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Abstract

We suggest a new algorithm for two-person zero-sum undiscounted
stochastic games focusing on stationary strategies. Given a positive real
€, let us call a stochastic game e-ergodic, if its values from any two initial
positions differ by at most e. The proposed new algorithm outputs for
every € > 0 in finite time either a pair of stationary strategies for the two
players guaranteeing that the values from any initial positions are within
an e-range, or identifies two initial positions v and v and corresponding
stationary strategies for the players proving that the game values starting
from uw and v are at least €/24 apart. In particular, the above result
shows that if a stochastic game is e-ergodic, then there are stationary
strategies for the players proving 24e-ergodicity. This result strengthens
and provides a constructive version of an existential result by Vrieze (1980)
claiming that if a stochastic game is 0-ergodic, then there are e-optimal
stationary strategies for every e¢ > 0. The suggested algorithm is based
on a potential transformation technique that changes the range of local
values at all positions without changing the normal form of the game.
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1 Introduction

1.1 Basic Concepts and Notation

Stochastic games were introduced in 1953 by Shapley [Shab3| for the discounted
case, and extended to the undiscounted case by Gillette [Gil57]. Each such game
L=y, iy | ke KV, £ € LY, u,v € V) is played by two players on a finite
set V' of vertices (states, or positions); K¥ and LY for v € V are finite sets
of actions (pure strategies) of the two players; pyy € [0,1] is the transition
probability from state v to state u if players chose actions k € K¥ and ¢ € L" at
state v € V; and 7y € R is the reward player 1 (the maximizer) receives from
player 2 (the minimizer), correpsonding to this transition. We assume that the
game is non-stopping, that is, >° ., pi¢ = 1 forallv € V and k € K¥, £ € L".
To simplify later expressions, let us denote by P € [0,1]%"*L" the transition
matrix, the elements of which are the probabilities p}j, and associate in I' a
local expected reward matriz A¥ to every v € V defined by

(A = D pRériy- (1)

ueV

In the game I', players first agree on an initial vertex vy € V to start. Then,
in a general step j = 0,1,..., when the game arrives to state v; = v € V,
they choose mixed strategies o’ € A(K?) := {y e RE" | 3, _yi =1, y; >
0 for i€ K"} and B € A(LY), player 1 receives the amount of b; = a*A?S"
from player 2, and the game moves to the next state u chosen according to the
transition probabilities p.; = o' P [".

The undiscounted limiting average (effective) payoff is the Cesaro average

X
vo o
g"(T) = liminf ——— ;E[bjL (2)
where the expectation is taken over all random choices made (according to mixed
strategies and transition probabilities) up to step j of the play. The purpose of
player 1 is to maximize g (I"), while player 2 would like to minimize it.

In 1981, Mertens and Neymann in their seminal paper [MN8I] proved that
every stochastic game has a value from any initial position in terms of history
dependent strategies. An example (the so-called Big Match) showing that the
same does not hold when restricted to stationary strategies was given in 1957
in Gillette’s paper [Gil57]; see also [BEGS].

In this paper we shall restrict ourselves (and the players) to the so-called
stationary strategies, that is, the mixed strategy chosen in a position v € V' can
depend only on v but not on the preceding positions or moves before reaching
v (i.e., not on the history of the play). We will denote by K(T') and L(T') the
sets of stationary strategies of player 1 and player 2, respectively, that is,

KI) =@ AKY) and L) =) AL).

veV veV



Vrieze (1980) showed that if a stochastic game T has a value g*°(T') = m, which
is a constant, independent of the initial state vg € V, then it has a value in
e-optimal stationary strategies for any € > 0. We call such games ergodic and
extend their definition as follows.

Definition 1 For e > 0, a stochastic game I is said to be e-ergodic if the game
values from any two initial positions differ by at most €, that is, |g*(T')—g*(T)| <
€, for all u,v € V. A 0-ergodic game will be simply called ergodic.

Our main result in this paper is an algorithm that decides, for any given
stochastic game I' and ¢ > 0, whether or not I" is e-ergodic, and provides a
witness for its e-ergodicity /non-ergodicity. As a corollary, we get a constructive
proof of the above mentioned theorem of Vrieze [Vri80]. A notion central to
our algorithm is the concept of a potential transformation introduced in the
following section.

1.2 Potential transformations

In 1958 Gallai [Gal58] suggested the following simple transformation. Let z :
V' — R be a mapping that assigns to each state v € V' a real number z" called
the potential of v. For every transition (v,u) and pair of actions k € KV and
£ € L7 let us transform the payoff r}y as follows:

() = 1y + 2 —

Then the one step expected payoff amount changes to E[b;(z)] = E[b;]+E[z"/]—
E[zv+1], where v; € V is the (random) position reached at step j of the play.
However, as the sum of these expectations telescopes, the limiting average payoff
remains the same for all finite potentials:

gO(T(@) =g (T) + Jim B[ — 2] = (D).
N—oo N
Thus, the transformed game remains equivalent with the original one.
Using potential transformations we may be able to obtain a proof for ergodicity /non-
ergodicity. This is made more precise in the following section.
m" is the value of the matrix game AV at state v.

1.3 Local and Global Values and Concepts of Ergodicity

Let us consider an arbitrary potential x € RV, and define the local value m®(x)
at position v € V as the value of the |K?| x |L"| local reward matrix game A"(x)
with entries

ape(x) =Y ppi(rp +a¥ —a*), forallke K¥, (€L, (3)
ueV
that is,
m”(x) = Val (A%(x)) := a“énAaE}.g{”) ﬂvgﬂAl?LU) a’A%(x)B :BvénAl?L”) avgﬂAa()?{U)a A’ (x)p".



To a pair of stationary strategies o = (a’|lv € V) € K(I') and g = (8%|v €
V) € L(T") we associate a Markov chain M, g(I") on states in V', defined by the
transition probabilities Dol = o’ P 8. Then, this Markov chain has unique
limiting probability distributions (g;"| u € V'), where g5 is the probability of
staying in state v € V when the initial vertex is v € V. With this notation, The
limiting average payoff (2)) starting from vertex v € V' can be computed as

9", 8) = D gl (a"A“BY). (4)

ueV

The game is said to be to be solvable in uniformly optimal stationary strategies,
if there exist stationary strategies @ € K(I') and 8 € L(I'), such that for all
initial states v € V

g'(a,B) = ag}gé)g”(a,ﬁ) = Bg&)g”(d,ﬁ)- (5)

This common quantity, if exists, is the value of the game with initial position
v € V, and will be simply denoted by ¢g* = ¢*(T').

1.4 Main Result

Given an undiscounted zero-sum stochastic game, we try to reduce the range of
its local values by a potential transformation € RY. If they are equalized by
some potential z, that is, m”(x) = m is a constant for all v € V', we say that the
game is brought to its ergodic canonical form [BEGM13al. In this case, one can
show that the values ¢g¥ exist and are equal to m for all initial positions v € V,
and furthermore, locally optimal strategies are globally optimal [BEGM13a].
Thus, the game is solved in uniformly optimal strategies. However, typically we
are not that lucky.
To state our main theorem, we need more notation.

e W > 0 is smallest integer s.t. either pjy =0 or ppy > 1/W

e R is the smallest real s.t.
0<riy <R (6)

e N = max,cy {max{|K"|,|L"|}}.
-

e 7 = max{log, R,log, W} (maximum ”bit length”)

Theorem 1 For every stochastic game and € > 0 we can find in

2np, . . . .
(M)O(2 N time either a potential vector x € RY proving that
the game is (24¢€)-ergodic, or stationary strategies for the players

proving that it is not e-ergodic.



The proof of Theorem [ will be given in Sectiondl One major hurdle that we
face is that the range of potentials can grow doubly exponentially as iterations
proceed, leading to much worse bounds than those stated in the theorem. To
deal with this issue, we use quantifier elimination techniques [BPR96, [(GV88,
Ren92] to reduce the range of potentials after each iteration; see the discussion
preceding Lemma

2 Related Work

The above definition of ergodicity follows Moulin’s concept of the ergodic exten-
sion of a matrix game [Mou76] (which is a very special example of a stochastic
game with perfect information). Let us note that slightly different terminology
is used in the Markov chain theory; see, for example, [KS63].

The following four algorithms for undiscounted stochastic games are based
on stronger ”ergodicity type” conditions: the strategy iteration algorithm by
Hoffman and Karp [HKG6] requires that for any pair of stationary strategies
of the two players the obtained Markov chain has to be irreducible; two value
iteration algorithms by Federgruen are based on similar but slightly weaker re-
quirements; see [Fed80] for the definitions and more details; the recent algorithm
of Chatterjee and Ibsen-Jensen [CIJ14] assumes a weaker requirement than the
strong ergodicity required by Hoffman and Karp [HKG66]: they call a stochastic
game almost surely ergodic if for any pair of (not necessarily stationary) strate-
gies of the two players, and any starting position, some strongly ergodic class
(in the sense of [HKG6(]) is reached with probability 1.

While these restrictions apply to the structure of the game, our ergodicity
definition only restricts the value. Moreover, the results in [HK66] and [CLJ14]
apply to a game that already satisfies the ergodicity assumption, which seems
to be hard to check. Our algorithm, on the other hand, always produces an
answer, regardless whether the game is ergodic or not.

Interestingly, potentials appear in [Fed80] implicitly, as the differences of
local values of positions, as well as in [HK66], as the dual variables to linear
programs corresponding to the controlled Markov processes, which appear when
a player optimizes his strategy against a given strategy of the opponent. Yet,
the potential transformation is not considered explicitly in these papers.

We prove Theorem [l by an algorithm that extends the approach recently
obtained for ergodic stochastic games with perfect information [BEGM10] and
extended to the general (not necessarily ergodic) case in [BEGMI3Db]. This
approach is also somewhat similar to the first of two value iteration algorithms
suggested by Federgruen in [Fed80|, though our approach has some distinct
characteristics: It is assumed in [Fed80] that the values g” exist and are equal
for all v; in particular, this assumption implies the e-ergodicity for every € > 0.
For our approach we do not need such an assumption. We can verify e-ergodicity
for an arbitrary given € > 0, or provide a proof for non-ergodicity (with a small
gap) in a finite time. Moreover, while the approach of [Fed80] was only shown to
converge, we provide a bound in terms of the input parameters for the number



of steps.

Several other algorithms for solving undiscounted zero-sum stochastic games
in stationary strategies are surveyed by Raghavan and Filar; see Sections 4 (B)
and 5 in [RF91]. The only algorithmic results that we are aware of that provide
bounds on the running time for approximating the value of general (undis-
counted) stochastic games are those given in [CMHOS8, HKL™11]: in [CMHOS],
the authors provide an algorithm that approximates, within any factor of € > 0,
the value of any stochastic game (in history dependent strategies) in time
(nN)™N poly(n,log 1). In [HKLT11], the authors give algorithms for discounted

and recursive stochastic games that run in time N O poly(n,log(1)), and
claim also that similar bounds can be obtained for general stochastic games, by
reducing them to the discounted version using a discount factor of § = ¢V oo
(and this bound on § is almost tight [Mil11]). These results are based on quanti-
fier elimination techniques and yield very complicated history-dependent strate-
gies. For almost sure ergodic games, a variant of the algorithm of Hoffman and

Karp [HK66] was given in [CIJ14]; this algorithm finds e-optimal stationary

nN
strategies in time (roughly) (@) poly(N,n). This result is not compa-
rable to ours, since the class of games they deal with are somewhat different
(although both generalize the class of strongly ergodic games of [HK66]). Fur-
thermore, the algorithm in Theorem [ exhibits the additional feature that it
either provides a solution in stationary strategies in the ergodic case, if one ex-
ists, or produces a pair of stationary strategies that witness the non-ergodicity.

3 Pumping Algorithm

We begin by describing our procedure on an abstract level. Then we specialize
it to stochastic games in Section [4]

Given a subset S C V, let us denote by es € {0,1}" the characteristic vector
of S.

Let us further assume that m?(x) for v € V are functions depending on
potentials x € R™ (where n = |V|) and satisfying the following properties for all
subsets S C V and reals § > 0:

(i) m¥(x — deg) is a monotone decreasing function of ¢ if v € S;
(if) mY(x — deg) is a monotone increasing function of § if v ¢ S;
(iii) |m¥(z) — m¥(z — deg)| < dforallv e V.

We show in this section that under the above conditions we can change
iteratively the potentials to some z’ € R™ such that either all values m"(z’),
v € V, are very close to one another or we can find a decomposition of the
states V' into disjoint subsets proving that such convergence of the values is not
possible.



Our main procedure is described in Algorithm ] below. Given the current
vector of potentials x, at iteration 7, the procedure partitions the set of vertices
into four sets according to the local value m"(x). If either the first (top) set
T or forth (bottom) set B, is empty, the procedure terminates; otherwise, the
potentials of all the vertices in the first and second sets are reduced by the same
amount J, and the computation proceeds to the next iteration.

Algorithm 1 Pump(z, S)
Input: a stochastic game I' a subset S of states.
Output: a potential 2 € R,
1: Initialize 7 := 0, and x, := x.
2: Set m* := max,es m¥(x;), m~ := minyes m*(z,), and § := (m*T —m™)/4.

3: Define
T. ={vesS|m'(z;)>m” +36}

B, ={veS|m'(z;) <m” +d}
M, =5\ (T;UB,;).

if T, =0 or B, =0 then
return z,
end if
Otherwise, set Py :={v € S| m¥(z;) > m~ + 2§} and update

N g

. x2—6 ifveP:
R

Y
7 otherwise.

8 Set 7 := 7+ 1 and Goto step Bl

We can show next that properties (i), (ii) and (iii) above guarantee some
simple properties for the above procedure.

Lemma 1 We have T-41 C T, Br+1 C B, and M, 1 2 M, for all iterations
7=0,1,...

Proof Indeed, by (i) and (iii) we can conclude that m?(z,) > m~ + ¢ holds
for all v € P;. Analogously, by (ii) and (iii) m”(xz,;) < m~ + 30 follows for all
vé& Pr. O

Lemma 2 FEither T, = () or B, = 0 for some finite 7, or there are nonempty
disjoint subsets I, F C S, I O T,, FF O B, and a threshold 1y, such that for
every real A > 0 there exists a finite index T(A) > 19 such that

(a) m¥(z;) > m~ + 26 for allv € I and m*(x;) < m~ +2§ for allv € F,
and for all T > T19;



(b) x% —x2 > A for allv el and u & I, and for all T > 7(A);
(c) 22 —a¥ > A for allve F andu & F, and for all 7 > 7(A).

Proof By Lemma [ sets T and B, can change only monotonically, and hence
only at most |S| times. Thus, if PUMP(z,.5) does not stop in a finite number
of iterations, then after a finite number of iterations the sets T and B, will
never change and all positions in 7, remain always pumped (that is, have their
potentials reduced), while all positions in B, will be never pumped again.

Assuming now that the pumping algorithm Pump(z, S) does not terminate,
let us define the subset I C .S as the set of all those positions which are always
pumped with the exception of a finite number of iterations. Analogously, let F'
be the subset of all those positions that are never pumped with the exception
of a finite number of iterations. Since I and F' are finite sets, there must exist
a finite 79 such that for all 7 > 79 we have I C P, and F'N P, = (), implying
(a). Note that any vertex in T is always pumped by (iii) and hence T, C I for
any 7 > 7p; similarly, B, C F for any 7 > 79.

Let us next observe that all positions not in I U F' are both pumped and not
pumped infinitely many times. Thus, since ¢ is a fixed constant, for every A
there must exist an iteration 7(A) > 7y such that all positions not in I are not
pumped by at least A/§ many more times than those in I, and all positions not
in F are pumped by at least A/d many more times than those in F, implying
(b) and (c). O

Let us next describe the use of Pump(z,S) for repeatedly shrinking the
range of the m" values, or to produce some evidence that this is not possible.
A simplest version is the following:

Algorithm 2 REPEATEDPUMPING (€)

. Initialize h:= 0, and x5, := 0 € R".

: Set m*(h) := maxyey mP(zp,) and m™(h) := min,ey m°(zp).
: If m*(h) —m~(h) < € then STOP.

. Tpg1 :=PuMP(xp,V); h:=h+ 1.

: Goto step

T W N =

Note that by our above analysis, REPEATEDPUMPING either returns a po-
tential transformation for which all m”, v € V values are within an e-band,
or returns the sets I and F as in Lemma 2] with arbitrary large potential dif-
ferences from the other positions. In the next section we use a modification
of these procedures for stochastic games, and show that those large potential
differences can be used to prove that the game is not e-ergodic.

4 Application of Pumping for Stochastic Games

We show in this section how to use REPEATEDPUMPING to find potential trans-
formations verifying e-ergodicity, or proving that the game is not e-ergodic, thus



establishing a proof of Theorem [Il Towards this end, we shall give some nec-
essary and sufficient conditions for e-non-ergodicity, and consider a modified
version of the pumping algorithm described in the previous section which will
provide a constructive proof for the above theorem.

Let us first observe that the local value function of stochastic games satisfies
the properties required to run the pumping algorithm described in the previous
section.

Lemma 3 For every subset S CV and § > 0 and for all v € V we have

"()

m m
m¥(x) < mP(x—des) < m¥(x)+dmaxpe),copiy if vES. (™

Y

m®(z —des) = m¥(zx) —dmaxyed ,aspii i vES,

Furthermore, the value functions m®(x) forv € V satisfy properties (i), (ii) and
(1) stated in Section[3.

Proof According to [B) we must have for all § > 0 that A¥(x) > AY(z — deg)
for all v € S and AY(z) < AY(x — deg) for all v ¢ S proving properties (i)
and (ii) (Indeed, A¥(z — des) = AY(x) — 6(EY — >, cq P"™) for v € S and
A¥(x —deg) = A¥(x) + 0> ,cg P for v ¢ S, where EV is the K| x |L"|-
matrix of all ones. Since the operator Val (B) is monotone increasing in B,
inequalities (7)) follow). Property (iii) follows directly from (). O

The above lemma implies that procedures PuMP and REPEATEDPUMPING
could, in principle, be used to find a potential transformation yielding an e-
ergodic solution. It does not offer, however, a way to discover e-non-ergodicity.
Towards this end, we need to find some sufficient and algorithmically achievable
conditions for e-non-ergodicity.

Let us first analyze (0-)non-ergodicity of stochastic games (in stationary
strategies).

Lemma 4 A stochastic game is non-ergodic if and only if it is e-non-ergodic
for some positive e.

Proof A stochastic game is non-ergodic by definition if there exists a threshold
o, positions v,u € V, and stationary strategies o and £ for the players, such that
no matter what other strategy 8’ player 2 chooses the Markov chain resulting by
fixing (c, ') has a value > ¢ when using initial position vy = v (guaranteeing for
player 1 more than o from v), and the Markov chain obtained by fixing (¢/, )
has a value < o when using initial position vy = u (guaranteeing for player 2
less than o from u). Since strategies o’ and 8’ are chosen from a compact space,
the above implies that there are o/ > o > ¢” such that « guarantees for player
1 at least ¢’ from the initial position v, and 3 guarantees for player 2 at most o’
from initial position u. Hence the game is e-non-ergodic for any ¢ < o’ —¢”.0]



Lemma 5 A stochastic game I' is e-non-ergodic if there exist disjoint non-
empty subsets of the positions I, F C V|, reals a,b with b — a > €, stationary
strategies o, v € I, for player 1, and 8%, u € F, for player 2, and a vector of
potentials x € RV, such that

(N1) appiy =0 forallve I, ugl, ke K¥ and £ € LY,
(N2) Bypiy’ =0 forallue F,wg F,{ € L" and k € K", and
(N3) forallvel andu € F':

min  (0*)TA%(2)B" > b and max (@“)TA%(z)p" < a.

EueA(Lv) areA(Kv)

Proof Let us note that (N1) and (N3) imply that for all strategies 8’ € L(T) of
player 2, the pair of strategies (@, 8), where @” := " for v € I and &’ € A(K")
is chosen arbitrarily for v ¢ I, results in a Markov chain in which subset I
induces one or more absorbing sets (that is, pg4, = 0), and in which all positions
have values at least b. Analogously, (N2) and (N3) imply that F' will always
induce an absorbing set with values less than a, if we fix any pair of strategies
(o/, B), where o is any strategy in KC(T), ¥ := ¥ for v € F and 3" € A(LY)
is chosen arbitrarily, for v ¢ F. Hence choosing any positions v € I and u € F
and strategies @ and § provides a witness for the e-nonergodicity of I. (Here,
we use the well-known fact [MOT0] that, to each player’s stationary strategy,
there is a best response of the opponent which is also stationary.) (Il

Let us introduce a notation for denoting upper bounds on the entries of the
matrices, more precisely on the part of these entries which do not depend on
negative potential differences. Specifically, define

ae) =Y w0 Y i —aY)

ueV ueV, zv<zx?

bpole) =m*(@) =D phiriy — Y pRi(e - oY)

ueV ueV, zv>x?

(8)

where, as before, m™ (x) := max, m"(z), m~(z) := min, m?(z). Define further

v _ ~v e m? (z)+m” (z)
= > 0 vt A\
RY(x) ke}(r%?exeu (age(x)) if m¥(z) > 5 , o)
R'(z) = kelglf?zxem (bkg(x)> otherwise.
Note that

m™(z) —N}Qg(x) <aly(r) <ay,(r) forallveV, k€ K’ €L’ and z € R,

10



which implies
°(z) < RY(z) if mv(z) > M @m (@)

m 2
m¥(z) > mt(z) — RY(x) otherwise.

forallve V and z € RV,

(10)
With this notation we can state a more constructive version of Lemma

Lemma 6 A stochastic game T satisfying (@) is e-non-ergodic if there exist
disjoint non-empty subsets I, F C V, a vector of potentials x € RV, and reals
a' b € [0,m*(z)] with b’ —a’ > 3¢, a’ < m+(m);m7(x), b > m+(m);m7(z),such
that

(N4) m¥(x) >V for allv e I, and m“(z) < a for all u € F;
(N5) a% — 2 > |L°|WRY(z)%/e for allu ¢ I, and v € I;
(N6) 2 —2¥ > |K*|WRY(x)?/¢ for allu € F, and v & F.

Proof We first show that (N4)-(N5) imply the existence of strategies o, for
v € I, satisfying (N1) and (N3). We shall then observe that a similar argument
can be applied to (N4) and (N6) to show the existence of strategies S*, for
u € F, such that those satisfy (N2) and (N3). Consequently, our claim will
follow by Lemma

Let us now fix a position v € I and denote respectively by a’ and 5% the
optimal strategies of players with respect to the payoff matrix A”(z). Denote

further by 3” = \L_1v|(1= 1,...,1) the uniform strategy for player 2, and set

K*={k € K" | ¥ g1 e Pii =0}
Let us then note that we have

o R(z) if ke v,
(A (z)5 )k < { _ R'@)?

RY(x) otherwise,
since at least one of the entries of (N5) has at least % as a coefficient in rows
which are not in K.
Note that ¥’ > 0 implies by ([I0) that R”(x) > 0. Thus by the optimality of
@ and by the above inequalities we have

/ ~ Y ~ RY (‘T)Q
0<bd <m"(z) <a’A’(z)B" < R”(x) — Z ay .
kgRv
implying that >, . aF < ) Since by (N4) we have 0 < d/, inequalities
e < ad +3 <V <m’z) < RY(x) follow, and hence Rf—(ém) < 1 must hold,
implying that the set K" is not empty. Let us then denote by a the truncated
strategy defined by
_ W%
ap = Ekef{ v Q, B
0 if ke K.

if ke K,

11



With this we have for any 3" € A(LY)

Y <m¥(z) < (aA¥(z)B

- (avAv(x)B”) dap|+ > ap (Z aZe(ﬂC)E?)
ke kv kgKv LeLv
< (@a@d)+ | Y ar | R'@)
kgKv

< (@4 (@)5") +e.

Let us then define o = @ and repeat the same for all v € I. Then, these
strategies satisfy (N1) and (N3) with b =0 —e.

Let us next note that by adding a constant to a matrix game it changes its
value with exactly the same constant. Furthermore, multiplying all entries by
—1 and transposing it, changes its value by a factor of —1, interchanges the
roles of row and column players, but leaves otherwise optimal strategies still
optimal. Thus, we can repeat the above arguments for the matrices B (z) =
mT(z)E* — A%(z)T, where E is the |L*| x |K*|-matrix of all ones, and obtain
the same way strategies 8%, u € F satisfying (N2) and (N3) with a = o’ + €.
This completes the proof of the lemma. O

To create a finite algorithm to find sets I and F and potentials satisfying
(N4)-(N6) we need to do some modifications in our procedures.

First, we allow a more flexible partitioning of the m-range by allowing the
m-range boundaries to be passed as parameters and replacing line[2in procedure
Pump by

2: Set § := (m*T —m™)/4.

Next, Let us replace in procedure PUMP, line [7lby the following lines, where
€ > 0 is a prespecified parameter, and call the new procedure with these modi-
fications MODIFIEDPUMP (e, z, S, m_, m4 ):

Ta: Otherwise set Py :={v € S| m¥(x;) > m~ + 2§} and compute

R = ke}glz,iéXeL”(azE(xT)) if ve P,
Ry = omax (bzl(xq.)) if vd P,

where @ and b are defined by ().

7b: Create an auxiliary directed graph G = (V, E) on vertex set V such that
(v,u) € E iff

u

LW (RY)?
T . < - e

¥ — — it veP,,

| |W(R?)?

v u
T, —x; < p

if vd P;.
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7c: Find subsets I, and F; of V such that T, C I, C P,, B, C F, CV\ P,
and no arcs are leaving these sets in G (this can be done by a finding
the strong components of G, or by the method described int he proof of
Theorem [).

7d: if such sets are found STOP and output these sets, otherwise continue
with step Bl

Before starting to analyze this modified pumping algorithm, let us observe
that we have for all iterations
e m- +m"

m-<m 4+ =-<———<m¥x,;) <RY

5 5 ? forall wveP: (11)

as long as m™ —m™ >e.

Lemma 7 Procedure MODIFIEDPUMP(€, 2, .S) terminates in a finite number of
steps.

Proof Let us observe that by Lemma[2 procedure PuMP would either terminate
with T, = B, = ) for some finite 7 > 79, or there exist sets I = I, and
F = F, satisfying conditions (b) and (c) of the lemma, for A = NWQ? /e, where
N = max{max{|K"[,|L"[} : v € [UF}, and Q = max{R} ) : v € IUF}.
Thus, in the latter case, MODIFIEDPUMP will indeed find some sets I, and F,,
and hence terminate for some finite 7. O

Lemma 8 Procedure MODIFIEDPUMP(e, x, V') either shrinks the m-range by a
factor of 3/4 or outputs potentials x = x, and sets I = I, and F = F, which
satisfy conditions (N4)-(N6) with o’ < V.

Proof When the procedure terminates without shrinking the m-range, then it
outputs sets I = I and F' = F}; such that in the auxiliary graph G there are no
arcs leaving these sets. Since I C P, and F' C V'\ P;, condition (N4) holds with
a’ = max,gp, m”(z;) < b = (m"™ + m™)/2. Furthermore, the lack of leaving
arcs in G implies that for all (v,u), v € I and u & I and also for all (u,v) with
u € F and v ¢ F we must have the reverse inequalities in (7b), implying that
conditions (N5) and (N6) hold. O

Let us observe that the bounds and strategies obtained by Lemmas [7l and [8
do not necessarily imply the e-non-ergodicity of the game since those positions
in I, and F; may not have enough separation in m-values (i.e. the condition
b'—a’ > 3ein Lemmal[flis not satisfied). To fix this we need to make one more use
of the pumping algorithm, as described in the MODIFIEDREPEATEDP UMPING
procedure below. After each range-shrinking in this algorithm, we use a rou-
tine called REDUCEPOTENTIAL(T, 2, m_, m4 ) which takes the current potential
vector x and range [m_,m. | and produces another potential vector y such that
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y]loo < 2P (N1 We need to this because, as the algorithm proceeds, the po-
tentials, and hence the transformed rewards, might grow doubly-exponentially
high.

The potential reduction can be done as follows. We write the following
quadratic program in the variables x € RV, a = (a¥ | v € V)] € K(I'), and
B= (8" |veV) eLr):

o AV () > e, A < my e, (12)
a’e=1, ef’ =1,
a’ >0, B >0,

for all v € V, where e denotes the vector of all ones of appropriate dimension.
This is a quadratic system of at most 6N (in)equalities on at most (2N + 1)n
variables. Moreover the system is feasible since the original potential vector x
satisfies it. Thus, a rational approximation to the solution to within an additive
accuracy of § can be computed,using quantifier elimination algorithms, in time
poly(n,No("N),log%); see [BPRI6, [GV88| [Ren92]. Note that the resulting
solution will satisfy (I2)) but within the approximate range [m_ — d,m + d].
By choosing ¢ sufficiently smaller than the desired accuracy €, we can ignore the
effect of such approximation.

Lemma 9 MODIFIEDREPEATEDPUMPING (€) terminates in a finite number h <
log TIL /log %, of iterations, and either provides a potential transformation prov-
ing that the game is 24e-ergodic, or outputs two nonempty subsets I and F and
strategies o’ , v € I, for player 1 and B¥, v € F, for player 2 such that conditions
(N4), (N5) and (N6) hold with b',a’ satisfying the condition in Lemmalf

Proof Let us note that if T = 0 after the second MODIFIEDPUMP call, then
the range of the m-values has shrunk by a factor of I (at least), while if this
happens in the first stage the m-range has shrunk by a factor of 3/4.

On the other hand if the m-range is not shrinking, and we have B, = ()
after the second call of MODIFIEDPUMP, then we would also have m"(z,) >
Smt+3m™ =V forall v € I, while m*(z,) < (mT+m~)/2=d forallu € F,
and hence (N4)-(N6) hold with these a’ and ¥’ values. Since the m-range has not
shrunk, we must have m* —m™ > 24¢, and hence b’ —a’ = £(m4 —my) > 3e
follows. (Note that, since in the second stage we pump only positions in I, the
potentials of these positions may go down, while those of the positions outside
T, remain unchanged, and hence condition (N5) remains satisfied.)

Finally, if the m-range is not shrinking, and the second call returns a new
set I, then all m-values of this set are at least 3m™+1m™ > ZmT+3m~ =V,
and with the same set F' we can conclude again that conditions (N4)-(N6) hold.
O

To complete the proof of Theorem [l we need to analyze the time complexity

of the above procedure, in particular, bounding the number of pumping steps
performed in MODIFIEDPUMP.

14



Algorithm 3 MODIFIEDREPEATEDPUMPING (€)

=

10:
11:
12:

13:
14:
15:
16:
17:
18:
19:
20:
21:

Initialize h := 0, and z;, :== 0 € RV.
Set m*(h) := max,ey m®(zp) and m™(h) := min,ey m°(zp).
if m*(h) —m~(h) < 24¢ then
return xz.
end if
Zh+1 :=MODIFIEDPUMP(€, zp,, V,m_, my) and let F,, I, T, B;, P; be the
sets obtained from MODIFIEDPUMP.
if T, =0 or B, = () then
xp+1 :=REDUCEPOTENTIAL(T, 2., m_(h), my(h))
Set h := h + 1 and Goto step 2]
end if
Otherwise set F = F; and I = I..
Zpt1 :=MODIFIEDPUMP (¢, 2, I;,m_,m4) and let T,, B; be the sets ob-
tained from this call of MODIFIEDPUMP.
if T, = 0 then
Zh+1 :=REDUCEPOTENTIAL(T, ., m_(h), my(h))
Set h := h + 1 and Goto step[2
end if
if B, = then
Goto step 211
end if
Otherwise, update I := I.
return z,4; and the sets I and F.

15



Let us note that as long as m*™ — m™ > 24¢ we pump the upper half P,
by exactly & > 6e. Let Pr(v) (resp., N;(v)) denote the number of iterations,
among the first 7, in which position v was pumped, that is, v € P, (resp., not
pumped, that is, v &€ P;).

Let us next sort the positions v € V' such that we have

V1 V2 U
xS <eee <t

and write A; = x77™" — 27 for j = 1,2,...,n — 1. Note that P,(v;) = 7 and
Nr(vp) = 7.

Let i, be the largest index in {1,2,...,n}, such that v;_ € P.. Then, by (&)
we have for ¢ = 0,1,2,...,7, — 1 that

0<ay (o) SR+ YA, (13)

j=1
where the sum over the empty sum is zero by definition. Similarly, for i =

ir+1,...,n, we have

—R<by(wr) SR+ An (14)

j=1

From (I3) and (I, it follows that

mer<f REEAR,EINTL
Let ZT be the smallest index 7 such that
A, > NW(R+ 623111 Aj)2, )
and let 27 be the largest index ¢ < n — 1 such that
p s TWERATIST Any)? a7

€

From the definition of ZT, we know that

A; < ,foralli=1,...,7, — 1.

NW(R+ 371 A))?
€
Solving this recurrence, we get

-1 ~ 2ir =11 2m_1
NI SN (w) G (M) g
i=1

€ €

(18)
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Similarly, the definition of iy gives

NW(R+ Y1 Api)?

€

A; < Jforalli=4,4+1,...,n—1,

from which follows

(19)

2n 1
" nNWR
Tl — Tt < <7> n’R.

€

Note that if i, < i, then (@@ implies that taking I, = {vy,... ’UL} would
satisfy condition (N5) and guarantee that I, C P;.
Indeed, for all i < i, and u € I, we have

Vs 2
T €

NW(R+ Y171 A;)? ol
€

Similarly, having G >0 guarantees that taking F, = {v: .+, Up } would

= 10"
satisfy (N6) and F, N P, = 0.

, since for all 7 > /z'\T 4+ 1 and u € F,, we have

Vi u "
i —al > A >

NW(R+ S Auy)® KW (R (2r))’
: > .

€

On the other hand, if ZT > i, + 1, then ([I8)) implies that v; 41 was al-
ways pumped except for at most x(R) := (Mf ! %R iterations, that is,
N-(vi.11) < k(R). Also, since v;_11 & Pr, then at time 7, v;_41 is not pumped.
Similarly, if i < ir, then ([I9) implies that v;, was never pumped except for
at most k(R) iterations, that is, Pr(v;.) < x(R), while it is pumped at time 7.
Since we have at most n candidates for each of v;_ and v;_4 1, it follows that after
7 = 2nk(R) + 1, neither of these events (ZT >, +1andi, < i) can happen,
which by our earlier observations implies that the algorithm constructs the sets
I, and F;. We can conclude that MODIFIEDPUMP (e, 2, V') must terminate in
at most 2nk(R) + 1 iterations, either producing m*™ — m™ < 24e or outputting
the subsets I and F proving e-non-ergodicity.

One can similarly bound the running time for the second call of MODIFIED-
Puwmp (line [2), and the running time for each iteration of MODIFIEDREPEAT-
EDPUMPING (€) (but with R replaced by 2P (mN.m)y,

It remains now to bound the running time for the second call of MODIFIED-
Pump (line [2), and the running time for each iteration of MODIFIEDREPEAT-
EDPUMPING(€). We can repeat essentially the same analysis as above, assuming
that we modify the rewards with the potential vector obtained up to this point in
time. Since, by the above argument, the maximum potential difference between
any vertices before at the time 7, when we make the second call to MODIFIED-
PuMmP is at most 6(2nk(R) + 1), it follows that the maximum absolute value
of the transformed rewards at time 7 is r}j(z,;) < Ry := R+ 6(2nk(R) + 1)
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(note that the non-negativity of the rewards was only needed to bound m_ >0
initially). It follows by the same argument as above that the second call MoD-

2n
IFIEDPUMP terminates in time 2nk(R2) + 1 = (M)O(2 ),

After shrinking the m-range, we apply potential reductions which guarantees
that the bit length of each entry in potential vector is bounded by a polynomial
in the original bit length n. It follows that the new transformed rewards will have
absolute value bounded by Rs = 2P°W(mN1)  We repeat the same argument
for the different phases of MODIFIEDREPEATEDPUMPING(¢€) to arrive at the
running time claimed in Theorem [

This completes the proof of the theorem. O
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