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Abstract. A standard assumption in mean-field game (MFG) theory is that
the coupling between the Hamilton-Jacobi equation and the transport equation is
monotonically non-decreasing in the density of the population. In many cases, this
assumption implies the existence and uniqueness of solutions. Here, we drop that
assumption and construct explicit solutions for one-dimensional MFGs. These
solutions exhibit phenomena not present in monotonically increasing MFGs: low-
regularity, non-uniqueness, and the formation of regions with no agents.

1. Introduction

Mean-field game (MFG) theory [3, 17, 21, 32] describes on-cooperative differen-
tial games with infinitely many identical players. These games were introduced by
Lasry and Lions [29, 30, 31] and, independently around the same time, by Huang,
Caines and Malhamé [27, 28]. Often, MFGs are given by a Hamilton-Jacobi equa-
tion coupled with a Fokker-Planck equation. A standard example is the stationary,
one-dimensional, first-order MFG:{

(ux+p)2

2 + V (x) = g(m) +H,

−(m(ux + p))x = 0,
(1.1)

with its elliptic regularization,{
−εuxx + (p+ux)2

2 + V (x) = H + g(m)

−εmxx − ((p+ ux)m)x = 0,
(1.2)

where ε > 0. Here, p is a fixed real number and the unknowns are the constant H and
the functions u and m. The function g is C∞ on R+. To simplify the presentation,
we consider the periodic case and work in the one-dimensional torus, T. Accordingly,
V : T→ R is a C∞ potential. We search for periodic solutions, u,m : T→ R. Here,
we examine this problem and attempt to understand its features in terms of the
monotonicity properties of g.

A standard assumption in MFGs is that g is increasing. Heuristically, this assump-
tion means that agents prefer sparsely populated areas. In this case, the existence
and uniqueness of smooth solutions to (1.1) is well understood for stationary prob-
lems [18, 19, 20, 33], weakly coupled MFG systems [11], the obstacle MFG problem
[12] and extended MFGs [13]. In the time-dependent setting, similar results are ob-
tained in [14, 15, 24] for standard MFGs and in [16, 23] for forward-forward problems.
The theory of weak solutions is also well developed for first-order and second-order
problems (see [4, 5, 7] and [6, 8, 34, 35], respectively). Congestion problems, see
[9, 22, 25], are also of interest and our results extend straightforwardly [10].
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The case of a non-monotonically increasing g is relevant: if g is decreasing, agents
prefer clustering in high-density areas. The case where g first decreases and then
increases is also natural; here, agents have a preferred density given by the minimum
of g. However, little is known about the properties of (1.1) when g is not increasing.
One of the few known cases is a second-order MFG with g(m) = − lnm and a
quadratic cost. In this case, due to the particular structure of the equations, there
are explicit solutions, see [26, 32].

A triplet, (u,m,H), solves (1.1) if

i. u is a Lipschitz viscosity solution of the first equation in (1.1);
ii. m is a probability density; that is,

m > 0,

∫
T

m = 1;

iii. m is a weak (distributional) solution of the second equation in (1.1).

Because (1.1) is invariant under addition of constants to u, we assume that u(0) = 0.
Here, u is Lipschitz continuous. However, m can be discontinuous. In this case,
viscosity solutions of the first equation in (1.1) are interpreted as discontinuous
viscosity solutions; see, for example, [1] and the discussion in Section 6.

Our problem is one-dimensional and the Hamiltonian is convex. If u is a piecewise
C1 function and m is continuous, then u is a viscosity solution if the following
conditions hold:

a. u solves the equation at the points where it is C1 and m is continuous;
b. lim

x→x−0
ux(x) > lim

x→x+0
ux(x) at points of discontinuity of ux.

When g is not increasing, (1.1) may not admit m continuous. Solutions must,
therefore, be considered in the framework of discontinuous viscosity solutions. In this
case, the above characterization of one-dimensional viscosity solutions is not valid,
and (1.1) admits a large family of discontinuous viscosity solutions (see Section 6).
On the other hand, solutions that satisfy the above conditions (a. and b.) have nice
structural properties that we discuss in this paper. Furthermore, in their analysis
we see the appearance of discontinuities in m, which in turn motivates the study of
discontinuous viscosity solutions. Overall, these conditions seem to be good selection
criteria for discontinuous solutions of (1.1).

We call solutions that satisfy conditions a. and b. regular (they can still be
discontinuous). In this paper, we always consider regular solutions except in Section
6, where we discuss general discontinuous viscosity solutions. Furthermore, when m
is continuous the term “regular” is superfluous. Thus, except in Section 6, we refer
to regular solutions.

Our goal is to solve (1.1) explicitly and to understand the qualitative behavior of
solutions. For that, in Section 2, we reformulate (1.1) in terms of the current,

j = m(ux + p). (1.3)

From the second equation in (1.1), j is constant. Thus, the current becomes the
main parameter in our analysis.

While we focus our attention into non-increasing MFGs, our methods are also
valid for increasing MFGs. To illustrate and contrast these two cases, we begin our
analysis in Section 3 by addressing the latter. For j > 0, we show the existence of
a unique smooth solution. However, for j = 0, we uncover new phenomena: the
existence of non-smooth solutions and the lack of uniqueness.
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In Section 4, we consider the elliptic regularization of monotone MFGs. We estab-
lish a new variational principle that gives the existence and uniqueness of smooth so-
lutions. Moreover, we address the vanishing viscosity problem using Γ-convergence.

In Section 5, we study regular solutions of (1.1) for non-increasing g. In this case,
if j 6= 0, m > 0. However, for certain values of j, (1.1) does not have continuous
solutions. In contrast, if j is large enough, (1.1) has a unique smooth solution.
Moreover, if V has a single point of maximum, there exists a unique solution of
(1.1) for each j > 0. If V has multiple maxima, there are multiple solutions. If
j = 0, the behavior of (1.1) is more complex and m can be discontinuous or vanish.

Next, in Section 6, we consider MFGs with a decreasing nonlinearity, g, and
discuss the properties of discontinuous viscosity solutions.

Subsequently, in Section 7, we study the elliptic regularization of anti-monotone
MFGs. There, we use calculus of variations methods to prove the existence of a
solution.

In Section 8, we examine the regularity of solutions as a function of the current
and, in Section 9, we study the asymptotic behavior of solutions of (1.1) as j con-
verges to 0 and ∞. Finally, in Sections 10 and 11, we analyze the regularity of H
in terms of j and p.

2. The current formulation and regularization

Here, we discuss the current formulation of (1.1) and (1.2). After some elementary
computations, we show that the current formulation of (1.2) is the Euler-Lagrange
equation of a suitable functional.

2.1. Current formulation. Let j be given by (1.3). From the second equation in
(1.1), j is constant. We split our analysis into the cases, j 6= 0 and j = 0.

If j 6= 0, m(x) 6= 0 for all x ∈ T and ux + p = j/m. Thus, (1.1) can be written as
Fj(m) = H − V (x),

m > 0,
∫
T
mdx = 1,∫

T

1
mdx = p

j ,

(2.1)

where Fj(m) = j2

2m2 − g(m). For each x, the first equation in (2.1) is an algebraic

equation for m. If g is increasing, for each x ∈ T and H ∈ R, there exists a unique
solution. In contrast, if g is not increasing, there may exist multiple solutions, as we
discuss later.

For j = 0, (1.1) gives 
(ux+p)2

2 − g(m) = H − V (x),

m > 0,
∫
T
mdx = 1,

m(ux + p) = 0.

(2.2)

From the last equation in (2.2), either m = 0, in which case u solves

(ux + p)2

2
− g(0) = H − V (x),

or m > 0 and g(m) +H − V (x) = 0. Hence, if g is increasing or decreasing, m(x) is
determined in a unique way; otherwise, multiple solutions can occur.
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2.2. Elliptic regularization. Now, we consider the elliptic MFG (1.2). From the
second equation in that system, we conclude that

j = εmx +m(p+ ux)

is constant. Thus, we solve for ux and replace it in the first equation. Accordingly,
we get

− ε
(
j − εmx

m

)
x

+
(j − εmx)2

2m2
+ V (x) = H + g(m). (2.3)

Then, using the identity

ε
(j − εmx)mx

m2
+

(j − εmx)2

2m2
=
j2 − ε2m2

x

2m2
,

we obtain the following equation for m:

ε2
mxx

m
− ε2 m

2
x

2m2
+ Fj(m) = H − V (x). (2.4)

Now, let Φj be such that Φ′j(m) = Fj(m); that is,

Φj(m) = − j2

2m
−G(m),

where G′(m) = g(m). Then, (2.4) is the Euler-Lagrange equation of the functional∫
T
ε2
m2
x

2m
− Φj(m)− V (x)m dx (2.5)

under the constraint
∫
Tm = 1; the constant H is the Lagrangian multiplier for the

preceding constraint.

3. First-order monotone MFGs

We continue our analysis by considering monotonically increasing nonlinearities,
g. In the case of a non-vanishing current, solutions are smooth. However, if the
current vanishes, solutions can fail to be smooth, m can vanish, and u may not be
unique.

The non-smooth behavior for a generic non-decreasing nonlinearity, g, was ob-
served in Theorem 2.8 in [31] where the authors find limits of smooth solutions of
second-order MFGs as the viscosity coefficient converges to 0.

3.1. j 6= 0, g increasing. Here, in contrast to the case j = 0, examined later, the
solutions are smooth. Elementary computations give the following result.

Proposition 3.1. Let g be monotonically increasing. Then, for every j > 0, (1.1)
has a unique smooth solution, (uj ,mj , Hj), with current j. This solution is given by

mj(x) = F−1
j (Hj − V (x)), uj(x) =

x∫
0

j

mj(y)
dy − pjx,

where pj =
∫
T

j
mj(y)dy, Fj(t) = j2

2t2
− g(t), and Hj is such that

∫
T
mj(x)dx = 1.
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3.2. j = 0, g increasing. To simplify the discussion and illustrate our methods,
we consider (2.2) with g(m) = m. The analysis is similar for other choices of an
increasing function, g. Accordingly, we have

(ux+p)2

2 −m = H − V (x);

m > 0,
∫
T
mdx = 1;

m(ux + p) = 0.

(3.1)

It is easy to see that m(x) = (V (x)−H)+ for x ∈ T. The map H 7→
∫
T

(V (x)−H)+dx

is decreasing (strictly decreasing at its positive values). Hence, there exists a unique
number, H, such that

∫
T
m(x)dx = 1. Moreover, H < maxV and H >

∫
T V − 1.

If minV < H < maxV , m is non-smooth and there are regions where it vanishes.
In contrast, if H < minV , m is always positive. In this case, ux + p = 0, and, by
periodicity of u, p = 0. Furthermore, from the first equation in (3.1), we have

H =

∫
T
V (x)dx− 1.

Given H, we find from (3.1) that

|ux + p| =
√

2(H − V (x))+, x ∈ T.

Hence, for

u±(x) = ±
x∫

0

√
2(H − V (y))+dy − px,

where p = ±
∫
T

√
2(H − V (y))+dy, the triplets (u±,m,H) solve (3.1). However,

there are also solutions with a discontinuous derivative, ux. For that, let x0 ∈ T be
such that V (x0) < H. Such a point always exists if H > min

T
V or, equivalently,

when
∫
T
V (x)dx− 1 < min

T
V . Let

(ux0(x))x =

√
2(H − V (x))+ · χx<x0 −

√
2(H − V (x))+ · χx>x0 − px0 ,

where px0 =
∫

y<x0

√
2(H − V (y))+dy −

∫
y>x0

√
2(H − V (y))+dy and χ denotes the

characteristic function. Therefore, ux0 solves the first equation of (3.1) almost ev-
erywhere, and ux0x has only negative jumps. Since m is continuous, ux0 is a viscosity
solution of that equation. Consequently, (ux0 ,m,H) solves (3.1).

To summarize, (3.1) has a unique, smooth solution if and only if ux + p ≡ 0 or,
equivalently, m(x) = V (x)−H. The latter holds if and only if∫

T

V (x)dx 6 1 + min
T
V. (3.2)

This is the case for small perturbations V ; that is, oscV 6 1.
For A ∈ R, set VA(x) = A sin(2π(x + 1

4)) and let m(x,A), H(A) solve (3.1) for
V = VA. In Fig. 1, we plot m(x,A) for 0 6 A 6 2. We observe that m(x,A) is
smooth for small values of A and becomes non-differentiable for large A, as expected
from our analysis. If A = 2, (3.2) does not hold. Thus, m(x, 2) is singular and we
have multiple solutions, u(x, 2). In Fig. 2, we plot m(x, 2) and two distinct solutions,
u(x, 2).
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Fig. 1. m(x,A).
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u(x,2)

Fig. 2. m(x, 2) (left) and two distinct solutions u(x, 2) (right).

4. Monotone elliptic mean-field games

To study (1.2), we examine the variational problem determined by (2.5). As
before, for concreteness, we consider the case g(m) = m. In this case, (2.5) becomes

Jε[m] =

∫
T

(
ε2
m2
x

2m
+

j2

2m
+
m2

2
− V (x)m

)
dx. (4.1)

The preceding functional is convex and, as we prove next, the direct method in the
calculus of variations gives the existence of a minimizer on the set

A =

{
m ∈W 1,2(T) : m > 0 ∧

∫
T
m = 1

}
.

Proposition 4.1. For each j ∈ R, there exists a unique minimizer, m, of Jε[m] in
A. Moreover, m > 0 and solves

−ε2
(mx

m

)
x
− j2

2m2
+m+H − V (x) = 0

for some constant H ∈ R.

Proof. The uniqueness of a positive minimizer is a consequence of the strict convexity
of Jε. The existence of a non-negative minimizer requires separate arguments for
the cases j 6= 0 and j = 0.

We first examine the case j 6= 0. We begin by taking a minimizing sequence,
mn ∈ A. Then, there exists a constant, C > 0, such that∫

T

(mn)2
x

mn
+

1

mn
dx 6 C.

Thus, by Morrey’s theorem, the functions
√
mn are equi-Hölder continuous of ex-

ponent 1
2 . Therefore, because

∫
mn = 1, this sequence is equibounded and, through
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0.0 0.2 0.4 0.6 0.8 1.0
x

0.5

1.0

1.5

2.0
m(x)

Fig. 3. Solution m of (1.2) when g(m) = m, j = 1, V (x) =
sin(2π(x+ 1/4)) for ε = 0.01 (dashed) and for ε = 0 (solid).

some subsequence, mn → m for some function m > 0. Moreover, by Fatou’s lemma,∫
T

1

m
dx 6 C.

Suppose that minm = m(x0) = 0. Then, because
√
m is Hölder continuous, we

have m(x) 6 C|x− x0|. However, ∫
T

1

|x− x0|
dx

is not finite, which is a contradiction. Thus, m is a strictly positive minimizer.
Moreover, it solves the corresponding Euler-Lagrange equation.

For j = 0, we rewrite the Euler-Lagrange equation as

− ε2(lnm)xx +m− V (x) = −H. (4.2)

Let P be the set of non-negative functions in L∞(Td) and consider the map
Ξ : P → P defined as follows. Given η ∈ P, we solve the PDE

−ε2wxx + η − V (x) = −H,

where H satisfies the compatibility condition

H =

∫
T
V dx− 1,

and w : T → R is such that
∫
ewdx = 1. An elementary argument shows that w

is uniformly bounded from above and from below. Next, we set Ξ(η) = ew. The
mapping Ξ is continuous and compact. Accordingly, by Schauder’s Fixed Point
Theorem, there is a fixed point, m, that solves (4.2). By the convexity of the vari-
ational problem (4.1), this fixed point is the unique solution of the Euler-Lagrange
equation. �

Next, to study the convergence as ε → 0, we investigate the Γ-convergence as
ε→ 0 of Jε. A simple modification of the arguments in [2], Chapter 6, shows that

Jε
Γ→ J,

where

J [m] =

∫
T

(
j2

2m
+
m2

2
− V (x)m

)
dx,

if m > 0 and
∫
m = 1. In Fig. 3, we observe numerical evidence for this Γ-

convergence.
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5. Regular viscosity solutions in anti-monotone mean-field games

Here, we investigate MFGs with decreasing g. To simplify, we assume that g(m) =
−m. However, our arguments are valid for a general decreasing g. In contrast with
the monotone case, m may not be unique. Furthermore, m can be discontinuous
and, thus, viscosity solutions of the Hamilton-Jacobi equation in (1.1) should be
interpreted in the discontinuous sense. In this section, we are interested in regular
discontinuous viscosity solutions; that is, solutions satisfying conditions a. and b.
stated in the Introduction. Here, we examine existence, uniqueness, and additional
properties of such solutions. In Section 6, we prove that these solutions are indeed
discontinuous viscosity solutions.

5.1. j 6= 0, g decreasing. To simplify the presentation, we consider j > 0.
With g(m) = −m, (2.1) becomes

j2

2m2 +m = H − V (x);

m > 0,
∫
T
mdx = 1;∫

T

1
mdx = p

j .

(5.1)

The minimum of t 7→ j2/2t2 +t is attained at tmin = j2/3. Thus, j2/2t2 +t > 3j2/3/2
for t > 0.

Therefore, a lower bound for H is

H > H
cr
j = max

T
V +

3j2/3

2
, (5.2)

where the superscript cr stands for critical.
The function t 7→ j2/2t2 + t is decreasing on the interval (0, tmin) and increasing

on the interval (tmin,+∞). For any H satisfying (5.2), let m−
H

and m+
H

be the

solutions of
j2

2(m±
H

(x))2
+m±

H
(x) = H − V (x),

with 0 6 m−
H

(x) 6 tmin 6 m+
H

(x). Due to (5.2), m−
H

and m+
H

are well defined.

Furthermore, if (u,m,H) solves (1.1), thenm(x) agrees with eitherm+
H

(x) orm−
H

(x),

almost everywhere in T.
Let m−j := m−

H
cr
j

and m+
j := m+

H
cr
j

. Note that m−j (x) 6 m+
j (x) for all x ∈ T, and

the equality holds only at the maximum points of V . Hence, m−j (x) < m+
j (x) on a

set of positive Lebesgue measure unless V is constant.
The two fundamental quantities for our analysis are

α+(j) =
1∫
0

m+
j (x)dx,

α−(j) =
1∫
0

m−j (x)dx.

(5.3)

If V is not constant, we have

α−(j) < α+(j)

for j > 0.

Proposition 5.1. Suppose that x = 0 is the single maximum of V . Then, for
every j > 0, there exists a unique number, pj, such that (1.1) has a regular solution

with a current level, j. Moreover, the solution of (5.1), (uj ,mj , Hj), is unique and
given as follows.
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i. If α+(j) 6 1,

mj(x) = m+
Hj

(x), uj(x) =

x∫
0

jdy

mj(y)
− pjx, (5.4)

where pj =
∫
T

jdy
mj(y) and Hj is such that

∫
T
mj(x)dx = 1.

ii. If α−(j) > 1,

mj(x) = m−
Hj

(x), uj(x) =

x∫
0

jdy

mj(y)
− pjx, (5.5)

where pj =
∫
T

jdy
mj(y) and Hj is such that

∫
T
mj(x)dx = 1.

iii. If α−(j) < 1 < α+(j), we have that Hj = H
cr
j , and

mj(x) = m−j (x)χ[0,dj) +m+
j (x)χ[dj ,1), uj(x) =

x∫
0

jdy

mj(y)
− pjx, (5.6)

where pj =
∫
T

jdy
mj(y) and dj is such that

∫
T

mj(x)dx =

dj∫
0

m−j (x)dx+

1∫
dj

m+
j (x)dx = 1.

Proof. Case i. The function j2/2t2 + t is increasing on the interval (tmin,+∞).
Therefore, H 7→ m+

H
(x) is increasing for all x. Hence, the mapping

H 7→
∫
T

m+
H

(x)dx,

is increasing. By assumption,
∫
T
m+
H

cr
j

(x)dx =
∫
T
m+
j (x)dx 6 1. Therefore, there

exists a unique Hj > H
cr
j such that

∫
T
m+
Hj

(x)dx = 1. Thus, (uj ,mj) given by (5.4)

is the unique solution of (1.1) with H = Hj and p = pj .
Case ii. The function j2/2t2 + t is decreasing on the interval (0, tmin). Therefore,

m−
H

(x) is decreasing in H for all x. Hence, the mapping

H 7→
∫
T

m−
H

(x)dx

is decreasing. By assumption,
∫
T
m−
H

cr
j

(x)dx =
∫
T
m−j (x)dx > 1. Thus, there exists

a unique number, Hj > H
cr
j , such that

∫
T
m−
Hj

(x)dx = 1. Hence, (uj ,mj) given by

(5.5) is the unique solution of (1.1) with H = Hj and p = pj .

Case iii. We first show that (1.1) does not have regular solutions for H > H
cr
j .

By contradiction, suppose that (1.1) has a regular solution, (u,m,H), for some
H > H

cr
j and p ∈ R. Evidently, m(x) = m+

H
(x)χE + m−

H
(x)χT\E for some subset

E ⊂ T. Furthermore,

inf
T

(m+
H

(x)−m−
H

(x)) > 0 (5.7)
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because H > H
cr
j . Moreover,∫

T

m(x)dx =

∫
E

m+
H

(x)dx+

∫
T\E

m−
H

(x)dx

and ∫
T

m−
H

(x)dx <

∫
T

m−j (x)dx < 1 <

∫
T

m+
j (x)dx <

∫
T

m+
H

(x)dx.

Therefore, neither E nor T\E can be empty or have zero Lebesgue measure. Because
E and T \ E are not negligible, there exists a real number, e, such that for every
ε > 0,

(e− ε, e) ∪ E 6= ∅ and (e, e+ ε) ∪ Ec 6= ∅.

According to (5.7), m has a negative jump, m(e−)−m(e+) < 0, at x = e. Hence,

ux = j/m − p has a positive jump, j
m−(e)

− j
m+(e)

> 0, at x = e. However, deriva-

tives of regular solutions can only have negative jumps and, thus, this contradiction
implies Hj = H

cr
j .

Next, we construct mj and uj and determine pj . We look for a function mj of
the form

mj(x) =

{
m−j (x), x ∈ [0, d),

m+
j (x), x ∈ [d, 1).

(5.8)

Note that (5.8) is the only possibility for mj because mj can switch from m+
j to m−j

only if there is no jump at the switching point; that is, m+
j and m−j are equal at

that point, which only holds at maximum of V . Thus, by periodicity, mj can switch
to m−j from m+

j only at x = 0 and x = 1.

It remains to choose d ∈ (0, 1) such that
∫
T
mj(x)dx = 1. Let

φ(d) =

1∫
0

mj(x)dx =

d∫
0

m−j (x)dx+

1∫
d

m+
j (x)dx.

Because φ(0) > 1 and φ(1) < 1 and because φ′(d) = m−j (d) − m+
j (d) < 0 for

d ∈ (0, 1), there exists a unique dj ∈ (0, 1) such that φ(dj) = 1. The triplet defined

by (5.6), (uj ,mj , Hj), solves (1.1). �

By the previous proposition, if V has a single maximum point then, for every
current, j > 0, there exists a unique pj and a unique triplet, (uj ,mj , Hj), that
solves (5.1) for p = pj . In contrast, as we show next, if V has multiple maxima
and j > 0 is such that Case iii in Proposition 5.1 holds, there exist infinitely many
solutions.

Proposition 5.2. Suppose that V attains a maximum at x = 0 and at x = x0 ∈
(0, 1). Let j be such that α−(j) < 1 < α+(j). Then, there exist infinitely many

numbers, p, and pairs, (u,m), such that (u,m,H
cr
j ) is a regular solution of (1.1).

Proof. We look for solutions of the form

md1,d2
j (x) =

{
m−j (x), x ∈ [0, d1) ∪ [x0, d1),

m+
j (x), x ∈ [d1, x0) ∪ [d2, 1),
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Fig. 4. Solution m for j = 0.001 and V (x) = 1
2 sin(2π(x+ 1/4)).
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m j
-

Fig. 5. Solution m for j = 10 and V (x) = 1
2 sin(2π(x+ 1/4)).

where 0 < d1 < x0 and x0 < d2 < 1. Note that md1,d2
j has two discontinuity points.

At these points, md1,d2
j has positive jumps. Hence, if we define

ud1,d2j (x) =

x∫
0

jdy

md1,d2
j (y)

− pd1,d2j x, x ∈ T,

where pd1,d2j =
∫
T

jdy
md1,d2

(y) , the triplet (ud1,d2j ,md1,d2
j , H

cr
j ) is a regular solution of

(1.1) if ∫
T

md1,d2
j (x)dx = 1.

To determine d1 and d2, we consider the function

φ(d1, d2) =

1∫
0

md1,d2
j (x)dx =

d1∫
0

m−j (x)dx+

x0∫
d1

m+
j (x)dx

+

d2∫
x0

m−j (x)dx+

1∫
d2

m+
j (x)dx, (d1, d2) ∈ (0, x0)× (x0, 1).

We have that φ(0, x0) =
1∫
0

m+
j (x)dx > 1 and φ(x0, 1) =

1∫
0

m−j (x)dx < 1. Because φ

is continuous, there exists a pair, (d1, d2) ∈ (0, x0)× (x0, 1), such that φ(d1, d2) = 1.
In fact, there are infinitely many such pairs. For arbitrary continuous curve γ ⊂
[0, x0] × [x0, 1] connecting the points (0, x0) and (x0, 1), there exists at least one
pair, (d1, d2) ∈ γ, such that φ(d1, d2) = 1. To each such pair corresponds a triplet

(ud1,d2j ,md1,d2
j , H

cr
j ) that is a regular solution of (1.1). �

Let V (x) = 1
2 sin(2π(x + 1

4)). Because V has a single maximum, Proposition 5.1
gives that (1.1) admits a unique regular solution for all values of j > 0. In Figs. 4,
5, 6, we plot m for different values of j. In Fig. 4, we plot m in the low-current
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Fig. 6. Solution mj for j = 0.5 and V (x) = 1
2 sin(2π(x+ 1/4)).
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Fig. 7. Two distinct solutions for j = 0.5 and V (x) = 1
2 sin(4π(x+ 1/8)).

regime, j = 0.001; that is, Case i in Proposition 5.1. As we can see, m is smooth
as predicted by the proposition. In Fig. 5, we plot m in the high-current regime,
j = 10; that is, Case ii in Proposition 5.1. As before, we observe that m is smooth.
Finally, in Fig. 6, we plot m for the intermediate-current regime, j = 0.5; that is,
Case iii in Proposition 5.1. As we can see, m is discontinuous.

Next, we consider the potential V (x) = 1
2 sin(4π(x + 1

8)) that has two maxima.
By Proposition 5.2, we have infinitely many two-jump solutions. In Fig. 7, we plot
two such solutions.

5.2. j = 0, g decreasing. Now, we examine the case when the current vanishes,
and, thus, we consider the system

(ux+p)2

2 +m = H − V (x);

m > 0,
∫
T
mdx = 1;

m(ux + p) = 0.

(5.9)

Suppose that (5.9) has a solution. Because m > 0, we have H−V (x) > 0 for x ∈ T.
Thus, H > max

T
V . On the other hand,∫

T

(
H − V (x)

)
dx >

∫
T

mdx = 1.

Consequently, H > 1 +
∫
T
V . Therefore,

H > max

max
T

V, 1 +

∫
T

V

 =: H0.

It turns out that H0 is the only possible value for H as we show next.

Proposition 5.3. The MFG (5.9) does not have regular solutions for H > H0.
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Proof. Suppose that H > H0 and that the triplet (u,m,H) is a regular solution of
(5.9). If m(x) > 0, then ux(x) + p = 0 and m = H − V (x). If m(x) = 0, then

(ux(x) + p)2 = 2(H − V (x)).

Thus, on the set Z = {x : m(x) = 0},

ux(x) + p =

√
2(H − V (x)) or ux(x) + p = −

√
2(H − V (x)).

We have that
∫
T

(
H − V (x)

)
dx > 1. Hence, the set Z has a positive Lebesgue

measure. Otherwise, m(x) = H − V (x) everywhere, and thus
∫
T
m(x)dx > 1. Con-

sequently, ux + p is either
√

2(H − V (x)) or −
√

2(H − V (x)) on Z. Suppose that

ux(x) + p takes the value −
√

2(H − V (x)) at some point x ∈ T. Without loss of

generality, we can assume that ux(0) + p = −
√

2(H − V (0)). Let

e = sup

{
x ∈ (0, 1) s.t. ux(x) + p = −

√
2(H − V (x))

}
.

Then, at x = e, the function ux + p has a jump of size
√

2(H − V (e)) or

2
√

2(H − V (e)). However, this is impossible because ux is a regular solution,

and it cannot have positive jumps. Therefore, ux(x) + p takes only the values√
2(H − V (x)) and 0. But then, ux must have a positive jump from 0 to

√
2(H − V (x))

at some point, which also contradicts the regularity property. �

Now, we construct solutions to (5.9) with H = H0. It turns out that if V has a
large oscillation, then (5.9) has infinitely many regular solutions.

Proposition 5.4. We have that

i. if 1 +
∫
T
V > max

T
V , then the triplet (u0,m0, H0) with

m0(x) = H0 − V (x), u0(x) = 0, (5.10)

solves (5.9) in the classical sense for p = 0;
ii. if max

T
V > 1 +

∫
T
V , define

md1,d2
0 (x) =

{
H0 − V (x), x ∈ [d1, d2],

0, x ∈ T \ [d1, d2],
(5.11)

and

ud1,d20 (x) =

x∫
0

(ud1,d20 )x(y)dy, x ∈ T, (5.12)

where

(ud1,d20 )x(x) =


√

2(H0 − V (x))− pd1,d20 , x ∈ [0, d1),

−pd1,d20 , x ∈ [d1, d2],

−
√

2(H0 − V (x))− pd1,d20 , x ∈ (d2, 1],
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Fig. 8. m0 as defined in (5.11) for V (x) = 5 sin(2π(x + 1
4)) with

d2 = 0.5 and d1 such that (5.13) holds.
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Fig. 9. u0 (left) and (u0)x (right) as defined in (5.11) for V (x) =
5 sin(2π(x+ 1

4)) with d2 = 0.5 and d1 such that (5.13) holds.

and pd1,d20 =
d1∫
0

√
2(H0 − V (x))dx−

1∫
d2

√
2(H0 − V (x))dx. Then, for any pair,

(d1, d2), such that

d2∫
d1

(H0 − V (x))dx = 1, (5.13)

the triplet (ud1,d20 ,md1,d2
0 , H0) is a regular solution for (5.9) for p = pd1,d20 .

Furthermore, there exist infinitely many pairs, (d1, d2), such that (5.13) holds.

Proof. Case i. In this case, H0 = 1 +
∫
T
V (x)dx and straightforward computations

show that (5.10) defines a classical solution of (5.9).

Case ii. In this case, we have that H0 = max
T

V and that
1∫
0

(H0 − V (x))dx > 1.

Without loss of generality, we assume that 0 is a point of maximum for V .

Note that (ud1,d20 )x has only negative jumps and ud1,d20 satisfies (5.9) almost ev-

erywhere. Thus, the triplet (ud1,d20 ,md1,d2
0 , H0) is a regular solution of (5.9) if∫

T
md1,d2

0 (x)dx = 1. However, the latter is equivalent to (5.13). Since
1∫
0

(H0 −

V (x))dx > 1, we can find infinitely many such pairs. We find pd1,d20 from the iden-

tity
∫
T

(ud1,d20 )x(x)dx = 0. �

Figs. 8 and 9 show the solutions of (5.9) for V (x) = 5 sin(2π(x+ 1
4)), x ∈ T.

Remark 5.5. If V has multiple maxima and Case ii in Proposition 5.4 holds, there
is a larger family of solutions. Let x = x0 ∈ (0, 1) be a point of maximum for V .
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For fixed real numbers, d1 < d2 < e1 < e2, define

md1,d2,e1,e2
0 (x) =

{
H0 − V (x), x ∈ [d1, d2] ∪ [e1, e2],

0, elsewhere,
(5.14)

and

ud1,d2,e1,e20 (x) =

x∫
0

(ud1,d2,e1,e20 )x(y)dy, x ∈ T, (5.15)

where

(ud1,d2,e1,e2)x(x) =


√

2(H0 − V (x))− pd1,d2,e1,e20 , x ∈ [0, d1) ∪ [x0, e1),

−
√

2(H0 − V (x))− pd1,d2,e1,e20 , x ∈ (d2, x0] ∪ (e2, 1],

−pd1,d2,e1,e20 , elsewhere.

Note that (ud1,d2,e1,e2)x(x) is periodic, only has negative jumps, and solves (5.9) al-

most everywhere. Hence, the triplet (ud1,d2,e1,e20 ,md1,d2,e1,e2
0 , H0) is a regular solution

of (5.9) if
1∫

0

md1,d2,e1,e2(x)dx = 1 (5.16)

for

pd1,d2,e1,e20 =

∫
[0,d1)∪[x0,e1)

√
2(H0 − V (x))dx−

∫
(d2,x0]∪(e2,1]

√
2(H0 − V (x))dx.

The equality (5.16) is equivalent to

d2∫
d1

(H0 − V (x))dx+

e2∫
e1

(H0 − V (x))dx = 1. (5.17)

Since
1∫
0

(H0 − V (x))dx > 1, we can find infinitely many quadruples (d1, d2, e1, e2)

such that (5.17) holds. Hence, we can generate infinitely many solutions of the form
(5.14), (5.15).

From Propositions 5.1 and 5.4, for every regular solution, m, of (1.1) in the low-
current regime (j = 0 or Case i in Proposition 5.1), the smaller V (x) is, the larger
m(x) is. This is paradoxical because V (x) represents the spatial preference of the
agents and preferred regions correspond to high values of V . Thus, areas that are
less desirable have a high populational density. Therefore, it is possible that the
most preferred site is empty and agents aggregate at the least preferred site. For
example, in (5.11), m vanishes near the maximum of V and is supported in the
neighborhood of the minimum of V , as illustrated in Fig. 8. Hence, if agents do
not move fast (low current), they prefer staying together rather than being in a
better place, see Fig. 4. In the high-current regime (Case ii in Proposition 5.1), the
opposite situation occurs: the larger V (x) is, the larger m(x) becomes, see Fig. 5.
Therefore, preferred areas have a high population density. Hence, if the level of the
current is high enough (we give quantitative estimates in the next section), agents
are better off at preferred sites and with more agents. Finally, for the intermediate
current level (Case iii in Proposition 5.1), we observe a more complex situation. The
solution, m, consists of two parts: m−j (x) and m+

j (x). m−j (x) is larger where V (x)

is larger and the opposite holds for m+
j (x). Therefore, in the region where m is m−j ,
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the most preferred sites are more densely populated. In the region where m is m+
j

the less preferred sites are more densely populated. This is illustrated in Fig. 6.

6. Discontinuous viscosity solutions

In the anti-monotone case considered in the preceding section, m can be dis-
continuous. Thus, in addition to regular solutions examined before, we need to
consider viscosity solutions in the framework of discontinuous Hamiltonians. In
what follows, we recall the main definitions in [1]. Given a locally bounded function,
F : T× R→ R, we define its lower and upper semicontinuous envelopes as

F∗(x, q) = lim inf
(y,r)→(x,q)

F (y, r), F ∗(x, q) = lim sup
(y,r)→(x,q)

F (y, r)

for (x, q) ∈ T×R. We say that a locally bounded function, u : T→ R, is a viscosity
solution of F (x,Du) = 0 if, for any smooth function, φ : T→ R, we have that

F∗(x, φx + p) 6 0 for all x ∈ argmax(u− φ)

and

F ∗(x, φx + p) > 0 for all x ∈ argmin(u− φ).

Let m : T→ R, m ∈ L∞(T), and set

m∗(x) = lim inf
y→x

m(y), m∗(x) = lim sup
y→x

m(y).

Suppose that V : T→ R is continuous. Then, for our setting, we have

F (x, q) =
q2

2
+ V (x) +m(x)−H.

Consequently,

F∗(x, q) =
q2

2
+ V (x) +m∗(x)−H, F ∗(x, q) =

q2

2
+ V (x) +m∗(x)−H.

Here, we look for piecewise smooth solutions of (1.1) for g(m) = −m that are not
necessarily regular; that is, the condition lim

x→x−
ux(x) > lim

x→x+
ux(x) is not necessarily

satisfied. It turns out that there are infinitely many such solutions for all j 6= 0
independent of properties of V , and the jump direction of ux is irrelevant. This
contrasts with the fact that for V with a single maximum, there exists just one
regular solution (Proposition 5.1).

Thus, we select a current level, j > 0 (j < 0 is analogous), and fix arbitrary points
0 6 x0 < x1 < · · · < xn 6 1 and H > H

cr
j . We search for solutions (u,m,H) such

that m is continuous on the intervals (xi, xi+1) for 0 6 i 6 n − 1. From the above
discussion, we have:

Proposition 6.1. Assume that j > 0 and that

• m > 0 is continuous on (xi, xi+1) and

j2

2m(x)2
+m(x) = H − V (x) for all x 6= xi.

• H is such that
∫
T
m(x)dx = 1.

Then, the triplet (u,m,H) solves (1.1), where

u(x) =

x∫
0

j

m(y)
dy − px, p =

∫
T

j

m(y)
dy.
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Proof. We have that ux + p = j
m a.e.. Thus, the second equation in (1.1) holds in

the sense of distributions. Next, we observe that u is differentiable for all x 6= xi
and that the first equation in (1.1) is satisfied in the classical sense at those points.
Thus, we just need to check the viscosity condition at x = xi.

There are two possible cases:

1. m(x−i ) > m(x+
i ).

In this case, m∗(xi) = m(x−i ). Moreover,

ux(x−i ) = j/m(x−i )− p < j/m(x+
i )− p = ux(x+

i ).

Hence, there is no smooth function touching u from above; it touches only
from below. Therefore, we need to check that, for any φ touching u from
below at xi, we have

(φx(xi) + p)2

2
+ V (xi) +m(x−i )−H > 0.

Because (1.1) is satisfied at x 6= xi in the classical sense, we have that

(ux(x±i ) + p)2

2
+ V (xi) +m(x±i )−H = 0.

Because φ touches u from below and j > 0, we have

0 < ux(x−i ) + p 6 φx(xi) + p 6 ux(x+
i ) + p.

Hence,

(φx(xi) + p)2

2
+ V (xi) +m(x−i )−H

>
(ux(x−i ) + p)2

2
+ V (xi) +m(x−i )−H = 0.

2. m(xi−) < m(xi+).
In this case, m∗(xi) = m(x−i ) and

ux(x−i ) = j/m(x−i )− p > j/m(x+
i )− p = ux(x+

i ).

Hence, there is no smooth function touching u from below – only from above.
Therefore, for any φ touching u from above at xi, we have

(φx(xi) + p)2

2
+ V (xi) +m(x−i )−H 6 0. (6.1)

Because (1.1) holds in the classical sense for x 6= xi, we have that

(ux(x±i ) + p)2

2
+ V (xi) +m(x±i )−H = 0.

Because φ touches u from above, we have 0 < ux(x+
i ) + p 6 φx(xi) + p 6

ux(x−i ) + p. Hence, (6.1) holds.

�

Remark 6.2. If g is increasing, the construction of piecewise smooth solutions
with discontinuous m in the previous proposition fails because m(x−i ) = m(x+

i ),
necessarily. Therefore, the smooth solutions found in Proposition 3.1 are the only
possible ones: there are no extra discontinuous solutions as in the case of decreasing
g. This is yet another consequence of the regularizing effect of an increasing g.
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7. Anti-monotone elliptic mean-field games

Now, we consider anti-monotone elliptic MFGs and the corresponding variational
problem (2.5) with g(m) = −m. We use the direct method in the calculus of
variations to prove the existence of a minimizer of the functional

Jε[m] =

∫
T

(
ε2
m2
x

2m
+

j2

2m
− m2

2
− V (x)m

)
dx. (7.1)

Proposition 7.1. For each j ∈ R, there exists a minimizer, m, of J [m] in

A =

{
m ∈W 1,2(T) : m > 0 ∧

∫
T
m = 1

}
.

Moreover, m, solves

−ε2
(mx

m

)
x
− j2

2m2
−m+H − V (x) = 0

for some H ∈ R.

Proof. To prove the existence of a positive minimizer, we consider separately the
cases j 6= 0 and j = 0.

Case 1. j 6= 0. We take a minimizing sequence, mn ∈ A, and note that there is a
constant, C, such that ∫

T
ε2

(mn)2
x

2mn
+

j2

2mn
dx 6 C +

∫
T

m2
n

2
.

Therefore, we seek to control
∫
m2 by the integral expression on the left-hand side.

For that, we recall the Gagliardo-Nirenberg inequality,

||w||Lp 6 ||wx||aLr ||w||1−aLq (7.2)

for 0 6 a 6 1, with

1

p
= a

(
1

r
− 1

)
+ (1− a)

1

q
,

whenever
∫
Tw = 0. With p = 4 and r = q = 2, we obtain a = 1

4 . Using these values
in (7.2), taking into account that

∫
m = 1, and choosing w =

√
m, we obtain∫

T
m2
n 6 C + C

(∫
T

(mn)2
x

2mn

) 1
2

.

Thus, using a weighted Cauchy inequality,∫
T
ε2

(mn)2
x

2mn
+

j2

2mn
dx 6 C.

Finally, we argue as in the proof of Proposition 4.1 and show the existence of a
minimizer.
Case 2. j = 0. Here, we use a fixed point argument as in the proof of Proposition

4.1. For that, we rewrite the Euler-Lagrange equation as

− ε2(lnm)xx −m− V (x) = −H, (7.3)

and argue as before. However, because the functional (7.1) is non-convex, uniqueness
may fail. �
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Fig. 10. Solution m of (1.2) when g(m) = −m, j = 1, V (x) =
1
2 sin(2π(x+ 1/4)) for ε = 0.01 (dashed) and for ε = 0 (solid).

The preceding result does not give a unique minimizer. We note that for large
j, the functional (7.1) behaves like a convex functional. Finally, we note that as
ε → 0, numerical evidence suggests that there is no Γ-convergence to a minimizer,
see figure 10, where we plot a solution for small ε versus the solution with ε = 0.

8. Regularity regimes of the current equation for g(m) = −m

Now, we analyze the regularity regimes of (5.1); that is, we determine for which
values of j (5.1) has or fails to have smooth solutions. For simplicity, we assume
that 0 is the only point of maximum of V . Moreover, as before, we consider the case
j > 0, as the case j < 0 is analogous.

We begin by proving that α+, α−, defined in (5.3), are monotone.

Proposition 8.1. We have that

i. α+ and α− are increasing on (0,∞);
ii. lim

j→+∞
α+(j) = lim

j→+∞
α−(j) =∞;

iii. lim
j→0

α+(j) = max
T

V −
∫
T
V (x)dx, lim

j→0
α−(j) = 0.

Proof. i. First, we prove that m+
j (x) and m−j (x) (see Section 5.1 for the definition)

are increasing in j at every point x ∈ T. We fix x and set h = (max
T

V ) − V (x). If

h = 0, then m−j (x) = j2/3, which is an increasing function of j. Next, for h > 0 let

t(j) = m−j (x) < j2/3. We have that

j2

2t(j)2
+ t(j)− 3

2
j2/3 = h.

By the implicit function theorem, t(j) is differentiable. Differentiating the previous
equation in j gives

t′(j) =
j−1/3 − j

t2

1− j2

t3

.

Because 0 < t(j) < j2/3, t′(j) > 0. Hence, t(j) is increasing. The proof for m+
j (x)

is identical.
ii. By definition, m+

j (x) > j2/3. Hence, lim
j→∞

α+(j) =∞. On the other hand, for

j large enough, we have

j2

2(j2/3/2)2
+
j2/3

2
− 3

2
j2/3 = j2/3 > max

T
V − V (x)

=
j2

2(m−j (x))2
+m−j (x)− 3

2
j2/3.
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Therefore, m−j (x) > j2/3/2 and lim
j→∞

α−(j) =∞.

iii. Because m−j (x) 6 j2/3 for every x ∈ T, lim
j→0

m−j (x) = 0 for all x ∈ T. Thus,

lim
j→0

α−(j) = 0. On the other hand, m+
j (x) > j2/3. Thus, 0 6 j2

(m+
j (x))2

6 j2/3.

Therefore,

lim
j→0

m+
j (x) = lim

j→0

(
3

2
j2/3 − j2

2(m+
j (x))2

+ max
T

V − V (x)

)
= max

T
V − V (x).

Thus,

lim
j→0

α+(j) = max
T

V −
∫
T

V (x)dx.

�

Next, we define two numbers that characterize regularity regimes of (1.1):

jlower = inf{j > 0 s.t. α+(j) > 1}, (8.1)

and

jupper = inf{j > 0 s.t. α−(j) > 1}. (8.2)

Proposition 8.2. Let jlower and jupper be given by (8.1) and (8.2). Then

i. 0 6 jlower < jupper <∞;
ii. for j > jupper, the system (1.1) has smooth solutions;
iii. for jlower < j < jupper, the system (1.1) has only discontinuous solutions;
iv. if jlower > 0, the system (1.1) has smooth solutions for 0 < j 6 jlower.

Proof. The proof is a straightforward application of Propositions 5.1 and 8.1. �

Finally, we characterize the regularity at j = 0.

Proposition 8.3. The system (5.9) admits smooth solutions if and only if

α+(0) 6 1.

Proof. The proof follows from iii in Proposition 8.1 and i in Proposition 5.4. �

Let V (x) = A sin(2π(x + 1/4)). In Fig. 11, we plot α+ and α− for A = 0.5 and
A = 5. From Proposition 8.1, α+(0) = A. Thus, if A = 0.5, we have α+(0) < 1 and,
for A = 5, we have α+(0) > 1. Therefore, jlower > 0 for A = 0.5 and jlower = 0 for
A = 5. Hence, if A = 0.5, (1.1) has smooth solutions for a low enough current level
(j 6 0.218) or for a high enough current level (j > 1.750). In contrast, if A = 5,
there are no smooth solutions for low currents, only for large currents (j > 3.203).

We end the section with an a priori estimate for the current level for smooth
solutions.

Proposition 8.4 (A priori estimate). Suppose that max
T

V > 1 +
∫
T
V (x)dx and

let (u,m,H) be a smooth solution of (1.1) with m > 0. Then, there exists a constant,
c(V ) > 0, such that

inf
T
m(ux + p) > c(V ). (8.3)

Proof. From Proposition 8.1, we have that α+(0) > 1. Thus, by Proposition 8.3,
(1.1) does not have smooth solutions for j = 0. Additionally, jlower = 0. Next, take
c(V ) = jupper and by Proposition 8.2, we conclude (8.3). �
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Fig. 11. α+ and α− for V (x) = A sin(2π(x + 1/4)). jlower =
0.218, jupper = 1.750 (A = 0.5); jlower = 0, jupper = 3.203 (A = 5).

The previous Proposition shows that if the potential, V, has a large oscillation
(this happens in the example for A = 5, Fig. 11), then only high current solutions
are smooth.

9. Asymptotic behavior of solutions as j → 0 and j → +∞

In Section 5.1, we studied regular solutions of (1.1) with a current level j > 0.
Here, we continue the analysis of the decreasing nonlinearity, g(m) = −m, and
examine the asymptotic behavior of regular solutions as j → 0 and j →∞.

As before, we assume that V has a single maximum at 0. First, we address the
case j →∞.

Proposition 9.1. For j > 0, let (uj ,mj , Hj) solve (5.1). We have that

i. lim
j→∞

Hj =∞;

ii. For x ∈ T, lim
j→∞

mj(x) = 1, lim
j→∞

uj(x) = 0, and lim
j→∞

pj =∞.

Proof. i. According to (5.2), we have that Hj >
3j2/3

2 +max
T

V . Thus, lim
j→∞

Hj =∞.

ii. For j > jupper, solutions of (5.1) are given by (5.5). Hence, mj consists only

of the m− branch. Thus, mj(x) 6 j2/3, which yields j2

mj(x)2
> mj(x). Therefore,

j2

2mj(x)2
+mj(x) 6 3j2

2mj(x)2
. Consequently, using this inequality in (5.1), we get

j√
2(Hj − V (x))

6 mj(x) 6

√
3j√

2(Hj − V (x))
. (9.1)

Integrating the previous inequality and taking into account that
∫
T
mj(x) = 1, we

get ∫
T

j√
2(Hj − V (x))

dx 6 1 6
∫
T

√
3j√

2(Hj − V (x))
dx. (9.2)

Because Hj converges to ∞, and, for every x, y ∈ T, where V is bounded, we have
that

lim
j→∞

√
2(Hj − V (y))√
2(Hj − V (x))

= 1.

Hence, for large enough j, we have√
2(Hj − V (x)) 6 2

√
2(Hj − V (y)), x, y ∈ T. (9.3)
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Let x̄ be such that

j√
2(Hj − V (x̄))

=

∫
T

j√
2(Hj − V (x))

dx.

Then, by (9.1), (9.3), and (9.2), we get

mj(x) 6

√
3j√

2(Hj − V (x))
6

2
√

3j√
2(Hj − V (x̄))

6 2
√

3.

Similarly, we have

mj(x) >
j√

2(Hj − V (x))
>

j

2
√

2(Hj − V (x̄))
6

1

2
√

3
.

Furthermore, we have that

j2

2m2
j (x)

=
Hj − V (x)

1 +
2m3

j (x)

j2

. (9.4)

Thus,

mj(x) =
1√

1 +
2m3

j (x)

j2

j√
2(Hj − V (x))

. (9.5)

Finally, because mj is bounded and its integral is 1, we get from (9.5) that

lim
j→∞

j√
2(Hj − V (x))

= 1 (9.6)

for all x ∈ T. The preceding limit implies that lim
j→∞

mj(x) = 1 for all x ∈ T. In fact,

(9.6) gives precise asymptotics of Hj , namely

lim
j→∞

2Hj

j2
= 1. (9.7)

Now, we compute the limit of uj(x). We have that (uj)x = j
mj(x)−pj , where pj =∫

T

j
mj(y)dy. From (5.1), we have that j

mj(x) =
√

2(Hj − V (x)−mj(x)). Therefore,

using (9.4),∣∣∣∣ j

mj(x)
− j

mj(y)

∣∣∣∣ =

∣∣∣∣√2(Hj − V (x)−mj(x))−
√

2(Hj − V (y)−mj(y))

∣∣∣∣
6
|mj(x)−mj(y)|+ |V (x)− V (y)|√

2(Hj −min
T
V )

6
2
√

3 + oscV√
2(Hj −min

T
V )
→ 0,

as j →∞. Hence,

|(uj)x| =
∣∣∣∣ j

mj(x)
− pj

∣∣∣∣ =

∣∣∣∣∣∣
∫
T

(
j

mj(x)
− j

mj(y)

)
dy

∣∣∣∣∣∣
6
∫
T

∣∣∣∣ j

mj(x)
− j

mj(y)

∣∣∣∣ dy → 0,

when j →∞. Consequently, lim
j→∞

uj(x) = lim
j→∞

x∫
0

(uj)x(y)dy = 0. �
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Next, we study the behavior of solutions as j → 0.

Proposition 9.2. We have that

i. lim
j→0

Hj = max

(
max
T

V, 1 +
∫
T
V

)
= H0;

ii. if 1 +
∫
T
V > max

T
V , then

lim
j→0

mj(x) = 1 +

∫
T

V − V (x), lim
j→0

uj(x) = 0, and lim
j→0

pj = 0

for all x ∈ T;
iii. if 1 +

∫
T
V 6 max

T
V , then

lim
j→0

mj(x) = md,1(x), lim
j→0

uj(x) = ud,1(x), and lim
j→0

pj =

d∫
0

√
2(max

T
V − V (x))dx

for all x ∈ T, where md,1 and ud,1 are given by (5.11) and (5.12).

Proof. i. There are two possible cases: jlower > 0 and jlower = 0. If jlower = 0, then
α+(j) > 1 for all j > 0 and α−(j) < 1 for small enough j. Hence, by the results in

Section 5.1, we have that Hj = H
cr
j = 3

2j
2/3 + maxV . Thus, lim

j→0
Hj = maxV . On

the other hand, jlower = 0 means that lim
j→0

α+(j) > 1. Consequently, by Proposition

(8.1), max
T

V −
∫
T
V > 1. Thus, max

(
max
T

V, 1 +
∫
T
V

)
= max

T
V = lim

j→0
Hj .

If jlower > 0, then α+(j) < 1 for j < jlower and solutions (mj , uj , Hj) are given

by (5.4). Hence, mj(x) > j2/3 and

0 <
j2

2mj(x)2
6
j2/3

2
. (9.8)

Therefore,

lim
j→0

Hj = lim
j→0

∫
T

V +

∫
T

mj +

∫
T

j2

2mj(x)2

 =

∫
T

V + 1.

But max
T

V −
∫
T
V = lim

j→0
α+(j) < 1, so max

(
max
T

V, 1 +
∫
T
V

)
= 1 +

∫
T
V = lim

j→0
Hj .

ii. Since lim
j→0

α+(j) = maxV −
∫
V , we have that the condition 1+

∫
T
V > max

T
V is

equivalent to the condition jlower > 0. In this case, we have that lim
j→0

Hj = 1 +
∫
T
V .

Therefore, from (9.8), we have that

lim
j→0

mj(x) = lim
j→0

(
Hj − V (x)− j2

2m2
j (x)

)
= 1 +

∫
T

V − V (x).

Furthermore,

lim
j→0

uj(x) = lim
j→0

x∫
0

 j

mj(y)
−
∫
T

j

mj(z)
dz

 dy = 0.
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iii. The inequality 1 +
∫
T
V 6 max

T
V is equivalent to jlower = 0. Hence, for

0 < j < jupper solutions are given by (5.6).

Because 0 < m−j (x) 6 j2/3, lim
j→0

m−j (x) = 0. Furthermore, m+
j (x) > j2/3. Thus,

lim
j→0

j2

2(m+
j (x))2

= 0.

Therefore,

lim
j→0

m+
j (x) = lim

j→0

(
Hj − V (x)− j2

2(m+
j (x))2

)
= maxV − V (x).

Suppose that the jump points, dj , of mj(x) (see (5.6)) converge to some d ∈ [0, 1]

through a subsequence. Then, through that subsequence lim
j→0

mj(x) = md,1
0 (x),

where md,1
0 is defined in (5.11). Hence,

1 =

∫
T

md,1
0 (x)dx =

1∫
d

(maxV − V (x)) dx.

Because V has a single maximum, d is defined uniquely by the previous equation.

Hence, lim
j→0

dj = d and lim
j→0

mj(x) = md,1
0 (x), globally (not only through some subse-

quence). Consequently,

lim
j→0

uj(x) = ud,10 (x), lim
j→0

pj = pd,10 =

d∫
0

√
2(max

T
V − V (x))dx,

where d is such that
1∫
d

(maxV − V (x)) = 1. �

From Proposition 9.2, we see that we recover only part of the solutions for j = 0
as limits of solutions for j > 0. If we consider the solutions of (5.1) for which m
takes negative values, we recover all solutions described in Section 5.2. Indeed, the
first equation in (5.1) is a cubic equation in m(x). Thus, for every x ∈ T, there
are three solutions: two positive and one negative. Because we are interested in the
MFG interpretation of (5.1), we neglect solutions with negative m. However, we
can construct solutions for (5.1) without the constraint m > 0. As j converges to 0,
the negative parts of these solutions converge to 0, and, in the limit, we obtain all
non-negative solutions of (5.9) given in Proposition 5.4.

10. Properties of Hj

In this section, we study various properties of the effective Hamiltonian, Hj , as a

function of j. In the following proposition, we collect several properties of Hj .

Proposition 10.1. We have that

i. For every j ∈ R, there exists a unique number, Hj, such that (1.1) has solu-
tions with a current level j;

ii. Hj is even; that is, Hj = H−j;

iii. Hj is continuous;

iv. Hj increasing on (0,∞) and decreasing on (−∞, 0);

v. min
j∈R

Hj = H0 = max

(
max
T

V, 1 +
∫
T
V (x)dx

)
;
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Fig. 12. H̄j for V (x) = 1
2 sin(2π(x+ 1

4)).

vi. lim
|j|→∞

Hj

j2/2
= 1.

Proof. i. This follows from Propositions 5.1 and 5.4.
ii. This follows from the fact that j 7→ j2/2t+ t is an even function for all t > 0.
iii. Continuity of Hj follows from the continuity of the mapping (j, t) 7→ j2/2t2+t

for j, t > 0.
iv. Since Hj is even, it suffices to show that it is increasing on (0,+∞). First,

we show that Hj is increasing on (jupper,∞). For that, we fix j0 > jupper.

We have that Hj0 > H
cr
j0 . Hence, for any jupper < j < j0 we have that

Hj0 > H
cr
j0 > H

cr
j . Therefore, the function, m̃j , determined by{

j2

2(m̃j(x))2
+ m̃j(x) = Hj0 − V (x),

m̃j(x) 6 j2/3,
(10.1)

is well defined for all jupper < j < j0. Next, we show that the mapping

j 7→ m̃j(x)

is increasing in (jupper, j0) for all x ∈ T. Indeed, fix x ∈ T and differentiate
(10.1) in j to obtain

dm̃j(x)

dj
= − jm̃j(x)

j2 − m̃j(x)3
< 0.

Hence, m̃j(x) < mj0(x), x ∈ T. Accordingly,∫
T

m̃j(x)dx <

∫
T

mj0(x)dx = 1.

Finally, the previous inequality implies Hj < Hj0 .

The monotonicity of Hj on (0, jlower) (in the case jlower > 0) can be proven
analogously.

Next, for jlower < j < jupper, we have that Hj = H
cr
j = 3

2j
2/3 + max

T
V . Hj

is thus evidently monotone.
v. This follows from the previous properties of Hj and Proposition 9.2.
vi. We have proven this in (9.7).

�

In Fig. 12 we plot Hj as a function of j for V (x) = 1
2 sin(2π(x+ 1

4)).

11. Analysis in terms of p

Now, we analyze (1.1) in terms of the variable p. If g(m) is increasing, for every p ∈
R, there exists a unique number, H(p), for which (1.1) has a solution. This solution
is unique if m > 0 (see, e.g., [31]). Here, we show that, if g(m) is not increasing,
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Fig. 13. pj for V (x) = 1
2 sin(2π(x+ 1

4)).

there may be different values of H(p) for which (1.1) has a regular solution. The
uniqueness of H depends both on the monotonicity of g and on the properties of
V . For example, if g(m) = −m, H is uniquely determined by p if and only if V
has a single maximum. Moreover, our prior characterization of regular solutions of
(1.1) implies that, for V with a single maximum point, (1.1) admits a unique regular
solution for every p ∈ R.

We start with an auxiliary lemma.

Lemma 11.1. Let x = 0 be the single maximum point of V .

i. For every j 6= 0, there exists a unique number, pj, such that (1.1) has a regular
solution. Furthermore, the map j 7→ pj is increasing on (0,∞) and (−∞, 0).

ii. If 1 +
∫
T
V (x)dx > max

T
V , then p0 = 0 is the unique number for which (1.1)

has a regular solution with j = 0. Moreover, lim
j→0

pj = 0.

iii. If 1 +
∫
T
V (x)dx < max

T
V , then

pj >

d1∫
0

√
2(max

T
V − V (x))dx, j > 0

and

pj < −
1∫

d2

√
2(max

T
V − V (x))dx, j < 0,

where d1, d2 ∈ (0, 1) are such that

d1∫
0

(max
T

V − V (x))dx =

1∫
d2

(max
T

V − V (x))dx = 1.

Consequently, (1.1) has a regular solution for j = 0 if and only if

−
1∫

d2

√
2(max

T
V − V (x))dx 6 p 6

d1∫
0

√
2(max

T
V − V (x))dx. (11.1)

Proof. i. According to Proposition 5.1, for every j > 0, there exists a unique number,
pj , such that (1.1) has a regular solution with a current level j. Let (uj ,mj , Hj) be
the solution of (1.1) given by (5.4), (5.5) or (5.6). Because

pj =

∫
T

j

mj(y)
dy,
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to prove that pj is increasing it suffices to show that j 7→ j
mj(x) is increasing for all

x ∈ T. First, we prove the monotonicity for jlower < j < jupper. Let nj(x) := j
mj(x) .

We have that 
n2
j (x)

2 + j
nj(x) = Hj − V (x), x ∈ T;

nj(x) = j

m−
j (x)

χ[0,dj) + j

m+
j (x)

χ[dj ,1).
(11.2)

Because the maps j 7→ m+
j (x) and j 7→ m−j (x) are increasing for all x ∈ T, the map

j 7→ dj is also increasing. Assume that j is such that dj 6= x. We differentiate in

j the first equation in (11.2) and take into account that Hj = 3
2j

2/3 + max
T

V for

jlower < j < jupper to get

dnj(x)

dj
=

H
′
j − 1

nj(x)

nj(x)− j
n2
j (x)

=

1
j1/3
− 1

nj(x)

nj(x)− j
n2
j (x)

.

Let jx be such that x = djx . For j > jx, we have dj > x. Thus, nj(x) = j/m−j (x) >

j1/3, which implies
dnj(x)
dj > 0. Similarly, for j < jx, we have dj < x. Therefore,

nj(x) = j/m+
j (x) < j1/3, which implies

dnj(x)
dj > 0.

Next, we analyze the behavior of nj at jx. For j > jx, nj(x) = j

m−
j (x)

, and, for

j < jx, nj(x) = j

m+
j (x)

. Thus, nj(x) takes a positive jump, j

m−
j (x)

− j

m+
j (x)

> 0,

at j = jx. Therefore, j 7→ nj(x) has positive derivatives whenever j 6= jx and a
positive jump at j = jx. It is thus increasing for jlower < j < jupper.

Next, we show that j 7→ nj(x) is increasing on (jupper,∞). As before, we have

dnj(x)

dj
=

H
′
j − 1

nj(x)

nj(x)− j
n2
j (x)

.

Because mj(x) < j2/3, we have nj(x) > j1/3. Therefore, if H
′
j > 1/nj(x), the map

j 7→ nj(x) is increasing.

Fix j0 and, for j > j0, consider H̃j := Hj0 + (j − j0)
min
T
mj0

(x)

j0
. Define{

j2

2m̃j(x)2
+ m̃j(x) = H̃j − V (x), x ∈ T;

m̃j(x) 6 j2/3.

Note that H̃j0 = Hj0 and m̃j0 = mj0 . Now, we compute the derivative of the map

j → m̃j(x) at j = j0. Because mj0 < j
2/3
0 , we have

dm̃j(x)

dj

∣∣∣∣∣
j=j0

=
H̃ ′j −

j
m̃2

j

1− j2

m̃3
j

∣∣∣∣∣
j=j0

=

min
T
mj0

j0
− j0

m2
j0

1− j20
m3

j0

> 0.

Thus,

d

dj

∫
T

m̃j(x)dx

∣∣∣∣∣
j=j0

=

∫
T

dm̃j(x)

dj
dx > 0.

Hence, for small j > j0 close to j0, we get∫
T

m̃j(x)dx > 1.
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Fig. 14. H̄(p) for V (x) = 1
2 sin(2π(x+ 1

4)).

Consequently, for those values of the current, we have that Hj > H̃j . Hence,

H
′
j0 > H̃

′
j0 =

min
T
mj0

j0
= max

T

1

nj0
,

which completes the monotonicity proof for j > jupper. The monotonicity for j <
jlower is similar.

ii. & iii. These claims follow from the monotonicity of j 7→ pj and Propositions
5.4 and 9.2. �

In Fig. 13, we plot p as a function of j for V (x) = 1
2 sin(2π(x+ 1

4)).

Proposition 11.2. Let x = 0 be the only point of maximum of V . Then,

i. for every p ∈ R, there exists a unique number, H(p), for which (1.1) has a
regular solution;

ii. for every p ∈ R, (1.1) has a unique regular solution;
iii. if max

T
V > 1 +

∫
T
V (x)dx, H(p) is flat at the origin;

iv. H(p) is increasing on (0,∞) and decreasing on (−∞, 0). Thus

min
p∈R

H(p) = H(0) = max

max
T

V, 1 +

∫
T

V (x)dx

 ;

v. lim
|p|→∞

H(p)
p2/2

= 1.

Proof. i & ii. From Lemma 11.1, we have that for every p, there exists a unique j
such that (1.1) has regular solutions. From Proposition 10.1, we have that for every
j there exists a unique number, H, such that (1.1) has a regular solution. Therefore,
for every p, the constant H is determined uniquely. Moreover, from Proposition 5.1,
we have that (1.1) has a unique regular solution for this constant.

iii. From iii. in Lemma 11.1, we have that if p satisfies (11.1), then H(p) = H0.
iv. This follows from i in Lemma 11.1 and iv and v in Proposition 10.1.
v. This follows from vi in Proposition 10.1, ii in Proposition 9.1, and the formula

pj =
∫
T

j
mj(y)dy.

�

In Fig. 14, we show H(p) for V (x) = 1
2 sin(2π(x+ 1

4)).

Remark 11.3. We conjecture that, if V has only one maximum point, H(p) is
convex. Let p1 < p2 and (u1,m1, H(p1)) and (u2,m2, H(p2)) solve (1.1) for p = p1

and p = p2, respectively. Consider the trajectories, y1, y2, determined by

ẏi(t) = −(ui)x(yi(t))− pi, yi(0) = 0, i = 1, 2.
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As in weak Kolmogorov-Arnold-Moser (KAM) or classical KAM theory, we would
like to show that

lim
t→∞

yi(t)

t
= lim

t→∞
ẏi(t) = −DpH(pi), i = 1, 2. (11.3)

Furthermore, let j1 and j2 be the current values corresponding to p1 and p2. From
the proof of i in Lemma 11.1, we have that

−(u1)x(y)− p1 = − j1
m1(y)

> − j2
m2(y)

= −(u2)x(y)− p2.

Hence, if (11.3) holds, we get

y1(t) > y2(t), ẏ1(t) > ẏ2(t), t > 0,

which implies DpH(p1) 6 DpH(p2). Thus, H(p) is convex.

Remark 11.4. If V has more than one maximum point and is not constant, there
exists a p ∈ R such that (1.1) has regular solutions for more than one value of H.
By Proposition 10.1, we know that H is determined by the current level j. If V
has at least two maxima and is not constant, there exist multiple values for p and
solutions of (1.1) corresponding to a single value j (see Proposition 5.2 and Remark
5.5). Consequently, there exists a value of p corresponding to different values of j
and, hence, to different values of H.
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