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Abstract

For dynamic situations where the evolution of a player’s state is influenced by

his own action as well as other players’ states and actions, we show that equilibria

derived for nonatomic games (NGs) can be used by their large finite counterparts

to achieve near-equilibrium performances. We focus on the case with quite general

spaces but also with independently generated shocks driving random actions and state

transitions. The NG equilibria we consider are random state-to-action maps that pay

no attention to players’ external environments. They are adoptable by a variety of

real situations where awareness of other players’ states can be anywhere between full

and non-existent. Transient results here also form the basis of a link between an NG’s

stationary equilibrium (SE) and good stationary profiles for large finite games.

Keywords: Nonatomic Game; Markov Equilibrium; Large Finite Game

1

http://arxiv.org/abs/1510.06813v3


1 Introduction

Many multi-period competitive situations, as first noted by Shapley [25], involve randomly-

evolving player states that affect players’ payoffs. When making a decision, a player has to

contemplate not only what states other players are in and how other players will act, but

also how his and others’ states and actions will influence the future evolution of all players’

states. Another complicating factor is that players may have zero, partial, or full knowledge

of other players’ states before they take their actions in each period. The task of analyzing

these dynamic games is certainly daunting. Consider a dynamic pricing game as an example.

Multiple firms start a fixed time horizon with stocks of the same product. Each of them is

bent on using pricing to influence demand and earn the highest revenue from selling their

respective stocks. In any given period, a firm is aware of its own current inventory level but

not the levels of others. Yet, demand arrival to the firm is both random and influenced by

not only its own price, but also prices charged by other firms.

The ultimate goal with such a Markovian game lies in identifying an equilibrium action

plan that will earn each player the highest total payoff when other players adhere to the

plan. But even in the stationary setting, known equilibria come in quite complicated forms

that for real implementation, demand a high degree of coordination among players; see,

e.g., Mertens and Parthasrathy [20], Duffie, Geanakoplos, Mas-Colell, and McLennan [9],

and Solan [26]. Alternatively, we propose that equilibria be reached asymptotically as the

number of players grows, on the premise that the game’s nonatomic-game (NG) counterpart

is analyzable. In the latter, a continuum of players are in competition, none of whom having

any discernible influence on any other players and yet all players in aggregation hold sway

on players’ payoffs and state evolutions. The key advantage of such a game is that its state

distribution will evolve in a deterministic fashion. This results in the relatively simple form

taken by the NG’s equilibria x: the pure or mixed action plan xt(st), though dependent on

the time period t and his own individual state st, is insensitive to whatever portion of the

overall state distribution that the player can observe.

When an NG equilibrium is handy, we show that it can be used on the original finite

Markovian game to serve our intended purpose. Relying on intermediate results stemming

from the weak Law of Large Numbers (LLN) concerning empirical distributions, we establish

two main results. In Theorem 1, we show that the empirical distribution of players’ states,

which is itself random in the finite game, will nevertheless converge in probability to the

deterministic distribution as predicted for the NG counterpart when the number of players
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grows to infinity. This convergence paves way for Theorem 2, which states that players can

apply the observation-blind NG equilibrium to the finite-player situation and gain an average

performance that is ever harder to beat as the number of players grows. In both results, the

“average” on players’ states is assessed on the state distribution prevailing in either the NG

or the finite game. After assuming time-invariant payoff and transition functions, as well

as fixed discountings over time and an infinite time horizon, we obtain a stationary setting.

For this, we establish Theorem 3, effectively our affirmative answer to whether stationary

equilibria (SE) studied in past literature can be useful in large finite games.

The above theory will be most useful when the NG counterpart is relatively easy to deal

with in comparison to the corresponding finite games. Besides evidence in literature, this

point is further buttressed by the dynamic pricing game mentioned earlier. Presented in Yang

[33] as supplementary material to the current paper, our analysis demonstrates the usefulness

of the transient result Theorem 2. The game is also extended through the consideration of

locked-in production, wherein every firm uses production to bring its inventory back up to a

pre-determined level whenever it becomes empty. The resultant game is again asymptotically

analyzable due to the stationary result Theorem 3.

As our foremost contribution, we established one more link between NGs and their finite-

game counterparts. Previously, links were mostly established for single-period games, special

multi-period games without individual states, or games exhibiting stationary features. The

introduction of information-carrying individual states allow in for proper treatment a much

wider body of applicable situations involving present-future tradeoffs and transient prop-

erties. Comparing to the earlier work Yang [32] which dealt with the NG-finite link for

Markovian games as well, the current paper treats more general, non-discrete state and

action spaces. As a tradeoff, we are compelled to let random shocks drive both decision

making and state evolution. This, as is backed up by results such as Aumann [6] on the in-

terchangeability between the presentations with and without drivers, does not much restrict

the generality of our results. Moreover, we demonstrated that the usefulness of SEs to large

finite games stems from more fundamental properties possessed by transient NG equilibria.

Here is our plan for the remainder of the paper. We spend Section 2 on a survey of

related research and Section 3 on basic model primitives. The nonatomic game is introduced

in Section 4, while finite games are treated in Section 5. We present the main transient

convergence results in Section 6. These are used in Section 7 to establish a link between

SEs and large finite games with stationary features. Further discussion is made in Section 8,
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while the paper is concluded in Section 9.

2 Literature Survey

NGs are often easier to analyze than their finite counterparts, because in them, the action

of an individual player has no impact on payoffs and future state evolutions of the other

players. Therefore, they are often used as proxies of real competitive systems in economic

studies; see, e.g., Aumann [5] and Reny and Perry [22]. Systematic research on NG started

with Schmeidler [24]. He formulated a single-period semi-anonymous NG, wherein the joint

distribution of other players’ types and actions may affect any given player’s payoff. When

the action space is finite, Schmeidler established the existence of pure equilibria when the

game becomes anonymous, so that only the distribution of other players’ actions matters.

Mas-Colell [19] showed the existence of distributional equilibria in anonymous NGs with

compact action spaces. Khan, Rath, and Sun [18] identified a certain limit to which Schmei-

dler’s result can be extended. Links between NGs and their finite counterparts were covered

in Green [12], Housman [14], Carmona [8], Kalai [17], Al-Najjar [4], and Yang [31].

This paper differs from the above by its focus on multi-period games. For such games

without individual states that allow past actions to impact future gains, Green [11], Sabourian

[23], and Al-Najjar and Smorodinsky [3] showed that equilibria for large games are nearly

myopic. With individual states that inherit traces of past actions, the games we study pose

new challenges. An NG equilibrium for our situation is certainly not myopic as it takes

into account the current action’s future consequences. Rather, it is insensitive to real-time

observations made on other players’ states. We succeed in showing that such a simple action

plan can be used profitably in finite situations with randomly evolving state distributions of

which a player may have zero, partial, or full knowledge. The type of NGs we deal with are

similar to sequential anonymous games studied by Jovanovic and Rosenthal [16], who estab-

lished existence of distributional equilibria. The result was generalized to games involving

aggregate shocks by Bergin and Bernhardt [7]. Different from these papers, we work on the

link between NGs and finite games, not the NGs themselves.

In their effort to simplify dynamic games, some authors went further than silencing

individual players’ influences as done through the NG approach. In addition, they pursued

the so-called stationary equilibria (SE), which stressed further the long-run steady-state

nature of individual action plans and system-wide state distributions; see, e.g., Hopenhayn
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[13] and Adlakha and Johari [1]. The oblivious equilibrium (OE) concept as proposed by

Weintraub, Benkard, and van Roy [29], though accounting for impacts of large players,

took the same stationary approach by letting firms beware of only long-run average state

distributions. We caution that the implicit stationarity of SE or OE renders it inappropriate

for applications that are transient by nature; for instance, the dynamic pricing game studied

in Yang [33] where the inventory level of every firm can only decrease over time.

Some recent works also contributed on the links between equilibria of infinite-player

games and their finite-player brethren. Weintraub, Benkard, and van Roy [30] did so for a

setting where long-run average system state can be defined. Adlakha, Johari, and Weintraub

[2] established the existence of SE and achieved a similar conclusion by using only exoge-

nous conditions on model primitives. Weintraub et al. [28] studied nonstationary oblivious

equilibria (NOE) that capture transient behaviors of players, and showed their usefulness in

finite-player situations by relying on a “light-tail” condition on players’ state distributions

similar to that used in [30]. Huang, Malhame, and Caines [15] dealt with a continuous-time

multi-player system where independent diffusion processes provide random drivers. They

reached equilibria in the nonatomic limit, and derived asymptotic results as the number

of players becomes large. In the work, other players impact a given player through linear

functionals of the state distribution they form; meanwhile, their actions play no direct role.

Our discrete-time framework afforded us almost full generality regarding other players’

impacts on any given player’s payoffs and state transitions—it is the joint state-action dis-

tribution that forms the environment faced by an individual player. As already mentioned,

while this paper tackles the case where exogenous shocks drive state evolution and decision

making, Yang [32] dealt with the setting where such shocks are not necessarily identifiable;

however, technical challenges faced there forced state and action spaces to be discrete.

3 Model Primitives

In the dynamic games we study, players are engaged in multi-period competition in periods

t = 1, 2, ..., t̄. In period t, a player’s payoff ψt(s, x, µ) depends on his state s, action x, and

some µ depicting the outside environment. We suppose the game is semi-anonymous, so

that µ can just be the joint distribution of other players’ states and actions. The dynamics

of the game is represented by a function θt(s, x, µ, i), where s, x, and µ are defined as above,

and i is an idiosyncratic shock the player experiences individually after taking his action.
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All players’ post-action shocks are independently sampled from a common distribution ι.

We allow players to cast dices to decide their actions. However, we do not model the

extent to which players can observe their outside environments; after all, we focus only

on action plans that do not take advantage of any such observations. In every period t, we

suppose each player receives another idiosyncratic shock g, this time before taking his action.

All players’ pre-action shocks, such as outcomes of dice casts, are independently sampled

from a common distribution γ. We study the case where a player’s action xt(s, g) depends

merely on his own state s and the shock g that he himself has received. The main purpose

of the paper is to show that one such action plan x[1t̄] ≡ (xt)t=1,...,t̄ is quite sufficient for the

multi-period game just described, even when the latter may be transient in nature and of

the more complex finite-player variety.

Some notations are needed for formal definitions. Given a metric space A, we use dA

to denote its metric, B(A) its Borel σ-field, and P(A) the set of all probability measures

(distributions) on the measurable space (A,B(A)). The space P(A) is metrized by the

Prohorov metric ρA, which induces on it the weak topology. Given metric spaces A and B,

we use M(A,B) to represent all measurable functions from A to B.

We use complete separable metric space S for individual states s and separable metric

space X for player actions x. In a semi-anonymous fashion, payoffs and state transitions

depend on the joint distribution µ ∈ P(S × X) of other players’ states and actions. Let

pre-action shocks g come from a complete separable metric space G. In every period, these

action-influencing shocks are independently drawn from a common distribution γ ∈ P(G).

Let post-action shocks i come from a complete separable metric space I. In every period,

these transition-influencing shocks are independently drawn from a common distribution

ι ∈ P(I). The completeness requirements on S, G, and I stem from the need to invoke

Lemma 3 in Appendix A. These are certainly not stringent.

For period t = 1, ..., t̄, a player’s state s ∈ S, his action x ∈ X , and the joint state-action

distribution µ ∈ P(S × X) he faces, together determine his payoff in period t. In fact, we

require there to be a bounded payoff function

ψt : S ×X × P(S ×X) −→ [−ψ̄t, ψ̄t], (1)

where ψ̄t is some positive constant. It satisfies that ψt(·, ·, µ) ∈ M(S × X, [−ψ̄t, ψ̄t]) for

every given distribution µ ∈ P(S × X). As the same player will enter a new state under
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post-action shock i ∈ I, we require there to be

θt : S ×X × P(S ×X)× I −→ S. (2)

It satisfies that θt(·, ·, µ, ·) ∈ M(S ×X × I, S) at every distribution µ ∈ P(X × S).

The action plans we consider are of the form

xt : S ×G −→ X, (3)

which are required to be members of M(S×G,X). That is, a player will use action xt(s, g)

in period t when he starts with state s ∈ S and receives pre-action shock g. We call any state

distribution σ ∈ P(S) a pre-action environment, because the one formed by other players

is what a player could potentially see at the beginning of any period. Also, call any joint

state-action distribution µ ∈ P(S × X) an in-action environment, because the one formed

by other players is what a player could potentially see in the midst of play in any period.

Let us recount our model primitives as follows: the horizon length t̄; the state space

S, the action space X , the pre-action shock space G, the post-action shock space I; also,

the pre-action shock distribution γ, the post-action shock distribution ι; finally for periods

t = 1, ..., t̄, the payoff functions ψt and state transition functions θt.

4 The Nonatomic Game

Given an initial pre-action environment σ1 ∈ P(S), we can define a nonatomic game Γ(σ1)

which starts period 1 with σ1 as the distribution of all players’ states. We focus on policy

profiles of the form x[1t̄] ≡ (xt)t=1,...,t̄ ∈ (M(S ×G,X))t̄, where each xt ∈ M(S ×G,X) is a

map from a player’s state-shock pairs to actions. Along with the given initial environment σ1,

we suppose such a profile will help generate a deterministic pre-action environment trajectory

σ[1,t̄+1] ≡ (σt)t=1,2,...,t̄,t̄+1 ∈ (P(S))t̄+1. This allows a player’s policy to be observation-blind;

that is, what portion of σt is observable to the player in each period t is not of any concern.

The determinism of the environment evolution in Γ(σ1) is justifiable by Sun’s [27] LLN

involving a continuum of indexed players.

We now discuss how the deterministic trajectory can be formed. Let t = 1, ..., t̄ be given.

When all players form state distribution σt ∈ P(S) at the beginning and adopt the same

plan xt ∈ M(S×G,X) for the period, the in-action environment µt ≡M(σt, xt) ∈ P(S×X)

to be experienced by all players will take the form

µt =M(σt, xt) = (σt × γ) · (prjS, xt)
−1, (4)
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where prjS stands for the projection map from S ×G to S. The meaning for (4) is that, for

any measurable joint state-action set W ′ ∈ B(S ×X),

µt(W
′) = (σt × γ)

(

(prjS, xt)
−1(W ′)

)

=

∫

S

∫

G

1[(s, xt(s, g)) ∈ W ′] · γ(dg) · σt(ds). (5)

This reflects that the joint distribution for states and pre-action shocks is the product form

σt × γ; also, xt provides the map from state-shock pairs to actions for this period.

For a player who starts with state st and has experienced pre-action shock gt as well as

post-action shock it, his new state will be governed by (2):

st+1 = θt (st, xt(st, gt),M(σt, xt), it) . (6)

To describe the transition of the overall pre-action environment from σt to σt+1 under action

plan xt, we define operator Tt(xt) on P(S). Note that states are distributed according to

σt, pre-action shocks are distributed according to γ, and post-action shocks are distributed

according to ι. So following (6),

σt+1 = Tt(xt) ◦ σt = (σt × ι× γ) ·
[

θt
(

prjS, xt · prjS×G,M(σt, xt), prjI
)]−1

, (7)

meaning that, for any measurable action set S ′ ∈ B(S),

σt+1(S
′) = [Tt(xt) ◦ σt](S

′)

=
∫

S

∫

G

∫

I
1 [θt(s, xt(s, g),M(σt, xt), i) ∈ S ′] · ι(di) · γ(dg) · σt(ds).

(8)

We can iteratively define T[tt′](x[tt′]) for t′ = t − 1, t, t + 1, ... so that T[t,t−1] is the identity

mapping on P(S) and for t′ = t, t+ 1, ...,

T[tt′](x[tt′]) = Tt′(xt′) ◦ T[t,t′−1](x[t,t′−1]). (9)

The environment trajectory alluded to earlier is therefore

σ[1,t̄+1] = (T[1,t−1](x[1,t−1]) ◦ σ1)t=1,2,...,t̄,t̄+1. (10)

In defining Γ(σ1)’s equilibria, we subject a candidate policy profile to the one-time de-

viation of a single player, who is negligible in his influence over others. The deviation will

not alter the environment trajectory corresponding to the candidate profile. Thus, we define

vt(st, σt, x[tt̄], yt) as the total expected payoff a player can make from time t to t̄, when he

starts with state st ∈ S, other players form pre-action environment σt ∈ P(S), all players

adopt policy x[tt̄] ≡ (xt′)t′=t,...,t̄ ∈ (M(S × G,X))t̄−t+1 with the exception of the current
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player in period t alone, who deviates to policy yt ∈ M(S × G,X) in that period. As a

terminal condition, we have

vt̄+1(st̄+1, σt̄+1, yt̄+1) = 0. (11)

For t = t̄, t̄− 1, ..., 1, we have

vt(st, σt, x[tt̄], yt) =
∫

G
[ψt(st, yt(st, gt),M(σt, xt)) +

∫

I
vt+1(θt(st, yt(st, gt),

M(σt, xt), it), Tt(xt) ◦ σt, x[t+1,t̄], xt+1) · ι(dit)] · γ(dgt),
(12)

due to the dynamics illustrated in (6) to (8). The deviation yt affects the current player’s

action yt(st, gt) in period t and his own state θt(st, yt(st, gt),M(σt, xt), it) in period t+1. But

as a distinctive feature of the NG setup, it has no bearing on the period-(t + 1) pre-action

environment Tt(xt) ◦ σt.

Now define ut : P(S)× (M(S ×G,X))t̄−t+1 ×M(S ×G,X) −→ ℜ so that

ut(σt, x[tt̄], yt) =

∫

S

vt(st, σt, x[tt̄], yt) · σt(dst). (13)

This can be understood as one particular player’s average gain from period t onward when

the same conditions specified earlier prevail and his period-t state is sampled from the dis-

tribution σt. We deem policy x∗[1t̄] ≡ (x∗t )t=1,2,...,t̄ ∈ (M(S × G,X))t̄ a Markov equilibrium

for the game Γ(σ1) when, for every t = 1, 2, ..., t̄ and yt ∈ M(S ×G,X),

ut

(

T[1,t−1](x
∗
[1,t−1]) ◦ σ1, x

∗
[tt̄], x

∗
t

)

≥ ut

(

T[1,t−1](x
∗
[1,t−1]) ◦ σ1, x

∗
[tt̄], yt

)

. (14)

That is, policy x∗[1t̄] will be regarded an equilibrium when it cannot be bettered by any

plan yt ∈ M(S × G,X) in any period t in an average sense that is defined by the period-t

environment σt = T[1,t−1](x
∗
[1,t−1]) ◦ σ1. We caution that (14) is weaker than

vt

(

st, T[1,t−1](x
∗
[1,t−1]) ◦ σ1, x

∗
[tt̄], x

∗
t

)

≥ vt

(

st, T[1,t−1](x
∗
[1,t−1]) ◦ σ1, x

∗
[tt̄], yt

)

, (15)

for every st ∈ S. On the other hand, since yt ∈ M(S × G,X) allows for much freedom in

choosing for each state s ∈ S and shock g ∈ G a competitive reaction yt(s, g), there is not

much difference between the two criteria aside from measurability subtleties.

5 Finite-player Games

More notations are needed to appropriately describe finite games. For metric space A and

a ∈ A, we use ε(a) to denote the singleton probability measure with ε(a)({a}) = 1. For
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a = (a1, ..., an) ∈ An where n ∈ N, the set of natural numbers, we use ε(a) for
∑n

m=1 ε(am)/n.

The two uses are consistent. We also use Pn(A) for the space of probability measures of the

type ε(a) for a ∈ An, i.e., the space of empirical distributions generated from n samples.

For some n = 2, 3, ... and initial state distribution σ1 ∈ Pn(S), we can define an

n-player game Γn(σ1). Note the initial pre-action environment σ1 must be of the form

ε(s1) = ε(s11, s12, ..., s1n), where each s1m ∈ S is player m’s initial state. The game’s payoffs

and state transitions are still governed by (1) and (2), respectively. In period t, the pre-action

environment is also some σt = ε(st1, ..., stn) ∈ Pn(S) ⊂ P(S). Hence, the in-action environ-

ment µt1 ∈ Pn−1(S×X) ⊂ P(S×X) experienced by any designated player 1 is the empirical

distribution ε(st,−1, yt,−1) = ε((st2, yt2), ..., (stn, ytn)) when each player m is in state stm ∈ S

and takes action ytm ∈ X . Let players still adopt policy x[1t̄] ≡ (xt)t=1,...,t̄ ∈ (M(S×G,X))t̄,

which is but the crudest of many choices available to the n players. We shall see later that

this restriction is not going to do much harm.

Simplistic as it may seem, x will not merely generate a deterministic environment tra-

jectory. Given pre-action shock vector gt = (gt1, ..., gtn) ∈ Gn and post-action shock vector

it = (it1, ..., itn) ∈ In, we can define Tnt(xt, gt, it) as the operator on Pn(S) that converts

a period-t pre-action environment into a period-(t + 1) one. Thus following (4) to (6),

ε(st+1) = Tnt(xt, gt, it) ◦ ε(st) is such that

st+1,m = θt (stm, xt(stm, gtm),Mn(st,−m, gt,−m, xt), itm) , ∀m = 1, 2, ..., n, (16)

where

Mn(st,−m, gt,−m, xt) = ε(st,−m, gt,−m) · (prjS, xt)
−1, (17)

and each ε(st,−m, gt,−m) represents the empirical distribution built on state-shock pairs

(st1, gt1), ..., (st,m−1, gt,m−1), (st,m+1, gt,m+1), ..., (stn, gtn). The latter reflects that player

m’s in-action environment is made up of the states and actions of the other n − 1 players

along with the common action plan adopted by all players. Again, we define Tn,[tt′] as the

identity map when t′ ≤ t− 1 and when t ≤ t′, let

Tn,[tt′](x[tt′], g[tt′], i[tt′]) = Tnt′(xt′ , gt′ , it′) ◦ Tn,[t,t′−1](x[t,t′−1], g[t,t′−1], i[t,t′−1]). (18)

The evolution of pre-action envirnoments σt = ε(st) is guided by the random shock vectors

gt and it, and hence is stochastic by nature.

For an n-player game, let vnt(st1, ε(st,−1), x[tt̄], yt) be the total expected payoff player 1

can make from t to t̄, when he starts with state st1 ∈ S, other players’ initial environments
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are describable by their aggregate empirical state distribution ε(st,−1) = ε(st2, ..., stn), and

all players adopt the policy x[tt̄] ≡ (xt′)t′=t,...,t̄ ∈ (M(S×G,X))t̄−t+1 from period t to period

t̄ with the exception of player 1 in period t alone, who deviates to policy yt ∈ M(S×G,X).

As a terminal condition, we have

vn,t̄+1(st̄+1,1, ε(st̄+1,−1), yt̄+1) = 0. (19)

For t = t̄, t̄− 1, ..., 1, we have the recursive relationship

vnt(st1, ε(st,−1), x[tt̄], yt) =
∫

Gn
γn(dgt)× {ψt(st1, yt(st1, gt1),Mn(st,−1, gt,−1, xt))

+
∫

In
ιn(dit)× vn,t+1(θt(st1, yt(st1, gt1),Mn(st,−1, gt,−1, xt), it1),

[Tnt(xt, gt, it) ◦ ε(st)]−1, x[t+1,t̄], xt+1)},

(20)

due to the dynamics illustrated in (6) and (16). By [Tnt(xt, gt, it)◦ε(st)]−1, we mean ε(st+1,−1),

where ε(st+1) is Tnt(xt, gt, it) ◦ ε(st) as defined through (16). The current (20) is much more

complicated than the NG counterpart (12). The evolution from period t to t+1 now depends

on pre-action shocks gt ≡ (gt1, ..., gtn) and post-action shocks it ≡ (it1, ..., itn). Also, the in-

action environment Mn(st,−1, gt,−1, xt) experienced by player 1 excludes his own state and

action, and hence is different from the environment faced by any other player. Similarly, the

in-action environment [Tnt(xt, gt, it)◦ε(st)]−1 to be faced by player 1 in period t+1 is unique

to him as well. The added complexity motivates us to exploit the easier-to-handle NG case.

Let σ[1t̄] ≡ (σt)t=1,...,t̄ ∈ (P(S))t̄ be a sequence of environments. For ǫ ≥ 0, we deem

x∗[1t̄] ≡ (x∗t )t=1,...,t̄ ∈ (M(S×G,X))t̄ an ǫ-Markov equilibrium for the game family (Γn(ε(s1)) |

s1 ∈ Sn) in the sense of σ[1t̄] when, for every t = 1, ..., t̄ and yt ∈ M(S ×G,X),

∫

Sn

vnt

(

st1, ε(st,−1), x
∗
[tt̄], x

∗
t

)

· σ n
t (dst) ≥

∫

Sn

vnt

(

st1, ε(st,−1), x
∗
[tt̄], yt

)

· σ n
t (dst)− ǫ. (21)

That is, action plan x∗[1t̄] will be an ǫ-Markov equilibrium in the sense of σ[1t̄] when under

its guidance, the average payoff from any period t on will not be improved by more than ǫ

through any deviation, where the “average” is taken with respect to state distribution σt.

6 Main Convergence Results

We can achieve convergences of environments and then of equilibria. The former is more

fundamental and challenging, and the latter is built on it.
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6.1 Convergence of Environments

Even without touching upon payoffs or equilibria, we can establish a link between finite games

and their NG counterpart. It reflects that stochastic environment pathways experienced by

large finite games converge to the NG’s deterministic environment trajectory.

Let A, B, and C be metric spaces and πB ∈ P(B) be a distribution. We useK(A,B, πB, C)

⊆ M(A×B,C) to represent the space of all measurable functions from A×B to C that are

uniformly continuous in a probabilistic sense. The criterion for y ∈ K(A,B, πB, C) is that

for any ǫ > 0, there exists δ > 0, so that for any a, a′ ∈ A satisfying dA(a, a
′) < δ,

πB ({b ∈ B|dC(y(a, b), y(a
′, b)) < ǫ}) > 1− ǫ. (22)

When B is a singleton and hence πB is degenerate, y ∈ K(A,B, πB, C) merely means that y

is a uniformly continuous function from A to C, a situation we denote by y ∈ K(A,C). For

regular B and πB, the meaning is somehow that continuity will happen in most cases.

We now make two assumptions on the transition function θt:

(S1) For every µ ∈ P(S ×X), the function θt(·, ·, µ, ·) is a member of K(S ×X, I, ι, S).

That is, for any µ ∈ P(S × X) and ǫ > 0, there exist δS > 0 and δX > 0, so that for any

s, s′ ∈ S and x, x′ ∈ X satisfying dS(s, s
′) < δS and dX(x, x

′) < δX ,

ι ({i ∈ I | dS(θt(s, x, µ, i), θt(s
′, x′, µ, i)) < ǫ}) > 1− ǫ.

(S2) Not only is it true that θt(s, x, ·, ·) ∈ K(P(S ×X), I, ι, S) at every (s, x) ∈ S ×X ,

but the continuity is also achieved at a rate independent of the (s, x) present. That is, for

any µ ∈ P(S ×X) and ǫ > 0, there exists δ > 0, so that for any µ′ ∈ P(S ×X) satisfying

ρS×X(µ, µ
′) < δ, as well as any s ∈ S and x ∈ X ,

ι({i ∈ I | dS(θt(s, x, µ, i), θt(s, x, µ
′, i)) < ǫ}) > 1− ǫ.

For separable metric space A, we use (An,Bn(A)) to denote the product measurable space

that houses n-long sample sequences. Given π ∈ P(A), we use πn to denote the product

measure on (An,Bn(A)). We can show that a one-step evolution in a big game is not that

much different from that in a nonatomic game.

Proposition 1 Given separable metric space A, distribution π ∈ P(A), and pre-action

environment σ ∈ P(S), suppose sn = (sn(a) | a ∈ An) for each n ∈ N is a member of

M(An, Sn), and ε(sn(a)) converges to σ in probability, to the effect that

πn({a ∈ An | ρS(ε(sn(a)), σ) < ǫ}) > 1− ǫ,

12



for any ǫ > 0 and any n large enough. Then, any Tnt(x, g, i)◦ε(sn(a)) will converge to Tt(x)◦σ

in probability for any probabilistically continuous x. That is, for any x ∈ K(S,G, γ,X),

(π × γ × ι)n ({(a, g, i) ∈ (A×G× I)n | ρS(Tnt(x, g, i) ◦ ε(sn(a)), Tt(x) ◦ σ) < ǫ}) > 1− ǫ,

for any ǫ > 0 and any n large enough.

Recall that ρS is the Prohorov metric for measuring the distance between two state

distributions. Also, the operator Tt(x) delineating the period-t transition of an NG’s pre-

action environment is defined at (8), and its finite-game counterpart Tnt(x, g, i) is defined

at (16). The proof of Proposition 1 calls upon Lemma 3 in Appendix A. This is why the spaces

S, G, and I are required to be complete. Now imagine that (A,B(A), π) provides exogenous

shocks that drive games’ evolutions up to period t: A = S × Gt−1 × I t−1 and π = σ1 ×

γt−1 × ιt−1. Proposition 1 states that, when starting period t with initial state vectors sn(a)

in n-player games that in aggregation increasingly resemble the given starting distribution

σ for the NG, one will still get state vectors in large games that in aggregation resemble

the NG’s state distribution after the period-t transition. When exploiting this proposition

iteratively, we can arrive at our first main result on the convergence of environments.

Theorem 1 Let a policy profile x[tt̄] ∈ (M(S ×G,X))t̄−t+1 for periods t, t + 1, ..., t̄ be such

that each xt′ is a member of K(S,G, γ,X). Then, when we sample st = (st1, ..., stn) from

a given pre-action environment σt ∈ P(S), the sequence (σnt′)t′=t,t+1,...,t̄,t̄+1 of stochastic

pre-action environments will converge to the sequence (σt′)t′=t,t+1,...,t̄,t̄+1 of deterministic pre-

action environments in probability, where for each t′ = t, t + 1, ..., t̄, t̄ + 1, σnt′ is a sample

over the ε(st′)’s with ε(st′) = Tn,[t,t′−1](x[t,t′−1], g[t,t′−1], i[t,t′−1])◦ε(st), while (st, g[t,t′−1], i[t,t′−1])

is distributed according to (σt × γt
′−t × ιt

′−t)n; also, σt′ = T[t,t′−1](x[t,t′−1]) ◦ σt. That is, for

any ǫ > 0 and any n large enough,

(

σt × γ t̄−t+1 × ιt̄−t+1
)n (

Ãn(ǫ)
)

> 1− ǫ,

where Ãn(ǫ) ∈ Bn(S ×Gt̄−t+1 × I t̄−t+1) is such that, for any (st, g[t,t̄], i[t,t̄]) ∈ Ãn(ǫ),

ρS (σnt′ , σt′) < ǫ, ∀t′ = t, t + 1, ..., t̄, t̄+ 1.

The multi-period transition operator T[t,t′−1](x[t,t′−1]) for the NG is defined at (9), and its

finite-game counterpart Tn,[t,t′−1](x[t,t′−1], g[t,t′−1], i[t,t′−1]) is defined at (18). Suppose an NG

starts period t with pre-action environment σt and a slew of finite games start the period

13



with pre-action environments that are sampled from σt. Let the evolution of both types

of games be guided by players acting according to the same probabilistically continuous

policy profile x[tt̄]. Then, as the numbers of players n involved in finite games grow to

infinity, Theorem 1 predicts for ever less chances for the finite games’ period-t′ environments

σnt′ = Tn,[t,t′−1](x[t,t′−1], g[t,t′−1], i[t,t′−1]) ◦ ε(st) to veer off even slightly away from the NG’s

deterministic period-t′ environment σt′ = T[t,t′−1](x[t,t′−1]) ◦ σt.

6.2 Convergence of Equilibria

We now set out to establish this section’s main result, that an equilibrium from the NG will

serve as an ever more accurate approximate equilibrium for ever larger finite games. First,

we need to assume that the single-period payoff functions ψt are continuous:

(F1) Each ψt(s, x, µ) is continuous in (s, x). That is, for any µ ∈ P(S ×X) and ǫ > 0,

there exist δS > 0 and δX > 0, so that for any s, s′ ∈ S and x, x′ ∈ X satisfying dS(s, s
′) < δS

and dX(x, x
′) < δX ,

|ψt(s, x, µ)− ψt(s
′, x′, µ)| < ǫ.

(F2) Each ψt(s, x, µ) is continuous in µ at a rate independent of the (s, x) present. That

is, for any µ ∈ P(S × X) and ǫ > 0, there exists δ > 0, so that for any µ′ ∈ P(S × X)

satisfying ρS×X(µ, µ
′) < δ, as well as any s ∈ S and x ∈ X ,

|ψt(s, x, µ)− ψt(s, x, µ
′)| < ǫ.

There are a couple of intermediate results, whose proofs are provided in Appendix B. Recall

that the value functions vt for an NG are defined around (11) and (12), while the value

functions vnt for finite games are defined around (19) and (20).

Proposition 2 vt(st, σt, x[tt̄], xt) is continuous in st under probabilistically continuous xt′’s.

Proposition 3 Let σt ∈ P(S) and x[tt̄] ∈ (K(S,G, γ,X))t̄−t+1 be given. Suppose sequence

st,−1 = (st2, st3, ...) is sampled from σt, then vnt(st1, ε(s
n
t,−1), x[tt̄], xt) will converge to vt(st1, σt, x[tt̄],

xt) in probability at an st1-independent rate, where s
n
t,−1 stands for the cutoff (st2, st3, ..., stn).

Now here comes our main transient result.

Theorem 2 For state distribution σ1 ∈ P(S), suppose x∗[1t̄] ≡ (x∗t )t=1,2,...,t̄ ∈ (K(S,G, γ,X))t̄

is a probabilistically continuous Markov equilibrium of the nonatomic game Γ(σ1). Then,
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for any ǫ > 0 and large enough n ∈ N, this x∗[1t̄] is also an ǫ-Markov equilibrium for the

game family (Γn(ε(s1)) | s1 ∈ Sn) in the sense of σ[1t̄] ≡ (σt)t=1,..,t̄, where every σt =

T[1,t−1](x
∗
[1,t−1]) ◦σ1. This means that for any t = 1, ..., t̄ and yt ∈ M(S×G,X), (21) is true:

∫

Sn

vnt

(

st1, ε(st,−1), x
∗
[tt̄], x

∗
t

)

· σ n
t (dst) ≥

∫

Sn

vnt

(

st1, ε(st,−1), x
∗
[tt̄], yt

)

· σ n
t (dst)− ǫ.

Furthermore, the same is true in the sense of the stochastic pre-action environment se-

quence σn,[1t̄] ≡ (σnt)t=1,...,t̄, where every σnt is a sample over the ε(st)’s with ε(st) =

Tn,[1,t−1](x[1,t−1], g[1,t−1], i[1,t−1]) ◦ ε(s1), while (s1, g[1,t−1], i[1,t−1]) is distributed according to

(σ1 × γt−1 × ιt−1)n. This means that, for any ǫ > 0 and large enough n ∈ N, for any

t = 1, ..., t̄ and yt ∈ M(S ×G,X),
∫

Sn
σ n
1 (ds1)×

∫

Gn·(t−1) γ
n·(t−1)(dg1,t−1])×

∫

In·(t−1) ι
n·(t−1)(di[1,t−1])× vnt

(

st,1, ε(st,−1), x
∗
[tt̄], x

∗
t

)

≥
∫

Sn
σ n
1 (ds1)×

∫

Gn·(t−1) γ
n·(t−1)(dg1,t−1])×

∫

In·(t−1) ι
n·(t−1)(di[1,t−1])×

×vnt

(

st,1, ε(st,−1), x
∗
[tt̄], yt

)

− ǫ,

where both st,1 and ε(st,−1) come from ε(st).

Theorem 2 says that, when there are enough of them, players in a finite game can agree on

an NG equilibrium and expect to lose little on average; also, the distribution based on which

“average” is taken can be either the NG’s state distribution or even an accurate assessment

of what players’ states would be had they followed the NG equilibrium all along. In the latter

option, different players’ states can even be correlated. In the NG limit, the evolution of pre-

action environments is deterministic. An equilibrium here, which is necessarily observation-

blind to the extent that other players’ states and actions do not influence it, serves as a good

asymptotic equilibrium for finite games when there are enough players; and, this asymptotic

result is independent of the observatory power of players in the finite games.

7 A Stationary Situation

Now we study an infinite-horizon model with stationary features. To this end, suppose there

is a payoff function ψ, so that

ψt(s, x, µ) = αt−1 · ψ(s, x, µ), ∀t = 1, 2, ..., (23)

where α ∈ [0, 1) is a discount factor. Also, we use ψ̄ for the bound ψ̄1 that appears in (1).

In addition, suppose there is a state transition function θ, so that

θt(s, x, µ, i) = θ(s, x, µ, i), ∀t = 1, 2, .... (24)
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For the nonatomic game Γ with the above stationary features, we use x ≡ (x(s, g) | s ∈

S, g ∈ G) ∈ M(S × G,X) to represent a stationary policy profile. It is a map from the

current period’s state and pre-action shock to the player’s action. Given an x ∈ M(S ×

G,X), we denote by T (x) the operator on P(S) that converts one state distribution σ to its

corresponding T (x) ◦ σ so that following (8), for every S ′ ∈ B(S),

[T (x) ◦ σ](S ′) =

∫

S

∫

G

∫

I

1 (θ(s, x(s, g),M(σ, x), i) ∈ S ′) · ι(di) · γ(dg) · σ(ds). (25)

An environment σ ∈ P(S) is said to be associated with x when

σ = T (x) ◦ σ. (26)

That is, we consider σ ∈ P(S) to be associated with x ∈ M(S × G,X) when the former is

invariant under the state transition facilitated by the T (x) operator.

Suppose pre-action environment σ ∈ P(S) is associated with policy x ∈ M(S × G,X).

For t = 0, 1, ..., we define vt(s, σ, x, y) as the total expected payoff a player can make from

period 1 to t, when he starts period 1 with state s ∈ S and outside environment σ, while all

players keep on using policy x from period 1 to t with the exception of the current player in

the very beginning, who deviates to y ∈ M(S ×G,X). As a terminal condition, we have

v0(s, σ, x, y) = 0. (27)

Due to the stationarity of the setting, we have, for t = 1, 2, ...,

vt(s, σ, x, y) =
∫

G
[ψ(s, y(s, g),M(σ, x))

+α ·
∫

I
vt−1(θ(s, y(s, g),M(σ, x), i), σ, x, x) · ι(di)] · γ(dg).

(28)

Using (27) and (28), we can inductively show that

| vt+1(s, σ, x, y)− vt(s, σ, x, y) |≤ αt · ψ̄. (29)

The sequence {vt(s, σ, x, y) | t = 0, 1, ...} is thus Cauchy with a limit point v∞(s, σ, x, y).

This v∞(s, σ, x, y) can be understood as the infinite-horizon total discounted expected payoff

a player can obtain by starting with state s and environment σ, while all players adhere to

the action plan x except for the current player in the beginning, who deviates to y.

We deem x∗ ∈ M(S × G,X) a Markov equilibrium for the nonatomic game Γ when for

some σ∗ ∈ P(S) associated with x∗ in the fashion of (26) and every y ∈ M(S ×G,X),
∫

S

v∞(s, σ∗, x∗, x∗) · σ∗(ds) ≥

∫

S

v∞(s, σ∗, x∗, y) · σ∗(ds). (30)
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Therefore, a policy will be considered an equilibrium when it induces an invariant environ-

ment profile under which the policy forms a best response in the long run.

Now we move on to the n-player game Γn with the same stationary features provided by

ψ, θ, and α. Given policy profile x = (x(s, g) | s ∈ S, g ∈ G) ∈ M(S × G,X), pre-action

shock vector g = (g1, ..., gn) ∈ Gn, and post-action shock vector i = (i1, ..., in) ∈ In, we

define Tn(x, g, i) as the operator on Pn(S) that converts a period’s pre-action environment

into that of a next period. Following (16), ε(s′) = Tn(x, g, i) ◦ ε(s) is such that

s′m = θ (sm, x(sm, gm),Mn(s−m, g−m, x), im) , ∀m = 1, 2, ..., n. (31)

Let vnt(s1, ε(s−1), x, y) be the total expected payoff player 1 can make from period 1 to t,

when the player’s starting state is s1 ∈ S, other players’ initial environments is describable

by their aggregate empirical state distribution ε(s−1) = ε(s2, ..., sn), and all players adopt

the policy x ∈ M(S×G,X) with the exception that player 1 adopts policy y ∈ M(S×G,X)

in the very beginning. As a terminal condition, we have

vn0(s1, ε(s−1), x, y) = 0. (32)

For t = 1, 2, ..., we have that vnt(s1, ε(s−1), x, y) equals to

∫

Gn
γn(dg)× {ψ (s1, y(s1, g1),Mn(s−1, g−1, x)) + α ·

∫

In
ιn(di)×

×vn,t−1 (θ(s1, y(s1, g1),Mn(s−1, g−1, x), i1), [Tn(x, g, i) ◦ ε(s)]−1, x, x)},
(33)

where [Tn(x, g, i) ◦ ε(s)]−1 stands for ε(s′−1), such that ε(s′) = Tn(x, g, i) ◦ ε(s). Using (32)

and (33), we can inductively show that

| vn,t+1(s1, ε(s−1), x, y)− vnt(s1, ε(s−1), x, y) |≤ αt · ψ̄. (34)

Thus, the sequence {vnt(s1, ε(s−1), x, y) | t = 0, 1, ...} is Cauchy with limit vn∞(s1, ε(s−1), x, y).

We make the following assumptions, which are t-independent versions of (S1) to (F2):

(S1-s) For every µ ∈ P(S×X), the function θ(·, ·, µ, ·) is a member of K(S×X, I, ι, S).

(S2-s) Not only is it true that θ(s, x, ·, ·) ∈ K(P(S×X), I, ι, S) at every (s, x) ∈ S×X ,

but the continuity is also achieved at a rate independent of the (s, x) present.

(F1-s) The function ψ(s, x, µ) is continuous in (s, x).

(F2-s) The function ψ(s, x, µ) is continuous in µ at an (s, x)-independent rate.

Here comes our main result for the stationary case.
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Theorem 3 Suppose x∗ ∈ K(S,G, γ,X) is a probabilistically continuous Markov equilibrium

for the nonatomic game Γ. Let σ∗ ∈ P(S) be associated with x∗ in the fashion of (26). Then,

for any ǫ > 0 and large enough n ∈ N, for any y ∈ M(S ×G,X),

∫

Sn

vn∞ (s1, ε(s−1), x
∗, x∗) · (σ∗)n(ds) ≥

∫

Sn

vn∞ (s1, ε(s−1), x
∗, y) · (σ∗)n(ds)− ǫ.

Theorem 3 is proved in Appendix C. It states that players in a large finite game will not

regret much by keeping on adopting a stationary equilibrium for its correspondent nonatomic

game. The regret is measured in an average sense, where the underlying invariant state

distribution for measuring “average” is part of the NG equilibrium. So players can fare well

by responding to their individual states in the same fashion indefinitely.

8 Discussion

Using this paper’s language and notation, we offer a comparison with the most relevant

papers. Within the discrete-time framework while without considering atomic players or

players’ entries and exits, we have arguably worked with the most general setup.

Both Weintraub et al. [28] and Weintraub, Benkard, and van Roy [30] treated competing

firms on a common market as players. They allowed for entry and exit of firms, and accounted

for the effect of firm density c per unit market size. Roughly speaking, their regular payoff

is in the form of ψ0(s, c · µ|S)− ψ1(x), where µ|S stands for the marginal state distribution

derivable from the joint state-action distribution µ. Also, firms’ state transitions are governed

by a certain θ0(s, x, i) that is independent of the environment µ.

Weintraub et al. [28] arrived at something akin to our Theorem 2. In the mean time,

Weintraub, Benkard, and van Roy [30] found a stationary policy of the form x(s) to suffice

for the NG limit. It was considered oblivious because of firms’ abilities to ignore the industry

state c ·µ|S. When there are few dominant firms in it, an NG equilibrium was shown to work

increasingly well for larger finite models. This is close in spirit to our Theorem 3. We note

that θ0’s independence of µ helped greatly with their derivations. While free from the task

of dealing with entry, exit, or impacts of market size and number of firms, we have allowed

players’ state transitions to be profoundly impacted by the environment that their collective

states and actions fabricate. Namely, our θt can depend on µ in virtually arbitrary fashions.

Huang, Malhame, and Caines [15] dealt with continuous-time games with the state space

S equal to the real line ℜ. These games’ discrete-time counterparts can be obtained by
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replacing their Brownian motions with symmetric random walks. In particular, we can let

the post-action shock space I be {−1,+1} and the probability ι be half on −1 and half on

+1. When thus cast, the earlier work’s state transition can be understood as

θt(s, x, µ, i) =

∫

ℜ

θ0(s, x, s′) · µ|S(ds
′) + s̄1 · i, (35)

where θ0 is a function from ℜ×X × ℜ to ℜ and s̄1 is a constant. So there, only the state-

distribution portion of the joint state-action distribution µ of other firms affect the current

firm’s state transition; its impact is also felt in an average sense; moreover, the effect of the

random shock is additive.

Their one-period payoff function can be understood as

ψt(s, x, µ) =

∫

ℜ

ψ0(s, x, s′) · µ|S(ds
′), (36)

where ψ0 is a function from ℜ × X × ℜ to ℜ. Artificial randomization in decision making

turns out to be unnecessary—NG equilibria can be found in the form of xt(s) rather than the

more general xt(s, g). We, on the other hand, believe that allowing other players’ actions to

play a role in both state transitions and one-period payoffs can greatly enhance the relevant

models’ applicabilities. In the competitive pricing situation, for instance, the demand level

experienced by a firm is perturbable by prices charged by other firms. It in turn influences

not only the firm’s present profitability but also its future inventory levels.

As could be seen from equivalence results such as Aumann [6] (Lemma F), using pre-

action shocks g and post-action shocks i permit us to effectively deal with both random action

plans and random state transitions. These were indeed treated by Yang [32] in an alternative

transition-probability formulation, with each χt(s) there effectively xt(s, ·) ◦ γ
−1 here and

each g̃t(s, x, µ) there effectively θt(s, x, µ, ·) ◦ ι
−1 here. Due to its need to sample from joint

probabilities of the non-product type, however, the earlier work found it necessary to assume

discrete state and action spaces. This restriction is removed here through exploitations of

the independently generated shocks and tools pertinent to the tightness of probabilities. The

latter only requires the current spaces S, G, and I to be complete.

We can also apply our results to a dynamic pricing game participated by heterogeneous

firms. Since the random demand arrival process is influenced by prices charged by all firms

and leftover items are stored for future sales, the finite-player version of this problem is

virtually intractable. The usefulness of the transient result Theorem 2 is thus at full display.

To the stationary case also involving production, the stationary result Theorem 3 can further
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be applied. Moreover, depending on which portion of the outside environment, whether it

be merely other firms’ prices or both their prices and inventory levels, are observable, there

can be different versions of the finite game. The NG approximation renders these differences

irrelevant. Details are furnished in Yang [33].

9 Concluding Remarks

We have established links between multi-period Markovian games and their NG counterparts.

Our focus is the case where state and action spaces are general metric spaces, and there

are independently generated shocks serving as random drivers for decision making and state

evolution. In essence, the evolution of player-state distributions in large finite games, though

random, resembles in probability the deterministic pathway taken by their NG counterparts.

This allows NG equilibria to be well adapted to large finite games.

Still, many dynamic competitive situations not yet covered by existing studies like Huang,

Malhame, and Caines [15] are better described by continuous-time models. These will require

vastly different techniques to probe. For one thing, the mathematical induction approach

we have taken to deal with multiple periods would not seem to go well with a discrete-

time approximation of a continuous-time model. In the latter model, even to identify the

environment induced by all players adopting a common policy might involve solving a fixed

point problem. Therefore, serious challenges will have to be overcome.
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Appendices

A Technical Developments in Section 6.1

Given metric space A, the Prohorov metric ρA is such that, for any distributions π, π′ ∈ P(A),

ρA(π, π
′) = inf (ǫ > 0 | π′((A′)ǫ) + ǫ ≥ π(A′), for all A′ ∈ B(A)) , (A.1)

where

(A′)ǫ = {a ∈ A | dA(a, a
′) < ǫ for some a′ ∈ A′}. (A.2)

The metric ρA is known to generate the weak topology for P(A).

According to Parthasarathy [21] (Theorem II.7.1), the strong LLN applies to the empirical

distribution under the weak topology, and hence under the Prohorov metric. In the following,

we state its weak version.

Lemma 1 Given separable metric spaces A and B, suppose distribution πA ∈ P(A) and

measurable mapping y ∈ M(A,B). Then, for any ǫ > 0, as long as n is large enough,

(πA)
n
({

a = (a1, ..., an) ∈ An | ρB(ε(a) · y
−1, π · y−1) < ǫ

})

> 1− ǫ.

For separable metric space A, point a ∈ A, and the (n− 1)-point empirical distribution

space π ∈ Pn−1(A), we use (a, π)n to represent the member of Pn(A) that has an additional

1/n weight on the point a, but with probability masses in π being reduced to (n − 1)/n

times of their original values. For a ∈ An and m = 1, ..., n, we have (am, ε(a−m))n = ε(a).

Concerning the Prohorov metric, we have also a simple but useful observation.

Lemma 2 Let A be a separable metric space. Then, for any n = 2, 3, ..., a ∈ A, and

π ∈ Pn−1(A),

ρA((a, π)n, π) ≤
1

n
.

Proof: Let A′ ∈ B(A) be chosen. If a /∈ A′, then

(a, π)n(A
′) ≤ π(A′) ≤ (a, π)n(A

′) +
1

n
; (A.3)

if a ∈ A′, then

(a, π)n(A
′)−

1

n
≤ π(A′) ≤ (a, π)n(A

′). (A.4)
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Hence, it is always true that

| (a, π)n(A
′)− π(A′) |≤

1

n
. (A.5)

In view of (A.1) and (A.2), we have

ρA ((a, π)n, π) ≤
1

n
. (A.6)

We have thus completed the proof.

The following result is important for showing the near-trajectory evolution of aggregate

environments in large multi-period games.

Lemma 3 Given separable metric space A and complete separable metric spaces B and C,

suppose yn ∈ M(An, Bn) for every n ∈ N, πA ∈ P(A), πB ∈ P(B), and πC ∈ P(C). If

(πA)
n ({a ∈ An | ρB(ε(yn(a)), πB) < ǫ}) > 1− ǫ,

for any ǫ > 0 and any n large enough, then

(πA × πC)
n ({(a, c) ∈ (A× C)n | ρB×C(ε(yn(a), c), πB × πC) < ǫ}) > 1− ǫ,

for any ǫ > 0 and any n large enough.

Proof: Suppose sequence {π′
B1, π

′
B2, ...} weakly converges to the given probability measure

πB, and sequence {π′
C1, π

′
C2, ...} weakly converges to the given probability measure πC . We

are to show that the sequence {π′
B1 × π′

C1, π
′
B2 × π′

C2, ...} weakly converges to πB × πC .

Let F (B) denote the family of uniformly continuous real-valued functions on B with

bounded support. Let F (C) be similarly defined for C. We certainly have

{

limk→+∞

∫

B
f(b) · π′

Bk(db) =
∫

B
f(b) · πB(db), ∀f ∈ F (B),

limk→+∞

∫

C
f(c) · π′

Ck(dc) =
∫

C
f(c) · πC(dc), ∀f ∈ F (C).

(A.7)

Define F so that

F = {f | f(b, c) = fB(b) · fC(c) for any (b, c) ∈ B × C,

where fB ∈ F (B) ∪ {1} and fC ∈ F (C) ∪ {1}},
(A.8)

where 1 stands for the function whose value is 1 everywhere. By (A.7) and (A.8),

lim
k→+∞

∫

B×C

f(b, c) · (π′
Bk × π′

Ck)(d(b, c)) =

∫

B×C

f(b, c) · (πB × πC)(d(b, c)). (A.9)
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According to Ethier and Kurtz [10] (Proposition III.4.4), F (B) and F (C) happen to be

P(B) and P(C)’s convergence determining families, respectively. As B and C are complete,

Ethier and Kurtz ([10], Proposition III.4.6, whose proof involves Prohorov’s Theorem, i.e.,

the equivalence between tightness and relative compactness of a collection of probability

measures defined for complete separable metric spaces) further states that F as defined

through (A.8) is convergence determining for P(B × C). Therefore, we have the desired

weak convergence by (A.9).

Let ǫ > 0 be given. In view of the above product-measure convergence and the equivalence

between the weak topology and that induced by the Prohorov metric, there must be δB > 0

and δC > 0, such that ρB(π
′
B, πB) < δB and ρC(π

′
C , πC) < δC will imply

(ρB × ρC)(π
′
B × π′

C , πB × πC) < ǫ. (A.10)

By (A.1) and the given hypothesis, there is n̄1 ∈ N, so that for n = n̄1, n̄1 + 1, ...,

(πA)
n(Ãn) > 1−

ǫ

2
, (A.11)

where Ãn contains all a ∈ An such that

ρB(ε(yn(a)), πB) < δB. (A.12)

By (A.1) and Lemma 1, on the other hand, there is n̄2 ∈ N, so that for n = n̄2, n̄2 + 1, ...,

(πC)
n(C̃n) > 1−

ǫ

2
, (A.13)

where C̃n contains all c ∈ Cn such that

ρC(ε(c), πC) < δC . (A.14)

For any n = n̄1 ∨ n̄2, n̄1 ∨ n̄2 + 1, ..., let (a, c) be an arbitrary member of Ãn × C̃n. We have

from (A.10), (A.12), and (A.14) that,

(ρB × ρC)(ε(yn(a), c), πB × πC) < ǫ. (A.15)

Noting the facilitating (a, c) is but an arbitrary member of Ãn × C̃n, we see that

(πA × πC)
n ({(a, c) ∈ (A× C)n | ρB×C(ε(yn(a), c), πB × πC) < ǫ})

≥ (πA)
n(Ãn)× (πC)

n(C̃n),
(A.16)

which by (A.11) and (A.13), is greater than 1− ǫ.
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Because the equivalence between tightness and relative compactness of a collection of

probability measures is indirectly related to the proof of Lemma 3, we require B and C to

be complete separable metric spaces.

Lemma 4 Given separable metric spaces A, B, C, and D, as well as distributions πA ∈

P(A), πB ∈ P(B), and πC ∈ P(C), suppose yn ∈ M(An, Bn) for every n ∈ N and z ∈

K(B,C, πC , D). If

(πA × πC)
n ({a ∈ An, c ∈ Cn | ρB×C(ε(yn(a), c), πB × πC) < ǫ}) > 1− ǫ,

for any ǫ > 0 and any n large enough, then

(πA × πC)
n
({

a ∈ An, c ∈ Cn | ρD(ε(yn(a), c) · z
−1, (πB × πC) · z

−1) < ǫ
})

> 1− ǫ,

for any ǫ > 0 and any n large enough.

Proof: Let ǫ > 0 be given. Since z ∈ K(B,C, πC , D), there exist C ′ ∈ B(C) satisfying

πC(C
′) > 1−

ǫ

2
, (A.17)

as well as

δ ∈ (0, ǫ/2], (A.18)

such that for any b, b′ ∈ B satisfying dB(b, b
′) < δ and any c ∈ C ′,

dD(z(b, c), z(b
′, c)) < ǫ. (A.19)

For any subset D′ in B(D), we therefore have

(z−1(D′))δ ∩ (B × C ′) ⊆ z−1((D′)ǫ). (A.20)

This leads to (z−1(D′))δ \ (B × (C \ C ′)) ⊆ z−1((D′)ǫ), and hence due to (A.17),

(πB × πC)
(

z−1((D′)ǫ)
)

≥ (πB × πC)
(

(z−1(D′))δ
)

−
ǫ

2
. (A.21)

On the other hand, by the hypothesis, we know for n large enough,

(πA × πC)
n(E ′

n) > 1− δ, (A.22)

where

E ′
n = {a ∈ An, c ∈ Cn | ρB×C(ε(yn(a), c), πB × πC) < δ} ∈ Bn(A× C). (A.23)
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By (A.23), for any (a, b) ∈ E ′
n and F ′ ∈ B(B × C),

(πB × πC)((F
′)δ) ≥ [ε(yn(a), c)](F

′)− δ. (A.24)

Combining the above, we have, for any (a, c) ∈ E ′
n and D′ ∈ B(D),

[(πB × πC) · z
−1]((D′)ǫ) = (πB × πC)(z

−1((D′)ǫ))

≥ (πB × πC)((z
−1(D′))δ)− ǫ/2 ≥ [ε(yn(a), c)](z

−1(D′))− δ − ǫ/2

≥ [ε(yn(a), c)](z
−1(D′))− ǫ = ([ε(yn(a), c)] · z

−1)(D′)− ǫ.

(A.25)

where the first inequality is due to (A.21), the second inequality is due to (A.24), and the

third inequality is due to (A.18). That is, we have

ρD
(

ε(yn(a), c) · z
−1, (πB × πC) · z

−1
)

≤ ǫ, ∀(a, c) ∈ E ′
n. (A.26)

In view of (A.18) and (A.22), we have the desired result.

We can now prove Proposition 1 and then Theorem 1.

Proof of Proposition 1: Let t = 1, ..., t̄− 1 and x ∈ K(S,G, γ,X) be given. Define map

z ∈ M(S ×G× I, S), so that

z(s, g, i) = θt (s, x(s, g),M(σ, x), i) , ∀s ∈ S, g ∈ G, i ∈ I. (A.27)

In view of (7) and (A.27), we have, for any S ′ ∈ B(S),

[Tt(x) ◦ σ](S
′) =

∫

S

∫

G

∫

I
1(z(s, g, i) ∈ S ′) · ι(di) · γ(dg) · σ(ds)

= (σ × γ × ι)({(s, g, i) ∈ S ×G× I | z(s, g, i) ∈ S ′}) = (σ × γ × ι)(z−1(S ′)).
(A.28)

For n ∈ N, g = (g1, ..., gn) ∈ Gn, and i = (i1, ..., in) ∈ In, also define operator T ′
n(g, i) on

Pn(S) so that T ′
n(g, i) ◦ ε(s) = ε(s′), where for m = 1, 2, ..., n,

s′m = z(sm, gm, im) = θt (sm, x(sm, gm),M(σ, x), im) . (A.29)

It is worth noting that (A.29) is different from the earlier (16). In view of (A.27) and (A.29),

we have, for S ′ ∈ B(S), that [T ′
n(g, i) ◦ ε(s)](S

′) equals

1

n
·

n
∑

m=1

1 (z(sm, gm, im) ∈ S ′) = ε((s1, g1, i1), ..., (sn, gn, in))
(

z−1(S ′)
)

. (A.30)

Combining (A.28) and (A.30), we arrive to a key observation that

Tt(x) ◦ σ = (σ × γ × ι) · z−1, while T ′
n(g, i) ◦ ε(s) = ε(s, g, i) · z−1. (A.31)
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In the rest of the proof, we first show the asymptotic closeness between Tt(x)◦σ and T ′
n(g, i)◦

ε(sn(a)), and then that between the latter and Tnt(x, g, i) ◦ ε(sn(a)).

First, due to the hypothesis on the convergence of ε(sn(a)) to σ, the completeness of the

spaces S, G, and I and hence also the completeness of G× I, as well as Lemma 3,

(π×γ× ι)n({(a, g, i) ∈ (A×G×I)n | ρS×G×I(ε(sn(a), g, i), σ×γ× ι) < ǫ′}) > 1−ǫ′, (A.32)

for any ǫ′ > 0 and any n large enough. By (S1) and the fact that x ∈ K(S,G, γ,X), we may

see that z as defined through (A.27) is a member of K(S,G× I, γ× ι, S). By Lemma 4, this

fact along with (A.32) will lead to the strict dominance of 1− ǫ′ by

(π× γ× ι)n({(a, g, i) ∈ (A×G× I)n | ρS(ε(sn(a), g, i) · z
−1, (σ× γ× ι) · z−1) < ǫ′}), (A.33)

for any ǫ′ > 0 and any n large enough. By (A.31), this is equivalent to that, given ǫ > 0,

there exists n̄1 ∈ N so that for any n = n̄1, n̄1 + 1, ...,

(π × γ × ι)n
(

Ãn(ǫ)
)

> 1−
ǫ

2
, (A.34)

where Ãn(ǫ) ∈ Bn(A×G× I) is equal to

{

(a, g, i) ∈ (A×G× I)n | ρS (Tt(x) ◦ σ, T
′
n(g, i) ◦ ε(sn(a))) <

ǫ

2

}

. (A.35)

Next, note that the only difference between Tnt(x, g, i) ◦ ε(sn(a)) and T
′
n(g, i) ◦ ε(sn(a))

lies in that ε(sn,−m(a), g−m) is used in the former as in (16) whereas σ×γ is used in the latter

as in (A.29). Here, sn,−m(a) refers to the vector (sn1(a), ..., sn,m−1(a), sn,m+1(a), ..., snn(a)).

By (S2), there is δ ∈ (0, ǫ/4] and I ′ ∈ B(I) with

ι(I ′) > 1−
ǫ

4
, (A.36)

so that for any (s, g, i) ∈ S×G×I ′ and any µ′ ∈ P(S×X) satisfying ρS×X(M(σ, x), µ′) < δ,

dS (θt(s, x(s, g),M(σ, x), i), θt(s, x(s, g), µ
′, i)) <

ǫ

2
. (A.37)

For each n ∈ N, define I ′n so that

I ′n =
{

i = (i1, ..., in) ∈ In | more than
(

1−
ǫ

2

)

· n components come from I ′
}

. (A.38)

Also important is that by (A.37) and (A.38), for any S ′ ∈ B(S) and i = (i1, ..., in) ∈ I ′n,

[Tnt(x, g, i) ◦ ε(sn(a))]
(

(S ′)ǫ/2
)

+
ǫ

2
≥ [T ′

n(g, i) ◦ ε(sn(a))] (S
′), (A.39)
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whenever

ρS×X (M(σ, x),Mn(sn,−m(a), g−m, x)) < δ. (A.40)

It can be shown that I ′n will occupy a big chunk of In as measured by ιn when n is large.

Define map q from I to {0, 1} so that q(i) = 1 or 0 depending on whether or not i ∈ I ′.

By (A.36), ι · q−1 is a Bernoulli distribution with (ι · q−1)({1}) > 1 − ǫ/4. So by (A.38), I ′n

contains all i = (i1, ..., in) ∈ In that satisfy

ρ{0,1}(ε(i) · q
−1, ι · q−1) <

ǫ

4
. (A.41)

Therefore, by Lemma 1, there exits n̄2 ∈ N, so that for n = n̄2, n̄2 + 1, ...,

ιn(I ′n) > 1−
ǫ

4
. (A.42)

We can also demonstrate that (A.40) will be highly likely when n is large. By Lemma 3 and

the hypothesis on the convergence of ε(sn(a)) to σ, we know ε(sn(a), g) will converge to σ×γ

in probability. Due to Lemma 2, this conclusion applies to the sequence ε(sn,−m(a), g−m) as

well. The fact that x ∈ K(S,G, γ,X) certainly leads to (prjS, x) ∈ K(S,G, γ, S ×X). So by

Lemma 4, there is n̄3 ∈ N, so that for n = n̄3, n̄3 + 1, ...,

(πn × γn)
(

B̃n(δ)
)

> 1−
ǫ

4
, (A.43)

where

B̃n(δ) = {(a, g) ∈ An ×Gn | (A.40) is true} ∈ Bn(A×G). (A.44)

Consider arbitrary n = n̄1 ∨ n̄2 ∨ n̄3, n̄1 ∨ n̄2 ∨ n̄3 + 1, ..., (a, g, i) ∈ Ãn(ǫ)∩ (B̃n(δ)× I ′n), and

S ′ ∈ B(S). By (A.1) and (A.35), we see that

[T ′
n(g, i) ◦ ε(sn(a))]

(

(S ′)ǫ/2
)

+
ǫ

2
≥ [Tt(x) ◦ σ](S

′). (A.45)

Combining this with (A.39), (A.40), and (A.44), we obtain

[Tnt(x, g, i)◦ε(sn(a))] ((S
′)ǫ)+ ǫ ≥ [T ′

n(g, i)◦ε(sn(a))]
(

(S ′)ǫ/2
)

+
ǫ

2
≥ [Tt(x)◦σ](S

′). (A.46)

According to (A.1), this means

ρS (Tnt(x, g, i) ◦ ε(sn(a)), Tt(x) ◦ σ) ≤ ǫ. (A.47)

Therefore, for n ≥ n̄1 ∨ n̄2 ∨ n̄3,

(π × γ × ι)n ({(a, g, i) ∈ (A×G× I)n | ρS(Tnt(x, g, i) ◦ ε(sn(a)), Tt(x) ◦ σ) ≤ ǫ})

≥ (π × γ × ι)n
(

Ãn(ǫ) ∩ (B̃n(δ)× I ′n)
)

,
(A.48)
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whereas the latter is, in view of (A.34), (A.42), and (A.43), greater than 1− ǫ.

Proof of Theorem 1: We use induction to show that, for each τ = 0, 1, ..., t̄− t + 1,

(σt × γτ × ιτ )n
(

Ãnτ (ǫ)
)

> 1−
ǫ

t̄− t + 2
, (A.49)

for any ǫ > 0 and n large enough, where Ãnτ (ǫ) ∈ Bn(S × Gτ × Iτ ) is such that, for any

(st, g[t,t+τ−1], i[t,t+τ−1]) ∈ Ãnτ (ǫ),

ρS
(

Tn,[t,t+τ−1](x[t,t+τ−1], g[t,t+τ−1], i[t,t+τ−1]) ◦ ε(st), T[t,t+τ−1](x[t,t+τ−1]) ◦ σt
)

< ǫ. (A.50)

Once the above is achieved, we can then define Ãn(ǫ) required in the theorem by

Ãn(ǫ) =

t̄−t+1
⋂

τ=0

[

Ãnτ (ǫ)×Gn·(t̄−t+1−τ) × In·(t̄−t+1−τ)
]

. (A.51)

This and (A.49) will lead to

(

σt × γ t̄−t+1 × ιt̄−t+1
)n (

Ãn(ǫ)
)

>

(

1−
ǫ

t̄− t+ 2

)t̄−t+2

> 1− ǫ, (A.52)

for any ǫ > 0 and n large enough.

Now we proceed with the induction process. First, note that Tn,[t,t−1] ◦ ε(st) is merely

ε(st) itself and T[t,t−1] ◦ σt is merely σt itself. Hence, we will have (A.49) for τ = 0 for any

ǫ > 0 and n large enough just by Lemma 1. Then, for some τ = 1, 2, ..., t̄− t+ 1, suppose

(

σt × γτ−1 × ιτ−1
)n

(

Ãn,τ−1(ǫ)
)

> 1−
ǫ

t̄− t+ 2
, (A.53)

for any ǫ > 0 and n large enough. We may apply Proposition 1 to the above, while at

the same time identifying S ×Gτ−1 × Iτ−1 with A, σt × γτ−1 × ιτ−1 with π, xt+τ−1 with x,

Tn,[t,t+τ−2](x[t,t+τ−2], g[t,t+τ−2], i[t,t+τ−2]) ◦ ε(st) with ε(sn(a)), and T[t,t+τ−2](x[t,t+τ−2]) ◦ σt with

σ. This way, we will verify (A.49) for any ǫ > 0 and n large enough. Therefore, the induction

process can be completed.

B Technical Developments in Section 6.2

Proof of Proposition 2: Because payoff functions are bounded, the value functions are

bounded too. We then prove by induction on t. By (11), we know the result is true for t =
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t̄+1. Suppose for some t = t̄, t̄−1, ..., 2, we have the continuity of vt+1(st+1, σt+1, x[t+1,t̄], xt+1)

in st+1. By this induction hypothesis, the probabilistic continuity of xt, (S1), (F1), and the

boundedness of the value functions, we see the continuity of the right-hand side of (12) in

st. So, vt(st, σt, x[tt̄], xt) is continuous in st, and we have completed our induction process.

Proof of Proposition 3: We prove by induction on t. By (11) and (19), we know the

result is true for t = t̄ + 1. Suppose for some t = t̄, t̄ − 1, ..., 2, we have the convergence of

vn,t+1(st+1,1, ε(s
n
t+1,−1), x[t+1,t̄], xt+1) to vt+1(st+1,1, σt+1, x[t+1,t̄], xt+1) at an st+1,1-independent

rate when st+1,−1 = (st+1,2, st+1,3, ...) is sampled from σt+1. Now, suppose st,−1 = (st2, st3, ...)

is sampled from σt. Let also g = (g1, g2, ...) be generated through sampling on (G,B(G), γ)

and i = (i1, i2, ...) be generated through sampling on (I,B(I), ι). In the remainder of the

proof, we let snt = (st1, st2, ..., stn) for any arbitrary st1 ∈ S, gn = (g1, ..., gn) and in =

(i1, ..., in).

Due to Lemma 1, ε(snt,−1) will converge to σt. By Lemma 2, ε(snt ) will converge to σt

at an st1-independent rate. By Proposition 1, we know that Tnt(xt, g
n, in) ◦ ε(snt ) will con-

verge to Tt(xt) ◦ σt in probability at an st1-independent rate, and by Lemma 2 again, so

will [Tnt(xt, g
n, in) ◦ ε(snt )]−1 to Tt(xt) ◦ σt. Now Lemma 3 will lead to the convergence in

probability of ε(snt,−1, g
n
−1) to σt × γ. Due to xt’s probabilistic continuity, Lemma 4 will lead

to the convergence in probability of Mn(s
n
t,−1, g

n
−1, xt) to M(σt, xt). Thus,

1. ψt(st1, xt(st1, g1),Mn(s
n
t,−1, g

n
−1, xt)) will converge to ψt(st1, xt(st1, g1),M(σt, xt)) in

probability at an st1-independent rate due to (F2);

2. vn,t+1(θt(st1, xt(st1, g1),Mn(s
n
t,−1, g

n
−1, xt), i1), [Tnt(xt, g

n, in)◦ε(snt )]−1, x[t+1,t̄], xt+1) will

converge to vt+1(θt(st1, xt(st1, g1),Mn(s
n
t,−1, g

n
−1), xt), i1), Tt(xt) ◦ σt, x[t+1,t̄], xt+1) in probabil-

ity at an st1-independent rate due to the induction hypothesis; the latter will in turn con-

verge to vt+1(θt(st1, xt(st1, g1),M(σt, xt), i1), T (xt) ◦ σt, x[t+1,t̄], xt+1) in probability at an st1-

independent rate due to (S2) and Proposition 2.

As per-period payoffs are bounded, all value functions are bounded. The above conver-

gences will then lead to the convergence of the right-hand side of (20) to the right-hand

side of (12) at an st1-independent rate. That is, vnt(st1, ε(s
n
t,−1), x[tt̄], xt) will converge to

vt(st1, σt, x[tt̄], xt) at a rate independent of st1. We have completed the induction process.

Proof of Theorem 2: Let us consider subgames starting with some time t = 1, 2, ..., t̄. For

convenience, we let σt = T[1,t−1](x
∗
[1,t−1]) ◦ σ1. Now let st = (st1, st2, ...) be generated through
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sampling on (S,B(S), σt), g = (g1, g2, ...) be generated through sampling on (G,B(G), γ),

and i = (i1, i2, ...) be generated through sampling on (I,B(I), ι). In the remainder of the

proof, we let snt = (st1, ..., stn), s
n
t,−1 = (st2, ..., stn), g

n = (g1, ..., gn), and i
n = (i1, ..., in).

By Lemma 1 and Proposition 1, we know that ε(snt ) = ε(st1, ..., stn) converges to σt in

probability, and also that Tnt(x
∗
t , g

n, in) ◦ ε(snt ) converges to Tt(x
∗
t ) ◦ σt in probability. Due

to Lemma 2, ε(snt,−1) and [Tnt(x
∗
t , g

n, in) ◦ ε(snt )]−1 will have the same respective conver-

gences. Also, Lemma 3 will lead to the convergence in probability of ε(snt,−1, g
n
−1) to σt × γ.

Due to xt’s probabilistic continuity, Lemma 4 will lead to the convergence in probability of

Mn(s
n
t,−1, g

n
−1, xt) to M(σt, xt). Then,

1. ψt(st1, y(st1, g1),Mn(s
n
t,−1, g−1, xt)) will converge to ψt(st1, y(st1, g1),M(σt, xt)) in

probability at a y-independent rate due to (F2);

2. vn,t+1(θt(st1, y(st1, g1),Mn(s
n
t,−1, g

n
−1, xt), i1), [Tnt(x

∗
t , g

n, in)◦ε(snt )]−1, x
∗
[t+1,t̄], x

∗
t+1) will

converge to vt+1(θt(st1, y(st1, g1),Mn(s
n
t,−1, g

n
−1, xt), i1), Tt(x

∗
t ) ◦σt, x

∗
[t+1,t̄], x

∗
t+1) in probability

at a y-independent rate due to Proposition 3, which due to (S2) and Proposition 2, will

converge to vt+1(θt(st1, y(st1, g1),M(σt, xt), i1), Tt(x
∗
t ) ◦ σt, x

∗
[t+1,t̄], x

∗
t+1) in probability at a

y-independent rate.

As per-period payoffs are bounded, all value functions are bounded. By (12) and (20),

the above convergences will then lead to the convergence of the left-hand side of (21) to the

left-hand side of (14). At the same time, the right-hand side of (21) plus ǫ will converge to

the right-hand side of (14) due to the convergence of ε(snt,−1) to σt, Proposition 3, and the

uniform boundedness of the value functions. By (14), as long as n is large enough, (21) will

be true for any ǫ > 0 and y ∈ M(S × G,X). This would then lead to the final conclusion

due to Theorem 1 and the boundedness of payoff functions.

C Technical Developments in Section 7

Proof of Theorem 3: Let ǫ > 0 be fixed. For t = 1, 2, ... satisfying t ≥ ln(6ψ̄/(ǫ · (1 −

α)))/ ln(1/α) + 1, we have from (33) and (34),

| vn∞(s1, ε(s−1), x
∗, y)− vnt(s1, ε(s−1), x

∗, y) |<
ǫ

6
. (C.1)

Therefore, we need merely to select such a large t and show that, when n is large enough,
∫

Sn

vnt(s1, ε(s−1), x
∗, x∗) · (σ∗)n(ds) ≥

∫

Sn

vnt(s1, ε(s−1), x
∗, y) · (σ∗)n(ds)−

2ǫ

3
. (C.2)
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For t = 1, 2, ..., since (x∗, σ∗) forms an equilibrium for Γ, we know (30) is true. This, as

well as (28) and (29), lead to

αt−τ ·

[
∫

S

vτ (s, σ
∗, x∗, y) · σ∗(ds)−

∫

S

vτ (s, σ
∗, x∗, x∗) · σ∗(ds)

]

≤
2αt−1 · ψ̄

1− α
≤
ǫ

3
. (C.3)

for τ = 1, 2, ..., t, g ∈ G, s ∈ S, and y ∈ M(S ×G,X).

We associate entities here with those defined in Section 4 when t̄ there is fixed at the

t here. To signify the difference in the two notational systems, we add superscript “K” to

symbols defined for the previous section. For instance, we write vKτ for the vτ defined in

that section, which has a different meaning than the vτ here. Now, our αt−τ · vτ (s, σ
∗, x∗, y)

can be understood as vKt+1−τ (s, σ
∗, x′, y), with x′ = (x′t+1−τ , ..., x

′
t) ∈ (M(S × G,X))τ being

such that x′t′ = x∗ for t′ = t + 1 − τ, ..., t. Due to the association of σ∗ with x∗ through the

definition (26), we can understand σ∗ as TK
[1,τ−1](x

′
[1,τ−1])◦σ

K
1 , where x′[1,τ−1] = (x′1, ..., x

′
τ−1) ∈

(M(S ×G,X))τ−1 is such that x′t′ = x∗ for t′ = 1, 2, ..., τ − 1.

With these correspondences, (C.3) can be translated into something akin to (14), with

the only difference being that −ǫ/3 should be added to all the right-hand sides. That is,

we now know that the current (x∗, σ∗) offers an (ǫ/3)-Markov equilibrium for the nonatomic

game ΓK(σ∗) with t̄ = t, θKτ = θ, and ψK
τ = ατ−1 · ψ. Even though Theorem 2 is nominally

about going from an 0-equilibrium for the nonatomic game to ǫ-equilibria for finite games,

we can follow exactly the same logic used to prove it to go from an (ǫ/3)-equilibrium for the

nonatomic game to (2ǫ/3)-equilibria for finite games.

Thus, from one of the theorem’s claims, we can conclude that, for n large enough and

any y ∈ M(S ×G,X),

∫

Sn

(

σK
1

)n
(ds)·vKnt

(

s1, ε(s−1), x
′
[1t], x

′
1

)

≥

∫

Sn

(

σK
1

)n
(ds)·vKnt

(

s1, ε(s−1), x
′
[1t], y

)

−
2ǫ

3
, (C.4)

where x′[1t] is again to be understood as the policy that takes action x∗(s, g) whenever the

most immediate state-shock pair is (s, g). But this translates into (C.2).
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