
Dynamic Games and Applications (2022) 12:689–700
https://doi.org/10.1007/s13235-021-00401-3

The Frequency of Convergent Games under Best-Response
Dynamics

Samuel C. Wiese1,2 · Torsten Heinrich2,3,4

Accepted: 3 September 2021 / Published online: 19 October 2021
© The Author(s) 2021

Abstract
We calculate the frequency of games with a unique pure strategy Nash equilibrium in the
ensemble of n-player, m-strategy normal-form games. To obtain the ensemble, we generate
payoff matrices at random. Games with a unique pure strategy Nash equilibrium converge to
the Nash equilibrium. We then consider a wider class of games that converge under a best-
response dynamic, in which each player chooses their optimal pure strategy successively. We
show that the frequency of convergent games with a given number of pure Nash equilibria
goes to zero as the number of players or the number of strategies goes to infinity. In the
2-player case, we show that for large games with at least 10 strategies, convergent games
with multiple pure strategy Nash equilibria are more likely than games with a unique Nash
equilibrium. Our novel approach uses an n-partite graph to describe games.

Keywords Pure Nash equilibrium · Best-response dynamics · Random games

Mathematics subject classification 91A10 · 91A06

1 Introduction

A Nash equilibrium in a normal-form game is a strategy profile such that, given the choice
of the other players, no player has an incentive to make a different choice. If the Nash
equilibrium is in pure strategies, we call it pure strategy Nash equilibrium (PSNE), otherwise
mixed strategy Nash equilibrium (MSNE). John Nash showed that any game with a finite
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number of players and strategies has at least one MSNE (Nash [15,16]). This is not the case
for PSNEs.

Consider an n-player, m-strategy normal-form game and assume that players choose
their optimal strategy (facing previous optimal strategies of the opponents) in a clockwork
sequence—player 1 goes first, then player 2, etc. until its player 1’s turn again. We call a
game convergent, if starting from any initial strategy profile no player changes their strategy
under the described dynamic after a sufficiently large number of turns.

We describe such games by an n-partite graph with each node corresponding to a pure
strategy profile of the strategy choices of all but one player, and each edge corresponding to
the optimal strategy choice (best response). A PSNE corresponds to a shortest possible cycle
of length n.

In general, there are three types of games:

• Type A: Convergent games with a unique PSNE
• Type B: Convergent games with multiple PSNEs
• Type C: Non-convergent games

Type A games (for instance, the Prisoners’ Dilemma) are very easy to understand and
perfectly predictable. They converge to the PSNE. As we may re-arrange the strategies of the
players, Type B games are coordination games. An example of a Type C game is Matching
Pennies. Type B and Type C games have at least one MSNE.

We will investigate the likelihood of randomly created games that converge (Type A and
Type B) in the ensemble of games with a given number of players and a given number of
strategies available to each player. The frequencies can provide insights into predictability
and stability of equilibria in economic systems. For situations that are conveniently modelled
by low-dimensional (e.g. 2-player 2-strategy) games, predictability and stability properties
are often obvious. For more complicated biological interactions [8,9], bidding behaviour
[5], interactions on supply chains [3], trading behaviour in financial markets [4], or social
behaviour during a crisis (say the COVID-19 pandemic), this is different.

We will show that Type A and Type B games become less likely the more complex the
game is. Thus, modelling scenarios like climate change or financial market events with Type
A or Type B games would lead to misleading results. In spite of the involved difficulty, it
would be expedient to employ models that use Type C games.

1.1 RelatedWork

Several papers have considered aspects related to the number of PSNE in games with random
payoffs. We briefly consider the papers that dealt with random payoffs that are i.i.d. from a
continuous distribution.

Goldman [11] considered zero-sum 2-player games and showed that the probability of
having a PSNE goes to zero as the number of strategies grows. Goldberg et al. [10] considered
general 2-player games and showed that the probability of having at least one PSNEconverges
to 1−exp(−1) as the number of strategies goes to infinity. Dresher [6] generalized this result
to the case of an arbitrary finite number of players. Powers [19] showed that, when the
number of strategies of at least two players goes to infinity, the distribution of the number of
PSNEs converges to Poisson(1). Stanford [20] derived an exact formula for the distribution of
the number of PSNEs in random games, and showed that for two-person symmetric games,
the number of symmetric and asymmetric PSNEs converges to a Poisson distribution [21].
McLennan [13] obtained a computationally implementable formula for the mean number of
Nash equilibria.
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Alon et al. [1] studied the frequency of dominance-solvable games and obtained an exact
formula for the 2-player case. Dominance-solvable games are necessarily convergent, but
not vice versa, so we study a larger class of games (containing, for instance, coordination
games). The unique PSNE in Type A games are called Cournot stable; this class of games
was studied by Moulin [14].

Concerning the use of best-response structures as a tool to study convergence frequencies,
Pangallo et al. [17] and Pei and Takahaski [18] both obtained exact results for the frequency
of one or more PSNEs in the 2-player case. The authors in [12] use different methods to
bound the convergence frequency in multi-player games.

Finally, random games were studied in the context of theoretical biology, for instance, the
authors in [7] investigated the distribution of equilibria of an evolutionary dynamic.

1.2 Our Contribution

We introduce an n-partite graph describing the best responses of a game and use it to obtain
the frequency of randomly created games with a unique PSNE in the ensemble of n-player,
m-strategy games. These games are perfectly predictable. We then study games with more
than one PSNE, that are convergent under best-response dynamics, in which each player
successively chooses their optimal pure strategy. We show that convergent games with a
smaller number of PSNEs are more common than convergent games with a higher number of
PSNEs. We obtain an exact frequency for convergent 2-player games with any given number
of PSNEs. We finally highlight that for 2 players and less than 10 strategies, games with a
unique PSNE are more common than convergent games with multiple PSNEs, otherwise less
common.

2 Methods

2.1 Notation

A game with n ≥ 2 players and m ≥ 2 strategies available to each player is a tuple
(N , M, {ui }i∈N ) where N = {1, . . . , n} is the set of players, M = {1, . . . ,m} the set
of strategies for each player, and ui : Mn → R a payoff function. A strategy profile
s = (s1, . . . , sn) ∈ Mn is a set of strategies for each player. An environment for player
i is a set s−i ∈ Mn−1 of strategies chosen by each player but i . A best response bi for player i
is a mapping from the set of environments of i to the set of non-empty subsets of i’s strategies
and is defined by

bi (s−i ) := argmaxsi∈M ui (si , s−i ) .

A strategy profile s ∈ Mn is a pure strategy Nash equilibrium (PSNE) if for all i ∈ N and
all si ∈ M ,

ui (s) ≥ ui (si , s−i ).

Equivalently, s ∈ Mn is a PSNE if for all i ∈ N and all si ∈ M , si ∈ bi (s−i ). A game
is non-degenerate, if for each player i and environment s−i , the best-response bi (s−i ) is a
singleton; we then write si = bi (s−i ). Similarly, amixed strategy Nash equilibrium (MSNE)
is a strategy profile in mixed strategies.
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Fig. 1 A 3-player, 2-strategy
game with one PSNE and the
corresponding 3-partite graph
representation. The best
responses corresponding to the
PSNE (I–IV–V) are highlighted
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2.2 Games as Graphs

The best-response structure of a game can be represented with a best-response digraph whose
vertex set is the set of strategy profiles Mn and whose edges are constructed as follows: for
each i ∈ N and each pair of distinct vertices s = (si , s−i ) and s′ = (s′

i , s−i ), place a directed
edge from s to s′ if and only if s′

i = bi (s−i ). There are edges only between strategy profiles
that differ in exactly one coordinate.

We now introduce an n-partite graph as an additional representation of the best responses
for a given fixed sequence of players. There is a total of nmn−1 nodes in n groups, each
group corresponding to a player and each node corresponding to an environment of a player.
At each node, a player chooses the best response; formally, the edges are constructed as
follows: for each pair (i, j) of players, where j moves directly after i , and each environment
s−i = (

s j , s−i,− j
)
(where s−i,− j is s−i without the strategy choice of j), place a directed

edge from s−i to another environment s′− j = (s′
i , s−i,− j ), if and only if

s′
i = bi (s−i ). (�)

As we can assume that games are non-degenerate, each node in a graph representing a game
has an out-degree of 1.APSNEcorresponds to a cycle of length n. Each player chooses among
m strategies at each node, thereby the total number of possible arrangements ismnmn−1

, each
equally likely.

We call the n-partite graph constructed as above but without the condition (�) the full
n-partite graph (see Fig. 5 (left)). Any n-partite graph corresponding to a given game is a
subgraph of the full n-partite graph. We will call a node free, if its out-degree is m, and fixed,
if its out-degree is 1.

Figure 1 shows a 3-player, 2-strategy gamewith one PSNE and the corresponding 3-partite
graph with playing sequence 1-2-3.

We could have relaxed the assumption of assuming only one specific sequence of play-
ers. However, PSNEs are stable under any playing sequence. Introducing random or other
playing sequences would make the digraph more complicated by adding more arcs without
changing the results. Dynamics where players choose their strategies simultaneously cannot
be represented by an n-partite graph.
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3 Results

3.1 Type A: Convergent Games with a Unique PSNE

We generate n-player, m-strategy games at random by drawing mn tuples of payoffs from
a continuous distribution. This ensures that randomly created games are almost surely non-
degenerate. The exact type of distribution does not matter as long as payoffs are uncorrelated,
because the structure of the game only depends on which one in a set of values is the largest.
We leave games with correlated payoffs for future research, but results from the literature (
[17]) suggest that Type A games are less likely when payoffs are negatively correlated and
that Type B games (see below) become overwhelmingly likely with positive correlations.

Let pkn,m denote the frequency of n-player, m-strategy convergent games with exactly k
PSNEs.

Theorem 1 The frequency of games with one unique PSNE in the ensemble is given by

p1n,m = rn−1 + m − 1

m − r

(( r

m

)n−1 − 1

)

where r := m−1
mn + 1.

Note, that the frequency p1n,m → 0 as the number of strategies or the number of players
goes to infinity, and that p1n,m is decreasing in both n and m. For instance:

p12,m = 1

m

(
2 − 1

m

)

p13,m = 1

m2

(
3 − 3

m
+ 3

m2 − 3

m3 + 1

m4

)

p14,m = 1

m3

(
4 − 4

m
+ 6

m3 − 8

m4 + 2

m5
+ 4

m6 − 6

m7 + 4

m8 − 1

m9

)

p15,m = 1

m4

(
5 − 5

m
+ 10

m4 − 15

m5
+ 5

m6 + 10

m8 − 20

m9 + 15

m10 − 5

m11 + 5

m12 − 10

m13

+ 10

m14 − 5

m15
+ 1

m16

)
.

Our result is different from the one in [20], where the frequency of games with one PSNE,
but possibly also mixed strategy Nash equilibria, converges to exp(−1) as the number of
strategies for at least two players goes to infinity.

Figure 2 shows the frequency of randomly created games with a unique PSNE. For com-
parison, we show frequencies obtained by numerically sampling over 500 randomly created
games with payoffs drawn from a normal distribution.

3.2 Type B: Convergent Games with Multiple PSNEs

We can bound the frequency of convergent games with more than one PSNE from above:

Theorem 2 For k1 < k2, we have pk1n,m > pk2n,m.

Theorems 1 and 2 imply that for every k, pkn,m → 0 as the number of strategies or the
number of players goes to infinity. We computed for 3-player, 2-strategy games that p13,2 =
1984
4096 ≈ 48.43%, p23,2 = 828

4096 ≈ 20.21%, p33,2 = 56
4096 ≈ 1.37%, p43,2 = 2

4096 ≈ 0.049%.
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Fig. 2 The frequency of randomly drawn games that have a unique PSNE

Fig. 3 The frequency of randomly drawn convergent 2-player games that have a given number of PSNEs

In two-player games, we can exactly state the frequency of games with k PSNEs.

Theorem 3 The frequency of 2-player, m-strategy convergent games with exactly k PSNEs
in the ensemble is given by

pk2,m = 2m − k

m2k+2(k − 1)!
(

m!
(m − k)!

)2

.

for k ≤ m, and is otherwise 0.

The frequency of drawing a 2-player convergent game (Type A or Type B) is then given by∑m
k=1 p

k
2,m , the frequency of Type B games only is

∑m
k=2 p

k
2,m . Numerical evidence shows

that Type A games are more common than Type B games form = 2, . . . , 9, and less common
for m ≥ 10.

Figures 3 and 4 show the frequency of randomly drawn convergent 2-player games that
have a given number of PSNEs.
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Fig. 4 The frequency of randomly drawn convergent 2-player games that have a given number of PSNEs
where the frequency is log-scaled

4 Conclusion

We have investigated the frequency of games that are convergent under a best-response
dynamic, in which each player chooses their optimal pure strategy successively. Such games
may either be perfectly predictable, if they have a unique PSNE, or have multiple PSNEs.
We analytically computed the frequency of the first type by using a novel graph-theoretic
approach for describing games, and showed that if we let the number of players or the number
of strategies go to infinity, almost all games do not converge. We also showed that games
with a higher number of PSNEs are less common than games with a smaller number of
PSNEs. This calls the validity of simple models for complex scenarios into question. If a
simple scenario is to be modelled, a Type A game could be the right approach. However, for
complex scenarios, models based on Type A or Type B games can lead to misleading results.
Instead, techniques from agent-based modelling, network theory, or Bayesian statistics could
be employed.

For 2-player games, we gave an exact formula for the frequency of games with a given
number of PSNEs, and highlight that for less than 10 strategies, games with a unique PSNE
are more common than convergent games with multiple PSNEs, otherwise less common.

We believe that our graph-theoretic approach can generally be very useful to understand
complicated games. Extensions of this work would include finding the analytical frequency
of multi-player games with multiple pure Nash equilibria or with mixed Nash equilibria.

5 Proofs

Proof of Theorem 1 Consider the full n-partite graph for an n-player, m-strategy game. We
order the nodes in the following way: s−i < s− j for different players i and j , if and only if
i < j , and for the same player i , s−i < s′−i under lexicographical ordering. Denote this full
n-partite graph by Gf = (V f, E f), where V is the set of vertices and E is the set of edges.

The Laplacian matrix of a graph G = (V , E) without multiple edges and self-loops is
defined as the square matrix with side length |V | and

(L(G))i j =

⎧
⎪⎨

⎪⎩

δ+(i) if i = j

−1 if i �= j, (i, j) ∈ E

0 if i �= j, (i, j) /∈ E
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where δ+(i) is the out-degree of a node i . ForGf described above, the Laplacian matrix takes
the following form:

L Gf) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

D N1 0 0

0

0

0 Nn−1

S 0 0 D

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

where D, S, N1, . . . , Nn−1 are square matrices with side length mn−1 defined as follows:

– D = diag(m) is a diagonal matrix with m’s on the diagonal
– Nk = diag

(
K1, . . . , Kmk−1

)
is a blockmatrix with blockmatrices Kl on the diagonal,

where each Kl has side lengthmn−l and consists ofm2 diagonal matrices diag(−1), each
with side length mn−l−1.

– S is more irregular,

(S)i j =
{

−1 if
(
i mod mn−2

) =
⌊

j−1
m

⌋

0 otherwise.

For instance, in the case of 3-player, 2-strategy games, the Laplacianmatrix corresponding
to Fig. 5 (left) is given by

L
(
Gf) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

2 0 0 0 −1 0 −1 0 0 0 0 0
0 2 0 0 0 −1 0 −1 0 0 0 0
0 0 2 0 −1 0 −1 0 0 0 0 0
0 0 0 2 0 −1 0 −1 0 0 0 0
0 0 0 0 2 0 0 0 −1 −1 0 0
0 0 0 0 0 2 0 0 −1 −1 0 0
0 0 0 0 0 0 2 0 0 0 −1 −1
0 0 0 0 0 0 0 2 0 0 −1 −1

−1 −1 0 0 0 0 0 0 2 0 0 0
0 0 −1 −1 0 0 0 0 0 2 0 0

−1 −1 0 0 0 0 0 0 0 0 2 0
0 0 −1 −1 0 0 0 0 0 0 0 2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

.

There are mn ways to choose the first PSNE, each fixing n nodes. Without loss of generality,
we choose the nodes where each player chooses their first strategy. We condense these n
nodes to a single node representing the PSNE, see Fig 5. The PSNE-node has an in-degree
of n(m − 1); we delete all outgoing edges. The resulting (n + 1)-partite graph consists of
nmn−1−(n−1) nodes and will be denoted byGc = (V c, Ec), where V c is the set of vertices
and Ec is the set of edges. All nodes except the PSNE-node are free.

We apply Kirchhoff’s theorem to Gc to get the number of spanning trees. This guaran-
tees that the game converges under clockwork best-response dynamics. Kirchhoff’s theorem
(applied to our problem) states that the number of spanning trees is the determinant of the
Laplacian matrix of Gc with the first row and column deleted, which corresponds to the
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Fig. 5 For 3-player, 2-strategy games the full graph Gf on the left and the condensed graph Gc on the right

PSNE-node. For a quadratic matrix A with side length n, we define Ã to be the quadratic
matrix with side length (n − 1) obtained from A by deleting the first row and column.

For a general blockmatrix K =
(
A B
C D

)
, provided that A is invertible, we have

det K = det
(
D − CA−1B

)
det A.

Applying this identity iteratively to L̃ (Gc) yields

det L̃ (Gc) = m
(
mn−1−1

)
(n−1) · det

(

D̃ − 1

mn−1 · S̃ ·
n−1∏

i=1

Ñi

)

.

The matrix S̃ · ∏
i Ñi is given by

(

S̃ ·
∏

i

Ñi

)

i j

= m − 1[1,mn−δ(i)−1]( j)

where

δ(i) := argminp∈[1,n−1]
(

min
k∈[1,mp]

(∣∣i − kmn−p−1
∣∣)

)
.

We simplify the matrix D̃ − 1
mn−1 · S̃ · ∏n−1

i=1 Ñi by elementary row- and column-operations
to obtain a matrix A by the following algorithm:
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Algorithm Simplifying D̃ − 1
mn−1 · S̃ · ∏n−1

i=1 Ñi to obtain A

1. For p ∈ [1, . . . , n − 1]:
(a) For i ∈ [1, . . . ,mn−1 − 1]:

i. If i = mp−1 or δ(i) �= n − p, continue.
ii. Subtract the mp−1’s row from i .

2. For k ∈ [1, . . . , nm−1 − 1]:
(a) If for any p ∈ [0, . . . , n − 1], k|mp , continue.
(b) Add column k to column mn−δ(k)−1.

The determinant of the matrix A can be written as

det A = mmm−1−n · det Â
for a matrix Â with side length (n − 1) and given by

(
Â
)
i j =

⎧
⎪⎨

⎪⎩

m + m−1
mn−1 − m−1

mi−1 i = j
m−1

mn−i+ j−1 − m−1
m j−1 i > j

− m−1
m j−1 i < j

Adding the i-th columnmultiplied by
(− 1

m

)
to the (i+1)-th column for i = n−2, n−3, . . . , 1,

we get a matrix of the following form

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

D1 N 0 0

E2 D

0 0

N

En−1 0 0 D

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

where

D1 = m − 1

mn−1 + 1

Ei = m − 1

mn−i
− (m − 1)

D = m

N = − m − 1

mn
− 1.

To eliminate the N entries on the upper diagonal, we add the i-th row multiplied by

F := −N

D
=

m−1
mn + 1

m

to the (i − 1)-th row for i = n − 1, . . . , 2. Then, the matrix is lower-triangular and the D1

entry is given by

D̃1 = D1 + F · E2 + · · · + Fn−2 · En−1
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= D1 +
n−3∑

i=0

Fi+1 · Ei+2

= D1 +
n−3∑

i=0

Fi+1
(

m − 1

mn−i−2

)
−

n−3∑

i=0

Fi+1(m − 1)

= D1 + F

(
m − 1

mn−2

) n−3∑

i=0

(Fm)i − F(m − 1)
n−3∑

i=0

Fi

= D1 + F

(
m − 1

mn−2

)(
(Fm)n−2 − 1

Fm − 1

)
− F(m − 1)

(
Fn−2 − 1

F − 1

)

= m(r − 1) + m
(
rn−1 − r

) − r(m − 1)

r − m

(( r

m

)n−2 − 1

)
+ 1

where r := m−1
mn + 1, and then

det Â = mn−2 · D̃1.

Finally, the frequency of games with exactly one PSNE is given by

p1n,m = mn

mnmn−1 det L̃ (Gc) = 1

mmn−1−1
det A = 1

mn−1 det Â = 1

m
D̃1

where we have multiplied by the number of possible positions of the PSNE and divided by
the total number of possible arrangements. This completes the proof.

Proof of Theorem 2 Consider a full n-partite graph and assign k PSNEs, thereby fixing the
outgoing edges of kn nodes. We show that the number of possible realizations as a game
decreases, when adding another PSNE.

The number of ways we can add another PSNE (which is, in general, very complicated
to compute) is bounded from above by

(
mn−1 − k

)
m = mn − km, which is because there

are mn−1 − k free nodes for each player, each free node has an out-degree of m, and fixing
two nodes of an n-cycle fixes the remaining ones. However, adding a PSNE decreases the
number of possible realizations as a game by a factor of mn − 1, because the n nodes may
not form a cycle.

Induction over the number of added PSNEs completes the proof.

Proof of Theorem 3 It was shown in Austin [2] that the number of chromatic digraphs with
m nodes of each type, where each node has an out-degree one, and with a cycle of length 2k,
1 ≤ k ≤ m, is

(2m − k)
(
mm−k−1

)2 (
m!

(m − k)!
)2

.

Factoring out the number of ways to arrange k vertices on a cycle ((k + 1)!) and the total
number of possible arrangements (m2m), we get

pk2,m = 2m − k

m2k+2(k − 1)!
(

m!
(m − k)!

)2

.

This was given in Pangallo et al. [17] as a recursively defined formula.
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