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Abstract

This article proposes a differential-game model, in order to analyze

markets in which regional regulation is operative and competition is

based on quality. The case we have in mind is healthcare public ser-

vice, where consumers (patients) choose the provider mainly basing on

the providers’ location and the quality of services, while prices play

a more limited role. In most European countries, within the same
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State, regional (or local) providers compete on quality to attract de-

mand. Market regulation is set at national and/or regional level. Our

model highlights the features of equilibrium in such a framework, and

specifically investigates how the differences in product quality evolve

among regions, and how inter-regional demand flows behave. Differen-

tly from some available similar models, that do not take into account

the regional dimension of the decision process, we find that quality

differentials among regions may persist in equilibrium.
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1 Introduction

This article flows within the literature stream dealing with dynamic quality

competition in markets under price regulation. A reference case is given by

healthcare service, where prices are typically regulated, providers compete

on quality, and consumers’ demand choices are mainly driven by product

quality and providers’ location. In healthcare markets, the current relevance

of quality competition is made clear by the fact that many reforms have

implemented over the past years in several countries, with the final aim of

increasing the product quality through harsher quality competition among

providers. Generally speaking, such reforms allow the final consumers to

choose the provider. Given that prices are regulated (and paid by a Public

Authority, on a prospective payment system, or by insurance companies),
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the consumers’ choices are based on the quality, along with the localization

of the providers (Aiura [1]), rather than price. Thus, the providers have to

compete to attract demand (and payments), by improving the quality of the

offered services. However, our model can be appropriate for other sectors

with similar characteristics, like education or long-term care.

A body of literature exists, focusing on the effect of different forms of

competition and different regulation mechanisms upon the available quality

level over time: Brekke et al. [4], [5], Siciliani et al. [18] are among the main

references –a review is provided by Brekke et al. [6]. The specific problems

studied in the mentioned articles range from the dynamic evolution of in-

vestment efforts made by providers and the corresponding available quality

levels, to the relation between regulated prices and investment efforts to

improve quality. Attention is paid to how different assumptions concerning

the information sets used by players, and the corresponding game solution

concepts, affect the features of the equilibrium path of control and state

variables, and steady state allocation.

However, in this literature vein, the fact that different providers have

a regional character, and regulation of relevant variables is made at the

regional level, is usually overlooked. In Bisceglia et al. [3] spatial competi-

tion, both intra-regional and inter-regional, between providers is studied by

means of a sequential game.

In the present article we aim to merge the mentioned research points

concerning quality competition with a different research point, specifically
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concerning the regional distribution of the service quality, the regional reg-

ulation, and the effect of decentralization decision processes upon available

quality: the reference literature body –limiting our attention to markets

with regulated prices and quality competition– includes, e.g., Balia et al.

[2], Brekke et al. [7], [8], Levaggi et al. [16], [17], along with Bisceglia et al.

[3].

While the former literature line employs dynamic –more specifically,

differential– game tools to analyze the evolution of quality over time, the

latter line typically resorts to static –or, at most, repeated or sequential–

games. In the present article we propose a differential game model with

the main aim of analyzing the implications of decentralized decision pro-

cesses –specifically, regional regulation– upon the available quality levels.

The model can be interpreted as a combination between models belonging

to the mentioned literature lines. However, its conclusions are far from being

a trivial sum of the points made by available articles. Available differential-

game models generally consider symmetric situations, and fail in highlighting

permanent quality differentials across providers; on the other hand, static

models with asymmetry between providers can not analyze how persistent

over time asymmetries are. Our present model shows that an equilibrium

exists with different levels of quality across regions; differences in quality are

permanent, but they may shrink or enlarge over time, also depending on the

decision rules taken by the regulators. The model we present is analytically

solvable thanks to its linear-quadratic structure; it provides some insights
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on the problems faced by providers and regional regulators in markets with

quality competition and price regulation.

The value added of the present model, as compared to available theoreti-

cal models, rests in the analysis of the evolution of quality across regions and

in showing that permanent differences may persist, though in the presence

of a large degree of symmetry in parameter configuration across regions: We

show here that an equilibrium exists with different levels of quality across

regions; differences in quality are permanent, but they may shrink or enlarge

over time, also depending on the decision rules taken by the regulators.

The structure of the article is as follows. Section 2 presents the model

set-up. Section 3 presents, discusses and compares the open-loop and the

feedback closed-loop solution of the game, assuming that regional regulators

choose the investments able to move the quality. Section 4 presents a mod-

ification of the model, assuming that investments in quality are set by the

providers, that are interested in profit rather than social welfare. Section 5

mentions further possible modifications, and concludes.

2 The model set-up

The basic set-up of the model is common to a number of available articles

based on the Hotelling linear city framework (Hotelling [14]; see Calem and

Rizzo [10], as a seminal contribution for the literature relevant to this present

analysis; see also Brekke et al. [4]).
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Consider a market with two providers located at either end of the unit

line S = [0, 1]. On this line segment there is a uniform distribution of con-

sumers, with total mass equal to 1. Since our reference example is healthcare

provision, we will even refer to hospitals and patients for providers and con-

sumers, respectively. Assuming that each consumer inelastically demands

one unit of the considered service, the utility of a consumer located at x ∈ S

and buying from provider i, located at zi ∈ {0, 1}, is given by

U (x, zi) = v + kqi − τ |x− zi| , (1)

where v > 0 is a parameter representing the gross valuation of consumption,

qi is the quality of the product (service) offered by provider i, k > 0 is a

parameter measuring the marginal willingness to pay for quality, and τ > 0

is the marginal transportation cost. In what follows we set k = 1 without

loss of generality. Notice that in the case of competition among hospitals,

it makes sense to assume that physical locations are fixed; the fact that

locations are at the end points of the line is immaterial to our conclusions.

Since the distance between providers is equal to one, the consumer who is

indifferent between i and j is located at xDi , is characterised by

v − τxDi + qi = v − τ
(
1− xDi

)
+ qj , (2)

so that the demand for provider i is:

xDi (t) =
1

2
+
qi(t)− qj(t)

2τ
(3)

The demand is consistent with the assumptions of uniform consumer dis-

tribution (with mass 1), exogenous locations of providers and full market
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coverage.

We propose here to introduce the assumption that the linear space S

is administratively divided into two regions, called R1 and R2: consumers

located between 0 and 1/2 belong to region R1, and consumers located

between 1/2 and 1 belong to region R2. The provider located at 0 and 1,

will be indexed by 1 and 2, respectively, as they are under the administrative

control of regulator of R1 and R2, respectively. Thus, each region has one

regulator and one provider within its administrative space.

We can split the demand for each provider into two components, cor-

responding to “domestic” and “extra-regional” demand; formally: xDi =

xii +xji , where xii is the domestic demand (demand from residents in Ri met

by the provider located in the same Ri) and xji is the demand for provider

i coming from residents in Region j. Thus, we have:
xii =

1

2
− qj − qi

2τ
, xji = 0 if qi ≤ qj

xii =
1

2
, xji =

qi − qj
2τ

if qi > qj

that is,

xii = min

(
1

2
,
1

2
− qj − qi

2τ

)
, xji = max

(
0,
qi − qj

2τ

)
.

Following available models, we assume that the cost function of each

provider is linear in the quantity, and quadratic in the quality levels (q) and

investment to improve quality levels (I); cost may also include a fixed cost:

Ci = cixi +
β

2
q2i +

γ

2
I2i + Fi (4)
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where ci, β, γ and Fi are positive parameters. Notice that we assume that

constant marginal costs ci and fixed cost Fi may differ across regions; this

corresponds to the fact that institutional (organizational) aspects matter on

the cost structure (and it is well known that differences in efficiency between

hospitals in different regions exist). Parameters β and γ are assumed to be

equal across regions, to easy the analytics. In what follows, γ is normal-

ized to 1 without loss of generality. Admittedly, the functional form of the

cost function is very easy and convenient for analytical reasons (separable in

quantity and quality; linear in quantity and quadratic in quality and invest-

ment); however, it is commonly used in theoretical literature, and supposed

to be an acceptable representation of providers’ cost structure, at least un-

der specific circumstances. Indeed, the form of cost function (i.e., linear or

quadratic in quantity) corresponds to specific characteristics of service or-

ganization and institutional arrangements. In more regulated systems, like

UK, Spain or Italy, there are typically excess demand and capacity con-

straints, which are captured by convex cost. This is not the case in systems

with excess capacity (e.g., the US), where the linearity assumption seems

to be more realistic. A justification for the quadratic form in quality and

investment is that a higher quality level makes the required maintenance op-

erations more demanding, and requires more skilled (i.e., more expensive)

personnel. Again, complementarity between machinery and personnel, as

well as links between quality levels and required investments, would suggest

that separability in cost function is a disputable assumption as far as its
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realism is concerned; however, these complementarity links are far to be a

strong evidence from empirical analyses (see Brekke et al. [6] and Cellini et

al. [12] and the references therein for a comprehensive discussion on the

meaning of linearity vs. convexity and separability of cost function in the

case of healthcare service providers).

Each hospital receives a price pi (fixed by the domestic regional regula-

tor) for each unit of produced service consumed by domestic patients, while

the price for extra-regional treatment, p, is exogenously set by a central

authority. This set of assumptions is consistent with what happens in the

health system of several countries, like Italy or Spain, where regional regu-

lators set the price for domestic treatment, while a system of centrally fixed

prices hold for extra-regional treatments; moreover, hospitals may receive

from the domestic regulator a possible lump-sum transfer to break-even, if

the operative profit is negative.

Following the mentioned differential game literature, we assume that that

demand is decided by each consumer at each instant of time t ∈ [0,+∞).

The services’ quality levels move over time, thanks to investment I aimed

at improving quality. At the beginning, quality levels are q1(0) = q0,1 >

q2(0) = q0,2 > 0, i.e., the quality level of the provider located in R1 is higher

than the quality level of provider of R2. Then, the dynamics of quality is

ruled by the following equation:

q̇i = Ii − δqi (5)

where δ > 0 is a depreciation rate. Note that no externalities are at work
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across regions, and the service quality level of each provider only depends

on his investment efforts (apart form the initial conditions).

Models in mentioned available literature differ as far as the objective

functions concern. In some models, profit-oriented (or partially altruistic or

motivated) providers aim at their own maximum result, while regulator(s)

care(s) about social welfare; in other models, there is no distinction between

provider and regulator, as far as the objective function concerns. In the main

version of the present model (Section 3), we adopt the latter (and simpler)

assumption that each regulator, aiming at maximizing the social welfare of

his own region, sets the quality level; a modification, where providers aiming

at maximum profit set the quality levels, is developed in Section 4. Different

assumptions can be considered as well in different formulations of the model.

3 Regional regulators as quality setters

Since we are mainly interested in studying the dynamics of regional differ-

ences in quality of offered services and the dynamics of regional mobility of

consumers, we start by keeping the model as simple as possible: we assume

that the regulators set the quality (in fact, they set the investments able

to move the quality);1 moreover, each regional regulator takes into account

the surplus of the citizens of its own region, and the profit of the hospi-

tal located within the region, along with the (public) expenditure borne by

1See Cellini and Lamantia [11] as a model, sharing some characteristics with the present

one, in which regulators set miminum quality standard instead of quality levels.
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himself. Formally, the instantaneous objective function of Region i at time

t is:

Πi(t) = σi(t) + πi(t)−Gi(t)

where σi is the surplus of residents in Region i; πi is the profit of the hospital

located in region i and Gi is the public expenditure for the service, that

is, the payment from the regulator to the domestic (and possibly to the

extra-regional) hospital; Gi may also include a lump-sum transfer to the

provider of the same region i, to reach the break-even point, in the case

of a negative operative profit. Since revenues for the hospital coming from

domestic treatment (pix
i
i) are paid by the same regulator, this sum will

not appear in the objective function. In this set of assumptions we follow

Siciliani et al. [18]. Differently, sums paid by a region to the other region

enter the objective function of both regulators (of course, with opposite

sign). Still following Siciliani et al. [18], an opportunity cost λ > 0 is

associated to the public expenditure different from the transfer covering the

payment for domestic treatment pix
i
i. Thus,

σ1(t) =

∫ 1
2

0
(v + q1 − τx) dx (6)

σ2(t) =

∫ 1
2
+
q1−q2

2τ

1
2

(v + q1 − τx) dx+

∫ 1

1
2
+
q1−q2

2τ

[v + q2 − τ(1− x)] dx (7)

π1(t)−G1(t) = −(1 + λ)[c1(
1

2
+
q1 − q2

2τ
) +

β

2
q21 +

1

2
I21 ] + p(

q1 − q2
2τ

) (8)

π2(t)−G2(t) = −(1+λ)[c2(
1

2
− q1 − q2

2τ
)+

β

2
q22+

1

2
I22 ]−(1+λ)p(

q1 − q2
2τ

) (9)
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All the above equations hold under the assumption that q1 > q2, for any

t. Hence, the dynamic problem of Region i is:

max
Ii≥0

∫ ∞
0

e−ρtΠi(t)dt

q̇i = Ii − δqi, qi(0) = q0,i

q̇j = Ij − δqj , qj(0) = q0,j

Notice that there is no difference, in this framework, between regulator

and provider: the regulator sets the provider’s investment aimed to improve

the quality level of the produced service. The regulator also sets the unit

price for the service delivered to domestic residents. However, the entailed

public expenditure, pix
i
i, corresponds to revenue for the provider, so that its

amount is immaterial to the objective function, and prices pi (i = 1, 2) do

not enter the problems (this feature disappears from more complex version

of the model, such as the formulation presented in Section 4).

Quality levels affect the demand and hence the inter-regional patients’

mobility, along with the production costs. Clearly, interdependence between

the two regulator’s problems does exist, as long as the state variable of a

player enters the problem of the other player. Hence, we are in front of a

differential game.

We solve this differential game under two different assumptions concern-

ing the information set used by the players, and correspondingly we depict

the equilibrium under two different solution concepts. Firstly, we find the

open-loop solution, where both players are assumed to be unable to observe

the evolution of state variables over time, and they compute the optimal path

12



of the choice variables at the beginning of time, and then stick to this solution

forever. The open-loop solution is of type Ii(t) = f(t; q0,i, q0,j). Secondly,

we will find the Markovian closed-loop feedback solution, where each player

is assumed to be able to observe the dynamic evolution of state variables,

and the optimal value of the choice variable depends on the current value

of state variables, so that the solution is of type: Ii(t) = f(t, qi(t), qj(t)).

Features, pros and cons of these solution concepts are widely discussed in

the differential game literature (see, e.g., Dockner et al. [13]). Feedback

closed-loop solution is sometimes interpreted as ’truly dynamic’ as long as

players take their decisions in each instant of time, while under open-loop so-

lution players take their decision only at the initial instant of time and then

simply act according to the clock. For this reason, feedback behavior rule

is interpreted as a situation in which competition is harsher as compared

to the open-loop rule, as long as players can respond instant by instant

to the decision of their opponents.Generally, feedback closed-loop behavior

is seen as more realistic than the open-loop one. However, in the specific

case of healthcare industry, the open-loop behavior is potentially relevant

for explaining real world as well, beyond being a theoretical framework: for

instance, as noted by Cellini et al. [12], some US states have certificate

of needs (CON) for hospitals and other healthcare service providers which

require that providers elaborate investment plans and commit to them –a

situation clearly resembling the open-loop behavior rule.
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3.1 Open-loop Solution

We are interested in studying the dynamics of the model in the presence of

asymmetry between providers. The assumption of asymmetry can be seen

as a novelty with respect to available models (like Brekke et al. [4], [5]

or Siciliani et al. [18] where symmetry across providers is assumed). To

fix the reference point, we introduce the following Assumptions, entailing

that Region 1 is the more efficient, hence with the higher quality level, and

attracting consumers from the other region.

Assumptions

τ >
1

2β(λ+ 1)
(10)

p < (c2 − c1)
λ+ 1

λ
(11)

Of course, situation (and conclusions) could be reversed, switching Re-

gion 1 with 2 and viceversa.

Proposition 1 Under Assumptions (10)-(11), the pair of strategies (I1(t), I2(t)),

solving the following ODE system in the state-control variables, is an open-
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loop Nash Equilibrium:

İ1 = (ρ+ δ)I1 + 1
1+λ

[
β(λ+ 1)q1 +

c1(λ+ 1)− p
2τ

− 1

2

]
İ2 = (ρ+ δ)I2 + 1

1+λ

[
β(λ+ 1)q2 +

q1 − q2
2τ

+
(c2 − p)(λ+ 1)

2τ
− 1

2

]
q̇1 = I1 − δq1

q̇2 = I2 − δq2
(12)

with initial conditions: q1(0) = q0,1 > q2(0) = q0,2 > 0.

The equilibrium point of this linear system is given by:

IOLi = δqOLi , i = 1, 2

where qOLi are the open-loop steady state quality levels given by

qOL1 =
p+ τ − c1(λ+ 1)

2τ(λ+ 1)(δ2 + δρ+ β)

qOL2 =
2τ(δ2 + δρ+ β)(λ+ 1)[(p− c2)(λ+ 1) + τ ] + c1(λ+ 1)− p− τ

2τ(δ2 + δρ+ β)(λ+ 1)[2τ(δ2 + δρ+ β)(λ+ 1)− 1]

and it constitutes a saddle point.

Proof. See Appendix A.

It is interesting to note that the steady state level of the quality produced

by the provider in R1 (with the higher quality level) does not depend on the

cost parameter c2 pertaining to the provider of the other region, while the

opposite does not hold: the steady-state quality produced in R2 is affected

by the cost structure of the provider with higher quality too. Technically,

this is consistent with the fact that in system (12) only c1 and q1 appear

in the dynamic equation pertaining to I1, while both q1 and q2, along with
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c2, appear in the dynamics of I2. From a substantial point of view, this is

due to the assumption that the provider of Region 1 is (and remains) the

more efficient one2. Thus, since the provider of Region 1 is aware that he

serves the whole domestic market and attracts consumers from the other

region, the cost structure of Region 2 does not affect the optimal choice

of the provider of Region 1. On the opposite, the quality level of provider

1, influenced by his own cost structure, affects the amount of residents of

Region 2 who decide to migrate, and hence affects the optimal investment

decision of provider 2.

Consistently with the quality differential between the two providers in

steady state, the steady-state inter-regional demand flow, constituted by

residents of R2 who demand the service from the provider of R1, turns out

to be equal to

(x21)
OL =

qOL1 − qOL2

2τ
=

(1 + λ)(c2 − c1)− λp
2τ [2τ(1 + λ)(δ2 + δρ+ β)− 1]

As far as the dynamics of such inter-regional flow is concerned, we can simply

notice that, since the steady state quality levels do not depend on the initial

ones, we can have a higher or a lower equilibrium quality gap between the

two regions with respect to the initial value, and this obviously results in a

higher or lower inter-regional patients flow.

Simple comparative statics provide the following results concerning steady

2Since the considered equilibrium is the saddle point of a linear ODE system, along

the (linear) stable manifold the qualities trajectories are monotonic. Therefore q0,1 > q0,2

and qOL1 > qOL2 imply q1(t) > q2(t) for every t ∈ [0,∞).
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state allocation.

As to the effect of τ on quality levels and inter-regional migrational flow,

it is easy to check that:

∂qOL1

∂τ
=

c1(1 + λ)− p
2 τ2 (λ+ 1) (δ2 + ρ δ + β)

∂qOL2

∂τ
=

c1(1 + λ)− p
2 τ2 (λ+ 1) (δ2 + ρ δ + β)

+
2 (λ+ 1) (p− (λ+ 1) (c1 − c2 + p))

(
δ2 + ρ δ + β

)
(2 τ (λ+ 1) (δ2 + ρ δ + β)− 1)2

∂(x21)
OL

∂τ
=

− p− (λ+ 1) (c1 − c2 + p)

2 τ2 (2 τ (λ+ 1) (δ2 + ρ δ + β)− 1)
−

(λ+ 1) (p− (λ+ 1) (c1 − c2 + p))
(
δ2 + ρ δ + β

)
τ (2 τ (λ+ 1) (δ2 + ρ δ + β)− 1)2

It results
∂qOL1

∂τ
< 0 if p > c1(1 + λ). The economic meaning is immediate:

lower travel cost entail harsher competition (as discussed in several contri-

butions, including Siciliani et al. [18]); harsher competition leads to higher

quality levels, if unit price is sufficiently high, and providers have a financial

incentive to attract extra-regional demand. On the opposite, if the regulated

unit price is “too low” (and financial losses are entailed by serving the mar-

ket), harsher competition leads providers to exert lower efforts to increase

quality, since higher demand would entail lower revenues. Our present result

perfectly mimics the outcome in Siciliani et al. [18] (subsection 3.2.2), where

a brief discussion is provided on cases in which policy measures aimed at in-

creasing competition have been based on travel cost reduction, for instance

by reimbursing patients who choose to move to different regions. Clearly,
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such policy measures succeed in obtaining the expected increase of quality

levels, only if they are associated to sufficiently high price for the service.

Similarly, note that
∂qOL2

∂τ
< 0 if p <

(λ+ 1)

λ
(c2 − c1), which can be

interpreted in the same way as explained above for the quality of the provider

of R1. Under the same parametric condition, it holds that
∂qOL2

∂τ
>
∂qOL1

∂τ
.

Moreover, condition τ >
1

2(δ2 + δρ+ β)(λ+ 1)
and p <

(λ+ 1)

λ
(c2 − c1)

are sufficient to ensure that (x21)
OL > 0, and

∂(x21)
OL

∂τ
< 0. This means

that harsher competition (i.e., lower τ) leads to higher quality levels in

both regions, but to a larger quality differential too: the region with lower

marginal cost (and higher initial quality) increases the steady state quality

by a larger amount, in front of lower consumers’ travel cost, so that the

amount of inter-regional migration increases. If we imagine that τ can be

reduced through appropriate pro-competition policies, then such policies

are beneficial for the available quality levels, but they entails larger quality

differences and larger patient mobility.

As to the effect of p, the centrally regulated price for extra-regional

treatment, we have:

∂qOL1

∂p
=

1

2 τ (λ+ 1) (δ2 + ρ δ + β)
> 0

∂qOL2

∂p
=

λ

2 τ (λ+ 1) (δ2 + ρ δ + β)− 1
+

1

2 τ (λ+ 1) (δ2 + ρ δ + β)

∂(x21)
OL

∂p
= − λ

2 τ (2 τ (λ+ 1) (δ2 + ρ δ + β)− 1)

An increase of the price for extra-regional treatment leads to higher qual-

ity levels in the most efficient region, that attracts extra-regional demand.
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The same effect on the quality in the less efficient region occurs only if

condition τ >
1

2(δ2 + δρ+ β)(λ+ 1)
is met. Under the same condition it

results:
∂(x21)

OL

∂p
< 0. Verbally, under high transport cost, an increase of the

price for extra-regional treatment leads the region with lower quality level

to exert higher effort to increase its quality, in order to reduce the number

of its citizens who decide to migrate to buy the service; on the opposite,

if transportation costs are low, the less efficient region finds it convenient

to reduce its quality level, inducing its citizens to buy the service from the

provider of the other region.

Though rather intuitive, this result has a theoretical importance and

originality, as well as a relevance as to the policy implications. It makes

clear that the effect of the regulated prices upon the service quality cru-

cially depends on the level of travel cost: if travel cost is low, an increase

of regulated price level leads to lower quality in the less efficient region; the

reverse occurs under high travel cost. Hence, policy interventions on travel

costs (such as the reimbursement of travel cost as regulated in a few Euro-

pean countries for patient mobility) affect the effectiveness of price policy

upon service quality.

3.2 Feedback Solution

Assumptions We must again assume that τ is greater than the threshold

specified in (10). In addition to this, it must also hold:

α1 > k1 > 0 (13)
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where the values for α1 and k1 are given in the following Proposition, which

provides a linear Feedback Nash Equilibrium of the considered differential

game.

Proposition 2 A linear FNE is given by the following couple of strategies

(I1, I2):

I1 =
1

1 + λ
(α1 + α3q1) (14)

I2 =
1

1 + λ
(k1 + k3q2 + k5q1) (15)

where, defining3:

A := τ(λ+ 1)[4β + (2δ + ρ)2]− 2 > 0 (16)

we have:

α3 =
λ+ 1

2
[(2δ + ρ)−

√
4β + (2δ + ρ)2] (17)

k3 =

√
λ+ 1

4τ
[
√
τ(λ+ 1)(2δ + ρ)−

√
A] (18)

k5 =

√
λ+ 1

4τ
[
√
A−
√
A+ 2] = −k4 (19)

α1 =
Nα1

Dα1

, k1 =
Nk1

Dk1

(20)

with:

Nα1 =
√
τ(
√
A+ ρ

√
τ
√
λ+ 1)

√
4β + (2δ2 + ρ)2 − ρ

√
τ
√
A+

+4β
√
λ+ 1(p− c1(λ+ 1))−

√
λ+ 1(4c1δ(δ+ρ)(λ+ 1)− 4δ2p−ρ(4δp−ρτ))

3The inequality A > 0 follows from Assumption (10).
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Dα1 = 4
√
τ(β + δ(δ + ρ))(

√
A+ ρ

√
τ(λ+ 1))

Nk1 =
√
τ(4β + 4δ2 + 4δρ+ ρ2)[ρ

√
Aτ(λ+ 1)+2β(λ+1)(c1(λ+1)−p+τ)+2c1δ(δ+ρ)(λ+1)2+

+2δ2(λ+ 1)(τ − p) + 2δρ(λ+ 1)(τ − p) + ρ2τ(λ+ 1)− 1]+

−[
√
A(λ+ 1)(2β(c1(λ+1)+λ(c2−p)−2p+c2)+2c1δ(δ+r)(λ+1)−2δ2(λ(p−c2)+2p−c2)+

−ρ(2δ(λ(p−c2)+2p−c2)−ρτ))−ρ
√
τ(2(λ+1)((λ+1)(p−c2)−τ))(β+δ2+δρ)−ρ2τ(λ+1)+1)]

Dk1 = 4
√
τ(ρ
√
τ(β+δ(δ+ρ))

√
A(λ+ 1)+2β2τ(λ+1)+β(τ(λ+1)(2δ+ρ)2−1)+

+δ(2δ3τ(λ+ 1) + 4δ2ρτ(λ+ 1) + δ(3ρ2τ(λ+ 1)− 1) + ρ(ρ2τ(λ+ 1)− 1)))

Proof. See Appendix B. Steady state qualities are thus given by:

qF1 =
α1

δ(λ+ 1)− α3

qF2 =
k1 + k5q

F
1

δ(λ+ 1)− k3

The equilibrium point (qF1 , q
F
2 ) is a stable node (see Appendix B).

Remark 1 Notice that Assumption (10) ensures k3 < 0, which in turn

implies that the first order condition provides a maximum point for the RHS

of the HJB equation of the less efficient hospital (see Appendix B).
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From (14) and (15) it follows that

qF1 > qF2 ⇐⇒ qF1 >
k1

δ(λ+ 1)− (k3 + k5)

Therefore, recalling that 0 > α3 = k3+k5, a sufficient condition for qF1 > qF2

is: α1 > k1. In Appendix B we prove that the considered assumption is also

a sufficient condition for qF1 (t) > qF2 (t), ∀t ∈ [0,∞).

Remark 2 Notice that, since k5 < 0, a negatively signed link exists between

qF1 and qF2 . The mathematical reason rests on the fact that q̇2 is linked to

k5q1 and hence negatively to q1.Substantially, and verbally, this means that

the steady state quality of the less efficient provider is negatively related to

the steady state quality of the more efficient provider.

From (17)-(20) it can be easily shown that k3 < 0, k4 > 0, k5 < 0 and

α3 < 0.Thus, from (14) and (15) it is immediate to see how changes in

the quality levels affect the linear feed-back strategies: I1(t) is the lower,

the higher is q1(t) while it is not directly affected by q2(t), while I2(t) is

the lower, the higher are q2(t) and q1(t). Hence, investment of provider 2

and quality of provider 1 are intertemporal strategic substitutes according

to the Jun and Vives [15] terminology: the control of provider 2 responds

negatively to the state pertaining to the other player. The opposite does

not holds simply because qF1 (t) > qF2 (t) so that there is no flow from region

1 to region 2, and the provider of region 1 is not influenced by the (lower)

quality in the other region. We can also briefly describe the qualitative
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behavior of quality levels equilibrium trajectories4. As for the most efficient

region, the quality level is monotonic over time, obviously increasing (resp.

decreasing) if q0,1 < (>)qF1 . The equilibrium trajectory of the less efficient

provider can be monotonic, but it can also increase up to a maximum point

and then decrease or vice versa, depending on the initial quality levels and

the steady-state ones of both the regions. However, it is interesting to notice

that the differences in quality, consequently the inter-regional migrational

flow over time, is a monotonic increasing (resp. decreasing) function if the

initial quality difference is lower (higher) than the steady-state one.

However, in this framework with feedback information structure, the

analytic expressions for the steady-state qualities are really cumbersome;

hence, we confine ourselves to a few results, regarding the most efficient

provider, that can be obtained analytically.

It holds:

∂qF1
∂p

=
2√

τ(λ+ 1)(
√

4β + (2δ + ρ)2 − ρ)(
√
A+ ρ

√
τ(λ+ 1))

> 0

It is interesting to note that an increase of the exogenous price of extra-

regional treatment has a clear and positive impact on the quality of the

service provided in R1, the region with the higher quality level and hence

attracting the extra-regional demand, while the effect can be positive or

negative upon the quality of the service provided in R2, the region with

the lower quality level. The intuition runs as follows. The region with the

higher quality has a clear incentive to increase the amount of extra-regional

4The following results are proved in Appendix B.
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treatment, since the marginal gain is positive and increasing in p. The

region with lower quality level, that has to pay for extra-regional treatments,

could find it convenient to reduce the extra-regional patients’ flow, or to

increase it, depending on the relation between parameters connected with

costs (transport cost, operative cost, opportunity cost).

As for the comparison with the open-loop steady-state quality, we have:

qF1 −qOL1 =
(p− c1(λ+ 1))(

√
A+ 2−

√
A)

2τ [β + δ(δ + ρ)](λ+ 1)(
√
A+ ρ

√
τ(λ+ 1))

> 0 ⇐⇒ p > c1(λ+1)

The result emerges, according to which the stronger competition entailed by

the feedback behavior rule (as compared to open-loop rule) leads to a higher

level of steady state quality, in the region with the higher quality level, at

least for sufficiently high price level of extra-regional treatment. However,

this conclusion does not apply, at least in general, to the provider with the

lower quality level.

3.3 Numerical Analysis

Resorting to numerical analysis, here we show how steady state consumer

surplus and provider profits change in response to regulated price changes.

All the simulation exercises are run under the following set of assumptions:

v = 1, λ = 0.2, β = 1, δ = 0.05, ρ = 0.01. Then, we consider a benchmark

case in which c1 = 0.8 and c2 = 1.2 (as usual, the provider of Region 1 is

the more efficient one) and τ = 0.9, and two alternative cases , with lower

transportation cost and lower cost asymmetry, respectively (See Table 1). In

each of the three considered cases, there is an admissible range for p, which

24



meets all the assumptions introduced in the theoretical model; in particular,

the upper-bound is dictated by Assumption (11) while the lower-bound is

determined by a joint consideration of all constraints, including α1 > k1.

The specified feasible range for p is such that the steady-state quality level

is positive for both providers.

Different Cases: c1 c2 τ feasible range for p

Benchmark 0.8 1.2 0.9 (0.694, 2.4)

Lower transportation cost 0.8 1.2 0.7 (0.972, 2.4)

Lower cost asymmetry 0.9 1.1 0.9 (0.93, 1.2)

Table 1: Parameters’ setup in three different cases.

Figure 1 shows steady state profits and consumer surplus in the bench-

mark case. Notice that consumer surplus is always increasing in p: as al-

ready mentioned, this is due to the fact that the market is fully covered,

and a higher price definitely leads the provider of the more efficient region

to higher quality; we are here in the case where also provider of Region

2 finds it convenient to provide higher quality, which definitely increases

consumers’ surplus in both regions. It is more interesting to note that the

consumer surplus differential (between the more and the less efficient region)

increases in p under the closed-loop behavior rule, while it decreases under

the open-loop rule. From a policy perspective, this suggests that increas-
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ing regulated price may result in higher or lower patient surplus differential

across regions, depending on how harsh is the competition among providers:

in the numerical case at hand, differential enlarges under the harsher com-

petition (associated to closed-loop behavior), while it diminishes under the

milder competition (associated to open-loop behavior). As to individual

steady-state profits, note that the more efficient provider has a higher profit

than the less efficient one, regardless of the adopted behavior rule (open-

or closed-loop), while the individual profit of given provider may be larger

or smaller under the open-loop w.r.t. the closed-loop behavior; individual

profits for a given provider, and the consumers’ surplus of the residents in a

given region coincide under open- and closed-loop behavior if p = c1(λ+ 1):

in formal terms, for p = c1(λ+1) = 0.96 (dotted vertical line) it results that

πOLi = πFi , σOLi = σFi and ΠOL
i = ΠF

i for i = 1, 2.

Figure 2.a,b report quality difference in steady state as a function of reg-

ulated price, confronting the benchmark case, with the case of lower trans-

portation cost and lower cost asymmetry. From panel a, one notices that

quality differential increases (decreases) in price under the closed- (open-)

loop behavior; lower transportation costs do not modify the pattern of this

differential, but make its size larger. Panel b shows that a smaller difference

in cost efficiency of providers leads to a smaller differential in steady-state

quality levels; however, the patterns of quality differential do not modify

substantially, in front of (small) change in efficiency differential. It makes

also clear that closed-loop behavior leads to larger steady-state quality dif-
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ferential only in the presence of high level of regulated price. In other words,

stronger competition in the form of feedback behavior of providers, instead

of open-loop behavior, leads to a larger quality differential between regions

and hence to larger inter-regional patients’ flow, in the presence of a high

level of regulated price. On the contrary, larger quality differential in steady

state are observed under the milder form of competition associated to open-

loop behavior rule, if the regulated price level is relatively low.

The richness of results should suggest that a great deal of caution is nec-

essary when the implications of policy measures in the industry of healthcare

are analysed.

4 Extension: a model with providers as quality

setters

In the version of the model above, prices p1 and p2 do not enter the problem

of the regulators, as they have only redistributive effects. This assumption

can be easily removed, to show that the levels of price set at the regional

level may have relevant impact on quality (and hence demand). An easy way

to show this point is to assume, as in Brekke et al. [4], that the providers

choose the investment level at each instant in time, taking price (p1 and p2,

in this case) as known; in such a case, objective function to maximize for

provider Hi is:

Ji =

∫ ∞
0

πi(t)e
−ρt dt
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where instantaneous profit is:

πi = (pi − ci)xDi −
γ

2
I2i −

β

2
q2i

Notice that provider i receives pi for each case treated; however, Region i

pays for each consumer belonging to Ri, while the same amount pi is paid

from region Rj for any patient belonging to xji . Notice also that, for the sake

of easiness, we assume that the objective function of each provider is simply

its own profit, without taking into account the wide body of considerations

supporting the occurrence of motivated (i.e., semi-altruistic) providers (see,

e.g., Siciliani et al. [18] and references therein).

As in the model presented in the previous section, control variable is in-

vestment in quality, which affects the quality level, according to equation (5),

again given an initial condition q0,1 > 0, q0,2 > 0. The following propositions

provide the open-loop Nash equilibrium (OLNE) and the linear closed-loop

feedback Nash equilibrium (FNE) of the model into consideration.

Proposition 3 The ODE system in the state-control variables that an open-

loop Nash Equilibrium strategies pair (I1(t), I2(t)) solves is given by:
İi = (ρ+ δ)Ii + βqi −

pi − ci
2τ

q̇i = Ii − δqi
(21)

with i = 1, 2. The equilibrium point of this linear system is given by:

IOLi = δqOLi , i = 1, 2

qOLi =
pi − ci

2τ(δ2 + δρ+ β)
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and it constitutes a saddle point.

Proof. The proof is omitted since it is analogous to that provided in Brekke

et al. [4] for the case of constant marginal treatment costs with ϕ = 0 and

γ = 1 but allowing for different coefficients pi and ci.

Proposition 4 A linear FNE strategy for provider Hi, i ∈ {1, 2}, is given

by:

Ii(t) = ϕi + ωqi(t)

where:

ϕi =
pi − ci

τ
√

4β + (ρ+ 2δ)2

ω = δ +
ρ

2
−
√
β +

(
δ +

ρ

2

)2
Proof. The proof is omitted since it employs the same technique shown in

Appendix B and it yields a solution analogous to that obtained by Brekke

et al. [4] for the considered case with different treatment marginal costs ci

and prices pi across hospitals.

Note that our solution constitutes the only linear FNE in which the

control chosen, in every time instant, by each hospital depends only on the

current value of its own quality level (and on the price chosen by its Region).

From the FNE strategies, by using the state variable dynamic, we obtain

the time-path of the quality level for Hi:

qi(t) =

[
q0,i −

pi − ci
2τ(δ2 + β + ρδ)

]
e

 ρ
2
−

√
β+

(ρ
2

+ δ
)2t

+
pi − ci

2τ(δ2 + β + ρδ)

(22)
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Sufficient condition for qi(t) > 0 is pi > ci. It holds:

∆q(t) = [∆q0 − ∆p−∆c

2τ(δ2 + β + ρδ)
]e

 ρ
2
−

√
β+

(ρ
2

+ δ
)2t

+
∆p−∆c

2τ(δ2 + β + ρδ)

where:

∆q(t) := q1(t)− q2(t), ∆q0 := q0,1− q0,2, ∆p := p1− p2, ∆c := c1− c2.

Since we have: ρ
2 −

√
β +

(ρ
2

+ δ
)2

< 0, in steady-state it holds that: ∆q >

0 ⇐⇒ ∆p > ∆c.

Let us consider, without loss of generality: ∆q0 > 0. Consequently, as

in the model presented in Section 3, it is realistic to consider also ∆c < 0.

It holds:

1. if ∆p > ∆c then ∀t ∈ [0,∞) : ∆q(t) > 0;

2. if ∆p < ∆c then ∆q(t) > 0 for all t < t̄, where:

t̄ =

ln

(
∆p−∆c

(∆p−∆c)−∆q0[2τ(δ2 + β + ρδ)]

)
(
ρ

2
−
√
β +

(ρ
2

+ δ
)2) (23)

while for all t > t̄ we have: ∆q(t) < 0. Not surprisingly, t̄ is increas-

ing in the initial quality difference and in the marginal disutility of

traveling and it is decreasing in the term ∆p−∆c.

Finally we notice that, as in the symmetric model of Brekke et al. [4],

and differently from the model presented in the previous section, the open-

loop and the feedback solutions lead to the same steady-state values.
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The interest of the version of the model presented in this section rests in

the fact that it shows that quality differential between regions may switch

its algebraic sign at a point in time, in front of specific parameters’ con-

figuration: a “too low” regulated price level may induce the more efficient

provider to select investment plans that lead to a lower quality as compared

to the other region’s provider. The further step left to future research, con-

sists in considering regional prices as endogenous, and set by the regulators

in order to maximize a social welfare function, different from the objective

function of providers.

5 Concluding remarks

In this paper we have proposed a differential game model to highlight the

role of local regulation in a market where prices are given and competition

is based on quality. We have shown that quality differential across region

can persist, under equilibrium conditions. We have studied the relations

between regulated price levels, and quality levels and dynamics. Of course,

quality levels affect demand and hence inter-regional mobility. Our theoreti-

cal model has a clear empirical counterpart in healthcare markets, as well as

in other markets like childcare, long-term care, or even education, especially

at the primary and secondary school levels, with very similar characteristics

as healthcare: competition among providers bases on quality rather than

price; consumers’ choices are driven by location and quality of providers.

From a mathematical viewpoint, both the model of Section 3 and its
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variant in Section 4 are linear-quadratic differential games with one control

variable for each player (Ii) and two state variables (q1 and q2), which have

very simple dynamics. The setting is simple enough to let us to derive an-

alytically the open-loop and the linear Feedback Nash Equilibria of those

games. However, it is interesting to notice that they are not linear-state

games (see Dockner et al. [13]), since the instantaneous pay-off functions

are not linear in the state variables: this implies that the open-loop Nash

equilibria are not sub-game perfect. In particular we have a saddle-point

equilibrium in both the models, implying that, given the initial quality

levels, we can find initial values of the co-state variables (which in turn

determine the initial optimal investment choices) such that the system con-

verges to the steady state as time approaches infinity. Conversely, in the

corresponding games with feedback information pattern, we considered the

stationary linear closed-loop feedback equilibrium (which is, by definition,

a sub-game perfect equilibrium) which stabilizes the states for every pos-

sible initial condition. Interestingly, these two different equilibrium paths

lead to the same steady-state framework in the model of Section 4, while

this is not the case for the model of Section 3. In both the models there

is asymmetry between the players, but the degree of asymmetry is much

bigger in the first one, in which the players ex-ante “know” that the most

efficient one will always have higher quality levels (so they have different

objective functionals form), and this leads to the feature that -for both the

obtained equilibria- the equilibrium strategy of this player -differently from
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what happens for the less efficient one- does not explicitly depend on the

state variable of the other one. Conversely, the model presented in Section

4, which is a generalization of Brekke et al. [4] work, is characterized by the

fact that both in the open-loop and in the linear feedback Nash equilibrium

with asymptotically stable steady state, the strategy of player i does not

explicitly depend on the state variable of player j. In this simpler setting

we have also investigated under which conditions an equilibrium trajectory

with inversion of quality levels can occur. Specific assumptions concerning

the choice variables of regulators lead to different properties of equilibria.

From a simple comparison between the models of Section 3 and 4, one can

see that the steady state under open-loop vs. feedback behavior rule may

coincide or not, depending on whether the quality is chosen by the regulator

or by the (profit-oriented) provider.

Our model can be extended along different routes. The most immediate

one is to make the regulated prices endogenous, imagining that prices are set

to maximize some social welfare functions in which regulated prices matter.

In the present version of the model, local prices do not enter the objective

functions of local regulators, and they have a mere redistributive role.

Though very simple, the present version of the model can provide some

policy prescriptions. For instance, pro-competition policies are effective

in fostering available quality of services only under specific conditions (as

shown, by the way, by other available models with different focuses from re-

gional distribution of quality levels and inter-regional consumers’ mobility);
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more important, out present model shows that pro-competition policies may

lead to increasing or decreasing quality differential across regions, depending

on the parameter configuration, that is, the initial framework configuration,

and also on the behavior rule followed by providers (namely, open-loop vs

closed-loop behavior rules). Thus, our model suggests that the outcome of

pro-competitive policy measures (which have been very popular over the

past decades in several western countries, as applied to markets character-

ized by quality competition) are far from having obvious and similar results

across different countries and institutional contexts.
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Appendix

A Proof of Proposition 1

In order to find an open-loop Nash equilibrium for the considered differential

game, we apply the Pontryagin maximum principle. The current Hamilto-
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nian function of player i, i ∈ {1, 2}, is given by5:

Hi = Πi + µi(Ii − δqi) + φi(Ij − δqj) (24)

where µi and φi are the current co-state variables and the instantaneous

profit functions Πi are obtained by considering equations (6),(7),(8),(9). The

adjoint equations are given by:

µ̇1 = ρµ1−
∂H1

∂q1
=⇒ µ̇1 = (ρ+ δ)µ1 + β(λ+ 1)q1 +

c1(λ+ 1)− p
2τ

− 1

2
(25)

φ̇1 = ρφ1 −
∂H1

∂q2
=⇒ φ̇1 = (ρ+ δ)φ1 −

c1(1 + λ)− p
2τ

(26)

µ̇2 = ρµ2−
∂H2

∂q2
=⇒ µ̇2 = (ρ+δ)µ2+β(λ+1)q2+

q1 − q2
2τ

+
(c2 − p)(λ+ 1)

2τ
−1

2

(27)

φ̇2 = ρφ2 −
∂H2

∂q1
=⇒ φ̇2 = (ρ+ δ)φ2 −

(c2 − p)(1 + λ) + q2 − q1
2τ

(28)

Transversality conditions are: lim
t→∞

e−ρtµiqi = 0, lim
t→∞

e−ρtφiqj = 0. First

order conditions for a maximum point of the Hamiltonian functions give:

∂Hi

∂Ii
= 0 ⇐⇒ µi = (1 + λ)Ii (29)

Please note that the second order conditions are satisfied if the Hamiltonian

of each player is concave in its control and state variables. As well known, to

this end, a necessary and sufficient condition is that their Hessian matrices

∇2
Hi

are negative semidefinite. Since these Hessian matrices are given by:

∇2
H1

=

−(1 + λ) 0

0 −β(1 + λ)


5For notational simplicity, we omit time dependencies.
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∇2
H2

=

−(1 + λ) 0

0 1
2τ − β(1 + λ)


it is trivial to see that this condition is verified under Assumption (10).

Differentiating equation (29) w.r.t. time yields:

µ̇i = (1 + λ)İi

which, substituted into (25) and (27), together with the quality stock dy-

namic equations, lead to the linear ODE system given in Proposition 1.

In this system, by imposing İi = q̇i = 0, we get the equilibrium point. In

order to determine its nature, we compute the eigenvalues of the coefficient

matrix of the system (12):

λ1 =
ρ

2
+

√
δ2 + δ ρ+

ρ2

4
+ β

λ2 =
ρ

2
−

√
δ2 + δ ρ+

ρ2

4
+ β − 1

2τ(1 + λ)

λ3 =
ρ

2
+

√
δ2 + δ ρ+

ρ2

4
+ β − 1

2τ(1 + λ)

λ4 =
ρ

2
−
√
δ2 + δ ρ+

ρ2

4
+ β

furthermore, under Assumption (10), it follows that all these eigenvalues are

real and:

λ4 < λ2 < 0 < λ3 < λ1

therefore we get eigenvalues with positive values and others with negative

values, hence the equilibrium point constitutes a saddle point.
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B Proof of Proposition 2 and Related Results

In order Ii(qi, qj), with i, j ∈ {1, 2}, i 6= j, to be a FNE strategy for player

i, we look for a value function V (qi, qj), continuously differentiable, which

satisfies the following Hamilton-Jacobi-Bellman (HJB) equation:

ρVi = max
Ii≥0

{
Πi +

∂Vi
∂qi

(Ii − δqi) +
∂Vi
∂qj

(Ij − δqj)
}

(30)

The FOC for the maximum point of the RHS of this HJB equation leads to:

Ii =
1

1 + λ

∂Vi
∂qi

(31)

Such condition is also sufficient for a maximum point since the expression to

be maximized in the HJB equation is strictly concave in the control variable.

In order to find a pair of linear stationary feedback strategies that consti-

tute a FNE of the differential game, we look for two value functions quadratic

w.r.t. q1 and q2:

V1(q1, q2) = α0 + α1q1 + α2q2 +
α3

2
q21 +

α4

2
q22 + α5q1q2 (32)

V2(q1, q2) = k0 + k1q2 + k2q1 +
k3
2
q22 +

k4
2
q21 + k5q1q2 (33)

where α0, . . . , α5, k0, . . . , k5 are unknown coefficients to be determined.

By substituting in the FOC (31) we obtain:

I1 =
1

1 + λ
(α1 + α3q1 + α5q2) (34)

I2 =
1

1 + λ
(k1 + k3q2 + k5q1) (35)
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By substituting in the HJB equation of R1 we obtain:

τ [8ρ(λ+ 1)α0 − 4α2
1 + 4c1(λ+ 1)2 − 8α2k1 + (λ+ 1)(τ − 4v)]+

+[2τα1[δ(λ+1)−α3+ρ(λ+1)]+c1(λ+1)2−2τα2k5−(λ+1)(p+τ)−2τα5k1]q1+

+[−2τα1α5−c1(λ+1)2+2τδα2(λ+1)+2τα2[ρ(λ+1)−k3]+p(λ+1)−2τk1]q2+

+[β(λ+ 1)2 + 2δ(λ+ 1)α3 − α2
3 + ρ(λ+ 1)α3 − 2α5k5]q

2
1+

+[2δ(λ+ 1)α4 + ρ(λ+ 1)α4 − α2
5 − 2α4k3]q

2
2+

+[2δ(λ+ 1)α5 − α3α5 + ρ(λ+ 1)α5 − α5k3 − α4k5]q1q2 = 0

Similarly, by substituting in the HJB equation of R2 we obtain:

τ [8α1k2 − (λ+ 1)(8ρk0 + 4λc2 + τ − 4(v − c2)) + 4k21]+

+[2τα1k4−2δτ(λ+1)k2+2τα3k2−(λ+1)[λ(p−c2)+2ρτk2+p−c2]+2τα5k1]q1+

+[−2τα1k5+2δτ(λ+1)k1−(λ+1)[λ(p−c2)−2ρτk1+p+τ−c2)−2τ(α5k2+k1k3)]]q2+

+[4δτ(λ+ 1)k4 − 4τα3k4 + (λ+ 1)(2ρτk4 − 1)− 2τk25]q21+

+[2βτ(λ+ 1)2 + 4δτ(λ+ 1)k3 + (λ+ 1)(2ρτk3 − 1)− 2τ(2α5k5 + k23)]q22+

+[4δτ(λ+1)k5−2τα3k5+[λ(2ρτk5+1)+2ρτk5+1]−2τα5k4−2τk5k3]q1q2 = 0

For the equality to hold, all the terms in brackets in the above equations

have to be equal to zero.

We concentrate on the last three equations for both the players, which

do not depend on α0, α1, α2, k0, k1, k2, obtaining a non-linear system of 6

equations in 6 unknowns.
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A solution of this system gives:

α4 = α5 = 0

k4 =

√
λ+ 1

4τ
[
√
A+ 2−

√
A]

with A defined by (16), and the values of α3, k3, k5 in equations (17), (18),

(19), respectively.

From this solution we obtain the values for α1 and k1 given in Proposition

26. Finally, by substituting these obtained values into equations (34) and

(35), we get the FNE given in Proposition 2.

In order for the obtained solution to provide a maximum point for our

problem which is also globally asymptotically stable we must impose (see

Brekke et al. [4]):

α3 < 0

α3 + α5 < 0

k3 < 0 ⇐⇒ 4βτ(λ+ 1)− 2 > 0

which results in Assumption (10).

From the FNE strategies and the quality levels dynamic equations we

obtain that the FNE qualities time paths are the solutions of the following

linear ODE system:
q̇1 = 1

1+λ [α1 + (α3 − δ(λ+ 1))q1]

q̇2 = 1
1+λ [k1 + k5q1 + (k3 − δ(λ+ 1))q2]

6Obviously also the values for α0, α2, k0, k2 can be uniquely determined, but we can

omit them since they do not enter the expression of the FNE strategies.
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The eigenvalues λ1,2 of its coefficient matrix B are real since it holds:

(trB)2−4 detB =
(α3 + k3 − 2δ(λ+ 1))2

(1 + λ)2
−4

(α3 − δ(λ+ 1))(k3 − δ(λ+ 1))

(1 + λ)2
=

(α3 − k3)2

(1 + λ)2
> 0

Since the equilibrium point is globally asymptotically stable, the conclusion

λ1,2 ∈ R implies that these eigenvalues are negative, therefore the equilib-

rium point of the system is a stable node.

The solution of the considered ODE system is given by:

q1(t) =
e(

k3
λ+1
−δ)t[α1 + q0,1(α3 − δ(λ+ 1))]− α1

α3 − δ(λ+ 1)

q2(t) = e(
α3
λ+1
−δ)tα1 + q0,2(α3 − δ(λ+ 1))

α3 − δ(λ+ 1)
+

+
α1k5 − k1[α3 − δ(λ+ 1)]− e(

k3
λ+1
−δ)t[α1 − k1 + (q0,2 − q0,1)(δ(λ+ 1)− k3)][α3 − δ(λ+ 1)]

[α3 − δ(λ+ 1)][k3 − δ(λ+ 1)]

It holds:

q1(t)− q2(t) =
(α1 − k1)(1− e−(δ−

k3
λ+1

)t)

δ(λ+ 1)− k3
+ e−(δ−

k3
λ+1

)t(q0,1 − q0,2) (36)

since k3 < 0 and we assumed q0,1 > q0,2, it follows that α1 > k1 constitutes

a sufficient condition for q1(t) > q2(t) ∀t ∈ [0,∞).

Furthermore, by differentiating (36) w.r.t. t, we get:

∂[q1(t)− q2(t)]
∂t

=
e−(δ−

k3
λ+1

)t

λ+ 1
[α1 − k1 − (q0,1 − q0,2)(δ(λ+ 1)− k3)]

Therefore:

∀t ∈ [0,∞) :
∂[q1(t)− q2(t)]

∂t
> 0 ⇐⇒ q0,1−q0,2 <

α1 − k1
δ(λ+ 1)− k3

= qF1 −qF2

It is trivial to see that:

∂q1(t)

∂t
=
e(

α3
λ+1
−δ)t[α1 + q0,1[α3 − δ(λ+ 1)]

λ+ 1
> (<)0 ∀t ⇐⇒ q0,1 < (>)qF1
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As for q2(t), it results:

∂q2(t)

∂t
=
e(

α3
λ+1
−δ)t[α1 + q0,1(α3 − δ(λ+ 1))]− e(

k3
λ+1
−δ)t[α1 − k1 + (q0,1 − q0,1)[k3 − δ(λ+ 1)]]

λ+ 1

therefore:

∂q2(t)

∂t
> 0 ⇐⇒ e

k5
λ+1

t[α1+q
1
0[α3−δ(λ+1)]] > α1−k1+(q0,1−q0,2)[k3−δ(λ+1)]

where the LHS is positive if and only if q0,1 < qF1 , the RHS is positive if and

only if the initial quality difference is lower than the steady-state one, i.e. if

q0,1 < q0,2+qF1 −qF2 , and we have: qF1 < q0,2+qF1 −qF2 ⇐⇒ q0,2 > qF2 . Hence,

several possibilities can arise, and the trajectory can either be monotone, or

it can have a maximum/minimum point.
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(a) Consumer Surplus: Blue=σOL1 ; Black=σOL2 ; Yellow=σF1 ; Red=σF2

(b) Hospital Profits: Blue=πOL1 ; Black=πOL2 ; Yellow=πF1 ; Red=πF2

(c) Regional Social Welfare: Blue=ΠOL
1 ; Black=ΠOL

2 ; Yellow=ΠF
1 ;

Red=ΠF
2

Figure 1: Consumer Surplus, Hospital Profits and Regional Social Welfare

in steady-state for the benchmark example.
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(a) Benchmark vs Lower Transportation Cost. Benchmark case (τ = 0.9):

Grey=(x21)OL and Orange=(x21)F . Lower Transportation Cost (τ = 0.7):

Green=(x21)OL and Magenta=(x21)F

(b) Benchmark vs Lower Cost Asymmetry: Benchmark case (c1 = 0.8 and c2 = 1.2):

Grey=(x21)OL and Orange=(x21)F . Lower Cost Asymmetry (c1 = 0.9 and c2 = 1.1):

Green=(x21)OL and Magenta=(x21)F .

Figure 2: Quality differences in steady-state.
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