we analyze this evolutionary stochastic
game model.

2 The Model

In this section, we first describe the models of stochastic games and evolutionary games
according to their original definitions and next we introduce a model that combines the fea-
tures of each of these. We remark that some earlier work was done on introducing stochastic
dynamics to evolutionary games and we refer to chapters 10 to 12 in Sandholm [12] for a
recent survey. In addition, we mention Altman et al. [1], who introduce a model where each
individual is facing a Markov decision problem, and Pruett-Jones and Heifetz [10], who
examine a model where each strategic interaction between two individuals is a stochastic
game. However, our model is essentially different because for us population members are
characterized by their behavior in a finite collection of different circumstances and as such
our population types correspond to pure stationary strategies in a stochastic game.

2.1 Stochastic Games

A two-person stochastic game Γ , introduced in a slightly different way by Lloyd Shap-
ley [13] in 1953, can be described by a state space S := {1, . . . , z}, and a correspond-
ing collection {A1, . . . ,Az} of matrices, where matrix As has size m1

s × m2
s and, for
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i ∈ Is := {1, . . . ,m1
s } and j ∈ Js := {1, . . . ,m2

s }, entry (i, j) of As consists of payoffs
r1(s, i, j), r2(s, i, j) ∈ R and a probability vector p(s, i, j) = (p(s ′|s, i, j))s′∈S . The ele-
ments of S are called states and for each state s ∈ S the elements of Is and Js are called
(pure) actions of player 1 and player 2, respectively, in state s. The game is to be played
at stages in N = {1,2,3, . . .} in the following way. Play starts at stage 1 in an initial state,
say in state s1 ∈ S, where, simultaneously and independently, both players are to choose
an action: player 1 chooses an i1 ∈ Is1 , while player 2 chooses a j 1 ∈ Js1 . These choices
induce immediate payoffs r1(s1, i1, j 1), r2(s1, i1, j 1) to players 1 and 2, respectively. Next,
the play moves to a new state according to the probability vector p(s1, i1, j 1), say to state
s2. At stage 2, new actions i2 ∈ Is2 and j 2 ∈ Js2 are to be chosen by the players in state s2.
Then the players receive payoffs r1(s2, i2, j 2), r2(s2, i2, j 2) respectively and play moves to
some state s3 according to the probability vector p(s2, i2, j 2), and so on. The players are as-
sumed to have complete information and perfect recall. The latter means that at every stage
n they know the history of play up to that stage: hn = (s1, i1, j 1; . . . ; sn−1, in−1, jn−1, sn).

A mixed action for a player in state s is a probability distribution on the set of his actions
in state s. Mixed actions in state s will be denoted by xs for player 1 and by ys for player 2,
and the sets of mixed actions in state s by Xs and Ys , respectively. A strategy is a decision
rule that prescribes a mixed action for any past history of the play. Such general strategies,
so-called behavior strategies, will be denoted by π for player 1 and by σ for player 2.
We use the notations Π and Σ for the respective behavior strategy spaces of the players.
A strategy is called pure if it specifies one pure action for each possible history. We denote
the respective pure strategy spaces by Πp and Σp . If for all past histories, the mixed actions
prescribed by a strategy only depend on the current state then the strategy is called stationary.
Thus, the stationary strategy spaces are X := ×s∈S Xs for player 1 and Y := ×s∈S Ys for
player 2, and we write x and y for stationary strategies for players 1 and 2 respectively. For
the spaces of pure stationary strategies, we will use Xp and Y p .

The stochastic game is called irreducible if for all pairs of stationary strategies the asso-
ciated Markov chain on the state space is irreducible, i.e. all states will be visited infinitely
often with probability 1.

For an infinite history h = (sn, in, jn)n∈N, player k will evaluate the sequence of payoffs
by the limiting average reward, defined by

γ k(h) := lim inf
N→∞

1

N

N∑

n=1

rk
(
sn, in, jn

)
.

Another commonly used evaluation is the β-discounted reward, where β ∈ (0,1) is the dis-
count factor, given by

γ k
β (h) := (1 − β) ·

∞∑

n=1

βn−1rk
(
sn, in, jn

)
.

However, in this paper, we will only focus on the limiting average rewards. A pair of strate-
gies (π,σ ) together with an initial state s ∈ S, by Kolmogorov’s existence theorem (cf.
Kolmogorov [5]), determines a probability measure on the set of infinite histories with ini-
tial state s. By using this probability measure, for (π,σ ) and initial state s, the sequences of
payoffs are evaluated by the expected limiting average reward denoted by γ k(s,π,σ ).

A stochastic game in which r2(s, i, j) = −r1(s, i, j) for all triples (s, i, j), is called a
zero-sum stochastic game. In such a game, it is assumed that player 1 wants to maximize his



210 Dyn Games Appl (2013) 3:207–219

limiting average reward, while player 2 tries to minimize player 1’s limiting average reward.
A zero-sum stochastic game has a limiting average value v = (vs)s∈S if

sup
π∈Π

inf
σ∈Σ

γ 1(s,π,σ ) = inf
σ∈Σ

sup
π∈Π

γ 1(s,π,σ ) =: vs ∀s ∈ S. (1)

Although the seminal paper by Shapley [13] already implied the existence of the β-
discounted value, and stationary β-discounted optimal strategies, the general existence of
a limiting average value was only established in 1981 by Mertens and Neyman [7]. How-
ever, for the limiting average case the players need not have optimal strategies and behavior
strategies may be indispensable for achieving ε-optimality. Here, a strategy π of player 1 is
called ε-optimal, where ε ≥ 0, if for all initial states s ∈ S we have

γ 1(s,π,σ ) ≥ vs − ε ∀σ ∈ Σ,

and 0-optimal strategies are simply called optimal for player 1. Similar definitions apply for
player 2.

For games that are not zero-sum, we use the notion of ε-equilibria, ε ≥ 0, which are pairs
of strategies that are ε-best replies against each other. For simplicity, if ε = 0, we speak of
an equilibrium rather than of a 0-equilibrium. Here, a stategy πε by player 1 is an ε-best
reply against a strategy σ by player 2, when

∀s ∈ S ∀π ∈ Π : γ 1
(
s,πε, σ

) ≥ γ 1(s,π,σ ) − ε. (2)

Against a fixed stationary strategy of player 2, there always exist pure stationary best replies
for player 1, i.e.

∀y ∈ Y ∃x ∈ Xp ∀s ∈ S ∀π ∈ Π : γ 1(s, x, y) ≥ γ 1(s,π, y). (3)

Obviously, similar statements hold for the best replies of player 2.
Rogers [11] and Sobel [14] have shown that for irreducible stochastic games there always

exist stationary equilibria. Vieille [18, 19] has shown the existence of ε-equilibria for two-
person stochastic games. The existence of ε-equilibria for stochastic games with more than
2 players is still an open problem.

Remark 1 The assumption of an infinite horizon is only used to approximate games with a
sufficiently long, but possibly unknown, horizon. More precisely, in an irreducible game for
every δ > 0 there is a time horizon Tδ such that for any pair of stationary strategies (x, y)

and for all T > Tδ we have |γ (x, y) − γT (x, y)| < δ where γT (x, y) denotes the T -stage
expected average payoff. Moreover, stationary strategies that are optimal for the infinite
horizon game are ε-optimal in all T -stage games for T sufficiently large.

2.2 Evolutionary Games

An evolutionary game is determined by a fitness matrix, based on which a population dis-
tribution over different types will change. Here, the population distribution at time t can be
described by the vector d(t) = (d1(t), d2(t), . . . , dm(t)), where d�(t) > 0 for all � (all types
are present) and

∑m

�=1 d�(t) = 1. The fitness matrix is an m × m matrix A, that is to be
interpreted as follows: The entry a�k is the fitness (or payoff or offspring) for an individual
of type � when interacting with an individual of type k. So, given the population distribution
d , the average fitness of an individual of type � is equal to e�Ad	 and the average fitness of
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an individual in the population is dAd	. Here, the vector e� is a unit-vector with 1 in posi-
tion � and 0 elsewhere. The emphasis of the research in these games is on stability. Loosely
speaking, a population distribution d is stable if for the process {d(t) : t ≥ 0} we have that,
if it ever gets close to d , then it will always stay close to d , or even converge to it. The
most commonly used stability concept in evolutionary games is the so-called Evolutionarily
Stable Strategy (or ESS) (cf. Maynard Smith and Price [6]). A population distribution (or a
strategy) d is an ESS if for all strategies d 
= d we have:

E1. dAd
	 ≤ dAd

	
;

E2. dAd
	 = dAd

	 ⇒ dAd	 > dAd	.

Evolutionary stability is a refinement of the well-known Nash-equilibrium (cf. Nash [8]) for
symmetric games, i.e. games (A,B) in which the payoffs for the players are symmetric in
the sense that B	 = A. Condition E1 says that d should be a best reply against itself, while
condition E2 addresses the stability of d . Namely, if d is also a best reply against d then, in
order for the population distribution not to drift away in the direction of d , we need that d

performs better against d than d against itself.
The dynamics that are used most frequently, are the replicator dynamics, introduced by

Taylor and Jonker [16]. According to the replicator dynamics, the proportion of popula-
tion members of type �, changes in time according to the following system of differential
equations:

ḋ� = d�

(
e�Ad	 − dAd	)

for � = 1,2, . . . ,m.

So the replicator dynamics dictates, in a Darwinian way, that the population fraction of those
types that perform better than average (or have more than average amount of offspring) will
grow, while the fraction of types that perform below average, will fall. It can be shown that
any ESS d is an asymptotically stable point for the corresponding replicator dynamics, i.e.
if d(0) is close enough to d , then the population distribution converges to d . However, we
really need to be careful here, as the opposite is not always true, which can be seen from an
example in Hofbauer and Sigmund [3] (page 71).

A different way of characterizing an ESS is by means of the concept of invasion. Suppose
that we are dealing with a population distribution d and a fitness matrix A. If we replace a
fraction ε > 0 of the population by mutants of types distributed as d̃ 
= d , then the new
population would be

dεd̃ = (1 − ε)d + εd̃.

We say that the mutants d̃ cannot invade the population if for all ε > 0 sufficiently small we
have

d̃Ad	
εd̃

< dAd	
εd̃

,

which can be interpreted as the mutants, the new members of the population, have a strict
lower fitness than the old members of the population. It turns out that d is an ESS if and
only if d cannot be invaded by any mutant d̃ 
= d .

As a final word for this section, we would like to stress that an ESS does not exist for
every game, as can be seen from the game Rock-Paper-Scissors given by

⎛

⎝
0 −1 1
1 0 −1

−1 1 0

⎞

⎠ ,
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which has only one symmetric equilibrium d = ( 1
3 , 1

3 , 1
3 ) to fit condition E1, but condition

E2 fails to hold for d = (1,0,0).

Remark 2 While we have presented the games in this section by giving just the payoff
matrix A for the row player, we would like to stress that the games examined can be viewed
as symmetric bimatrix games (A,B) where B = A	, because in the population there is
no distinction between row and column players. In the next sections, we will specify both
payoffs, to avoid confusion with zero-sum games.

2.3 Evolutionary Stochastic Games

We identify an evolutionary stochastic game by an irreducible two-person stochastic game
(as defined in Sect. 2.1) with the additional property that all matrices As are symmetric in
payoffs as well as in transitions, i.e. it is an irreducible stochastic game for which:

ES1. m1
s = m2

s for each state s;
ES2. r2(s, i, j) = r1(s, j, i) for each triple (s, i, j);
ES3. p(s, i, j) = p(s, j, i) for each triple (s, i, j).

Notice that the symmetry assumptions are in line with Remark 2 and these are needed be-
cause we explicitly write the payoffs for row player and for column player and these players
should be facing exactly the same strategic situation.

Types The types in a symmetric irreducible stochastic game are identified by the pure
stationary strategies in

Xp = {e1, e2, . . . , e|Xp |}.
As such the type of an individual specifies a certain action (behavior) for each of the states
(environments) that an individual may encounter during its lifetime. Individuals of different
types will choose different actions in at least one state, but they may choose the same action
in some other states. Now a population distribution d = (d1, d2, d3, . . . , d|Xp |) is a distribu-
tion over the set of pure stationary strategies, and it uniquely defines a stationary strategy xd .
More precisely,

xd(s, i) =
|Xp |∑

k=1

dk · ek(s, i),

where xd(s, i) and ek(s, i) denote the probability on action i in state s for the stationary
strategies xd and ek , respectively. So, given a population distribution d we will have a frac-
tion xd(s, i) of individuals that choose action i in state s.

Please note that for population distributions d and d ′ with d 
= d ′ we may well find
xd = xd ′ , as can be seen from the following example. Consider a game with 2 states and
with 2 pure actions in each state. For such a game, there are 4 different pure stationary
strategies: e1 = (1,1), e2 = (1,2), e3 = (2,1), and e4 = (2,2). Obviously, the population
distributions d = (0.5,0,0,0.5) and d ′ = (0,0.5,0.5,0) yield the same stationary strategy,
i.e. xd = xd ′ = ((0.5,0.5), (0.5,0.5)). Thus, two population distributions may well consist
of completely different types, but in terms of the actions observed in each of the states, one
would not notice the difference.
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Fitness Consider a population distribution d and an individual of type k playing pure sta-
tionary strategy ek . We assume that during his lifetime the individual will visit all states of
the stochastic game sufficiently often, while the population distribution is changing at a dif-
ferent, much larger time scale. This individual faces the combined behavior of all members
of the whole population. This means that the individual plays against stationary strategy xd ,
and accordingly there are state payoffs and a transition function that takes the individual
from state to state. The fitness of the individual will be the average of payoffs accumulated
during his lifetime. As an example one may think of the individuals as members of a polit-
ical party. The success of the political party (the type) will depend on how good each of its
members is doing in discussions on all kind of different issues, where media attention may
move stochastically from one issue to the next based on the positions taken on the present
issue. The success of the political party will depend on how good its members are doing on
each of the issues that have to be dealt with. As argued before, the limiting average is a good
approximation for the finite horizon average for sufficiently long plays. At the same time,
the limiting average reward has the advantage that it does not depend on the initial state.

ESS Based on the observation that different population distributions may yield the same
stationary strategy, it seems more natural to define an Evolutionarily Stable Strategy in the
space of stationary strategies rather than in the space of population distributions over the
‘pure’ types. We therefore define a stationary strategy x to be an ESS if for all stationary
strategies y 
= x:

E1*. γ (y, x) ≤ γ (x, x);
E2*. γ (y, x) = γ (x, x) ⇒ γ (x, y) > γ (y, y).

Observe that for the single-state model this definition coincides with the original definition
of an ESS for the classical evolutionary game model. This means that the game Rock-Paper-
Scissors still applies as an example of a game without any ESS in the evolutionary stochastic
game model.

Notice that if a population distribution d induces an ESS xd , then there may well be other
population distributions d ′ that also induce xd , which could be interpreted as population
distribution d being vulnerable to invasion by d ′. However, as d ′ and d have to induce the
same stationary strategy xd , the density of suitable population distributions d ′ in population
space is 0. As such, even for an ESS the population distribution d may change in time, but
these changes have to remain within the class of distributions that induce xd .

Replicator Dynamics We can extend the approach using replicator dynamics to the evolu-
tionary stochastic game model by taking the following system of differential equations:

ḋ� = d�

(
γ (e�, xd) − γ (xd, xd)

)
for � = 1,2, . . . ,

∣∣Xp
∣∣,

where, like mentioned before, d is the distribution over the pure stationary strategies e� and
xd is the stationary strategy induced by d . Again, for the single-state stochastic game model
this definition of replicator dynamics coincides with its original definition.

Please note that for any stable point d of this replicator dynamics, we have that d� > 0
implies that γ (e�, xd) = γ (xd, xd), which means that each of the prevailing types is playing
a best reply to the induced stationary population strategy, because otherwise that type would
not have survived the evolutionary competition. This observation suggests that for a Markov
decision problem (MDP), which is what a player is facing when playing against a fixed
stationary strategy, we have that if x∗ is a stationary optimal strategy and x is a stationary
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strategy for which C(xs) ⊆ C(x∗
s ) for each s ∈ S (where C(xs) = {i : xs(i) > 0} is the carrier

of xs ), then x is optimal as well. Such is not true in general, as can easily be seen by the
following simple example.

Example 1

In this example of an MDP, the vectors in the bottom right corners of each entry denote the
transition probability vectors, while the upper left corners show the payoffs to the player.
Any mixed stationary strategy is optimal for initial state 1, because it gives an average reward
of 1. However, for the pure strategy ((1,0),1) the average reward is only 0.

For irreducible MDPs, we have the following theorem.

Theorem 1 Consider an irreducible MDP. Suppose that x∗ is a stationary optimal strategy,
and x is a stationary strategy such that C(xs) ⊆ C(x∗

s ) for every state s ∈ S. Then x is optimal
as well.

A formal proof for this theorem is provided in the Appendix.
We impose the condition of irreducibility on the stochastic game, because without this

condition symmetric equilibria in stationary strategies may fail to exist as is shown by the
following example:

Example 2

Again the transitions are given in the bottom right corners, while the upper left corners
show the payoffs to the row and column players, respectively. We show that there can be
no symmetric ε-equilibrium (x, x): If x1(2) > 0, then for any ε > 0 sufficiently small, the
unique stationary ε-best reply is ((1,0),1), which rules out any ε-equilibrium (x, x) with
x1(2) > 0. However, against ((1,0),1), for any ε > 0 sufficiently small, the unique ε-best
reply is ((0,1),1).

On the other hand, if we do impose the condition of irreducibility on a symmetric stochas-
tic game, then we are guaranteed to have at least one symmetric stationary equilibrium, by
the following theorem. This is important to know because the existence of symmetric equi-
libria is a necessary condition for the existence of evolutionarily stable strategies, just like
in one state evolutionary games.
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Theorem 2 Every symmetric irreducible stochastic game admits a symmetric stationary
equilibrium (x∗, x∗).

Proof Take an arbitrary symmetric irreducible stochastic game. So, X = Y . For a discount
factor β ∈ (0,1) and a stationary strategy x ∈ X of player 1, let B2

β(x) denote the set of
stationary strategies y ∈ X of player 2 that are β-discounted best responses to x.

We have the following well-known properties (cf. e.g. Fink [2] or Takahashi [15]): (1) the
set X is nonempty, compact, and convex, (2) B2

β(x) is nonempty and convex for every x ∈ X,
(3) the set-valued map B2

β : x �→ B2
β(x) is upper semi-continuous, i.e. if sequences xn and

yn in X converge to x ∈ X and y ∈ X respectively, and yn ∈ B2
β(xn) for every n ∈ N, then

y ∈ B2
β(x) must hold. Hence, by Kakutani’s fixed-point theorem [4], the map B2

β has a fixed
point x∗

β ∈ X, i.e. x∗
β ∈ B2

β(x∗
β). Due to symmetry, it follows that the stationary strategy pair

(x∗
β, x∗

β) is a symmetric β-discounted equilibrium.
Since X is compact, there exists a sequence of discount factors βn such that βn → 1 and

x∗
βn

converges to some x∗ ∈ X. We now prove that (x∗, x∗) is an equilibrium. Consider an
arbitrary stationary strategy x ∈ X for player 1. Then for every n ∈ N, because (x∗

βn
, x∗

βn
) is

a βn-discounted equilibrium, we have

γ 1
βn

(
x, x∗

βn

) ≤ γ 1
βn

(
x∗

βn
, x∗

βn

)
.

Since the game is irreducible and x∗
βn

converges to x∗, we have (cf. Lemma 2.2.6 in [17])

lim
n→∞γ 1

βn

(
x, x∗

βn

) = γ 1
(
x, x∗), lim

n→∞γ 1
βn

(
x∗

βn
, x∗

βn

) = γ 1
(
x∗, x∗).

Therefore, γ 1(x, x∗) ≤ γ 1(x∗, x∗). Since x ∈ X was arbitrary, it follows that x∗ is a best
response for player 1 to x∗. Due to symmetry, (x∗, x∗) is an equilibrium, as claimed. �

Moreover, as a consequence of Theorem 1, we also have the following result, which
extends a well-known result for one-state evolutionary games.

Corollary 1 If x∗ is an ESS in an evolutionary stochastic game and x 
= x∗ is a stationary
strategy with C(xs) ⊆ C(x∗

s ) for each s, then x is no ESS.

Proof Let x∗ be an ESS in an evolutionary stochastic game and let x be a stationary strategy
with C(xs) ⊆ C(x∗

s ) for all s. Because x∗ is an ESS, x∗ is a best reply against itself. There-
fore, x∗ is an optimal stationary strategy in the MDP that arises for player 1 if player 2 is
playing x∗. This implies by Theorem 1 that γ (x, x∗) = γ (x∗, x∗). Hence γ (x∗, x) > γ (x, x)

by the 2nd ESS condition. This means that x is no ESS. �

For illustration, we now look at a two-state evolutionary stochastic game.

Example 3
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For this example, the unique ESS is (( 1
2 , 1

2 ), ( 5
7 , 2

7 )). The uniqueness follows from the
fact that the stochastic game has only one symmetric Nash equilibrium in stationary
strategies. Because the population space consists of the convex combinations of four
pure stationary strategies, we cannot visualize population development in a two dimen-
sional figure. We have therefore chosen to visualize population development by means
of two movies. These exhibit how the population develops under the replicator equa-
tion for two different initial population distributions. These movies can be viewed at
http://www.youtube.com/watch?v=CuM3GtoyMM0.

3 Concluding Remarks

In this paper, we have introduced a model that fuses the classical model of evolutionary
games with that of stochastic games. This implies that there are still many issues open for fu-
ture study. In terms of applications, it is challenging to find a specific real life phenomenon of
population development that would perfectly fit this model. At the theoretical level, there are
also some fine challenges, like to characterize the class of symmetric two-person stochastic
games for which symmetric equilibria exist in stationary strategies, or to address the more
general question whether or not any symmetric two-person stochastic game always has a
symmetric ε-equilibrium, when we also allow for non-stationary ones. It would also be very
interesting to explore for evolutionary stochastic games other dynamics than the replicator
dynamics. Some first studies on the fictitious play dynamics for the example in Sect. 2.3
seem to indicate that it converges to the ESS. Again, an illustrative movie is available at
http://www.youtube.com/watch?v=P5QBTVCXXC0.

Acknowledgements We would like to thank an anonymous referee for his valuable comments and sugges-
tions that helped us to substantially improve the presentation of our results.

Appendix

The following results may be known in MDP literature, but we have not been able to find a
precise reference. For sake of completeness, we provide the proofs.

Consider an irreducible MDP. Take an arbitrary stationary strategy x and a state s ∈ S.
For the limiting average reward for x, we simply write γ (x) because the reward does not
depend on the initial state s. For a mixed action αs in state s, let x[s,αs] be the stationary
strategy which uses the mixed action αs in state s and uses the mixed actions xz in all other
states z ∈ S \ {s}, i.e. x[s,αs]s = αs and x[s,αs]z = xz for all z ∈ S \ {s}.

Let W denote the set of all finite histories h = (s1, i1, . . . , s�−1, i�−1, s�), where � ∈ N and
s1 = s� = s and sk 
= s for every k = 2, . . . , � − 1, such that the stationary strategy x[s,αs]
generates h with a positive probability when starting in state s. Note that W is countable.
Let q(h) denote the corresponding probability for every h ∈ W . Due to irreducibility, we
have

∑
h∈W q(h) = 1. Let t (h) = � − 1, which is just the time it takes along h to visit state

s again, and let R(h) denote the sum of the payoffs along h during periods 1, . . . , � − 1.
Let tx,s

αs
= ∑

h∈W q(h)t (h), which is the expected number of periods it takes to visit
state s again when we use x[s,αs] and start in state s. Clearly, tx,s

αs
≥ 1 and tx,s

αs
is finite

due to irreducibility. Let Rx,s
αs

= ∑
h∈W q(h)R(h) denote the corresponding expected sum of

payoffs before visiting state s again. We define

rx,s
αs

= Rx,s
αs

t
x,s
αs

.

http://www.youtube.com/watch?v=CuM3GtoyMM0
http://www.youtube.com/watch?v=P5QBTVCXXC0


Dyn Games Appl (2013) 3:207–219 217

These definitions are illustrated by the following example.

Example 4

Let x = (( 1
3 , 2

3 ),1,1), let s = 1 and let α1 = ( 1
2 , 1

2 ). When also applying the notations
e1 = (1,0) and e2 = (0,1), then we have

rx,1
e1

= Rx,1
e1

t
x,1
e1

= 6

3
= 2,

rx,1
e2

= Rx,1
e2

t
x,1
e2

= 7

7
= 1,

rx,1
α1

= Rx,1
α1

t
x,1
α1

= 6.5

5
= 1.3.

Notice that, although α1 uses e1 and e2 with probability 1
2 each, we have rx,1

α1
= 1.3 
= 1.5 =

1
2 rx,1

e1
+ 1

2 rx,1
e2

. In view of the following lemma, this example shows that

γ

((
1

2
,

1

2

)
,1,1

)

= 1

2
· γ (

(1,0),1,1
) + 1

2
· γ (

(0,1),1,1
)
.

Lemma 1 Consider an irreducible MDP. Take an arbitrary stationary strategy x and a
mixed action αs in some state s ∈ S. Then γ (x[s,αs]) = rx,s

αs
.

Proof Suppose that we use x[s,αs] and start in state s. Then, with probability 1, an infinite
play h∞ = (sm, im)m∈N, with s1 = s, is generated such that: (1) state s is visited infinitely
many times, (2) between each two consecutive visits, a history in W is generated, (3) the rel-
ative frequency of every history h ∈ W is exactly q(h). Consequently, every history h ∈ W

is associated to a proportion

q(h) · t (h)∑
h′∈W q(h′) · t (h′)

of the set N of all periods, which yields

γ
(
x[s,αs]

) =
∑

h∈W

q(h) · t (h)∑
h′∈W q(h′) · t (h′)

· R(h)

t (h)
=

∑
h∈W q(h) · R(h)∑
h∈W q(h) · t (h)

= Rx,s
αs

t
x,s
αs

= rx,s
αs

,

which completes the proof. �

The following lemma presents a useful expression for the reward γ (x) induced by a
stationary strategy x based on the quantities t

x,s
i and r

x,s
i , with i ∈ Is .
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Lemma 2 Consider an irreducible MDP. Take an arbitrary stationary strategy x and a state
s ∈ S. Then

γ (x) =
∑

i∈Is
x(s, i) · Rx,s

i∑
i∈Is

x(s, i) · tx,s
i

=
∑

i∈Is
x(s, i) · tx,s

i · rx,s
i∑

i∈Is
x(s, i) · tx,s

i

, (4)

where x(s, i) is the probability that the stationary strategy x places on action i in state s.

Proof Note that by definition we have x = x[s, xs]. Hence, Lemma 1 tells us that

γ (x) = rx,s
xs

= Rx,s
xs

t
x,s
xs

.

The observation that

Rx,s
xs

=
∑

i∈Is

x(s, i) · Rx,s
i and tx,s

xs
=

∑

i∈Is

x(s, i) · tx,s
i ,

completes the proof. �

Notice that, in view of Eq. (4), the reward γ (x) is a convex combination of the quantities
r

x,s
i , with i ∈ Is .

Lemma 3 Consider an irreducible MDP. Take a stationary optimal strategy x∗ and a state
s ∈ S. Then r

x∗,s
i = γ (x∗) for every i ∈ C(x∗

s ) and r
x∗,s
i ≤ γ (x∗) for every i ∈ Is \ C(x∗

s ).

Proof Take an arbitrary action i ∈ Is , and consider the stationary strategy x∗[s, i]. By
Lemma 1, we have r

x∗,s
i = γ (x∗[s, i]). Due to the optimality of x∗, we obtain r

x∗,s
i ≤ γ (x∗).

Because this inequality holds for all i ∈ Is , and because γ (x∗) is a convex combination of
r

x∗,s
i , i ∈ Is , due to (4), we obtain r

x∗,s
i = γ (x∗) for every i ∈ C(x∗

s ). �

Proof of Theorem 1 We may assume that C(xs) ⊆ C(x∗
s ) for some state s ∈ S and xz = x∗

z

for all other states z ∈ S \ {s}, because then the theorem follows if we iteratively apply it
state by state. Note that, by Lemma 3, it holds that r

x∗,s
i = γ (x∗) for all i ∈ C(x∗

s ). Because
due to our assumption r

x,s
i = r

x∗,s
i for all i ∈ Is and C(xs) ⊆ C(x∗

s ), we obtain r
x,s
i = γ (x∗)

for all i ∈ C(xs). Hence, by Lemma 2, we find γ (x) = γ (x∗). �
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