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Abstract

The aim of this paper is to study the long time behavior of solutions to deterministic

mean field games systems on Euclidean space. This problem was addressed on the torus

T
n in [P. Cardaliaguet, Long time average of first order mean field games and weak KAM

theory, Dyn. Games Appl. 3 (2013), 473–488], where solutions are shown to converge to

the solution of a certain ergodic mean field games system on T
n. By adapting the approach

in [A. Fathi, E. Maderna, Weak KAM theorem on non compact manifolds, NoDEA Nonlin-

ear Differential Equations Appl. 14 (2007), 1–27], we identify structural conditions on the

Lagrangian, under which the corresponding ergodic system can be solved in R
n. Then we

show that time dependent solutions converge to the solution of such a stationary system on

all compact subsets of the whole space.
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1 Introduction

In this paper we study the relationship between solutions of the first order mean field games

(hereinafter referred to as MFG) system with finite horizon







−∂tuT +H(x,DuT ) = F (x,mT (t)) in (0, T )× R
n,

∂tm
T − div

(

mTDpH(x,DuT )
)

= 0 in (0, T )× R
n,

mT (0) = m0, uT (T, x) = uf(x), x ∈ R
n,

(1.1)

and solutions of the ergodic first order MFG system







H(x,Dū) = F (x, m̄) + λ̄ in R
n,

div
(

m̄DpH(x,Dū)
)

= 0 in R
n,

∫

Rn m̄(dx) = 1,

(1.2)

where 0 < T < +∞ and H is a reversible strict Tonelli Hamiltonian on R
n × R

n. More

precisely, we will study the long time behavior of the solution of system (1.1) by showing that

it converges to a solution of system (1.2) in some weak sense.

MFG theory was introduced independently by Lasry-Lions [18], [19], [20] and Huang, Mal-

hamé, and Caines [17], [16] in order to study large population deterministic and stochastic dif-

ferential games. In system (1.1), the function uT can be understood as the value function for a

typical small player of a finite horizon optimal control problem in which the density mT of the

other players enters as a datum. Moreover, the players density evolves in time, according to the

second equation of the system, following the vector field given by the optimal feedback of each

agent.

Our analysis is partially based on tools from weak KAM theory for Lagrangians defined on

the tangent bundle of Rn. Fathi [13] proved the existence of solutions for stationary Hamilton-

Jacobi equations, for Lagrangians defined on the tangent bundle of a compact smooth manifold,

generalizing the existence result due to Lions, Papanicolaou and Varadhan [21]. Later, Fathi and

Maderna [15] extended this existence result to noncompact manifolds. Moreover, they showed

that backward weak KAM solutions coincide with viscosity solutions.

When the state space is the flat torus Tn, the asymptotic behavior as T → +∞ of solutions

to the MFG system (1.1) was studied by Cardaliaguet [8]. In this paper, we remove such a

compactness assumption and address the convergence problem as T → +∞ for solutions of

(1.1) on the whole space R
n. The first step of our analysis is to prove the existence of solutions

of system (1.2) as well as the uniqueness of the corresponding critical value (Theorem 3.4

below). A key point, here, is the regularity of viscosity solutions of the first equation of system
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(1.2) on the projected Mather set. Since such a set, for noncompact state spaces, might be empty

(see, for instance, [11]), we need to impose a certain structural assumption ((F4) below) on the

mean field Lagrangian.

Our second main result (Theorem 4.13 below) describes the behavior of the solution (uT , mT )
of system (1.1), as T → +∞, on compact subsets of Rn. More precisely, let (λ̄, ū, m̄) be a so-

lution of (1.2), where m̄ is a projected Mather measure and λ̄ denotes the Mañé critical value

of H(x, p)− F (x, m̄). See Definition 3.2 and Definition 2.8 below for definitions of projected

Mather measures and Mañé’s critical value for Tonelli Lagrangian systems, respectively. Our

first main result Theorem 3.4 below guarantees the existence of such solutions (λ̄, ū, m̄) and

the uniqueness of Mañé’s critical value λ̄. We show that for every R > R1 (see the definition

of R1 > 0 in Proposition 4.8) there exists a constant C(R) > 0, such that for any T ≥ 1 the

unique solution (uT , mT ) of (1.1) satisfies:

sup
t∈[0,T ]

∥
∥
∥
uT (t, ·)− ū(·)

T
+ λ̄

(

1− t

T

)∥
∥
∥
∞,BR

≤ C(R)

T
1

n+2

,

1

T

∫ T

0

∥
∥F (·, mT (s))− F (·, m̄)

∥
∥
∞,BR

ds ≤ C(R)

T
1

n+2

.

This paper is organized as follows: In Section 2, we fix the notation and recall preliminaries

on measure theory and weak KAM theory. In Section 3, we prove the existence of solutions to

the ergodic system (1.2) and we give a uniqueness criterion under a monotonicity assumption

on F . In Section 4, after proving some preliminary lemmas, we obtain the main convergence

result. The Appendix contains the proof of (ii) of Theorem 3.4 and a technical result which is

used in the proof of Theorem 4.13.

2 Preliminaries

In this section, we recall definitions and preliminary results from measure theory and weak

KAM theory, which will be used later in this paper.

2.1 Notation

We write below a list of symbols used throughout this paper.

• Denote by N the set of positive integers, by R
n the n-dimensional real Euclidean space,

by 〈·, ·〉 the Euclidean scalar product, by | · | the usual norm in R
n, and by BR the open

ball with center 0 and radius R.

• π1 denotes the projection of Rn × R
n onto the first factor.

• Let a, b ∈ R. a ∨ b and a ∧ b are used to stand for maximum and minimum, respectively:

a∨b = max{a, b} and a∧b = min{a, b}. The positive part of a real function f is defined

by f+ = f ∨ 0.

• Let Λ be a real n× n matrix. Define the norm of Λ by

‖Λ‖ = sup
|x|=1,x∈Rn

‖Λx‖.
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• Let A be a Lebesgue-measurable subset of R
n. Denote by Ln(A) the n-dimensional

Lebesgue measure of A. Denote by 1A : Rn → {0, 1} the characteristic function of A,

i.e.,

1A(x) =

{

1 x ∈ A,

0 x 6∈ A.

• Let f be a real-valued function on R
n. The set

D+f(x) =

{

p ∈ R
n : lim sup

y→x

f(y)− f(x)− 〈p, y − x〉
|y − x| 6 0

}

,

is called the superdifferential of f at x. Let u(t, x) be a real-valued function on [0, T ]×R
n

for some T > 0. The symbol ∇+u(t, x) denotes the superdifferential of the function

x 7→ u(t, x).

• Lip(A) stands for the space of Lipschitz functions on A ⊂ R
n and denote by

Lip(f) = sup
x 6=y

x,y∈A

|f(x)− f(y)|
|x− y| ,

the Lipschitz seminorm of f ∈ Lip(A). Define

‖Df‖∞,A := ess sup
x∈A

|Df(x)|.

• Let A be a Lebesgue-measurable subset of Rn. Let 1 ≤ p ≤ ∞. Denote by Lp(A) the

space of Lebesgue-measurable functions f with ‖f‖p,A <∞, where

‖f‖∞,A := ess sup
x∈A

|f(x)|,

‖f‖p,A :=

(∫

A

|f |pdx
) 1

p

, 1 ≤ p <∞.

Denote ‖f‖∞,Rn by ‖f‖∞ and ‖f‖p,Rn by ‖f‖p, for brevity.

• Let 1 ≤ p ≤ ∞. The function f belongs to the Sobolev space W 1,p(Rn) if f ∈ Lp(Rn)
and for i = 1, · · · , n the weak derivatives ∂f

∂xi
exist and belong to Lp(Rn). The function

f belongs to W
1,p
loc (R

n) if f ∈ W 1,p(A) for each open set A such that Ā is compact and

Ā ⊂ R
n.

• Cb(R
n) stands for the function space of bounded uniformly continuous functions on R

n.

C2
b (R

n) stands for the space of bounded functions on R
n with bounded uniformly continu-

ous first and second derivatives. Ck(Rn) (k ∈ N) stands for the function space of k-times

continuously differentiable functions on R
n, and C∞(Rn) := ∩∞

k=0C
k(Rn). C∞

c (Rn)
stands for the space of functions in C∞(Rn) with compact support. Let a < b ∈ R.

AC([a, b];Rn) denotes the space of absolutely continuous curves [a, b] → R
n.

• For f ∈ C1(Rn), the gradient vector of f is denoted by Df = (Dx1
f, ..., Dxn

f), where

Dxi
f = ∂f

∂xi
, i = 1, 2, · · · , n. Let k be a nonnegative integer and let α = (α1, · · · , αn) be

a multiindex of order k, i.e., k = |α| = α1 + · · · + αn , where each component αi is a

nonnegative integer. For f ∈ Ck(Rn), define Dαf := Dα1

x1
· · ·Dαn

xn
f .
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2.2 Measure theory

Denote by B(Rn) the Borel σ-algebra on R
n and by P(Rn) the space of Borel probability

measures on R
n. The support of a measure µ ∈ P(Rn), denoted by supp(µ), is the closed set

defined by

supp(µ) :=
{

x ∈ R
n : µ(Vx) > 0 for each open neighborhood Vx of x

}

.

We say that a sequence {µk}k∈N ⊂ P(Rn) is weakly-∗ convergent to µ ∈ P(Rn), denoted by

µk
w∗

−→ µ, if

lim
n→∞

∫

Rn

f(x) dµn(x) =

∫

Rn

f(x) dµ(x), ∀f ∈ Cb(R
n).

For p ∈ [1,+∞), the Wasserstein space of order p is defined as

Pp(R
n) := {m ∈ P(Rn) :

∫

Rn

|x0 − x|p dm(x) < +∞},

where x0 ∈ R
n is arbitrary. Given any two measures m and m′ in Pp(R

n), define

Π(m,m′) := {λ ∈ P(Rn × R
n) : λ(A× R

n) = m(A), λ(Rn × A) = m′(A), ∀A ∈ B(Rn)} .
The Wasserstein distance of order p between m and m′ is defined by

dp(m,m
′) = inf

λ∈Π(m,m′)

(∫

Rn×Rn

|x− y|p dλ(x, y)
)1/p

.

The distance d1 is also commonly called the Kantorovich-Rubinstein distance and can be char-

acterized by a useful duality formula (see, for instance, [23]) as follows

d1(m,m
′) = sup

{∫

Rn

f(x) dm(x)−
∫

Rn

f(x) dm′(x) | f : Rn → R is 1-Lipschitz
}

,

for all m, m′ ∈ P1(R
n).

We now recall that weak-∗ convergence is equivalent to convergence in the metric space

(Pp(R
n), dp) (see, for instance, [23]).

Proposition 2.1. Let {µk}k∈N be a sequence of measures in Pp(R
n) and let µ be another ele-

ment of Pp(R
n). Then

(i) if dp(µk, µ) → 0, then µk
w∗

−→ µ, as k → +∞;

(ii) if supp(µk) is contained in a fixed compact subset of Rn for all k ∈ N and µk
w∗

−→ µ, as

k → +∞, then dp(µk, µ) → 0, as k → +∞.

Let (X1, S1, µ) be a measure space, (X2, S2) a measurable space, and f : X1 → X2 a

measurable map. The push-forward of µ through f is the measure f♯µ on (X2, S2) defined by

f♯µ(B) := µ
(
f−1(B)

)
, ∀B ∈ S2.

The push-forward has the property that a measurable map g : X2 → R is integrable with respect

to f♯µ if and only if g ◦ f is integrable on X1 with respect to µ. In this case, we have that
∫

X1

g(f(x)) dµ(x) =

∫

X2

g(y) df♯µ(y).
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2.3 Weak KAM theory on R
n

Definition 2.2 (Tonelli Lagrangians). A C2 function L : R
n × R

n → R is called a Tonelli

Lagrangian if it satisfies the following:

(i) for each (x, v) ∈ R
n × R

n, the Hessian D2
vvL(x, v) is positive definite;

(ii) for each A > 0 there exists B(A) ∈ R such that

L(x, v) > A|v|+B(A), ∀(x, v) ∈ R
n × R

n;

(iii) for each R > 0, A(R) := sup
{

L(x, v) : |v| ≤ R
}

< +∞.

Definition 2.3 (Strict Tonelli Lagrangians). A C2 function L : R
n × R

n → R is called a

strict Tonelli Lagrangian if there exist positive constants Ci (i = 1, 2, 3) such that, for all

(x, v) ∈ R
n × R

n:

(a) I
C1

≤ D2
vvL(x, v) ≤ C1I , where I is the identity matrix;

(b) ‖D2
vxL(x, v)‖ ≤ C2(1 + |v|);

(c) |L(x, 0)|+ |DxL(x, 0)|+ |DvL(x, 0)| ≤ C3.

Remark 2.4. Let L be a strict Tonelli Lagrangian. It is easy to check that there are two positive

constants α, β depending only on Ci (i = 1, 2, 3) in Definition 2.3, such that

(e) |DvL(x, v)| ≤ α(1 + |v|), ∀(x, v) ∈ R
n × R

n;

(f ) |DxL(x, v)| ≤ α(1 + |v|2), ∀(x, v) ∈ R
n × R

n;

(g) 1
4β
|v|2 − α ≤ L(x, v) ≤ 4β|v|2 + α, ∀(x, v) ∈ R

n × R
n;

(h) sup
{
L(x, v) : |v| ≤ R

}
< +∞, ∀R ≥ 0.

In view of (a), (g), and (h), it is clear that a strict Tonelli Lagrangian is a Tonelli Lagrangian.

From now on to the end of this section, we always assume that L is a Tonelli Lagrangian on

R
n × R

n.

Define the Hamiltonian H : Rn × R
n → R associated with L by

H(x, p) = sup
v∈Rn

{〈
p, v
〉
− L(x, v)

}

, ∀(x, p) ∈ R
n × R

n.

It is straightforward to check that if L is a Tonelli Lagrangian (resp. a strict Tonelli Lagrangian),

then H defined above also satisfies (i), (ii), and (iii) in Definition 2.1 (resp. (a), (b), and (c)

in Definition 2.2). Such a function H is called a Tonelli Hamiltonian (resp. a strict Tonelli

Hamiltonian). Moreover, if L is a reversible Lagrangian, i.e., L(x, v) = L(x,−v) for all

(x, v) ∈ R
n × R

n, then H(x, p) = H(x,−p) for all (x, p) ∈ R
n × R

n.

Let us recall definitions of weak KAM solutions and viscosity solutions of the Hamilton-

Jacobi equation

H(x,Du) = c, x ∈ R
n, (2.1)

where c is a real constant.
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Definition 2.5 (Weak KAM solutions). A function u ∈ C(Rn) is called a backward (resp.

forward) weak KAM solution of equation (2.1) if:

(i) for each continuous piecewise C1 curve γ : [t1, t2] → R
n, we have that

u(γ(t2))− u(γ(t1)) ≤
∫ t2

t1

L(γ(s), γ̇(s))ds+ c(t2 − t1);

(ii) for each x ∈ R
n, there exists a C1 curve γ : (−∞, 0] → R

n (resp. γ : [0,+∞) → R
n)

with γ(0) = x such that

u(x)− u(γ(t)) =

∫ 0

t

L(γ(s), γ̇(s))ds− ct, ∀t < 0

(resp. u(γ(t))− u(x) =
∫ t

0
L(γ(s), γ̇(s))ds+ ct, ∀t > 0).

Remark 2.6. A function u on R
n is said to be dominated by L+ c, denoted by u ≺ L+ c, if u

satisfies condition (i) of Definition 2.5. A curve γ is said to be (u, L, c)-calibrated if it satisfies

condition (ii) of Definition 2.5.

Definition 2.7 (Viscosity solutions). Let V ⊂ R
n be an open set.

(i) A function u : V → R is called a viscosity subsolution of equation (2.1), if for every C1

function ϕ : V → R and every point x0 ∈ V such that u− ϕ has a local maximum at x0,

we have that

H(x0, Dϕ(x0)) ≤ c;

(ii) A function u : V → R is called a viscosity supersolution of equation (2.1), if for every

C1 function ψ : V → R and every point y0 ∈ V such that u− ψ has a local minimum at

y0, we have that

H(y0, Dψ(y0)) ≥ c;

(iii) A function u : V → R is called a viscosity solution of equation (2.1) if it is both a

viscosity subsolution and a viscosity supersolution.

Definition 2.8 (Mañé critical value). The Mañé critical value of a Tonelli Hamiltonian H is

defined by

c(H) := inf {c ∈ R : there exists a viscosity solution u ∈ C(Rn) of H(x,Du) = c} .

See [15, Theorem 1.1] for the following weak KAM theorem for noncompact state spaces.

Theorem 2.9 (Weak KAM theorem). Let H be a Tonelli Hamiltonian. Then, there exists a

global viscosity solution of equation

H(x,Du) = c(H), x ∈ R
n.

In [15], viscosity solutions are shown to coincide with backward weak KAM solutions.

Observe that, as Rn can be seen as a covering of the torus Tn, Mañé’s critical value can be

characterized as follows ([10]):

c(H) = inf
u∈C∞(Rn)

sup
x∈Rn

H(x,Du(x)). (2.2)

7



We conclude this section by recalling the notion of Mather set and the role such a set plays

for the regularity of viscosity solutions. Let L be a Tonelli Lagrangian. As is well known, the

associated Euler-Lagrange equation, i.e.,

d

dt
DvL(x, ẋ) = DxL(x, ẋ), (2.3)

generates a flow of diffeomorphisms φL
t : Rn × R

n → R
n × R

n, with t ∈ R, defined by

φL
t (x0, v0) = (x(t), ẋ(t)),

where x : R → R
n is the maximal solution of (2.3) with initial conditions x(0) = x0, ẋ(0) =

v0. It should be noted that, for any Tonelli Lagrangian, the flow φL
t is complete ([15]).

We recall that a Borel probability measure µ on R
n × R

n is called φL
t -invariant, if

µ(B) = µ(φL
t (B)), ∀t ∈ R, ∀B ∈ B(Rn × R

n),

or, equivalently,
∫

Rn×Rn

f(φL
t (x, v)) dµ(x, v) =

∫

Rn×Rn

f(x, v) dµ(x, v), ∀f ∈ C∞
c (Rn × R

n).

We denote by ML the class of all φL
t -invariant probability measures.

Definition 2.10 (Mather measures [22]). A probability measure µ ∈ ML is called a Mather

measure for L, if it satisfies
∫

Rn×Rn

L(x, v) dµ(x, v) = inf
ν∈ML

∫

Rn×Rn

L(x, v) dν(x, v).

Under the assumption (F4) below, we deduce that the set of Mather measures is nonempty.

Moreover, in [14], it was proved that

c(H) = − inf
ν∈ML

∫

Rn×Rn

L(x, v) dν(x, v).

Denote by M∗
L the set of Mather measures. Observe that, if L (resp. H) is a reversible La-

grangian (resp. reversible Hamiltonian), then

− c(H) = inf
x∈Rn

L(x, 0). (2.4)

The Mather set is the subset M0 ⊂ R
n × R

n defined by

M0 =
⋃

µ∈M∗

L

supp(µ).

We call M0 = π1(M0) ⊂ R
n the projected Mather set. See [14, Theorem 4.12.3] for the

following result.

Theorem 2.11. If u is dominated by L + c(H), then it is differentiable at every point of the

projected Mather set M0. Moreover, if (x, v) ∈ M0, then

Du(x) = DvL(x, v)

and the map M0 → R
n × R

n, defined by x 7→ (x,Du(x)), is locally Lipschitz with a Lipschitz

constant which is independent of u.

8



3 Ergodic MFG system: existence and uniqueness

In this section we prove an existence and uniqueness result for (1.2).

3.1 Assumptions

From now on, we suppose that L is a reversible strict Tonelli Lagrangian. Let F : R
n ×

P1(R
n) → R be a function, satisfying the following assumptions:

(F1) for every measure m ∈ P1(R
n) the function x 7→ F (x,m) is of class C2

b (R
n) and

sup
m∈P1(Rn)

∑

|α|≤2

‖DαF (·, m)‖∞ < +∞,

where α = (α1, · · · , αn) and Dα = Dα1

x1
· · ·Dαn

xn
;

(F2) for every x ∈ R
n the function m 7→ F (x,m) is Lipschitz continuous and

Lip2(F ) := sup
x∈Rn

m1, m2∈P1(Rn)
m1 6=m2

|F (x,m1)− F (x,m2)|
d1(m1, m2)

< +∞;

(F3) there is a constant CF > 0 such that for every m1, m2 ∈ P1(R
n),

∫

Rn

(F (x,m1)− F (x,m2)) d(m1 −m2) ≥ CF

∫

Rn

(F (x,m1)− F (x,m2))
2
dx,

and for each x ∈ R
n,

∫

Rn

(F (x,m1)− F (x,m2)) d(m1 −m2) = 0 if and only if F (x,m1) = F (x,m2);

(F4) there exist a compact setK0 ⊂ R
n and a constant δ0 > 0 such that, for everym ∈ P1(R

n),

inf
x∈Rn\K0

{

L(x, 0) + F (x,m)
}

− min
x∈K0

{

L(x, 0) + F (x,m)
}

≥ δ0.

Now we give an example where F and L satisfy conditions (F1)-(F4).

Example 3.1. Let L(x, v) = L(v) be a reversible strict Tonelli Lagrangian. Let

F (x,m) = f(x)g(m),

where

• f : Rn → R satisfies

(i) f ∈ C2
b (R

n), and
∫

Rn |f |2 dx < +∞;

(ii) argminx∈Rn f(x) is nonempty and bounded.

• g(m) = G
( ∫

Rn f(x) dm
)

for m ∈ P1(R
n), with G ∈ C1(R) satisfying the following:

9



(iii) G ≥ δ1, where δ1 is a positive constant;

(iv) for each R > 0, there is ν(R) > 0 such that for any s ∈ [−R,R],

ν(R) ≤ G′(s) ≤ 1

ν(R)
.

Let K0 ⊂ R
n be a compact set such that

int K0 ⊃ argmin
x∈Rn

f(x),

where int K0 denotes the interior of K0.

Then, we claim that that assumptions (F1)-(F4) are fulfilled. Indeed, (F1) and (F2) follow,

immediately, from (i), (iv), and the differentiability ofG. In order to check that F satisfies (F3),

fix m1, m2 ∈ P1(R
n) and observe that, since m1, m2 are probability measures,

∣
∣
∣
∣

∫

Rn

f dmi

∣
∣
∣
∣
≤ ‖f‖∞,

for i = 1, 2. Moreover, by definition, we have that
∫

Rn

(F (x,m1)− F (x,m2))
2 dx

=

(

G

(∫

Rn

f dm1

)

−G

(∫

Rn

f dm2

))2

‖f‖22,

and
∫

Rn

(F (x,m1)− F (x,m2)) d(m1 −m2)

=

(

G

(∫

Rn

f dm1

)

−G

(∫

Rn

f dm2

))∫

Rn

f d(m1 −m2).

If g(m1) = g(m2), then the inequality in (F3) is obvious. Suppose g(m1) 6= g(m2). Then,
∫

Rn f d(m1 −m2) 6= 0 and we have that
∫

Rn(F (x,m1)− F (x,m2))
2 dx

∫

Rn(F (x,m1)− F (x,m2)) d(m1 −m2)

≤ ‖f‖22

∣
∣
∣
∣
∣

(
G
(∫

Rn f dm1

)
−G

(∫

Rn f dm2

))

∫

Rn f d(m1 −m2)

∣
∣
∣
∣
∣

≤ ‖f‖22
ν(‖f‖∞)

.

So far, we have checked that the inequality in (F3) holds true. For the necessary and sufficient

condition in (F3), we only need to prove that 0 =
∫

Rn (F (x,m1)− F (x,m2)) d(m1 −m2)
implies that F (x,m1) = F (x,m2) for all x ∈ R

n. Note that

0 =

∫

Rn

(F (x,m1)− F (x,m2)) d(m1 −m2)

=

(

G

(∫

Rn

f dm1

)

−G

(∫

Rn

f dm2

))∫

Rn

f d(m1 −m2)

≥ ν(‖f‖∞)

(∫

Rn

f d(m1 −m2)

)2

.
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Hence, ∫

Rn

f dm1 =

∫

Rn

f dm2,

and thus for every x ∈ R
n, we have that F (x,m1) = F (x,m2).

Finally, we prove that L and F satisfy (F4). Fix m ∈ P1(R
n). Since K0 is a compact

neighborhood of argminx∈Rn f(x) it follows that

inf
x∈Rn\K0

f(x) > min
x∈K0

f(x).

Then, there is a constant δ2 > 0 such that

inf
x∈Rn\K0

f(x)− min
x∈K0

f(x) ≥ δ2.

Therefore, since g(m) ≥ δ1, we obtain that

inf
x∈Rn\K0

{

L(0) + F (x,m)
}

− min
x∈K0

{

L(0) + F (x,m)
}

≥ δ1δ2 := δ0. �

Let H be the reversible strict Tonelli Hamiltonian associated with L. For any m ∈ P1(R
n),

define the mean field Lagrangian and Hamiltonian associated with m by

Lm(x, v) := L(x, v) + F (x,m), (x, v) ∈ R
n × R

n, (3.1)

Hm(x, p) := H(x, p)− F (x,m), (x, p) ∈ R
n × R

n. (3.2)

By assumptions (F1) and (F2), it is clear that for any given m ∈ P1(R
n), Lm (resp. Hm) is a

strict Tonelli Lagrangian (resp. Hamiltonian).

Definition 3.2 (Mean field ergodic solutions). We say that a triple (λ̄, ū, m̄) ∈ R × C(Rn) ×
P1(R

n) is a solution of system (1.2) if

(i) ū is a Lipschitz continuous viscosity solution of the first equation of system (1.2);

(ii) Dū exists for m̄− a.e. x ∈ R
n;

(iii) m̄ is a projected Mather measure, i.e., there is a Mather measure ηm̄ for Lm̄ such that

m̄ = π1♯ηm̄;

(iv) m̄ satisfies the second equation of system (1.2) in the sense of distributions, that is,

∫

Rn

〈
Df(x), DpH (x,Dū(x))

〉
dm̄(x) = 0, ∀f ∈ C∞

c (Rn).

We denote by S the set of solutions of system (1.2).

Define the function λ : P1(R
n) → R by

λ(m) := c(Hm).

Lemma 3.3. The function m 7→ λ(m) is Lipschitz continuous on P1(R
n) with respect to the

metric d1.
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Proof. For any m ∈ P1(R
n), since Lm is a strict Tonelli Lagrangian, by (2.2) we have that

λ(m) = inf
u∈C∞(Rn)

sup
x∈Rn

Hm(x,Du(x)). (3.3)

So, the conclusion follows noting that (3.3) and (F2) yield

|λ(m1)− λ(m2)| ≤ inf
u∈C∞(Rn)

sup
x∈Rn

∣
∣
∣F (x,m1)− F (x,m2)

∣
∣
∣ ≤ Lip2(F )d1(m1, m2)

for any m1, m2 ∈ P1(R
n).

3.2 Main result 1

We are now in a position to state and prove our first major result.

Theorem 3.4 (Existence of solutions of (1.2)). Assume (F1), (F2), and (F4).

(i) There exists at least one solution (c(Hm̄), ū, m̄) of system (1.2), i.e., S 6= ∅.

(ii) Assume, in addition, (F3). Let (c(Hm̄1
), ū1, m̄1), (c(Hm̄2

), ū2, m̄2) ∈ S. Then,

F (x, m̄1) = F (x, m̄2), ∀x ∈ R
n and c(Hm̄1

) = c(Hm̄2
).

Remark 3.5. By (ii) in Theorem 3.4, it is clear that each element of S has the form (λ̄, ū, m̄),
where m̄ is a projected Mather measure and λ̄ denotes the common Mañé critical value of Hm̄.

Proof of Theorem 3.4. (i) For any measure m ∈ P1(R
n), recall that φLm

t denotes the Euler-

Lagrange flow of Lm, where Lm is defined in (3.1). We divide the proof of (i) in two steps.

STEP 1 : we show the existence of Mather measures for Lm for each m ∈ P1(R
n).

From assumption (F4), for any m ∈ P1(R
n) there exists xm ∈ K0 such that

inf
x∈Rn

Lm(x, 0) = min
x∈K0

Lm(x, 0) = Lm(xm, 0),

where K0 is the compact set as in (F4). Note that the constant curve t 7→ xm for t ∈ R is a

solution of
d

dt
DvLm(x, ẋ) = DxLm(x, ẋ),

i.e., φLm

t (xm, 0) = (xm, 0) for all t ∈ R. Thus, the atomic measure δ(xm,0), supported on

(xm, 0), is a φLm

t -invariant probability measure. Recalling the definition of Mather measures

and xm, it follows that δ(xm,0) is a Mather measure for Lm (see also [14, Proposition 4.14.3]).

Consequently, for any m ∈ P1(R
n) we have that

Mm
0 =

{

(xm, 0) : Lm(xm, 0) = min
x∈K0

Lm(x, 0)

}

,

where Mm
0 denotes the Mather set associated with Lm. So, for each m ∈ P1(R

n), all Mather

measures associated with Lm are supported in K0 × {0}.

STEP 2 : we show the existence of solutions of (1.2).

12



From Step 1, for any m ∈ P1(R
n), there is a Mather measure ηm associated with Lm, i.e.,

ηm ∈ M∗
Lm

. Consider the set-valued map

Ψ : P(K0) ⇒ P(K0), m 7→ Ψ(m),

where

Ψ(m) :=
{
π1♯ηm : ηm ∈ M∗

Lm

}
.

As is customary in MFG theory, we will apply Kakutani’s theorem (see, for instance, [5]) to

show that there exist a fixed point m̄ of Ψ.

Observe that the metric space (P(K0), d1) is convex and compact due to Prokhorov’s the-

orem (see, for instance, [4]). Since Ψ has nonempty convex values, the only hypothesis of

Kakutani’s theorem we need to check is that Ψ has closed graph: for any pair of sequences

{mj}j∈N ⊂ P(K0), {µj}j∈N ⊂ P(K0) such that

mj
w∗

−→ m, µj
w∗

−→ µ, as j → +∞ and µj ∈ Ψ(mj) for all j ∈ N,

we must prove that µ ∈ Ψ(m). Since µj ∈ Ψ(mj) and µj
w∗

−→ µ as j → +∞, there are Mather

measures ηmj
and a measure η ∈ P1(R

n × R
n) such that

µj = π1♯ηmj
, ηmj

w∗

−→ η, as j → +∞ and µ = π1♯η. (3.4)

So, it suffices to show that η is a Mather measure for Lm. For this purpouse, let us consider the

sequence of Mañé’s critical values {λ(mj)}j∈N. By (2.4) and the definition of Mather measure,

we get that

λ(mj) = −
∫

Rn×Rn

Lmj
(x, v) dηmj

. (3.5)

By (3.4) and (3.5), we deduce that λ(mj) converges to some λ̃ ∈ R and

λ̃ = −
∫

Rn×Rn

Lm(x, v) dη.

By Lemma 3.3, we have that

λ̃ = lim
j→∞

λ(mj) = λ( lim
j→∞

mj) = λ(m).

Therefore, λ̃ is the Mañé critical value ofHm and η is a Mather measure for Lm. This shows that

Ψ has closed graph. So, by Kakutani’s theorem, there exists m̄ ∈ P(K0) such that m̄ ∈ Ψ(m̄).
Then, by Theorem 2.9, there is a global viscosity solution ū of Hm̄(x,Du) = c(Hm̄),

where Hm̄ is defined in (3.2). Moreover, by Theorem 2.11, ū is differentiable m̄ -a.e because

m̄ is supported on a subset of the projected Mather set of Hm̄. Again by Theorem 2.11 we

deduce that the map π1 : supp(ηm̄) → supp(m̄) is one-to-one and its inverse is given by

x 7→ (x,DpH(x,Dū(x))) on supp(m̄).
For any x ∈ supp(m̄), let γt(x) = π1 ◦ φLm̄

t (x,DpHm̄(x,Dū(x)). Then, we have that

d

dt
γt(x) = DpHm̄ (γt(x), Dū(γt(x))) .
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Since ηm̄ is φLm̄

t -invariant and m̄ is γt-invariant, for any function f ∈ C∞(Rn) we get that

0 =
d

dt

∫

Rn

f(γt(x)) dm̄(x) =

∫

Rn

〈
Df(γt(x)), DpHm̄(γt(x), Dū(γt(x)))

〉
dm̄(x)

=

∫

Rn

〈
Df(x), DpHm̄(x,Dū(x))

〉
dm̄(x).

Hence, m̄ satisfies the second equation of system (1.2) in the sense of distributions. This com-

pletes the proof of (i).

(ii) The proof of uniqueness, which is similar to the one in [8], is given in the Appendix.

4 MFG system with finite horizon

This section is devoted to the second main result of this paper—the convergence result. Let us

recall the MFG system with finite horizon (1.1), i.e.,







−∂tuT +H(x,DuT ) = F (x,mT (t)) in (0, T )× R
n,

∂tm
T − div

(

mTDpH(x,DuT )
)

= 0 in (0, T )× R
n,

mT (0) = m0, uT (T, x) = uf(x), x ∈ R
n.

In this section, we will assume (F1), (F2), (F3), (F4), and the following additional conditions.

(U) uf ∈ C1(Rn) ∩ Lip(Rn) satisfies uf(x) ≥ −c0 for all x ∈ R
n and some constant c0 ≥ 0.

(M) m0 is an absolutely continuous measure with respect to the Lebesgue measure and has

compact support contained in K0, where K0 is as in (F4). Denote by m0 the density

function of the measure m0, i.e., dm0 = m0dx.

(F5)
⋂

m∈P1(Rn) argminx∈K0
Lm(x, 0) 6= ∅, where K0 is as in (F4) and Lm is defined in (3.1).

Remark 4.1. We observe that assumption (F5) holds true for Lm(x, v) = L(v) + f(x)g(m) as

in Example 3.1.

Definition 4.2. A pair (uT , mT ) ∈ W
1,∞
loc ([0, T ]×R

n)×L1([0, T ]×R
n) is said to be a solution

of system (1.1) if:

(i) the first equation in (1.1) is satisfied in the viscosity sense;

(ii) the second equation in (1.1) is satisfied in the sense of distributions.

Under assumptions (F1), (F2), (F3), (U), and (M), for any given T > 0, there exists a

unique solution of (1.1) (see, for instance, [8, Theorem 4.1 and Remark 4.2]). From now on,

for any given T > 0 we denote by (uT , mT ) the unique solution of (1.1).

Let R0 > 0 be such that K0 ⊂ BR0
, where K0 is as in (F4).

Let ℓ be a time-dependent Tonelli Lagrangian and let u be a continuous, bounded below

function on R
n. For any given x ∈ R

n, and t, T ∈ R with 0 < t < T , classical results (see, for
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instance, [6, Theorem 6.1.2]) ensure the existence of solutions of the following minimization

problem

inf
ξ∈Γt,T (x)

{∫ T

t

ℓ(s, ξ(s), ξ̇(s))ds+ u(ξ(T ))

}

,

where

Γt,T (x) := {γ ∈ AC([t, T ];Rn) : γ(t) = x}.
For any given T > 0, let (uT , mT ) be the unique solution of (1.1). For each x ∈ R

n, each

t ∈ [0, T ], consider the minimization problem

inf
ξ∈Γt,T (x)

{∫ T

t

LmT (s)

(

ξ(s), ξ̇(s)
)

ds+ uf(ξ(T ))

}

. (4.1)

Define

Γ∗
t,T (x) :=

{

ξ∗ ∈ Γt,T (x) : ξ
∗ is a solution of problem (4.1)

}

.

Consider the set-valued map

Γ∗
t,T : K0 ⇒ C1([t, T ];Rn), x 7→ Γ∗

t,T (x).

It is easy to check that Γ∗
t,T has closed graph with respect to the C1-topology, which implies that

Γ∗
t,T is Borel measurable with closed values (see, for instance, [7, Proposition 9.5]). Therefore,

by the measurable selection theorem (see, for instance, [2]), there exists a measurable selection

of Γ∗
t,T , that is, γ∗ : K0 → C1([t, T ];Rn) such that γ∗(x) ∈ Γ∗

t,T (x) for all x ∈ K0. For any

s ∈ [t, T ], let us consider the evaluation map es : C
1([t, T ];Rn) → R

n, that is,

es(γ) = γ(s).

Then, we define the optimal flow as follows:

φ : [t, T ]×K0 → R
n, φ(s, x) = es(γ

∗(x)) (s ∈ [t, T ], x ∈ K0).

Moreover, from [9, Lemma 4.15], we have that, for any T > 0,

mT (s) = φ(s, ·)♯m0, ∀s ∈ [t, T ]. (4.2)

4.1 Excursion time of minimizers

Before proving Theorem 4.13 below, we derive preliminary results of interest in their own right.

Theorem 4.3 (Excursion time from a compact set). For any R ≥ R0 there is MR > 0 such that

for any T > 1, any x̃ ∈ BR, and any ξ∗ ∈ Γ∗
0,T (x̃), we have that

L1
(

{s ∈ [0, T ] : ξ∗(s) ∈ BR}
)

≥ T −MR.

Proof. Define

b = min
{
0, inf

(x,v)∈Rn×R
n

m∈P1(Rn)

Lm(x, v)
}
.
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By assumption (F5), there exists xT ∈ K0 such that

min
x∈K0

LmT (s)(x, 0) = LmT (s)(xT , 0)

for s ∈ [T0, T ]. Consider the curve

ξ0(s) :=

{

x̃+ xT−x̃
T0

· s, s ∈ [0, T0),

xT , s ∈ [T0, T ].

From the minimality of ξ∗, we have that

∫ T

0

LmT (s)(ξ
∗(s), ξ̇∗(s)) ds+ uf(ξ∗(T ))

≤
∫ T0

0

LmT (s)(ξ0(s), ξ̇0(s)) ds+

∫ T

T0

LmT (s)(xT , 0) ds+ uf(x̄)

= c(T0, x̃, m
T ) +

∫ T

T0

LmT (s)(xT , 0) ds,

where

c(T0, x̃, m
T ) =

∫ T0

0

LmT (s)(ξ0(s), ξ̇0(s)) ds+ uf(xT ).

By our assumptions, we deduce that |c(T0, x̃, mT )| ≤ C(T0, R), where C(T0, R) > 0 depends

only on T0 and R. On the other hand, by the convexity and reversibility of L with respect to the

v, we deduce that L(x, v) ≥ L(x, 0). Thus, we have that

∫ T

0

LmT (s)(ξ
∗(s), ξ̇∗(s)) ds

≥ bT0 +

∫ T

T0

LmT (s)(ξ
∗(s), 0)1BR

(ξ∗(s)) ds+

∫ T

T0

LmT (s)(ξ
∗(s), 0)1

Rn\BR
(ξ∗(s)) ds

≥ bT0 +

∫ T

T0

LmT (s)(xT , 0)1BR
(ξ∗(s)) ds+

∫ T

T0

inf
x∈Rn

LmT (s)(x, 0)1Rn\BR
(ξ∗(s)) ds.

By combining the above inequalities, we deduce that

∫ T

T0

(

LmT (s)(xT , 0)− inf
x∈Rn\BR

LmT (s)(x, 0)
)(

1− 1BR
(ξ∗(s))

)

ds ≥ bT0 − C(T0, R).

By assumption (F4) and the above inequality, we get

∫ T

T0

(

1− 1BR
(ξ∗(s))

)

ds ≤ C(T0, R)− bT0

δ0
=:MR

which yields the conclusion.

Remark 4.4. In view of the proof of Theorem 4.3, it is clear that the result still holds true if

assumption (F5) is replaced by the following

(F5’) Let (uT , mT ) be a solution of system (1.1). There exists T0 ∈ (0, T ) such that
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⋂

T0≤s≤T

argmin
x∈K0

LmT (s)(x, 0) 6= ∅.

It is notable that (F5) is equivalent to the assumption: for every compact subset J of P1(R
n),

⋂

m∈J

argmin
x∈K0

Lm(x, 0) 6= ∅, (4.3)

where K0 is as in (F4) and Lm is defined in (3.1). Since {mT (s)}s∈[T0,T ] is a compact subset of

P1(R
n), then assumption (F5’) is just an application of condition (4.3) to {mT (s)}s∈[T0,T ].

Lemma 4.5. Let R ≥ R0. Then there exists a constant κ(R) > 0 such that for any T > 1, any

0 ≤ t ≤ T , any x ∈ BR, and any ξ∗ ∈ Γ∗
t,T (x) we have that

∫ (t+1)∧T

t

|ξ̇∗(s)|2 ds ≤ κ(R).

Proof. We consider two cases.

CASE 1: t ∈ [0, T − 1).

By assumptions (F4) and (F5), for any T ≥ 1 there exists xT ∈ K0 such that for any s ∈ [0, T ]
we have that

LmT (s)(xT , 0) = min
x∈K0

LmT (s)(x, 0) ≤ inf
x∈Rn\K0

LmT (s)(x, 0)− δ0.

So, in view of (f ) in Remark 2.4 and the reversibility of L, we get that

uT (t, x) =

∫ T

t

LmT (s)(ξ
∗(s), ξ̇∗(s)) ds+ uf(ξ∗(T ))

=

∫ t+1

t

LmT (s)(ξ
∗(s), ξ̇∗(s)) ds+

∫ T

t+1

LmT (s)(ξ
∗(s), ξ̇∗(s)) ds+ uf(ξ∗(T ))

≥ 1

4β

∫ t+1

t

|ξ̇∗(s)|2 ds− α +

∫ T

t+1

LmT (s)(xT , 0) ds− c0.

(4.4)

For x ∈ BR, define

σx
T (s) = ((s− t) ∧ 1)xT + ((1− (s− t)) ∧ 1))x, t ≤ s ≤ T.

Observe that σx
T (t) = x and σx

T (s) = xT for any s ≥ t+ 1. We deduce that

uT (t, x) =

∫ T

t

LmT (s)(ξ
∗(s), ξ̇∗(s)) ds+ uf(ξ∗(T ))

≤
∫ t+1

t

LmT (s)(σ
x
T (s), σ̇

x
T (s)) ds+

∫ T

t+1

LmT (s)(xT , 0) ds+ uf(xT ).

Since |σx
T (s)| ≤ 2R and |σ̇x

T (s)| ≤ 2R for all s ∈ [t, T ], we have that

uT (t, x) ≤ C(R) + uf(xT ) +

∫ T

t+1

LmT (s)(xT , 0) ds, (4.5)
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where

C(R) = max
|x|,|v|≤2R

|L(x, v)|+ ‖F (·, mT )‖∞.

Note that xT ∈ K0. Since K0 is compact, by (U) we deduce that uf(xT ) is bounded. So,

combining (4.4) and (4.5), we conclude that

∫ t+1

t

|ξ̇∗(s)|2 ds ≤ 4β
(
α + C(R) + 2c0

)
=: κ1(R).

CASE 2: t ∈ [T − 1, T ].

The proof is similar to the one above. On the one hand, one has that

uT (t, x) ≥ 1

4β

∫ T

t

|ξ̇∗(s)|2 ds− α− c0.

On the other hand, by using the curve ρ(s) ≡ x we get an upper bound of the form

uT (t, x) ≤
∫ T

t

LmT (s)(x, 0) ds+ uf(x).

Therefore, combining the above inequalities we obtain the desired result.

Remark 4.6.

(a) By minor adaptations of the above proof one can extend the conclusion of Lemma 4.5 as

follows: for every R ≥ R0 and M > 0 there exists a constant κ(R,M) > 0 such that for

any T > 1, any 0 ≤ t ≤ T , any x ∈ BR, and any ξ∗ ∈ Γ∗
t,T (x) we have that

∫ (t+M)∧T

t

|ξ̇∗(s)|2 ds ≤ κ(R,M).

(b) The proof of Lemma 4.5 shows that κ(R) = CR2 for some constant C > 0.

Corollary 4.7. Let R ≥ R0. Then, there exists a constant χ(R) > 0 such that for any T > 1,

any 0 ≤ t ≤ T , any x ∈ BR, and any ξ∗ ∈ Γ∗
t,T (x) we have that

sup
s∈[t,T ]

|ξ∗(s)| ≤ χ(R).

Proof. Fix x ∈ BR. Let t̄ ∈ [0, T ] be such that ξ∗(t̄, x) ∈ R
n\BR. Define

s0 = sup{s ∈ [0, t̄ ] : ξ∗(s) ∈ BR}.

Then, we have that

|ξ∗(t̄)− ξ∗(s0)| =
∫ t

s0

∣
∣
∣ξ̇∗(s)

∣
∣
∣ ds ≤ M

1

2

R

(∫ t

s0

∣
∣
∣ξ̇∗(s)

∣
∣
∣

2

ds

) 1

2

≤ M
1

2

Rκ(R,MR)
1

2 ,

where we have used Hölder’s inequality and κ(R,MR) is as in Remark 4.6. Therefore, we get

χ(R) = R + (MRκ(R,MR))
1

2 .
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Proposition 4.8 (Attainable set from K0). There exists a constant R1 > 0 such that for each

T ≥ 1 the solution (uT , mT ) of system (1.1) satisfies

supp
(
mT (t)

)
⊂ BR1

, ∀t ∈ [0, T ].

Proof. Recall that R0 has been fixed so that K0 ⊂ BR0
and mT (t) = φ(t, ·)♯m0. So, by

assumption (M), Corollary 4.7, and the defintion of φ we conclude that

supp
(
mT (t)

)
⊂ BR1

, ∀T > 0, ∀t ∈ [0, T ],

where R1 := χ(R0).

4.2 Uniform Lipschitz continuity

Proposition 4.9. Let R ≥ R0. Then, there exists a constant LR > 0 such that for all T > 1

|uT (t, x+ h)− uT (t, x)| ≤ LR|h|, ∀x, x+ h ∈ BR, ∀t ∈ [0, T ].

Proof. Since (uT , mT ) is the solution of (1.1), we have that

{

−∂tuT +H(x,DuT ) = F (x,mT ) in [0, T ]× R
n,

uT (T, x) = uf(x) in R
n,

and

uT (t, x) = inf
ξ∈Γt,T (x)

{∫ T

t

LmT (s)

(

ξ(s), ξ̇(s)
)

ds+ uf(ξ(T ))

}

. (4.6)

Fix R ≥ R0 and x ∈ BR. Let h ∈ R
n be such that x+ h ∈ BR. We consider two cases.

CASE 1: t ∈ [0, T − 1).

Let ξ∗ ∈ Γ∗
t,T (x). By testing with the curve

ξh(s) := ξ∗(s) + (t+ 1− s)+h (s ∈ [t, T ]),

we obtain the upper bound

uT (t, x+ h)− uT (t, x) ≤
∫ t+1

t

(

LmT (s)(ξh(s), ξ̇h(s))− LmT (s)(ξ
∗(s), ξ̇∗(s))

)

ds

≤
∫ t+1

t

(

LmT (s)(ξh(s), ξ̇h(s))− LmT (s)(ξ
∗(s), ξ̇h(s))

)

ds

︸ ︷︷ ︸

A

+

∫ t+1

t

(

LmT (s)(ξ
∗(s), ξ̇h(s))− LmT (s)(ξ

∗(s), ξ̇∗(s))
)

ds

︸ ︷︷ ︸

B

.

We estimate term A first. Recall that, for any m ∈ P1(R
n), Lm is a strict Tonelli Lagrangian.

By (e) in Remark 2.4 and (F1), there exists a constant α1 > 0 such that

|DxLm(x, v)| ≤ α1(1 + |v|2), ∀(x, v) ∈ R
n × R

n, ∀m ∈ P1(R
n). (4.7)
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Then, by Lemma 4.5, we get

A ≤
∫ t+1

t

∫ 1

0

|h|
∣
∣
∣DxLmT (s)

(
λξh(s) + (1− λ)ξ∗(s), ξ̇h(s)

)
∣
∣
∣ dλds

≤ α1|h|
∫ t+1

t

(
1 + |ξ̇h(s)|2

)
ds = α1|h|

∫ t+1

t

(1 + |ξ̇∗ − h|2) ds

≤ (3 + 2R)α1|h|
(

1 +

∫ t+1

t

|ξ̇∗(s)|2 ds
)

≤ κ′(R)|h|,

where κ′(R) = (3 + 2R)α1(1 + κ(R)) and κ(R) is as in Lemma 4.5. Similarly, by Lemma

4.5 and (d) in Remark 2.4 we get B ≤ κ′′(R)|h|, where κ′′(R) is a positive constant depending

only on R.

CASE 2: t ∈ [T − 1, T ].

Let ξ∗ ∈ Γ∗
t,T (x). Define the curve ξ(s) = ξ∗(s) + h, for s ∈ [t, T ]. Then, we have that

uT (t, x+ h)− uT (t, x)

≤
∫ T

t

(

LmT (s)(ξ(s), ξ̇(s))− LmT (s)(ξ
∗(s), ξ̇∗(s))

)

ds+ Lip(uf)|h|.

To conclude the proof, we only need to estimate

∫ T

t

(

LmT (s)(ξ(s), ξ̇(s))− LmT (s)(ξ
∗(s), ξ̇∗(s))

)

ds.

Again by Lemma 4.5 and (4.7) we get

∫ T

t

(

LmT (s)(ξ(s), ξ̇(s))− LmT (s)(ξ
∗(s), ξ̇∗(s))

)

ds

≤
∫ T

t

∫ 1

0

|h|
∣
∣
∣DxLmT (s)(λh+ ξ∗(s), ξ̇∗(s))

∣
∣
∣ dλds

≤ α1|h|
(

1 +

∫ T

t

|ξ̇∗(s)|2 ds
)

≤ κ′′′(R)|h|,

where κ′′′(R) = α1(1+κ(R)). So, uT (t, x+h)−uT (t, x) ≤ LR|h| withLR = κ′′′(R)+Lip(uf).
This suffices to get the conclusion.

Corollary 4.10. Let R ≥ R0. Then there exists a constant χ′(R) > 0 such that for any T > 1,

any 0 ≤ t ≤ T , any x ∈ BR, and any ξ∗ ∈ Γ∗
t,T (x), we have that

sup
s∈[t,T ]

|ξ̇∗(s)| ≤ χ′(R).

Proof. Let p∗ be the dual arc of ξ∗, that is, p∗(s) = DvLmT (s)(ξ
∗(s), ξ̇∗(s)) for any s ∈ [t, T ].

Then the pair (ξ∗, p∗) satisfies the maximum principle in Hamiltonian form

{

ξ̇∗(s) = DpHmT (s)(ξ
∗(s), p∗(s))

ṗ∗(s) = −DxHmT (s)(ξ
∗(s), p∗(s))

(s ∈ [t, T ])
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Moreover, by [6, Theorem 6.4.8] we know that

p∗(s) = Dxu
T (s, ξ∗(s)), t < s ≤ T.

Now, observe that, in view of Corollary 4.7, ξ∗(s) ∈ Bχ(R) for all s ∈ [t, T ] and, on account

of Proposition 4.9, {uT (s, ·)}s∈[t,T ] is equi-Lipschitz continuous on Bχ(R). Therefore, there

exists a positive constant cR, independent of T , such that |p∗(s)| ≤ cR for every s ∈ [t, T ].
Consequently,

sup
s∈[t,T ]

|ξ̇∗(s)| = sup
s∈[t,T ]

|DpHmT (s)(ξ
∗(s), p∗(s))| ≤ α2

(
1 + cR

)
:= χ′(R),

where the inequality follows from the fact that DpHmT (s)(x, p) ≤ α2(1 + |p|) for some α2 > 0
and all (x, p) ∈ R

n × R
n and s ∈ [t, T ].

Remark 4.11. Owing to Corollary 4.10, for any T > 1 we have that mT : [0, T ] → P1(R
n) is

Lipschitz continuous. Indeed, by (4.2) we deduce that, for all s′, s ∈ [0, T ],

d1(m
T (s′), mT (s)) ≤

∫

K0

|φ(s′, x)− φ(s, x)| dm0 ≤ χ′(R0)|s′ − s|,

where R0 is such that K0 ⊂ BR0
.

4.3 Main result 2

Before proving our main result, we show the following lemma. We recall thatR1 is the constant

given by Proposition 4.8.

Lemma 4.12. For any R ≥ R1 there exists a constant C(R) > 0, such that for any T > 0, and

any (λ̄, ū, m̄) ∈ S, the solution (uT , mT ) of (1.1) satisfies

∫ T

0

∫

BR

(

F (x,mT (t))− F (x, m̄)
)

d(mT (t)− m̄)dt ≤ C̃(R),

where R1 is as in Proposition 4.8.

Proof. Fix R ≥ R1. Then, K0 ⊂ BR and ∂BR ∩K0 = ∅. Let ǫ > 0 and let ξ : Rn → R be a

smooth, nonnegative, symmetric kernel of integral one, with support contained in the unit ball.

Fix (λ̄, ū, m̄) ∈ S and define m̄ǫ := ξǫ ⋆ m̄ where ξǫ(x) = 1
ǫn
ξ(x

ǫ
). Then

∫ T

0

∫

BR

(

F (x,mT (t))− F (x, m̄)
)

d(mT (t)− m̄) dt

=

∫ T

0

∫

BR

(

F (x,mT (t))− F (x, m̄)
)

d(mT (t)− m̄ǫ) dxdt

+

∫ T

0

∫

BR

(

F (x,mT (t))− F (x, m̄)
)

d(m̄ǫ − m̄) dt.
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Since m̄ǫ → m̄ as ǫ→ 0, we have that there exists ǭ > 0 such that, for every ǫ ≤ ǭ,

∫ T

0

∫

BR

(

F (x,mT (t))− F (x, m̄)
)

d(m̄ǫ − m̄) dt ≤ 1.

On the other hand, by the convexity of H , we obtain

∫ T

0

∫

BR

(

F (x,mT (t))− F (x, m̄)
)

d(mT (t)− m̄ǫ) dxdt

≤
∫ T

0

∫

BR

(

H(x,Dū)−H(x,DuT )−
〈

DpH(x,DuT ), D(ū− uT )
〉)

mT (t) dxdt

+

∫ T

0

∫

BR

(

H(x,DuT )−H(x,Dū)−
〈

DpH(x,Dū), D(uT − ū)
〉)

m̄ǫ dxdt

+

∫ T

0

∫

BR

(
F (x,mT (t))− F (x, m̄)

)
(mT (t)− m̄ǫ) dxdt.

Recombining the terms on right hand-side of the above expression, we get

∫ T

0

∫

BR

(

F (x,mT (t))− F (x, m̄)
)

d(mT (t)− m̄ǫ) dxdt

≤
∫ T

0

∫

BR

(H(x,Dū(x))− F (x, m̄)) (mT (t)− m̄ǫ) dxdt

︸ ︷︷ ︸

A

+

∫ T

0

∫

BR

〈

D
(
uT (t, x)− ū(x)

)
, DpH(x,Dū(x))

〉

m̄ǫ dxdt

︸ ︷︷ ︸

B

+

∫ T

0

∫

BR

〈

D
(
uT (t, x)− ū(x)

)
, DpH(x,DūT (t, x))

〉

m̄T (t) dxdt

︸ ︷︷ ︸

C

+

∫ T

0

∫

BR

−
(
H(x,DuT (t, x))− F (x,mT (t))

)
(mT (t)− m̄ǫ) dxdt

︸ ︷︷ ︸

D

.

(4.8)

In the following, we analyze each term on the right hand-side of (4.8). Since mT (t), m̄ǫ are

probability measures and BR1
, K0 ⊂ BR for every t ∈ [0, T ], we have that

A =

∫ T

0

∫

BR

(H(x,Dū(x))− F (x, m̄)) (mT (t)− m̄ǫ) dxdt = 0. (4.9)

In order to study term B, define

V ǫ :=
ξǫ ⋆ (m̄DpH(·, Dū))

m̄ǫ
.

Then, we have that −div(m̄ǫV ǫ) = 0 in R
n. We multiply this equality by uT (t, x) − ū(x) and
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integrate on (0, T )× BR, to obtain

0 =

∫ T

0

∫

BR

〈

D(uT (t, x)− ū(x)), V ǫ(x)
〉

m̄ǫ dxdt

−
∫ T

0

∫

∂BR

(
uT (t, x)− ū(x)

)
〈ν̂, V ǫ(x)〉 m̄ǫ dSdt,

(4.10)

where ν̂(x) = x
R

is the outward unit normal to ∂BR. Since ∂BR ∩ supp(m̄) = ∅, we get

∫ T

0

∫

∂BR

(
uT (t, x)− ū(x)

)
〈ν, V ǫ(x)〉 m̄ǫ dxdt = 0.

Thus, (4.10) can be rewritten as

0 =

∫ T

0

∫

BR

〈

D(uT (t, x)− ū(x)), DpH(x,Dū(x))
〉

m̄ǫ dxdt+Rǫ, (4.11)

where

Rǫ =
∫ T

0

∫

BR

∫

Rn

ξǫ(x− y)
〈

D
(
uT (t, x)− ū(x)

)
, DpH(y,Dū(y))−DpH(x,Dū(x))

〉

m̄(dy)dxdt.

By the definition of Rǫ, we have that

|Rǫ| ≤T sup
t∈[0,T ]

‖D
(
uT (t, ·)− ū(·)

)
‖∞,BR

·
∫

BR

∫

Rn

ξǫ(x− y)
∣
∣DpH(y,Dū(y))−DpH(x,Dū(x))

∣
∣m̄(dy)dx.

We now prove that Rǫ → 0 as ǫ→ 0. First, observe that the integral term on the right-hand side

of the above inequality can be rewritten as follows

∫

BR

∫

Rn

ξǫ(x− y)
∣
∣DpH(y,Dū(y))−DpH(x,Dū(x))

∣
∣ m̄(dy)dx

=

∫

Rn

∫

BR

ξǫ(x− y)
∣
∣DpH(y,Dū(y))−DpH(x,Dū(x))

∣
∣ dxm̄(dy)

≤
∫

Rn

∫

Rn

ξǫ(x− y)
∣
∣DpH(y,Dū(y))−DpH(x,Dū(x))

∣
∣ dxm̄(dy)

=

∫

Rn

∫

Rn

ξ(z)
∣
∣DpH(y,Dū(y))−DpH(y + ǫz,Dū(y + ǫz))

∣
∣ dzm̄(dy).

Since DpH(·, Dū(·)) is bounded and ξ has compact support, for some C > 0 we have that

∫

Rn

ξ(z)
∣
∣DpH(y,Dū(y))−DpH(y + ǫz,Dū(y + ǫz))

∣
∣ dz ≤ C.
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Moreover, by the continuity of Dū on supp(m̄), we deduce that for any y ∈ supp(m̄)
∫

Rn

ξ(z)
∣
∣DpH(y,Dū(y))−DpH(y + ǫz,Dū(y + ǫz))

∣
∣ dz → 0 as ǫ→ 0.

Therefore, by Lebesgue’s dominated convergence theorem, we get
∫

Rn

∫

Rn

ξ(z)
∣
∣DpH(y,Dū(y))−DpH(y + ǫz,Dū(y + ǫz))

∣
∣ dzm̄(dy) → 0 as ǫ → 0.

In conclusion, we have that B ≤ CT |Rǫ|. In particular, for any T > 0 there exists ǫT > 0 such

that B ≤ 1 for all ǫ ≤ ǫT . Hereafter, for any T > 0 fix ǫ = ǫT ∧ ǭ.
Finally, we to bound C +D. By the continuity equation in system (1.1), we deduce that

∂t(m
T (t)− m̄ǫ)− div

(

mT (t)DpH(x,DuT (t, x))
)

= 0,

in the sense of distributions. Multiplying this equality by uT − ū and integrating in space-time,

we conclude that

0 =

∫

BR

(

(uf(x)− ū(x))(mT (T )− m̄ǫ)− (uT (0, x)− ū(x))(m0 − m̄ǫ)
)

dx

+

∫ T

0

∫

BR

−
(

H(x,DuT (t, x))− F (x,mT )
)

(mT (t)− m̄ǫ) dxdt

+

∫ T

0

∫

BR

〈

D(uT (t, x)− ū(x)), DpH(x,DuT (t, x))
〉

mT (t)dxdt

−
∫ T

0

∫

∂BR

(
uT (t, x)− ū(x)

) 〈
ν̂, DpH(x,DuT (t, x))

〉
mT (t) dSdt,

where ν̂(x) = x
R

is the outward unit normal to ∂BR. Again, since ∂BR ∩BR1
= ∅, the integral

over ∂BR is zero. In addition, the first integral is uniformly bounded with respect to T , because
∣
∣
∣
∣

∫

BR

(uf(x)− ū(x))(mT (T )− m̄ǫ) dx

∣
∣
∣
∣
≤ 2(‖uf‖∞,BR

+ ‖ū‖∞,BR
).

Since m0, m̄
ǫ are probability measures, by Poincaré’s inequality we deduce that

∣
∣
∣
∣

∫

BR

(uT (0, x)− ū(x))(m0 − m̄ǫ) dx

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫

BR

(

uT (0, x)− 1

Ln(BR)

∫

BR

uT (0, y) dy

)

(m0 − m̄ǫ)dx

∣
∣
∣
∣
+

∣
∣
∣
∣

∫

BR

ū(x)(m0 − m̄ǫ) dx

∣
∣
∣
∣

≤ N(R)(‖DuT (0, ·)‖∞,BR
+ ‖ū‖∞,BR

).

for some constant N(R) > 0. Therefore,

C +D ≤ 2
(
‖uf‖∞,BR

+ ‖ū‖∞,BR

)
+N(R)

(
‖DuT (0, ·)‖∞,BR

+ ‖ū‖∞,BR

)
.

In view of the above estimates on A, B, C, and D, we conclude that

∫ T

0

∫

BR

(mT (t)− m̄ǫ)
(
F (x,mT (t))− F (x, m̄)

)
dxdt ≤ C(R),

for some constant C(R) > 0.
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Theorem 4.13 (Convergence of solutions of (1.1)). Let (λ̄, ū, m̄) ∈ S. Let R1 be as in Propo-

sition 4.8. Then for any R > R1, there exists a constant C(R) > 0 such that for every T ≥ 1
the solution (uT , mT ) of system (1.1) satisfies

sup
t∈[0,T ]

∥
∥
∥
uT (t, ·)− ū(·)

T
+ λ̄

(

1− t

T

)∥
∥
∥
∞,BR

≤ C(R)

T
1

n+2

, (4.12)

1

T

∫ T

0

∥
∥F (·, mT (s))− F (·, m̄)

∥
∥
∞,BR

ds ≤ C(R)

T
1

n+2

. (4.13)

Proof. Fix a radius R > R1. Define

w(t, x) := ū(x)− λ̄(T − t), ∀(x, t) ∈ R
n × [0, T ].

Since (λ̄, ū, m̄) is a solution of (1.2), we have that w is a viscosity solution of the following

Cauchy problem

{

−∂tw +H(x,Dw) = F (x, m̄) in (0, T )× R
n,

w(T, x) = ū(x) in R
n.

So, w(t, x) can be represented as the value function of the following minimization problem

w(t, x) = inf
γ∈Γt,T (x)

{∫ T

t

Lm̄ (γ(s), γ̇(s)) ds+ ū(γ(T ))

}

, ∀(x, t) ∈ R
n × [0, T ]. (4.14)

Since (uT , mT ) is a solution of (1.1), then we get that

{

−∂tuT +H(x,DuT ) = F (x,mT ) in (0, T )× R
n,

uT (T, x) = uf(x) in R
n.

We prove inequality (4.13) first. For any given (x, t) ∈ BR × [0, T ], let γ∗ : [t, T ] → R
n be

a minimizer of problem (4.14). By Lemma A.1 below and Hölder’s inequality, we get

∫ T

t

‖F (·, mT (s))− F (·, m̄)‖∞,BR
1BR

(γ∗(s))
ds

T

≤ C((‖DF‖∞)

∫ T

t

‖F (·, mT (s))− F (·, m̄)‖
2

n+2

2,BR
1BR

(γ∗(s))
ds

T

≤ C(‖DF‖∞)

T

(∫ T

t

‖F (·, mT (s))− F (·, m̄)‖2
2,BR

ds

) 1

n+2
(∫ T

t

1BR
(γ∗(s)) ds

)n+1

n+2

.

Now, by assumption (F3) and Lemma 4.12 the term

(∫ T

t

‖F (·, mT (s))− F (·, m̄)‖2
2,BR

ds

) 1

n+2

is bounded by a constant depending only on R, while

(∫ T

t

1BR
(γ∗(s)) ds

)n+1

n+2

≤ T
n+1

n+2 .
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Inequality (4.13) follows.

Next, we prove (4.12). By the definition of w, we have that

uT (t, x)− w(t, x)

≤
∫ T

t

LmT (s)(γ
∗(s), γ̇∗(s)) ds+ uf(γ∗(T ))−

∫ T

t

Lm̄(γ
∗(s), γ̇∗(s)) ds− ū(γ∗(T ))

= uf(γ∗(T ))− ū(γ∗(T )) +

∫ T

t

(
F (γ∗(s), mT (s))− F (γ∗(s), m̄)

)
ds.

(4.15)

By (4.15), we get

uT (t, x)− w(t, x)

T
≤
∣
∣
uf(γ∗(T ))− ū(γ∗(T ))

T

∣
∣

︸ ︷︷ ︸

A

+
1

T

∫ T

t

∣
∣F (γ∗(s), mT (s))− F (γ∗(s), m̄)

∣
∣ds

︸ ︷︷ ︸

B

.

Let us first consider term B. Note that

1

T

∫ T

t

∣
∣F (γ∗(s), mT (s))− F (γ∗(s), m̄)

∣
∣ ds

=

∫ T

t

∣
∣F (γ∗(s), mT (s))− F (γ∗(s), m̄)

∣
∣1BR

(γ∗(s))
ds

T

+

∫ T

t

∣
∣F (γ∗(s), mT (s))− F (γ∗(s), m̄)

∣
∣1

Rn\BR
(γ∗(s))

ds

T
.

Since F is bounded, by Theorem 4.3 we know that the second integral on the right hand-side of

the above equality goes to zero as T → ∞. As for the first integral, observe that

∫ T

t

∣
∣F (γ∗(s), mT (s))− F (γ∗(s), m̄)

∣
∣1BR

(γ∗(s))
ds

T

≤
∫ T

t

‖F (·, mT (s))− F (·, m̄)‖∞,BR
1BR

(γ∗(s))
ds

T
.

Thus, we estimate the term on the right-hand side of the above iniequality as we did above.

Now, we give a bound for A. Since ū and uf are Lipschitz continuous, we deduce that both

functions grow at most linearly at infinity, i.e., there exists a constant N > 0 such that

ū(y), uf(y) ≤ N(1 + |y|), ∀y ∈ R
n.

Also, by Corollary 4.10, sups∈[t,T ] |γ̇∗(s)| ≤ χ′(R) for some constant χ′(R) > 0. Therefore, by

Theorem 4.3 there exists a positive constant MR such that for any T > 0 we have that

|ū(γ∗(T ))|, |uf(γ∗(T ))| ≤ N(1 + |γ∗(T )|) ≤ N
(

1 + (R + χ′(R)MR)
)

.

Thus, we conclude that A ≤ O( 1
T
). So, combining (4.15) and (4.13) we obtain

uT (t, x)− w(t, x)

T
≤ C(R)

T
1

n+2

.
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Moreover, for any given (x, t) ∈ BR × [0, T ], let ξ∗(·) be a minimizer of problem (4.1). Since

uT is the value function of (4.1), we have that

w(t, x)− uT (t, x)

≤
∫ T

t

Lm̄(ξ
∗(s), ξ̇∗(s)) ds+ ū(ξ∗(T ))−

∫ T

t

LmT (s)(ξ
∗(s), ξ̇∗(s)) ds− uf(ξ∗(T ))

= ū(ξ∗(T ))− uf(ξ∗(T )) +

∫ T

t

(
F (ξ∗(s), m̄)− F (ξ∗(s), mT (s))

)
ds.

(4.16)

So, by almost the same arguments used above, one obtains

w(t, x)− uT (t, x)

T
≤ C(R)

T
1

n+2

,

which concludes the proof of (4.12).

Remark 4.14. In view of Remark 4.4 and the above proof, it is clear that the Theorem 4.13 still

holds true if assumption (F5) is replaced by assumption (F5’).

A Appendix

In this section, we first give the proof of (ii) of Theorem 3.4 and then show Lemma A.1, which

was used in the proof of Theorem 4.13.

A.1 Proof of (ii) of Theorem 3.4

Let (c(Hm̄1
), ū1, m̄1), (c(Hm̄2

), ū2, m̄2) ∈ S, where Hm̄i
is defined in (3.2) and c(Hm̄i

) denotes

the Mañé critical value of Hm̄i
, i = 1, 2. Let ǫ > 0, ξ : Rn → R be a smooth, nonnegative,

symmetric kernel with a support contained in the unit ball and of integral one. Set ξǫ(x) =
1
ǫn
ξ(x

ǫ
) for i = 1, 2. Define mǫ

i := ξǫ ⋆ m̄i, i.e., the convolution of ξǫ and m̄i, and

V ǫ
i (x) :=

ξǫ(x) ⋆
(
m̄iDpH(x,Dūi(x))

)

mǫ
i

.

It is clear that −div(mǫ
iV

ǫ
i ) = 0 in R

n. We multiply this equality by ū1 − ū2, integrate by parts

and subtract the resulting formulas to get

∫

Rn

〈

D(ū1 − ū2), m
ǫ
1V

ǫ
1 −mǫ

2V
ǫ
2

〉

dx = 0.

Hence

0 =

∫

Rn

〈

D(ū1 − ū2), ξ
ǫ ⋆ (m̄1DpH(·, Dū1)− m̄2DpH(·, Dū2))

〉

dx

=

∫

Rn

〈

D(ū1 − ū2), m
ǫ
1DpH(x,Dū1)−mǫ

2DpH(x,Dū2)
〉

dx+Rǫ,

(A.1)
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where we have defined

Rǫ :=

∫

Rn

∫

Rn

ξǫ(x− y)
〈

D(ū1 − ū2)(x), DpH(y,Dū1(y))−DpH(x,Dū1(x))
〉

m̄1(dy)dx

−
∫

Rn

∫

Rn

ξǫ(x− y)
〈

D(ū1 − ū2)(x), DpH(y,Dū2(y))−DpH(x,Dū2(x))
〉

m̄2(dy)dx.

In particular, with almost the same considerations as in Lemma 4.12, one can prove thatRǫ → 0
as ǫ→ 0.

Next, for i = 1, 2, we multiply Hm̄i
(x,Dūi) = c(Hm̄i

) by (mǫ
1 − mǫ

2), integrate in space

and subtract the second identity from the first one to get

∫

Rn

(

H(x,Dū1)−H(x,Dū2)− F (x, m̄1) + F (x, m̄2)
)

(mǫ
1 −mǫ

2)dx = 0.

Now, combining the above equality with (A.1) we obtain

−Rǫ =

∫

Rn

〈

D(ū1 − ū2), m
ǫ
1DpH(x,Dū1)−mǫ

2DpH(x,Dū2)
〉

dx

−
∫

Rn

(

H(x,Dū1)−H(x,Dū2)− F (x, m̄1) + F (x, m̄2)
)

(mǫ
1 −mǫ

2)dx.

(A.2)

Hereafter, we denoteH(x,Dūi) byHi andDpH(x,Dūi) byDpHi for i = 1, 2. Then, following

Lasry-Lions [20], by (A.2) Rǫ can be recast as

−Rǫ =

∫

Rn

(

H2 −H1 −
〈

DH1, D(ū2 − ū1)
〉)

mǫ
1dx

+

∫

Rn

(

H1 −H2 −
〈

DH2, D(ū1 − ū2)
〉)

mǫ
2dx

+

∫

Rn

(

F (x, m̄1)− F (x, m̄2)
)

(mǫ
1 −mǫ

2)dx.

Owing to the convexity of H with respect to the second argument, the terms H2 − H1 −
〈DH1, D(ū2 − ū1)〉 and H1 −H2 − 〈DH2, D(ū1 − ū2)〉 are nonnegative. So we get

∫

Rn

(

F (x, m̄1)− F (x, m̄2)
)

(mǫ
1 −mǫ

2)dx ≤ −Rǫ.

Letting ǫ→ 0 we have that

∫

Rn

(

F (x, m̄1)− F (x, m̄2)
)

d(m̄1 − m̄2) ≤ 0,

which together with assumption (F3) implies that

∫

Rn

(

F (x, m̄1)− F (x, m̄2)
)2

dx ≤ 0.

Hence, for every x ∈ R
n, we have that F (x, m̄1) = F (x, m̄2) and then, since Hm̄1

= Hm̄2
, we

deduce that c(Hm̄1
) = c(Hm̄2

).
�
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A.2 A technical lemma

Lemma A.1. For any n ≥ 1 and D ≥ 0 there exists a constant c = c(n,D) such that any

Lipschitz continuous function f : Rn → R, with Lip(f) ≤ D, satisfies

‖f‖∞ ≤ c(n,D)‖f‖
2

n+2

2 . (A.3)

Proof. Observe, first, that (A.3) is trivial if f 6∈ L2(Rn).
For any δ > 0 and any x0 ∈ R

n, we set

Q(x0, δ) = {x ∈ R
n : max

1≤i≤n
|xi − x0i | ≤ δ}.

Then, for any such cube Q(x0, δ) , we have that

|f(x)| ≤ |f(y)|+Dδ
√
n, ∀x, y ∈ Q(x0, δ).

Taking the square of both sides and integrating over Q(x0, δ), we obtain
∫

Q(x0,δ)

|f(x)|2dy ≤ 2

∫

Q(x0,δ)

(

|f(y)|2 +D2δ2n
)

dy,

which implies

2nδn|f(x)|2 ≤ 2

∫

Q(x0,δ)

|f(y)|2dy + 2n+1D2nδn+2.

Taking the supremum over the cube Q we have that

1

2
sup

x∈Q(x0,δ)

|f(x)|2 ≤ 1

2nδn

∫

Q(x0,δ)

|f(y)|2dy + 2nD2nδ2 ≤ 1

2nδn

∫

Rn

|f(y)|2dy + 2nnD2δ2.

Since x0 may be taken arbitrarily in R
n, we deduce that

1

2
sup
x∈Rn

|f(x)|2 ≤ 1

2nδn

∫

Rn

|f(y)|2dy + nD2δ2 =: G(δ).

Taking the minimum of G(δ) for δ ∈ (0,+∞), yields the conclusion.

The following example shows that the exponent in (A.3) is optimal, in the sense that such a

bound would be false for any exponent θ > 2
n+2

.

Example A.2. Consider a function on R defined by

f(t) :=

{
1
k
− t, t ∈ [0, 1

k
],

0, otherwise,

for some k ∈ N. Then, we have

‖f‖∞ =
1

k
, ‖f‖2 =

(
∫ 1

k

0

(
1

k
− t)2dt

) 1

2

=

(
1

3

) 1

2
(
1

k

) 3

2

.

Since n = 1, then

‖f‖
2

n+2

2 =

(
1

3

) 1

3 1

k
,

which implies that the estimate (A.3) is optimal.
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(French) [A weak KAM theorem and Mather’s theory of Lagrangian systems] C. R. Acad.

Sci. Paris Sér. I Math. 324 (1997), 1043–1046.

30

http://www.ceremade.dauphine.fr/~cardaliaguet/MFG20130420.pdf


[14] A. Fathi, Weak KAM Theorem and Lagrangian Dynamics.

http://www.math.u-bordeaux.fr/˜pthieull/Recherche/KamFaible/Publications/Fathi2008_01.pdf

[15] A. Fathi, E. Maderna, Weak KAM theorem on non compact manifolds, NoDEA Nonlin-

ear Differential Equations Appl. 14 (2007), 1–27.
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