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Abstract
Individual behaviors play an essential role in the dynamics of transmission of infectious
diseases, including COVID-19. This paper studies a dynamic game model that describes the
social distancing behaviors during an epidemic, assuming a continuum of players and indi-
vidual infection dynamics. The evolution of the players’ infection states follows a variant of
the well-known SIR dynamics. We assume that the players are not sure about their infection
state, and thus, they choose their actions based on their individually perceived probabilities of
being susceptible, infected, or removed. The cost of each player depends both on her infection
state and on the contact with others. We prove the existence of a Nash equilibrium and char-
acterize Nash equilibria using nonlinear complementarity problems. We then exploit some
monotonicity properties of the optimal policies to obtain a reduced-order characterization
for Nash equilibrium and reduce its computation to the solution of a low-dimensional opti-
mization problem. It turns out that, even in the symmetric case, where all the players have
the same parameters, players may have very different behaviors. We finally present some
numerical studies that illustrate this interesting phenomenon and investigate the effects of
several parameters, including the players’ vulnerability, the time horizon, and the maximum
allowed actions, on the optimal policies and the players’ costs.
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1 Introduction

COVID-19 pandemic is one of the most important events of this era. Until early April 2021, it
has causedmore than 2.8million deaths, an unprecedented economic depression, and affected
most aspects of people’s lives in the larger part of the world. During the first phases of the
pandemic, non-pharmaceutical interventions (primarily social distancing) have been one of
themost efficient tools to control its spread [13]. Due to the slow roll-out of the vaccines, their
uneven distribution, the emergence of SARS-CoV-2 variants, age limitations, and people’s
resistance to vaccination, social distancing is likely to remain significant in large part of the
globe for the near future.

Mathematical modeling of epidemics dates back to early twentieth century with the semi-
nalworks ofRoss [33] andKermack andMcKendrick [24].Awidely usedmodeling approach
separates people in several compartments according to their infection state (e.g., susceptible,
exposed, infected, recovered, etc.) and derives differential equations describing the evolution
of the population of each compartment (for a review, see [1]).

However, the description of individual behaviors (practice of social distancing, use of
face masks, vaccination, etc.) is essential for the understanding of the spread of epidemics.
Game theory is thus a particularly relevant tool. A dynamic game model describing vol-
untary implementation of non-pharmaceutical interventions (NPIs) was presented in [32].
Several extensions were published, including the case where infection severity depends on
the epidemic burden [6], and different formulations of the cost functions (linear vs. nonlinear,
and finite horizon vs. discounted infinite horizon or stochastic horizon) [11,15,37]. Aurell et
al. [4] study the design of incentives to achieve optimal social distancing, in a Stackelberg
game framework. The works [2,10,12,17,22,30,31,39] study different aspects of the cou-
pled dynamics between individual behaviors and the spread of an epidemic, in the context
of evolutionary game theory. Network game models appear in [3,18,27,29], and the effects
of altruism on the spread of epidemics are studied in [8,14,23,26]. Another closely related
stream of research is the study of the adoption of decentralized protection strategies in engi-
neered and social networks [19,21,36,38]. A review of game theoretic models for epidemics
(including also topics other than social distancing, e.g., vaccination) is presented in [9,20].

This paper presents a dynamic game model to describe the social distancing choices of
individuals during an epidemic, assuming that the players are not certain about their infection
state (susceptible (S), infected (I), or removed (R)). The probability that a player is at each
health state evolves dynamically depending on the player’s distancing behavior, the others’
behavior, and the prevalence of the epidemic. We assume that the players care both about
their health state and about maintaining their social contacts. The players may have different
characteristics, e.g., vulnerable versus less vulnerable, or care differently about maintaining
their social contacts.

We assume that the players are not sure about their infection state, and thus, they choose
their actions based on their individually perceived probabilities of being susceptible, infected,
or removed. In contrast with most of the literature, in the current work, players—even players
with the same characteristics—are allowed to behave differently. We first characterize the
optimal action of a player, given the others’ behavior, and show somemonotonicity properties
of optimal actions. We then prove the existence of a Nash equilibrium and characterize it in
terms of a nonlinear complementarity problem.

Using the monotonicity of the optimal solution, we provide a simple reduced-order char-
acterization of the Nash equilibrium in terms of a nonlinear programming problem. This
formulation simplifies the computation of the equilibria drastically. Based on that result, we
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Fig. 1 The evolution of the
infection state of each individual
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performed numerical studies, which verify that players with the same parameters may follow
different strategies. This phenomenon seems realistic since people facing the same risks or
belonging to the same age group often have different social distancing behaviors.

Themodel presented in this paper differs frommost of the dynamic gamemodels presented
in the literature in the following ways:

(a) The players actwithout knowing their infection state.However, they know the probability
of being susceptible, infected, or recovered, which depends on their previous actions and
the prevalence of the epidemic.

(b) The current model allows for asymmetric solutions, i.e., players with the same charac-
teristics may behave differently.

The rest of the paper is organized as follows. Section 2 presents the game theoretic model. In
Sect. 3, we analyze the optimization problem of each player and prove some monotonicity
properties. In Sect. 4, we prove the existence of the equilibrium and provide Nash equilibrium
characterizations. Section 5 presents some numerical results. Finally, ‘Appendix’ contains
the proof of the results of the main text.

2 TheModel

This section presents the dynamic model for the epidemic spread and the social distancing
game among the members of the society.

We assume that the infection state of each agent could be susceptible (S), infected (I),
recovered (R), or dead (D). A susceptible person gets infected at a rate proportional to the
number of infected people she meets with. An infected person either recovers or dies at
constant rates, which depend on her vulnerability. An individual who has recovered from
the infection is immune, i.e., she could not get infected again. The evolution of the infection
state of an individual is shown in Fig. 1.

We assume that there is a continuum of agents. This approximation is frequently used
in game theoretic models dealing with a very large number of agents. The set of players
is described by the measure space ([0, 1),B, μ), where B is the Borel σ -algebra and μ the
Lebesgue measure. That is, each player is indexed by an i ∈ [0, 1).

Denote by Si (t), I i (t), Ri (t), Di (t) the probability that player i ∈ [0, 1) is susceptible,
infected, removed, or dead at time t . The dynamics is given by:
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Ṡi = −rui Si I f

İ i = rui Si I f − αi I i

Ṙi = ᾱi I i

Ḋi = (αi − ᾱi )I i

, (1)

where r , αi are positive constants, and ui (t) is the action of player i at time t . The quantity
ui (t) describes player i’s socialization, which is proportional to the time she spends in public
places. The quantity I f , which denotes the density of infected people in public places, is
given by:

I f (t) =
∫

I i (t)ui (t)μ(di). (2)

For the actions of the players, we assume that there are positive constants um , uM , such that
ui (t) ∈ [um, uM ] ⊂ [0, 1]. The constant um describes the minimum social contacts needed
for an agent to survive, and uM is an upper bound posed by the government.

The cost function for player i is given by:

J i = Gi (1 − Si (T )) − si
∫ T

0
ui (t)ũ(t)dt − si

∫ T

0
κui (t)dt, (3)

where T is the time horizon. The parameterGi > 0 depends on the vulnerability of the player
and indicates the disutility a player experiences if she gets infected. The quantity 1− Si (T )

corresponds to the probability that player i gets infected before the end of the time horizon.
(Note that in that case the infection state of the player at the end of the time horizon is I , R,
or D.) The second term corresponds to the utility a player derives from the interaction with
the other players, whose mean action is denoted by ũ(t):

ũ(t) =
∫

ui (t)μ(di). (4)

The third term indicates the interest of a person to visit public places. The relative magnitude
of this desire is modeled by a positive constant κ . Finally, constant si indicates the importance
player i gives on the last two terms that correspond to going out and interacting with other
people.

Considering the auxiliary variable ū(t):

ū(t) = κ + ũ, (5)

and computing S(T ) by solving (1), the cost can be written equivalently as:

J i = Gi
(
1 − Si (0)e−r

∫ T
0 ui (t)I f (t)dt

)
− si

∫ T

0
ui (t)ū(t)dt . (6)

Without loss of generality, assume that Ri (0) = Di (0) = 0 for all i ∈ [0, 1).
Assumption 1 (Finite number of types) There are M types of players. Particularly, there are
M + 1 values 0 = ī0 < · · · < īM = 1 such that the functions Si (0), I i (0),Gi , si , αi :
[0, 1) → R are constant for i ∈ [ī0, ī1), i ∈ [ī1, ī2), . . . , i ∈ [īM−1, īM ). Denote by
m j = μ([ī j−1, ī j )) the mass of the players of type j . Of course m1 + · · · + mM = 1.

Remark 1 The finite number of types assumption is very common in many applications deal-
ing with a large number of agents. For example, in the current COVID-19 pandemic, people
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are grouped based on their age and/or underlying diseases to be prioritized for vaccination.
Assumption 1, combined with some results of the following section, is convenient to describe
the evolution of the states of a continuum of players using a finite number of differential equa-
tions.

Assumption 2 (Piecewise constant actions) The interval [0, T ) can be divided in subintervals
[tk, tk+1), with t0 = 0 < t1 < · · · < tN = T , such that the actions of the players are constant
in these intervals.

Remark 2 Assumption 2 indicates that people decide only a finite number of times (tk) and
follow their decisions for a time interval [tk, tk+1). A reasonable length for that time interval
could be 1 week.

The action of player i in the interval [tk, tk+1) is denoted by uik .

Assumption 3 (Measurability of the actions) The function u·
k : [0, 1) → [um, uM ] is mea-

surable.

Under Assumptions 1–3, there is a unique solution to differential equations (1), with initial
conditions S·(0), I ·(0), and the integrals in (2), (4) are well defined (see Appendix A.1). We
use the following notation:

ūk =
∫ tk+1

tk
ūdt, and I f

k =
∫ tk+1

tk
I f (t)dt .

For each player, we define an auxiliary cost, by dropping the fixed terms of (6) and dividing
by si :

J̃ i (ui , ū, I f ) = −bi exp

[
−r

N−1∑
k=0

uik I
f
k

]
−

N−1∑
k=0

uik ūk, (7)

where bi = Si (0)Gi/si , and ui = [ui0, . . . , uiN−1]T . Denote by U = [um, uM ]N the set
of possible actions for each player. Observe that ui minimizes J i over the feasible set U if
and only if it minimizes the auxiliary cost J̃ i . Thus, the optimization problem for player i is
equivalent to:

minimize
ui∈U

J̃ i (ui , ū, I f ). (8)

Note that the cost of player i depends on the actions of the other players through the terms ū
and I f . Furthermore, the current actions of all the players affect the future values of ū and
I f through the SIR dynamics.

Assumption 4 For a player i of type j , denote b j = bi . Assume that the different types of
players have different b j ’s. Without loss of generality, assume that b1 < b2 < · · · < bM .

Assumption 5 Each player i has access only to the probabilities Si and I i and the aggregate
quantities ū and I f , but not the actual infection states.

Remark 3 This assumption is reasonable in cases where the test availability is very sparse,
so the agents are not able to have a reliable feedback for their estimated health states.

In the rest of the paper, we suppose that Assumptions 1–5 are satisfied.
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3 Analysis of the Optimization Problem of Each Player

In this section, we analyze the optimization problem for a representative player i , given ūk
and I f

k > 0, for k = 0, . . . , N − 1.
Let us first define the following composite optimization problem:

minimize
A

{
−bi e−A + f (A)

}
, (9)

where:

f (A) = inf
ui∈U

{
−

N−1∑
k=0

uik ūk :
N−1∑
k=0

uik I
f
k = A/r

}
. (10)

The following proposition proves that (8) and (9) are equivalent and express their solution
in a simple threshold form.

Proposition 1 (i) If ui is optimal for (8), then ui ∈ Ũ = {um, uM }N .
(ii) Problems (8) and (9) are equivalent, in the sense that they have the same optimal values,

and ui minimizes (8) if and only if there is an optimal A for (9) such that ui attains the
minimum in (10).

(iii) Let Am = rum
∑N−1

k=0 I f
k and AM = ruM

∑N−1
k=0 I f

k . For A ∈ [Am, AM ], the function
f is continuous, non-increasing, convex, and piecewise affine. Furthermore, it has at
most N affine pieces and f (A) = ∞, for A /∈ [Am, AM ].

(iv) There are at most N + 1 vectors ui ∈ U that minimize (8).
(v) If ui is optimal for (8), then there is a λ′ such that ūk/I

f
k ≤ λ′ implies uik = um, and

ūk/I
f
k > λ′ implies uik = uM.

Proof The idea of the proof of Proposition 1 is to reduce the problem of minimizing (8) into
the minimization of the sum of the concave function−bi e−A with a piecewise affine function
f (A). Then, the candidates for the minimum are only the corner points and of f (A) and the
endpoints of the interval, where f is defined. The form of the optimal action ui comes from
a Lagrange multiplier analysis of (10). For a detailed proof, see Appendix 2. �	
Remark 4 Part (v) of the proposition shows that if the density of infected people in public
places I f is high, or the average socialization ū is low, then it is optimal for a player to
choose a small degree of socialization. The optimal action for each player depends on the
ratio ūk/I

f
k . Particularly, there is a threshold λ′ such that the action of player i is um for

values of the ratio below the threshold and uM for ratios above the threshold. Note that the
threshold is different for each player.

Remark 5 The fact that the optimal value of a linear program is a convex function of the
constraints constants is known in the literature (e.g., see [35] chapter 2). Thus, the convexity
of the function f is already known from the literature.

Corollary 1 There is a simple way to solve the optimization problem (8) using the following
steps:

1. Compute � = {ūk/I f
k : k = 0, . . . , N − 1} ∪ {0}.

2. For all λ′ ∈ � compute uλ′
with:

uλ′
k =

{
uM if ūk/I

f
k > λ′

um if ūk/I
f
k ≤ λ′ ,
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and J i (uλ′
).

3. Compare the values of J i (uλ′
), for all λ′ ∈ �, and choose the minimum.

We then prove some monotonicity properties for the optimal control.

Proposition 2 Assume that for two players i1 and i2, with parameters bi1 and bi2 , the min-
imizers of (9) are A1 and A2, respectively, and ui1 and ui2 are the corresponding optimal
actions. Then:

(i) If bi1 < bi2 , then A1 ≥ A2.
(ii) If bi1 < bi2 , then ui2k ≤ ui1k , for k = 0, . . . , N − 1.

(iii) If bi1 = bi2 , then either ui2k ≤ ui1k for all k, or ui1k ≤ ui2k for all k.

Proof See Appendix 3. �	
Remark 6 Recall that bi = Si (0)Gi/si . Thus, Proposition 2(ii) expresses of the fact that if
(a) a person is more vulnerable, i.e., she has large Gi , or (b) she derives less utility from the
interaction with the others, i.e., she has smaller si , or (c) it is more likely that she is not yet
infected, i.e., she has larger Si (0), then she interacts less with the others.

Remark 7 The optimal control law can be expressed in feedback form (see Appendix A.4.1).

4 Nash Equilibrium Existence and Characterization

4.1 Existence and NCP Characterization

In this section, we prove the existence of a Nash equilibrium and characterize it in terms of
a nonlinear complementarity problem (NCP).

We consider the set Ũ = {um, uM }N , defined in Proposition 1. Let v1, . . . , v2N be the
members of the set Ũ and p j

l be the mass of players of type j following action vl ∈ Ũ .

Let also p j = [p j
1 , . . . , p

j
2N

] be the distribution of actions of the players of type j and

π = [p1, . . . , pM ] be the distribution of the actions of all the players.
Denote by:

� j =
⎧⎨
⎩p j ∈ R

2N : p j
l ≥ 0,

2N∑
l=1

p j
l = m j

⎫⎬
⎭ , (11)

the set of possible distributions of actions of the players of type j and by	 = �1×· · ·×�M

the set of all possible distributions.
Finally, let F : 	 → R

2N ·M be the vector function of auxiliary costs; that is, the
component F( j−1)2N+l(π) is the auxiliary cost of the players of type j playing a strat-
egy vl , as introduced in (7), when the distribution of actions is π . We denote F j (π) =
[F( j−1)2N+1(π), ..., Fj2N (π)] the vector of the auxiliary costs of the players of type j play-
ing vl , l = 1, . . . , 2N .

Let us recall the notion of a Nash equilibrium for games with a continuum of players (e.g.,
[28]).

Definition 1 A distribution of actions π ∈ 	 is a Nash equilibrium if for all j = 1, . . . , M
and l = 1, . . . , 2N :

π( j−1)2N+l > 0 �⇒ l ∈ argmin
l ′

F( j−1)2N+l ′(π) (12)
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Let δ j (π) be the value of problem (8), i.e., the minimum value of the auxiliary cost of
an agent of type j . This value depends on π , through the terms I f and ū. Define � j (π) =
F j (π) − δ j (π) and �(π) = [�1(π)...�M (π)]. We then characterize a Nash equilibrium in
terms of a nonlinear complementarity problem (NCP):

0 ≤ π ⊥ �(π) ≥ 0, (13)

where π ⊥ �(π) means that πT�(π) = 0.

Proposition 3 (i) A distribution π ∈ 	 corresponds to a Nash equilibrium if and only if it
satisfies the NCP (13).

(ii) A distribution π ∈ 	 corresponds to a Nash equilibrium if and only if it satisfies the
variational inequality:

(π ′ − π)T F(π) ≥ 0, for all π ′ ∈ 	 (14)

(iii) There exists a Nash equilibrium.

Proof See Appendix A.5. �	
Remark 8 In principle, we can use algorithms for NCPs to find Nash equilibria. The problem
is that the number of decision variables grows exponentially with the number of decision
steps. Thus, we expect that such methods would be applicable only for small values of N .

4.2 Structure and Reduced-Order Characterization

In this section, we use the monotonicity of the optimal strategies, shown in Proposition 2, to
derive a reduced-order characterization of the Nash equilibrium.

The actions on a Nash equilibrium have an interesting structure. Assume that π is a Nash
equilibrium and:

V = {vl ∈ Ũ : ∃ j : π( j−1)2N+l > 0} ⊂ Ũ , (15)

is the set of actions used by a set of playerswith a positivemass. Let us define a partial ordering
on Ũ . For v1, v2 ∈ Ũ , we write v1 � v2 if v1k ≤ v2k for all k = 1, . . . , N . Proposition 2(iii)
implies that V is a totally ordered subset of Ũ (chain).

Lemma 1 There are at most N ! maximal chains in Ũ , each of which has length N + 1. Thus,
at a Nash equilibrium, there are at most N + 1 different actions in V .
Proof See Appendix A.6. �	

For each time step k, denote by ρk the fraction of players who play uM , that is, ρk = μ({i :
uik = uM }). Given any vector ρ = [ρ1 . . . ρN ] ∈ [0, 1]N , we will show that there is a unique
π ∈ 	, such that the corresponding actions satisfy the conclusion of Proposition 2(iii) and
induce the fractions ρ. An example of the relationship between π and ρ is given in Fig. 2.

Let us define the following sets:

Ik = {i ∈ [0, 1) : uik = uM }, Kk = {k′ : ρk′ ≥ ρk}, k = 0, . . . , N − 1.

Let k1, . . . , kN be a reordering of 0, . . . , N − 1 such that ρk1 ≤ ρk2 ≤ · · · ≤ ρkN . Consider
also the set Ṽ = {v̄1, . . . , v̄N+1} of N + 1 actions v̄n with:

v̄nk =
{
uM if k ∈ Kkn

um otherwise
, n = 1, . . . , N , (16)
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Fig. 2 In this example, N = 5 and there are M = 3 types of players, depicted with different colors. The mass
of players below each solid line play uM , and the mass of players above the line play um . Example 1 computes
π from ρ

and v̄N+1
k = um , for all k. Observe that v̄n+1 � v̄n . The following proposition shows that

the set V , defined in (15) is subset of the set Ṽ .
Before stating the proposition, let us give an example.

Example 1 Consider the fractions described in Fig. 2. There are three types of players with
total massm1,m2, andm3 with corresponding colors blue, pink, and yellow. In this example,
we assume that the actions of each player i ∈ [0, 1) are given by:

uik =
{
1, if i < ρk

0, otherwise
(17)

The sets Ik are given by:

Ik = [0, ρk).
The sets Kk are given by:

K0 = {2}, K1 = {2, 3}, K2 = {2, 3, 1}, K3 = {2, 3, 1, 4}, K4 = {2, 3, 1, 4, 0}.
The actions v̄n are given by:

v̄0 = [uM , uM , uM , uM , uM ], v̄1 = [uM , uM , um, uM , uM ],
v̄2 = [uM , uM , um, um, uM ], v̄3 = [uM , um, um, um, uM ],
v̄4 = [uM , um, um, um, um], v̄5 = [um, um, um, um, um].

(18)

The mass of the players of each type following each action is described in the following
table:

The following proposition and its corollary present a method to compute π from ρ in the
general case (i.e., without assuming a set of actions in a form similar to (17)).

Proposition 4 Assume that (uik)i∈[0,1),k=0,...,N−1, with ui ∈ Ũ , be a set of actions satisfying
the conclusions of Proposition 2. Then:



Dynamic Games and Applications (2022) 12:214–236 223

Type 1 1 2 2 2 2 3 3

Mass ρ2 ī1 − ρ2 ρ3 − m1 ρ1 − ρ3 ρ4 − ρ1 ī2 − ρ4 ρ0 − ī2 1 − ρ0
Action v̄0 v̄1 v̄1 v̄2 v̄3 v̄4 v̄4 v̄5

(i) For k �= k′, either Ik ⊂ Ik′ or Ik′ ⊂ Ik .
(ii) If for some k, k′, it holds ρk = ρk′ , then μ-almost surely all the players have the same

action on k, k′, i.e., μ({i : uik = uik′ }) = 1.
(iii) Up to subsets of measure zero, the following inclusions hold:

Ik1 ⊂∼ Ik2 ⊂∼ . . . ⊂∼ IkN ,

Kk1 ⊃ Kk2 ⊃ · · · ⊃ KkN ,

where Ikn ⊂∼ Ikn+1 indicates that μ(Ikn \ Ikn+1) = 0. Furthermore, μ(Ik) = ρk .
(iv) For μ-almost all i ∈ Ikn+1 \ Ikn , the action ui is given by v̄n+1, for μ-almost all i ∈ Ik1 ,

ui = v̄1, and for μ-almost all i ∈ [0, 1) \ IkN , u
i
k = v̄N+1.

Proof See Appendix A.7. �	
Corollary 2 The mass of players of type j with action v̄n is given by:

μ(i : i is of type j, ui = v̄n) = μ([ī j−1, ī j ) ∩ [ρkn−1 , ρkn )), (19)

where we use the convention that ρk0 = 0, and ρkN+1 = 1. Thus:

π( j−1)2N+l =
{

μ([ī j−1, ī j ) ∩ [ρkn−1 , ρkn )) if vl = v̄n

0 otherwise
(20)

Proof The proof follows directly from Propositions 4 and 2(ii). �	
Remark 9 There are at most M + N + 1 combinations of j, l such that π( j−1)2N+l > 0.

Let us denote by π̃(ρ) the value of vector π computed by (20).

Example 2 The situation is the same as in Example 1, but without assuming that the actions
are given by (17). Then, Corollary 2 shows that π̃(ρ) is given by the table in Example 1.

Proposition 5 The fractions ρ0, . . . , ρN−1 correspond to a Nash equilibrium if and only if:

H(ρ) =
M∑
j=1

N+1∑
n=1

μ([ī j−1, ī j ) ∩ [ρkn−1 , ρkn ))(F̄j,v̄n (π̃(ρ)) − δ j (π̃(ρ))) = 0, (21)

where F̄j,v̄n (π) is the cost of action v̄n, for a player of type j . Furthermore, H(π) is contin-
uous and nonnegative.

Proof See Appendix A.8. �	
Remark 10 The computation of an equilibrium has been reduced to the calculation of the
minimum of an N−dimensional function. We exploit this fact in the following section to
proceed with the numerical studies.
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5 Numerical Examples

In this section, we give some numerical examples of Nash equilibria computation. Section 5.1
presents an example with a single type of players and Sect. 5.2 an example with many types
of players. Section 5.3 studies the effect of the maximum allowed action uM on the strategies
and the costs of the players.1

5.1 Single Type of Players

In this subsection, we study the symmetric case, i.e., all the players have the same parameter
bi . The parameters for the dynamics are r = 0.4 and a = 1/6 which correspond to an
epidemic with basic reproduction number R0 = 2.4, where an infected person remains
infectious for an average of 6 days. (These parameters are similar to [22] which analyzes
COVID-19 epidemic.) We assume that um = 0.4 and that there is a maximum action uM =
0.75, set by the government. The discretization time intervals are 1week, and the time horizon
T is approximately 3 months (13 weeks). The initially infected players are I0 = 0.01. We
chose this time horizon to model a wave of the epidemic, starting at a time point where 1%
of the population is infected. We assume that κ = 3.

We then compute the Nash equilibrium using a multi-start local search method for (21).
Figure 3 shows the fraction ρ of players having action uM at each time step and the evolution
of the total mass of infected players for the several values of b. We observe that, for small
values of b, which correspond to less vulnerable or very sociable agents, the players do
not engage in voluntary social distancing. For intermediate values of b, the players engage
voluntary social distancing, especially when there is a large epidemic prevalence. For large
values of b, there is an initial reaction of the players which reduces the number of infected
people. Then, the actions of the players return to intermediate levels and keep the number
of infected people moderate. In all the cases, voluntary social distancing ‘flattens the curve’
of infected people mass, in the sense that it reduces the pick number of infected people and
leaves more susceptible persons in the end on the time horizon.

We then present some results for the casewhere bi = 200. Figure 4 illustrates the evolution
of Si (t) and I i (t), for the players having different strategies. We observe that the trajectories
of Si ’s do not intersect.What is probably interesting is that the trajectories of I i may intersect.
This indicates that, toward the end of the time horizon, it is probable for a person who was
less cautious, i.e., she used higher values of ui , to have a lower probability of being infectious.

5.2 Many Types of Players

We then compute the Nash equilibrium for the case of multiple types of players. We assume
that there are six types of players with vulnerability parametersG1 = 100, G2 = 200, G3 =
400, G4 = 800, G5 = 1600, G6 = 3200. The sociability parameter si is equal to 1, for all
the players. The masses of these types are m1 = 0.5 and m2 = · · · = m6 = 0.1. The initial
condition is for all the players I0 = 0.0001, and the time horizon is 52 weeks (approximately
a year). Here, we assume that the maximum action is uM = 0.8. The rest of the parameters
are as in the previous subsection.

1 Data availability: The datasets generated during and analyzed during the current study are available from
the corresponding author on reasonable request.
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Fig. 3 a The fractions ρk , for k = 1, . . . , 13, for different values of b. b The evolution of the number of
infected people under the computed Nash equilibrium

Fig. 4 The evolution of the probabilities Si and I i , for players following different strategies, for b = 200.
Different colors are used to illustrate the evolution of the probabilities for players using different strategies

Figure 5 presents the fractions ρ and the evolution of the probability of each category of
players to be susceptible and infected. Let us note that the analysis of Sect. 4.2 simplifies a
lot the analysis. Particularly, the set	 has (252−1)6 � 8.3 ·1093 dimensions, while Problem
(21) only 52.

5.3 Effect of uM

We then analyze the case where the types of the players are as in Sect. 5.2, and the initial
condition is I0 = 0.005 for all the players, for various values of uM . The time horizon is
13 weeks.
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Fig. 5 a The fractions ρk of players having an action uM . Note that the fractions correspond to players of all
types. Since si = 1, for all the types, it holds b1 < · · · < b6, and thus, the more vulnerable players cannot
have an action higher than the less vulnerable ones. b The probability of a class of people to be susceptible
and infected. The colored lines correspond to the probabilities of being susceptible Si (t) and infected I i (t),
for the several strategies of the players. The bold black line represents the mass of susceptible and infected
persons (Color figure online)

Figure 6a illustrates the equilibrium fractions ρk , for the various values of uM . We observe
that as uM increases, the fractions ρk decrease. Figure 6b shows the evolution of the mass of
infected players, for the different values of the maximum action uM . We observe that as uM

increases, the mass of infected players decreases. Figure 6c presents the cost of the several
types of players, for the different value of the maximum action uM . We observe that players
with low vulnerability (G = 100) prefer always a larger value of uM , which corresponds to
less stringent restrictions. For vulnerable players (e.g., G = 3200), the cost is an increasing
function of uM ; that is, they prefer more stringent restrictions. For intermediate values of G,
the players prefer intermediate values of uM . The mean cost in this example is minimized
for uM = 0.6.

6 Conclusion

This paper studied a dynamic game of social distancing during an epidemic, giving an empha-
sis on the analysis of asymmetric solutions. We proved the existence of a Nash equilibrium
and derived some monotonicity properties of the agents’ strategies. The monotonicity result
was then used to derive a reduced-order characterization of the Nash equilibrium, simplifying
its computation significantly. Through numerical experiments, we show that both the agents’
strategies and the evolution of the epidemic depend strongly on the agents’ parameters (vul-
nerability, sociality) and the epidemic’s initial spread. Furthermore, we observed that agents
with the same parameters could have different behaviors, leading to rich, high-dimensional
dynamics. We also observe that more stringent constraints on the maximum action (set by
the government) benefit the more vulnerable players at the expense of the less vulnerable.
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Fig. 6 a The fractions ρk , for the several values of the maximum action uM . b The mass of infected people
as a function of time, for the different values of the maximum action uM . c The cost for the several classes of
players, for the different values of the maximum action uM . The bold black line represents the mean cost of
all the players

Furthermore, there is a certain value for the maximum action constant that minimizes the
average cost of the players.

There are several directions for future work. First, we can study more general epidemics
models than the SIR. Second, we can investigate different information patterns, including
the cases where the agents receive regular or random information about their health state.
Finally, we can compare the behaviors computed analytically with real-world data.

A Appendix: Proof of the Results of theMain Text

A.1 Existence of Solution to (1)

Note that the first two equations in (1) do not depend on Ri and Di . Thus, it suffices to show
that the first two equations of (1) have a unique solution.

For any i ∈ [0, 1), if [Si (t), I i (t)] solve the differential equations (1),with initial condition
(Si (0), I i (0)) ∈ [0, 1]2, then (Si (t), I i (t)) remain in [0, 1]2. Thus, we consider the solution
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of the differential equations:

Ṡi = satB(−rui Si I f (t))

İ i = satB(rui Si I f (t) − αi I i )
, (22)

where satB(z) = max(min(z, B),−B), and B = ru2M + max j α j .
Consider the Banach space X = L1([0, 1),R2), and let x0 = (S·(0), I ·(0)) : [0, 1) →

R
2. Then, under Assumptions 1,3, it holds x0 ∈ X . For each interval [tk, tk+1), the differential

equations (22) with the corresponding initial conditions can be written as:

ẋ = fk(x), x(tk) = xk0 , (23)

where for x : i �→ [Si , I i ]T , the value of fk(x) ∈ X is given by:

fk(x) : i �→ [satB(−ruik S
iMk x), satB(ruik S

iMk x − αi I i )]T ,

where Mk : X → R is a linear bounded operator with Mk x = ∫
I i uikμ(di). For the initial

condition, it holds x00 = x0, and xk0 = x(tk) is computed from the solution of (23) on the
interval [tk−1, tk), for k ≥ 1. For all k, fk is Lipschitz and thus there is a unique solution
to (23) (e.g., Theorem 7.3 of [7]). Furthermore, both I ·(t) and u·(t) are measurable and
bounded. Thus, the integrals in (4), (2) are well defined.

Note that from Assumption 1, we only used the fact that S·(0), I ·(0) : [0, 1) → R are
measurable and not the piecewise constant property.

Proof of Proposition 1

(i) Since r I f
k > 0 and bi > 0, the cost (7) is strictly concave, with respect to uik . Thus, the

minimum with respect to uik is either um or uM .
(ii) SinceU is compact and J̃ is continuous, there is an optimal solution for (8). Denote by

ui,
 this solution. Further, denote by V1 = J̃ i (ui,
) and V2 = inf A{−bi e−A + f (A)}
the values of problems (8) and (9), respectively. Then, for A
 = ∑N−1

k=0 rui,
k I f
k , we

have

V2 ≤ −bi e−A
 + f (A
) ≤ −bi exp

[
−r

N−1∑
k=0

ui,
k I f
k

]
−

N−1∑
k=0

ui,
k ūk = J̃ i (ui,
) = V1,

where the first inequality is due to the definition of V2 and the second inequality is due
to the definition of f (A
). To contradict, assume that V2 < V1. Then, there is some A
and an ε > 0 such that:

−bi e−A + f (A) < V1 − 2ε. (24)

Thus, there is a ũi such that A = ∑N−1
k=0 r ũik I

f
k and

∑N−1
k=0 ũik ūk < f (A)+ε. Combining

with (24), we get J̃ i (ũ) < V1 − ε, which contradicts the definition of V1. For ui,


minimizing (8), the problem (9) is minimized for A
 = ∑N−1
k=0 rui,
k I f

k and ui,
 attains
the minimum in (10). To see this, observe that otherwise we would have V2 < V1. On
the other hand, assume that A minimizes (9) and ui attains the minimum in (10). Then,
V2 = −be−A + f (A) = J i (ui ). Furthermore, since V2 = V1, it holds J i (ui ) = V1,
and thus, ui minimizes J i .



Dynamic Games and Applications (2022) 12:214–236 229

(iii) The set
{
ui ∈ U : ∑N−1

k=0 uik I
f
k = A/r

}
is non-empty if and only if A ∈ [Am, AM ].

Thus, the f (A) is finite if and only if A ∈ [Am, AM ].
For A ∈ [Am, AM ], there exists an optimal solution ui that attains the minimum in (10).
Since (10) is a feasible linear programming problem, there is a Lagrange multiplier λ

(e.g., Proposition 5.2.1 of [5]), and ui minimizes the Lagrangian:

L(ui , λ) = −
N−1∑
k=0

ūku
i
k + λ

N−1∑
k=0

I f
k u

i
k − λA/r . (25)

Thus, uik = um , if ūk/I
f
k < λ and uik = uM , if ūk/I

f
k > λ. To compute f (A), we

reorder k, using a new index k′, such that ūk′/I f
k′ is non-increasing. Let:

k′
A = max

⎧⎪⎨
⎪⎩k̄′

A :
k̄′
A−1∑
k′=0

uM I f
k′ +

N−1∑
k′=k̄′

A

um I
f
k′ ≤ A/r

⎫⎪⎬
⎪⎭ .

Then:

�k′
A

+ ui
k̄′
A
I f
k̄′
A

= A/r .

where �k′
A

= ∑k̄′
A−1

k′=0 uM I f
k′ + ∑N−1

k′=k̄′
A+1

um I
f
k′ . Thus:

f (A) = −
k′
A−1∑
k′=0

ūk′uM −
N−1∑

k′=k′
A+1

ūk′um − ūk′
A

I f
k′
A

(A/r − �k′
A
),

for A/r ∈ [�k′
A

+ um I
f
k′
A
, �k′

A
+ uM I f

k′
A
]. It holds:

�k′
A

+ uM I f
k′
A

= �k′
A+1 + um I

f
k′
A+1.

Therefore, f is continuous and piecewise affine. Furthermore, since ūk′/I f
k′ is non-

increasing with respect to k′, the slope of f is non-decreasing, i.e., it is convex. Thus, f
is differentiable in all (Am, AM ) except of the points A = �k′ + uM I f

k′ with ūk′/I f
k′ >

ūk′+1/I
f
k′+1. The linear parts of f are at most N .

(iv) Since −bi e−A is strictly concave in A, there are at most N + 1 possible minima
of −bi e−A + f (A), which correspond to the points of non-differentiability of f in
(Am, AM ) and the points Am and AM . Observe that for A = Am or A = AM , there is
a unique ui minimizing (10). We then show that for all the non-differentiability points
A of f , there is a unique ui minimizing (10). If A is a non-differentiability point, there

is a k′
0 such that A/r = ∑k′

0
k′=0 I

f
k′ uM + ∑N−1

k′=k′
0+1 I

f
k′ um and ūk′

0
/I f

k′
0

> ūk′
0+1/I

f
k′
0+1.

We then show that the unique minimizer in (10) is given by uik′ = uM for k′ ≤ k′
0 and

uik′ = um for k′ > k′
0. Indeed, u

i is feasible and if u′ �= ui is another feasible point, it
holds:

k′
0∑

k′=0

(uM − u′
k′)I

f
k′ +

N−1∑
k′=k′

0+1

(um − u′
k′)I

f
k′ = 0.
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Multiplying by ūk′
0
/I f

k′
0
, we get:

k′
0∑

k′=0

(uM − u′
k′)

I f
k′ ūk′

0

I f
k′
0

+
N−1∑

k′=k′
0+1

(um − u′
k′)

I f
k′ ūk′

0

I f
k′
0

= 0.

Then, using that uM − u′
k′ ≥ 0, um − u′

k′ ≤ 0, and that for k′ ≤ k′
0, it holds ūk′/I f

k′ ≥
ūk′

0
/I f

k′
0
and for k′ > k′

0, it holds ūk′/I f
k′ < ūk′

0
/I f

k′
0
, we have:

−
N−1∑
k′=0

u′
k′ ūk′ −

[
−

N−1∑
k′=0

uik′ ūk′

]
=

k′
0∑

k′=0

(uM − u′
k′)

I f
k′ ūk′

I f
k′

+
N−1∑

k′=k′
0+1

(um − u′
k′)

I f
k′ ūk′

I f
k′

≥0,

and the inequality is strict if for some k′ > k′
0, u

′
k′ �= um . Therefore, ui is optimal and if

u′ is also optimal, then it should satisfy u′
k′ = um for all k′ > k′

0. Combining this with

the fact that
∑N−1

k′=0 u
′
k′ I

f
k′ = A/r and I f

k′ > 0, we get u′ = ui .
(v) We have shown that if ui is optimal, then there is a k′

0 such that uik′ = uM for k′ ≤ k′
0

and uik′ = um for k′ > k′
0. Then, using the original index k, the optimal control can be

expressed as:

uik =
{
uM if ūk/I

f
k ≥ λ′

um if ūk/I
f
k < λ′ ,

where λ′ = ūk′
0
/I f

k′
0
.

A.3 Proof of Proposition 2

(i) Since A1 is optimal for bi1 and A2 is optimal for bi2 , it holds:

−bi1e−A1 + f (A1) ≤ −bi1e−A2 + f (A2),

−bi2e−A2 + f (A2) ≤ −bi2e−A1 + f (A1).

Adding these equations and reordering, we get:

(bi2 − bi1)e−A2 ≥ (bi2 − bi1)e−A1 .

And since bi2 > bi1 , we get A1 ≥ A2

(ii) Using (v) of Proposition 1, and A1 ≥ A2, we get:

A1/r =
N−1∑
k=0

ui1k I
f
k =

N−1∑
k=0

(
um + (uM − um)hλ′

1
(ūk/I

f
k )

)
I f
k ≥

≥
N−1∑
k=0

(
um + (uM − um)hλ′

2
(ūk/I

f
k )

)
I f
k =

N−1∑
k=0

ui2k I
f
k = A2/r

where hλ(·) is the Heaviside function, i.e., hλ′(x) = 1 if x ≥ λ′ and hλ′(x) = 0
otherwise. Therefore, λ′

1 ≤ λ′
2.
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(iii) Assume that for k1 �= k2, u
i1
k1

= ui2k2 = um and ui2k1 = ui1k2 = uM . Then, using (v) of
Proposition 1 we have:

λ′
2 <

ūk1
I f
k1

≤ λ′
1, λ′

1 ≤ ūk2
I f
k2

< λ′
2,

which is a contradiction.

A.4 Optimal Control and Equilibria in Feedback Form

A.4.1 Optimal Control in Feedback Form

In this section, we express the optimal control law in feedback form using dynamic program-
ming. Let Vk(Sik, s

i ,Gi ) be the optimal cost-to-go from time k of a player with parameters
si ,Gi :

Vk(S
i
k, s

i ,Gi ) = min
ui

{
Gi − Gi Sik exp

[
−r

N−1∑
k′=k

uik′ I
f
k′

]
− si

N−1∑
k′=k

uik′ ūk′

}
, (26)

where Sik = Si (tk) = Si (0) exp
[
−r

∑k−1
k′=0 u

i
k′ I

f
k′

]
. The optimal cost-to-go can be expressed

as:

Vk(S
i
k, s

i ,Gi ) = Gi + si Ṽk(S
i
k,G

i/si ).

We call Ṽk the ‘auxiliary cost-to-go.’

Proposition 6 (i) The auxiliary cost-to-go Ṽk(Sik,G
i/si ) is non-increasing and concave in

Sik .
(ii) The optimal cost-to-go Vk(Sik, s

i ,Gi ) is non-decreasing in Gi , non-increasing in si ,
and non-increasing and concave in Sik .

(iii) The optimal control law can be expressed in threshold form. That is, there are constants
l0, . . . , lN−1 such that the optimal control law for each player satisfies: uik = um if
SikG

i/si > lk and uik = uM if SikG
i/si < lk . For SikG

i/si = lk , both uik = um and
uik = uM are optimal.

Proof (i) The auxiliary cost-to-go can be written as:

Ṽk(S
i
k, s

i/Gi ) = min
ui

{
−Gi Sik

si
exp

[
−r

N−1∑
k′=k

uik′ I
f
k′

]
−

N−1∑
k′=k

uik′ ūk′

}
. (27)

Then, applying the principle of optimality we get:

Ṽk(S
i
k, s

i/Gi ) = min
uik

{
−uik ūk + Ṽk+1(S

i
k exp[−ruik I

f
k ], si/Gi )

}
. (28)

We use induction. For k = N , the auxiliary cost-to-go is given by Ṽk(SiN , si/Gi ) =
−Gi SiN/si . That is, Ṽk(SiN , si/Gi ) is non-increasing and concave in SiN . Assume that
it holds for k = k0. Then, for each fixed uik0 , the quantity:

−uik0 ūk0 + Ṽk0(S
i
k exp[−ruik0 I

f
k0

], si/Gi ),
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is non-increasing and concave in Sik0 . Using (28), i.e., minimizing with respect to uik0 ,
we conclude to the desired result.

(ii) The monotonicity properties of Vk are a direct consequence of its definition (26). The
concavity of the optimal value follows easily from (i).

(iii) From Proposition 1(i), we know that the optimal uik is in the set, {um, uM }. Using
Proposition 2 to the subproblem starting at time step k, and applying the principle of
optimality, we get the desired result. The fact that if SikG

i/si = lk , then both uik = um
and uik = uM are optimal, is a consequence of the continuity of Ṽk .

�	
Remark 11 Propositions 6(iii) and 1(v) both express the optimal actions for a player i . The
primary difference is that Proposition 1(v) uses dynamic programming, and thus, the policies
obtained can better handle uncertainties in the individual dynamics of player i .

Equilibrium in Feedback Strategies

Consider a Nash equilibrium π that induces the fractions ρk , the mean actions ūk , and the
mass of infected people in public places I f

k , for k = 0, . . . , N−1. Consider also the auxiliary
cost-to-go function Ṽk defined in (27), and the corresponding thresholds lk . Then, based on
the strategies in Proposition 28(iii) wewill describe aNash equilibrium in feedback strategies.
Consider the set of strategies:

uik =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

um if SikG
i/si > lk

uM if SikG
i/si < lk

uM if SikG
i/si = lk, and i < ρk

um if SikG
i/si = lk, and i ≥ ρk

(29)

.

Proposition 7 The set of strategies (29) is a Nash equilibrium.

Proof Observe that the set of strategies (29) generates the same actions with the Nash equi-
librium π . �	

A.5 Proof of Proposition 3

(i) Assume that a π ∈ 	 satisfies (13) and fix a j ∈ {1, . . . , M}. For any l such that
π( j−1)2N+l > 0, it holds �( j−1)2N+l(π) = 0, that is F( j−1)2N+l(π) = δ j (π) =
minl ′ F( j−1)2N+l ′(π). Thus, π ∈ 	 is a Nash equilibrium.
Conversely, assume that π ∈ 	 is a Nash equilibrium and fix a j ∈ {1, . . . , M}. There is
an l such that π( j−1)2N+l > 0. Since π is a Nash equilibrium, it holds F( j−1)2N+l(π) =
δ j (π) and for all other l ′, it holds F( j−1)2N+l ′(π) ≥ F( j−1)2N+l(π) = δ j (π), which
implies (13).

(ii) Assume that π is a Nash equilibrium and π ′ ∈ 	. Then,
∑2N

l=1 π( j−1)2N+l =∑2N
l=1 π ′

( j−1)2N+l
= m j . Since π is a Nash equilibrium, it holds:

2N∑
l=1

(π ′
( j−1)2N+l − π( j−1)2N+l)

T F( j ′−1)2N+l(π) ≥ 0.
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Thus, (14) holds.
Conversely, assume that (14) holds, for someπ ∈ 	. Ifπ is not a Nash equilibrium, then
there is a j, l such that π( j−1)2N+l > 0 and F( j−1)2N+l > δ j (π). Then, if l ′ is such that
F( j−1)2N+l ′ = δ j (π), taking π ′ = π + π( j−1)2N+l e( j−1)2N+l ′ − π( j−1)2N+l e( j−1)2N+l ,
we get (π ′ − π)T F(π) < 0, which is a contradiction.

(iii) With a slight abuse of notation, we write I f
k (π), ūk(π) to describe the quantities I f

k , ūk
when the distribution of actions is π and J̃ j (vl , π) to describe the auxiliary cost of a
player of type j who plays action v j when the distribution of the actions is π .

Lemma 2 The quantities I f
k (π), ūk(π), J̃ j (vl , π), are continuous on π .

Proof The state of the systemevolves according to the set ofM2N+1+1differential equations:

Ṡ j,vl = −rvlk S
j,vl I f ,

İ j,v
l = rvlk S

j,vl I f − α j I
j,vl ,

ż = I f ,

where j = 1, . . . , M , l = 1, . . . , 2N , k : t ∈ [tk, tk+1), and:

I f =
M∑
j=1

2N∑
l=1

π( j−1)2N+l I
j,vl vlk .

The initial conditions are S j,vl (0) = S j (0), I j,v
l
(0) = I j (0), (Assumption 1) and z(0) = 0.

The right-hand side of the differential equations depends continuously on π through
the term I f . Furthermore, S j,vl (t), I j,v

l
(t) remain in [0, 1] for all j, vl . Thus, the state

space of the system remains in [0, 1]M ·2N × R and the right-hand side of the differential
equation is Lipschitz. Thus, Theorem3.4 of [25] applies and S j,vl (t), I j,v

j
(t) and z(t) depend

continuously onπ . Thus, I f
k = z(tk + 1)−z(tk) depends continuously onπ . Furthermore, ūk

is continuous (linear) on π . Finally, the auxiliary cost J j (vl , π), due to its form (7), depends
continuously π . �	

To complete the proof, observe that F(π) is continuous and 	 is compact and convex.
Thus, the existence is a consequence of Corollary 2.2.5 of [16].

Remark 12 An alternative would be to use Theorem 1 of [34] or Theorem 1 of [28], combined
with Lemma 2 to prove the existence of a mixed Nash equilibrium and then use Assumption
1, to construct a pure strategy equilibrium. However, the reduction to an NCP is useful
computationally.

A.6 Proof of Lemma 1

Every maximal chain begins with the least element [um, . . . , um] and ends at the greatest
element [uM , . . . , uM ]. Every two consecutive elements of a maximal chain vl , vl+1 differ
at exactly one point; otherwise, there exists a vector v′: vl � v′ � vl+1 and thus the chain is
not maximal.

Thus, beginning from [um, . . . , um] and changing at each step one point from um to uM ,
we get a sequence of N + 1-ordered vectors. So, every maximal chain has length N + 1.

Then, we prove that the number of such chains is N ! using induction.
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For N = 2, it is easy to verify that we have two chains of 3 elements.
For N = n, we have n! maximal chains of n + 1 elements. Then, for N = n + 1 we

consider one of the previous chains v1 � v2 � · · · � vN and at each of its elements, we add
an extra bit: ṽi = [vi , β i ]. We observe that if β i = uM , then for all j > i it should hold
β j = uM , in order for the new vectors to remain ordered under �.

Denote by ic the point that β i change from um to uM . For each choice of ic : β j =
um, j < ic and β j = uM , j > ic, we take two ordered vectors ṽ

ic
1 = [vic , um] and

ṽ
ic
2 = [vic , uM ] in the new chain, sowe have twoβ ic . Thus,we have N+1 possible choices for
the β = [β i ] ∈ {um, uM }N+1. This way we observe that from each chain in ({um, uM }N ,�),
we can construct N + 1 chains in ({um, uM }N+1,�).

Remark 13 The fact that V has at most N + 1 elements is also a consequence of Corollary 1.

A.7 Proof of Proposition 4

(i) To contradict, assume that Ik �⊂ Ik′ and Ik′ �⊂ Ik . Then, there is a pair of players i1, i2
such that ui1k = ui2k′ = uM and ui2k = ui1k′ = um , which contradicts Proposition 2(iii).

(ii) Without loss of generality, assume that Ik ⊂ Ik′ . Then:

μ(Ik) = ρk = ρk′ = μ(I′
k) = μ(Ik) + μ(Ik′ \ Ik′).

Thus, μ(Ik′ \ Ik) = 0. Combining with Ik ⊂ Ik′ and the definition of Ik, Ik′ , we get
μ({i : uik = uik′ }) = 1.

(iii) The equality μ(Ik) = ρk is immediate from the definition of ρk . Consider a pair
Ikn , Ikn+1 . There are two cases, ρkn < ρkn+1 and ρkn = ρkn+1 . In the first case, we
cannot have Ikn+1 ⊂ Ikn . Thus, from (i) we have Ikn ⊂ Ikn+1 . If ρkn = ρkn+1 , then
Ikn ⊂∼ Ikn+1 from part (ii).
The inclusion Kkn ⊃ Kkn+1 is immediate from the definition.

(iv) Let i ∈ Ikn+1 \ Ikn . Then, since i /∈ Ikn uik′
n

= um for n′ ≤ n. On the other hand,

μ-almost all i ∈ Ikn+1 satisfy i ∈ Ikn′ , for n′ > n. Thus, for μ-almost all i ∈ Ikn+1 \ Ikn ,
the action ui is given by (16). The proof is similar for i ∈ Ik1 , and i ∈ [0, 1) \ IkN .

A.8 Proof of Proposition 5

If ρ corresponds to a Nash equilibrium, then combining (13) and (20) we conclude that
H(ρ) = 0. Conversely, since all the terms of (21) are nonnegative, H(ρ) = 0 implies that if
μ([ī j−1, ī j ) ∩ [ρkn−1 , ρkn )) > 0, then F( j−1)2N+n(π̃(ρ)) = δ j (π̃(ρ)). Combining this with
(20), we conclude that if for some j, l, π( j−1)2N+l > 0, then F( j−1)2N+l(π) = δ j (π), where
π = π̃(ρ). That is, π is a Nash equilibrium.

From (20), we observe thatπ(ρ) is continuouswith respect to ρ, sinceμ(·) is the Lebesgue
measure. Moreover, (21) can be expressed as:

H(ρ) = π(ρ)T�(π(ρ)).

The fact that H(ρ) is nonnegative is a result of (13). Furthermore, from Lemma 2,
F( j−1)2N+n(π) = J̃ j (vn, π) is continuous with respect to π . Additionally, δ j (π), which

is the minimum of F( j−1)2N+l(π) = J̃ j (vl , π) for all vl , is continuous with respect to π as
the minimum of continuous functions. So, �(π) = F(π) − δ(π) is continuous with respect
to π and H(ρ) is continuous with respect to ρ as composition of continuous functions.
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