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Abstract
Themost serious threat to ecosystems is the global climate change fueled by the uncontrolled
increase in carbon emissions. In this project, we use mean field control and mean field
game models to analyze and inform the decisions of electricity producers on how much
renewable sources of production ought to be used in the presence of a carbon tax. The trade-off
between higher revenues from production and the negative externality of carbon emissions
is quantified for each producer who needs to balance in real time reliance on reliable but
polluting (fossil fuel) thermal power stations versus investing in and depending upon clean
production from uncertain wind and solar technologies. We compare the impacts of these
decisions in two different scenarios: (1) the producers are competitive and hopefully reach a
Nash equilibrium; (2) they cooperate and reach a social optimum. In the model, the producers
have both time dependent and independent controls. We first propose nonstandard forward–
backward stochastic differential equation systems that characterize the Nash equilibrium and
the social optimum. Then, we prove that both problems have a unique solution using these
equations. We then illustrate with numerical experiments the producers’ behavior in each
scenario. We further introduce and analyze the impact of a regulator in control of the carbon
tax policy, and we study the resulting Stackelberg equilibrium with the field of producers.
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1 Introduction

Nowadays, it is widely accepted that the most serious threat to ecosystems is the global
warming fueled by the uncontrolled increase in carbon emissions, and for the last twenty-some
years, starting with the Kyoto Protocol in 1997, international treaties have sprung out in hope
to address this negative externality. The most recent of these treaties is the Paris Agreement
with 196 signatories aiming at keeping the increase in temperature below 2◦C. Throughout
the world, local and federal governments try to disincentivize reliance on polluting means
of production by introducing carbon taxes or cap-and-trade programs. In the latter case,
regulators put a limit on the allowable quantity of greenhouse gas (GHG) emissions, any
quantity above this limit having to be covered by emission certificates (allowances) or the
payment of a penalty. In the former case, whether they are levied upstream or downstream,
carbon taxes aim at penalizing the use of fossil fuels for their carbon content. The interested
reader is referred to [11–13] for a review of the state of affairs in the early days of the
European Union Emission Trading System, and mathematical treatments of thorough partial
equilibrium models for the comparison of realistic implementations of these policies in the
electricity sector.

According to the environmental protection agency, electricity production claims the lion
share (25%) of the total greenhouse gas emissions in the USA.1 So here, we concentrate on
the electricity sector and we propose a model for the analysis of the impact of investments
in clean means of production (e.g., solar and wind). While a model of the electricity sector
should comprise at least three types of agents: electricity producers, resellers/retailers and the
end-users, we shall concentrate our modeling effort on the producers. Until the challenging
technological problem of electricity storage is resolved at a larger scale, the demand for
this commodity remains inelastic, and we shall penalize the producers for not matching
the demand, forcing the independent system operator (ISO) to rely on costly reserves. In the
following,we shall use the term renewable tomean electricity produced fromwind turbines or
solar panels. Alternatively, we shall use the term nonrenewable to mean electricity produced
by burning fossil fuels like coal, crude oil or natural gas. We chose this convention for
convenience, even if this literary license is not completely accurate.

Individual producers control over time their usage of fossil fuels, and hence, the amount
of CO2 emissions they are responsible for. They also control their possible investment in
solar or wind production, should they decide to go that route. Notice that while the decision
to use fossil fuels changes over time, the investment in solar panels or wind turbines is
a one-time decision made at the beginning of the time period under consideration. In our
model, producing electricity from renewable sources involves an initial investment and no
extra cost over time since the marginal cost of running these production assets is practically
zero (except from maintenance costs and possible subsidies which we ignore here). While
the zero cost of production is an attractive feature, it comes with the very high risks due to
the difficulties to predict the weather and the uncertainty associated with the high volatility
of these predictions. On the other hand, production from traditional power plants is more
predictable, the costs depending upon the prices of the fuels and the price put on the CO2

emissions by the regulator. Each producer has to find the right balance between the pros and
the cons of the two major means of production we single out in our stylized model. The
overarching goal is to decarbonize so as to meet emission targets, harnessing demand-side
policies through the establishment of a tax, as well as supply-side resources including wind
and solar production technologies.

1 https://www.epa.gov/ghgemissions/global-greenhouse-gas-emissions-data, accessed Jun 1, 2021.

https://www.epa.gov/ghgemissions/global-greenhouse-gas-emissions-data
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Furthermore, we add to the model a regulator who is in charge of finding suitable carbon
tax policies. When the policies are set by regulators, it is very hard to control and anticipate
how the population is going to behave since this population is composed of rational agents
who react to the regulators’ decisions. For example, if producers behave individually in a free
market to optimize their own outcomes, this creates a game setting in the population. In this
case, we need to find a Nash equilibrium behavior of the producers; in other words, we need
to find a behavior where no one has a profitable deviation unilaterally for a given carbon tax
level. This requires us to use game theory tools. However, finding a Nash equilibrium when
there is a large number of producers involved is a very complex task in general.

Our economic model is based on the premises that the individual producers and the
regulator have only access to aggregate quantities. Basically, they only have access to the
statistical distributions of the productions, emissions, investments, etc., of the individual
producers. As a result, we propose two separate frameworks for the individual producers to
optimize the mix of renewable and nonrenewable production they should include in their
portfolios. We compute and compare the optimal centralized strategies by solving mean
field control problems, and the optimal decentralized strategies by solving mean field game
problems. Our theoretical analysis relies on the probabilistic approach to construct forward–
backward stochastic differential equation (FBSDE) systems for which we show, in both
settings, existence and uniqueness of the solutions. Because we have both time-dependent
and time-independent controls for the electricity producers, FBSDE systems that characterize
the solutions are nonstandard due to a term that is nonlocal in time. In this case, the existence of
the solutions is provedbyusingBrouwerfixedpoint theorem.We further show the uniqueness.
Later,wepropose a numerical approach tomonitor the effect of a carbon taxon the optimal and
equilibrium decisions in both cases. Quantifying the differences between the two approaches
is reminiscent of what is known as the price of anarchy (PoA).

Among the conclusions drawn from the analysis of ourmodel, we confirm that a carbon tax
is an effective incentive for the use of renewables. Also intuitive is the fact that in the absence
of a carbon tax, the overall pollution is greater when producers compete than when they
cooperate. Less obvious is the fact that cooperating producers will pollute less than when
they compete, even if the carbon tax is significant. We also show that stricter regulations
tend to reduce the differences between competitive and cooperative equilibria. Further, we
argue that the best way for the regulator to encourage producers to match the demand is to
incentivize competition over cooperation among the producers.

1.1 Related Literature

Mean field game (MFG) models appeared simultaneously and independently in the original
works of [9] and [23]. The thrust of these works was to propose a paradigm to overcome
the challenges of the search for Nash equilibria in large games by considering models for
which the interactions between the players were of a mean field type, and deriving effective
equations in the limit when the number of players goes to infinity. Models in which a single
player plays a different role from the field of remaining players were introduced and studied
under the name of MFGs with major and minor players. In their Stackelberg version, they
had a significant impact on problems in economic contract theory. See, for example, [7], [26],
[18], or [14], [17] or [5]. Notice that in these models, the major player uses a time-dependent
control, while in this paper, we shall assume that the regulator uses time-independent controls.

Using mean field models for energy applications is very natural. Competition in the oil
industry and the impact of the renewable energy competition was analyzed in [19] and [15].
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The early work [19] was extended with the addition of a regulator in [1]. In [3], optimal
entry and exit times for two types of agents, electricity producers using either renewable or
nonrenewable energy resources, are analyzed using MFGs. Competition among electricity
producers is analyzed in [16] by usingmean field type gamewhere themean field interactions
come through conditional expectation of the electricity price and in [4] by using a model
where the interactions enter the electricity spot price. In [2] and [17], electricity consumers
constitute the mean field population and a single electricity producer plays the role of the
principal, in contrast to our model where we take the electricity producers as the mean field
population and the regulator as the principal.

Mean field models have also been used to model environmental impacts. In [6], a MFG
model is proposed to model climate change negotiations among countries interacting through
a CO2 emission permit market. Emission certificate markets are also studied in [27] and [28],
again without the presence of a regulator.

1.2 Contributions and Paper Structure

The contributions of this paper are twofold. First, we propose a model where we have a
regulator and large number of players to find the optimal carbon tax policies. In this model,
we let the regulator to take into account the rational reactions of the producers in order to
make an informed decision about the carbon tax policies. For the producers, we look at the
free market setting where large number of producers try to optimize their own outcomes
individually (mean field game) and compare it with the social optimum solution where
producers collaborate and behave as in a monopolistic situation (mean field control). We
show that in the free market, producers are more likely to match the electricity demand
instead of underproducing to increase the unit prices of the electricity by collaborating. We
further show the advantage of this free market to the regulator because of the increased
demand matching levels.

The second contribution is the analysis of a control problem with a nonstandard type
of control. Indeed, in the model, producers have both time-independent (initial investment
in renewable energy) and time-dependent (decisions related to the nonrenewable energy)
controls. The initial investment decision affects the whole time horizon. According to our
current information, this type of model is novel and prevents us from using standard the-
oretical and numerical tools from the literature. We analyze such problems by introducing
nonstandard FBSDE systems that include nonlocal terms in time in order to characterize the
Nash equilibrium and the social optimum. We further show the existence and uniqueness.

The paper is structured as follows. In Sect. 2, we introduce the minor players’ model and
the various equilibrium notions used in the sequel. In Sect. 3 (resp. 4), the main theoretical
(resp. numerical) results for the minor players’ model are given. In Sect. 5, we introduce the
regulator and define the relevant notions of equilibrium. Finally, we provide numerical results
for the combined model with minor players and the regulator in Sect. 6 and we summarize
our findings in a short Sect. 7.

2 Mean Field Model for Electricity Producers

2.1 N-Player Model

Although we will focus on mean field limits involving an infinite number of players, we start
with the description of what the N -player version of the game would be. For symmetry
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reasons, we assume that the total electricity demand is split equally between all the agents,
and each agent faces the same demand, say Dt at time t . The state of producer i is five-
dimensional: instantaneous electricity production Qi

t ∈ R+, instantaneous irradiance Si
t ∈

R+, instantaneous emission level Ei
t ∈ R+, cumulative pollution Pi

t ∈ R+, and instantaneous
nonrenewable energy production Ñ i

t ∈ R+. Producer i controls their state by choosing at
time t = 0, their initial investment Ri

e ∈ R in renewable production assets (e.g., the number
of solar panels they purchase), and at each subsequent time t , by choosing the rate of change
Ni

t ∈ R in nonrenewable energy production. Notice that N i
t is time dependent, while Ri

e
is time independent. This will be a challenging feature of the mathematical analysis of our
model.

Remark 1 For the sake of definiteness, we use the terminology of solar power production.
However, other types of renewable energy can be modeled in a similar way. For example,
for wind power, Si

t would stand for the instantaneous output of a wind farm and Re would
be the corresponding units of initial investment.

So with these proviso out of the way, we define the time evolution of the state of producer
i as:

dQi
t = κ1Ni

t dt

Term 1

+ κ2Ri
e

(
α cos(αt)dt + dSi

t

)

Term 2

,

dSi
t = (θ − Si

t )dt + σ0d

̂

W i
t , dEi

t = δNi
t dt + σ1dW i

t ,

dPi
t = Ei

t dt, d Ñ i
t = Ni

t dt .

The instantaneous electricity production changes depend on the instantaneous nonrenew-
able energy usage (given by term 1) and the instantaneous yield from the renewable energy
investment (given by term 2). This second term includes a seasonality component (sinu-
soidal term) and a random shock for the variability of the sun irradiance. The form of the
seasonality component was chosen for the sake of simplicity. It can easily be extended to
several harmonics to include nightly and daily, monthly and yearly effects. In any case, we
have Qi

t = Qi
0 + κ1 Ñ i

t + κ2Ri
e(sin(αt) + Si

t ) where κ1, κ2 > 0 are constants that give
the efficiency of the production from nonrenewable and renewable energy, respectively. The
constant α > 0 gives the period of the seasonality of the renewable energy.

Wemodel the idiosyncratic noise terms Si
t in the renewable productions as independent sta-

tionary processes. For the sake of definiteness, we assume that they are Ornstein–Uhlenbeck

processes with the same mean θ > 0 and volatility σ0 > 0, the

̂

W i being independentWiener
processes.

The dynamics of the instantaneous emissions Ei
t have two components: the contribution

from theproduction fromnonrenewable energypower plants and idiosyncratic randomshocks
with constant volatility σ1 > 0 given by independentWiener processes W i , also independent

of the

̂

W i ’s. The choice of the constant δ could include the effects of some abatementmeasures
such as carbon capture, sequestration and the use of filters.

Using the notation Ñ i
t for the instantaneous nonrenewable given by Ñ i

t = Ñ i
0 + ∫ t

0 Ni
s ds,

the expected cost to producer i over the whole period is:
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CN (Ni , Ri
e; Q̄) = E

[ ∫ T

0

[
c1|Ni

t |2
Term 1

+ p1 Ñ i
t

Term 2

+ c2|Qi
t − Dt |2

Term 3

− c3
(
ρ0 + ρ1(Dt − Q̄t )

)
Qi

t

Term 4

]
dt + τ |Pi

T |2
Term 5

+ p(Ri
e)
]

Term 6

, (1)

where Q̄ = ∑N
j=1 Q j/N and p : R+ �→ R+ is the price function for the investment in

renewable energy.
Term 1 with c1 > 0 is a penalty (i.e., delay cost) for attempting to ramp up and down

nonrenewable energy power plants too quickly. Term 2 represents the costs of the fossil
fuels used in nonrenewable power plants. The constant p1 > 0 can be understood as the
average cost of one unit of fossil fuel. In lieu of storage which is not included in our models
because of its scarcity, Term 3 with c3 > 0 imposes a penalty on producers for not matching
the demand and forcing the system operator to use costly reserves. Term 4 represents the
revenues from electricity production,

(
ρ0 +ρ1(Dt − Q̄t )

)
being the inverse demand function

which is assumed to be linear in excess demand or supply, where ρ0 and ρ1 are strictly
positive constants. It captures the fact that the price increases if there is excess demand, and
it decreases if there is excess supply. We assume that the producers are selling what they
produce. This term introduces the mean field interactions into the model. Term 5 gives the
pollution damage cost for the producer. This cost is levied by the regulator by using a carbon
tax, and the damage is assumed to be increasing with the higher levels of the cumulative
pollution. Therefore, we emphasize its role by assuming it is proportional to the square of
the terminal pollution. Term 6 is the total cost related to the initial investment in renewable
electricity production including the price of the solar panels and the cost of the land used.

2.2 TheMean Field Model

In discussing the mean field regime of the model, we focus on a representative producer
interacting with the field of the other producers, so we drop the superscript i and the state
dynamics equations become:

dQt = κ1Ntdt + κ2Re
(
α cos(αt)dt+ (θ − St )dt + σ0d

̂

Wt
)
,

dSt = (θ − St )dt + σ0d

̂

Wt , dEt = δNtdt + σ1dWt ,

dPt = Etdt, dÑt = Ntdt,

(2)

where W and

̂

W are independent Wiener processes. Accordingly, the total expected cost
becomes:

C(N , Re; Q̄) = E

[ ∫ T

0

[
c1|Nt |2 + p1 Ñt + c2|Qt − Dt |2

− c3
(
ρ0 + ρ1(Dt − Q̄t )

)
Qt

]
dt + τ |PT |2 + p(Re)

]
, (3)

where Q̄t = E[Qt ]. We shall sometimes use the notation Q̄t (N , Re) to emphasize the fact
that the expectation is computed under the state dynamics controlled by the admissible control
(N , Re).



Dynamic Games and Applications (2022) 12:897–928 903

2.3 EquilibriumNotions

We consider two different models: mean field game (MFG) and mean field control (MFC). In
themean field gamemodel, producers behave competitively andminimize their total expected
costs (search for their best responses) given the other players’ decisions. A Nash equilibrium
is then characterized as a fixed point of the best response map so defined. In the sequel, we
restrict our attention to admissible strategies (N , Re) such that E[∫ T

0 |Nt |2dt] < +∞ and
Re ∈ R+.

Definition 1 (MFG Nash equilibrium) An admissible strategy and mean field flow tuple,
(N̂ , R̂e, Q̄), are called an MFG Nash equilibrium for any admissible (N , Re), we have:

C
(
(N , Re); Q̄

)
≥ C

(
(N̂ , R̂e); Q̄

)
,

and Q̄ = Q̄(N̂ , R̂e).

In the mean field control case, we assume that the producers cooperate and leave the choice
of the control to a social planner minimizing the total expected cost as defined in (3). In the
realistic setup, the producers can be thought as the production facilities of a monopolistic
electricity production firm and the social planner’s decisions refer to the decisions taken by
the headquarter. In this case, if one player changes their behavior, every player changes in the
same way, and the mean field is affected. The problem is now an optimal control problem.

Definition 2 (Social Planner’s MFC Optimum) An admissible strategy and mean field flow
tuple, (N̂ , R̂e, Q̄), are called an MFC optimum if for any admissible (N , Re), we have:

C
(
(N , Re); Q̄(N , Re)

)
≥ C

(
(N̂ , R̂e); Q̄

)
,

and Q̄ = Q̄(N̂ , R̂e).

3 Main Theoretical Results

In this section, the following forward–backward stochastic differential equation system
(FBSDE) is going to be of interest:

dQt = − κ1

2c1
(Y 1

t κ1 + Y 3
t δ + Y 5

t )dt

+ κ2(p′)−1
(

− E

[ ∫ T

0
κ2Y 1

t

(
α cos(αt) + (θ−St )

)
dt

])

×
(

α cos(αt)dt + (θ − St )dt + σ0d

̂

Wt

)
, Q0 = q0

dSt = (θ − St )dt + σ0d

̂

Wt , S0 = θ

dEt = − δ

2c1
(Y 1

t κ1 + Y 3
t δ + Y 5

t )dt + σ1dWt , E0 = e0

dPt = Etdt, P0 = p0

dÑt = 1

2c1
(Y 1

t κ1 + Y 3
t δ + Y 5

t )dt, Ñ0 = ñ0



904 Dynamic Games and Applications (2022) 12:897–928

dY 1
t =

(
− 2c2(Qt − Dt ) + c3

(
ρ0 + ρ1(Dt − Q̄t )

))
dt

+ Z1,1
t d

̂

Wt + Z1,2
t dWt Y 1

T = 0

dY 2
t =

(
κ2(p′)−1

(
− E

[ ∫ T

0
κ2Y 1

t

(
α cos(αt) + (θ−St )

)
dt

])
Y 1

t

+ Y 2
t

)
dt + Z2,1

t d

̂

Wt + Z2,2
t dWt , Y 2

T = 0

dY 3
t = −Y 4

t dt + Z3,1
t d

̂

Wt + Z3,2
t dWt , Y 3

T = 0

dY 4
t = Z4,1

t d

̂

Wt + Z4,2
t dWt , Y 4

T = 2τ P̂T

dY 5
t = −p1dt + Z5,1

t d

̂

Wt + Z5,2
t dWt , Y 5

T = 0. (4)

Theorem 1 (N̂t , R̂e, Q̄) is a Nash equilibrium if and only if (N̂ , R̂e) is given by:

N̂t = −Y 1
t κ1 + Y 3

t δ + Y 5
t

2c1
, t ∈ [0, T ] and

R̂e = (p′)−1
(

− E

[ ∫ T

0
κ2Y 1

t

(
α cos(αt) + (θ−St )

)
dt

])
,

(5)

where (Q, S, E, P, Ñ , Y 1, Y 2, Y 3, Y 4, Y 5) is a solution to the FBSDE given in (4).
Here, (p′)−1(·) refers to the inverse of the first derivative of the function p(·).

Condition 1 (i) p is convex.
(ii) (p′)−1 is bounded, i.e., (p′)−1 : R �→ [0, Rmax

e ], continuous and monotone.

Theorem 2 Assume Condition 1 holds, then there exists a unique Nash equilibrium mean
field flow Q̄.

Theorem 3 (N̂ , R̂e) is an MFC optimum if and only if (N̂ , R̂e) is given by (5) where
(Q, S, E, P, Ñ , Y 1, Y 2, Y 3, Y 4, Y 5) is a solution to the FBSDE given in (4) where the equa-
tion for (Y 1

t )t is replaced by

dY 1
t =

(
− 2c2(Qt − Dt ) + c3

(
ρ0 + ρ1(Dt − 2Q̄t )

))
dt + Z1,1

t d

̂

Wt + Z1,2
t dWt . (6)

Theorem 4 Assume Condition 1 holds, then there exists a unique mean field control optimum
flow Q̄.

4 Numerical Approach

For numerical purposes, given the technical challenges posed by the solution of the large
FBSDE in 4 with the existence of time dependent and independent controls, we implement
an analytic approach for which we give the details below. For this reason, we first notice that:

inf
(Nt )t ,Re

C(N , Re; Q̄) = inf
Re

inf
(Nt )t

C(N , Re; Q̄),

and we assume that Re is fixed in a first analysis. Next, we rewrite the model in matrix form
using Xt := [Qt St Et Pt Ñt ]	 as f ive-dimensional state process at time t and rewrite
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the optimization problem as:

inf
(Nt )t

C̃
(

N ; Re, X̄
)

= inf
(Nt )t

E

[ ∫ T

0

[ R

2
|Nt |2 + H	

t Xt + X̄	
t F Xt + X	

t G Xt + Jt

]
dt

+X	
T ST XT + p(Re)

] (7)

dXt =
(

AXt + B · Nt + Ct

)
dt + 	dW̃t

where R and Jt are the scalars given by R = 2c1 and Jt = c2D2
t and:

Ht =

⎡
⎢⎢⎢⎢⎣

−(2c2 + c3ρ1)Dt − c3ρ0
0
0
0
p1

⎤
⎥⎥⎥⎥⎦

, F =

⎡
⎢⎢⎢⎢⎣

c3ρ1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦

, G =

⎡
⎢⎢⎢⎢⎣

c2 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦

,

ST =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 τ 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦

,

A =

⎡
⎢⎢⎢⎢⎣

0 −κ2Re 0 0 0
0 −1 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦

, B =

⎡
⎢⎢⎢⎢⎣

κ1
0
δ

0
1

⎤
⎥⎥⎥⎥⎦

, Ct =

⎡
⎢⎢⎢⎢⎢⎣

κ2Re

(
αcos(αt) + θ

)

θ

0
0
0

⎤
⎥⎥⎥⎥⎥⎦

, 	 =

⎡
⎢⎢⎢⎢⎣

κ2Reσ0 0
σ0 0
0 σ1
0 0
0 0

⎤
⎥⎥⎥⎥⎦

.

Furthermore, we define W̃t and a as:

W̃t =
[ ̂

Wt

Wt

]
, a = 1

2
			 = 1

2

⎡
⎢⎢⎢⎢⎣

(κ2Reσ0)
2 κ2Reσ

2
0 0 0 0

κ2Reσ
2
0 σ 2

0 0 0 0
0 0 σ 2

1 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦

,

and the value function u(t, X) as:

u(t, X) = inf
(Ns )s

E

[ ∫ T

t

[ R

2
|Ns |2 + H	

s Xs + X̄	
s F Xs + X	

s G Xs + Js

]
ds

+X	
T ST XT + p(Re)

∣∣∣Xt = X

]
.

(8)
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Lemma 1 (ODE system for the MFG) For Re fixed, if there exists a function t �→ (ηt , rt , X̄t )

solving the following system of ordinary differential equations (ODEs):
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dηt

dt
− ηt B R−1B	ηt + A	ηt + ηt A + 2G = 0, ηT = 2ST

− drt

dt
=

(
A	 − ηt B R−1B	)

rt + ηt Ct + Ht + F	 X̄t , rT = 0

d X̄t

dt
= (A − B R−1B	ηt )X̄t − B R−1B	rt + Ct , X̄0 = x̄0

(9a)

(9b)

(9c)

and if s0 is given by:

s0 = p(Re) +
∫ T

0

(
tr(aηt ) − 1

2
rt

T B R−1B	rt + C	
t rt + Jt

)
dt, (10)

then N̂t (Re) = −R−1B	(ηt Xt +rt ) is the MFG equilibrium given Re fixed, and the expected
cost to the representative producer in this equilibrium is:

inf
N=(Nt )t

C̃ M FG
(

N ; Re, X̄
)

= 1

2

(
V ar(

√
η0X0) + E[√η0X0]2

) + X̄	
0 r0 + s0. (11)

Theorem 5 For Re fixed, if T is small enough, there exists a unique MFG equilibrium.

Lemma 2 (MFC ODE system) Given Re, if there exists a function t �→ (ηt , rt , X̄t ) solving
the ODE system (9) with the equation (9b) replaced by:

− drt

dt
=

(
A	 − ηt B R−1B	)

rt + ηt Ct + Ht + F	 X̄t + F X̄t , rT = 0 (12)

and the same s0 given by (10), then N∗
t (Re) = −R−1B	(ηt Xt + rt ) is an optimum for the

MFC problem given Re, and the minimal expected cost is

inf
(Nt )t

C̃ M FC
(

N ; Re, X̄
)

= 1

2

(
V ar(

√
η0X0) + E[√η0X0]2

) + X̄	
0 r0 + s0

−
∫ T

0
X̄	

t F X̄tdt .

(13)

Theorem 6 For Re fixed, if T is small enough, there exists a unique MFC optimum.

Numerically, we search for the Re and the corresponding equilibrium N = (Nt )t that
minimizes the cost of the minor players by using the ODE systems given in (9) and (12).

As emphasized earlier, the main difference between MFC and MFG is whether the mean
field is affected by the decision of the representative producer (MFC), or taken to be fixed
(MFG). This difference translates into the addition of a fixed point argument in the MFG
case. For pedagogical reasons, we first discuss the MFC case, then the MFG. After solving
the Riccati equation which is the same in both cases, we solve the coupled ODE system
directly in the MFC case in order to find the mean field; on the other hand, notice that in
the MFG case, the ODEs are decoupled since the mean field is assumed to be fixed in each
iteration of the fixed point algorithm.
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4.1 Mean Field Control Algorithm

In order to solve the system of MFC coupled ODEs for (X̄t )t and rt given by equations (9c)
and (12), we discretize the time with uniform step size �t and solve the following linear
equation:

[
X̄
r

]
= M

[
X̄
r

]
+ K , (14)

where X̄ = [X̄0, X̄�t , X̄2�t , . . . , X̄T ]	, r = [r0, r�t , r2�t , . . . , rT ]	.

Algorithm 1 Computation of the Mean Field Control Cost over (Nt )t given Re

1: function Optim-MFC-N(Re)

2: Calculate (ηt )t by solving the Riccati Equation in (9a)

3: Solve the coupled (X̄t )t and (rt )t linear system (14) given (ηt )t and Re

4: Calculate s given Re , (rt )t and (ηt )t using the equation in (10)

5: Calculate the expected cost associated with Re , ĉ := inf C̃ M FC (N ; Re, X̄) using (13)

6: return (ĉ, X̄ )

Algorithm 2 Search for a Social Optimum

1: function SocialOpt

2: Search for the optimal R̂e where the optimal cost Re → c(Re) and optimal mean field Re → X̄(Re)
are computed by Optim-MFC-N

3: Let ĉ = c(R̂e) and
ˆ̄X = X̄(R̂e)

4: return (ĉ, R̂e,
ˆ̄X)

4.2 Mean Field Game Algorithm

In mean field game case, since in each iteration it is assumed that the (X̄t )t is fixed, the ODE
for (rt )t in equation (9b) can be solved directly by using the following linear equation after
we discretize time:

r = Mrr + Kr , (15)

where r = [r0, r�t , r2�t , . . . , rT ]	. Then with this (rt )t , the time discretization of (X̄t )t with
dynamics given by Eq. (9c) can be written as:

X̄ = MX̄ X̄ + K X̄ , (16)

where X̄ = [X̄0, X̄�t , X̄2�t , . . . , X̄T ]	. The numerical algorithms to find the mean field
control and game equilibria are given in detail in the following sections.
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Algorithm 3 Computation of the Expected Cost over (Nt )t given Re , (X̄t )t

1: function Optim-MFG-N(Re, (X̄t )t )

2: Calculate (ηt )t by solving Riccati Equation in (9a)

3: Solve the linear system for (rt )t in (15) given (X̄t )t , Re and (ηt )t

4: Calculate s given Re , (rt )t and (ηt )t using the equation in (10)

5: Calculate the cost associated with Re and (X̄t )t , ĉ := inf C̃ M FG (N ; Re, X̄) using (11)

6: return ĉ

Algorithm 4 Search for a Nash Equilibrium

1: function NashEq

2: Initialize (X̄0
t )t

3: while ||X̄ k − X̄ k−1|| > ε do

4: Search for the optimal R̂e given X̄ k where the optimal cost (Re, X̄ k ) → ck (Re, X̄ k ) is computed by
Optim-MFG-N

5: Let R̂k
e = argminRe ck (Re, X̄ k )

6: Compute (X̄ k+1
t )t given R̂k

e , (X̄t
k
)t by solving the linear equation (16)

7: Let R̂e = R̂k
e , ĉ = ck (R̂e) and

ˆ̄X = X̄ k

8: return (ĉ, R̂e,
ˆ̄X)

4.3 Numerical Experiments

In the numerical experiments reported below, we use the following parameter values:

p1 = 7/�t (dollar/time) ρ0 = 40/�t θ = 5
p2 = 104, p3 = 10−10 ρ1 = 0.1/�t T = 20 years, �t = 10 days
c1 = 10−4 (dollar/103 cu ft2) α = 40π Re = [0, 5 × 103] (10,000 dollars)
c3 = 1 (dollar/103 cu ft) δ = 0.15 Dt = 2 × 104 − 5 × 102 cos(80π�t)
κ1 = 0.13 (MWh/103 cu ft) σ0 = 0.01 X̄0 = [0, θ, 0, 0, 0]
κ2 = 0.1 (MWh/103 dollars) σ1 = 0.01 V ar [X0] = [0, 0.1, 0, 0, 0]

Furthermore, we assume that p(Re) = p2Re − p3
√

Re(Rmax
e − Re)+ ε where p2, p3 are

positive constants and ε > 0 is a small constant that ensures the nonnegativity of the price
of the units of the renewable energy investment.2

We focus on natural gas as the source of nonrenewable energy. In our numerical exper-
iments, we ignore the effect of the COVID-19 pandemic, and we run simulations for 10

2 We note that this function satisfies the assumptions that are necessary for existence and uniqueness. The
fact that p(·) is convex can be justified by the increasing unit costs that comes from the search of land that
is large enough to construct the solar panels on. However, in the numerical application, we take the p3 and ε

small to have a function that is nearly “linear.”
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years starting from March 2020. For the cost of solar power, we use the current assumption
that a 1MW solar farm needs roughly a 1M$ investment3 and assume peak sun hours last
about 5 h in the USA to compute daily average production from solar panels. Furthermore,
we choose α to take into account the seasonality, since sun exposure levels are maximum
during summers, minimum during winters. Therefore, we infer that one unit investment of
Re corresponds to roughly $10,000 and on average it generates κ2(θ ±1) = 0.1(5±1)MWh
electricity in 10 days.4

According to the data provided by the U.S. Energy Information Administration (EIA)
in 2018,5 we assume that 1000 cubic feet of natural gas produce approximately 0.13MWh.
Again, according to the emission data provided by the EIA.6 we take δ = 0.15.

We assume that the average demand of electricity for each plant is around the capacity
of the plants. By using the data provided by the EIA,7 we find the average daily capacity
of a natural gas plant. Furthermore, the monthly seasonal component is found by using the
monthly residential electricity consumption in 2018 data given by EIA.8 Therefore, 10 day
demand is taken sinusoidal to show the seasonality around 20, 000MWh. According to the
data provided by EIA,9 nonrenewable energy has 40% of its fuel cost as the operation and
maintenance costs on top of the fuel cost in 2018 and the price of 1000 cu ft natural gas can
be assumed $5. Therefore, we take p1 = $7. Finally by using the data given by EIA,10 we
see that the average price of wholesale electricity is around $40 per MWh; therefore, we take
ρ0 = 40.

4.3.1 Price of Anarchy (PoA) Analysis

From the heat maps in Fig. 1, we see that the expected cost of the representative producer
is increasing with the carbon tax τ and the penalty c2. The second observation is that as
expected, for any given couple (τ, c2), the expected cost is higher in the Nash equilibrium
than for the social optimum. Next, we quantify how inefficient the Nash equilibrium is, and
the effect of τ and c2 on this inefficiency. In other words, we quantify the adverse effect of the
noncooperative behavior of the producers by computing the price of anarchy (PoA) defined
in (17) for different values of τ and c2.

PoA(τ, c2) = infNt ,Re C M FG(Nt , Re; Q̄, τ, c2)

infNt ,Re C M FC (Nt , Re; Q̄, τ, c2)
. (17)

The results are given in right subfigure in Fig. 1. Since for any given (τ, c2) the expected
cost in a MFG equilibrium is higher, PoA is expected to be greater than 1 and as it gets
higher, the Nash equilibrium is getting less efficient. It can be seen that PoA gets smaller as
we increase τ and c2. This means that for higher levels of τ and c2, the expected costs of

3 https://news.energysage.com/solar-farms-start-one/.
4 In order to capture the resale value of solar panels, when the experiments are for 10 years the cost of solar
panel decreased by 25% and when they are for 2 years, the cost is decreased by 50%.
5 https://www.eia.gov/totalenergy/data/monthly/pdf/sec7.pdf, (Table 7.2b & 7.3b), accessed Jun 1, 2021.
6 https://www.eia.gov/tools/faqs/faq.php?id=74&t=11, accessed Jun 1, 2021.
7 https://www.eia.gov/electricity/annual/archive/pdf/epa_2018.pdf, (Table 4.3), accessed Jun 1, 2021
8 https://www.eia.gov/totalenergy/data/monthly/pdf/sec7.pdf, (Table 7.6), accessed Jun 1, 2021
9 https://www.eia.gov/electricity/annual/html/epa_08_04.html, https://www.eia.gov/dnav/ng/ng_pri_sum_
a_EPG0_PEU_DMcf_a.htm, accessed Jun 1, 2021
10 https://www.eia.gov/todayinenergy/detail.php?id=37912, accessed Jun 1, 2021

https://news.energysage.com/solar-farms-start-one/
https://www.eia.gov/totalenergy/data/monthly/pdf/sec7.pdf
https://www.eia.gov/tools/faqs/faq.php?id=74&t=11
https://www.eia.gov/electricity/annual/archive/pdf/epa_2018.pdf
https://www.eia.gov/totalenergy/data/monthly/pdf/sec7.pdf
https://www.eia.gov/electricity/annual/html/epa_08_04.html
https://www.eia.gov/dnav/ng/ng_pri_sum_a_EPG0_PEU_DMcf_a.htm
https://www.eia.gov/dnav/ng/ng_pri_sum_a_EPG0_PEU_DMcf_a.htm
https://www.eia.gov/todayinenergy/detail.php?id=37912
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Fig. 1 Top: Expected cost of minor players in MFC (left), in MFG (right), Bottom: the price of Anarchy given
different penalty for not matching the demand and tax levels

to the producers become closer. In other words, the impact of the social planner diminishes
and the advantages of cooperation lessen as the regulator imposes stricter regulations.

4.3.2 Electricity Production Decomposition Analysis

Here, we analyze the effect of the penalty c2 for not matching the demand and the carbon
tax τ , on the optimal energy production portfolio in both MFC and MFG models. Figure 2
shows the total production and the decomposition of this production over a 10-year period
together with a detailed zoom in behavior between years 1 and 3.

The left subfigure in Fig. 2 shows that the demand is not matched by the producers in
the MFC case. This is because the penalty coefficient c2 is low and the increased revenue
from scarce supply is more advantageous. Here, we see that in the control setting, producers
behave as a big monopoly when not matching the demand is inexpensive. When the penalty
is increased, the middle subfigure in Fig. 2 shows that producers try to match the demand
and their behaviors in the MFC and MFG cases are similar. In both of these figures, there is
no carbon tax; therefore, the producers do not have incentives to invest in renewable energy,
and as a result, all the production is exclusively from the nonrenewable sources. On the right
subfigure in Fig. 2, when the carbon tax is increased, we see that the producers have an
incentive to invest in renewable energy.

We also analyze the effect of the planning horizon where we compare the cases in which
the producers are planning for the next 2 years vs. planning for the next 10 years. As it can be
seen in the left and middle subfigures in Fig. 3, when the planning horizon is short, the fixed
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Fig. 2 Production decomposition, when there is no tax (τ ) and the penalty for not matching the demand (c2)
is low (left), when there is no tax and c2 is high (middle), when τ and c2 are high (right). On the left and
the middle subplots since all the production comes from the nonrenewable energy resources, the average total
production lines (colored in orange) are not seen

Fig. 3 Planning time horizon effect in MFC (left), and in MFG (middle); end of the 10 years pollution in MFC
and MFG (right)

costs of renewable energy outweigh its advantages. Short-sighted producers do not have an
incentive to invest in renewable energy production.

4.3.3 Pollution Analysis

The right subfigure in Fig. 3 shows that whatever the level of the carbon tax, the terminal
pollution levels are higher when the producers are competitive (MFG). The main reason here
is thatwhen the producers are competitive (which corresponds to a freemarket situation), they
try to match the demand better. However, they choose to match this demand by using higher
levels of nonrenewable energy resources in the production. This ends upwith increased carbon
emissions. Further, in the absence of a carbon tax, producers can decrease the pollution levels
further by cooperating and following a social planner instead of implementing a carbon tax.

5 Models with a Regulator

In this section, we describe how the previous models can be extended to include a major
player in charge of choosing the tax level τ on behalf of a policy maker, and the penalty c2
for not matching the demand on behalf of system operator. We shall treat this major player as
a regulator, and we shall often speak of minor players when we talk about the producers. We
extend the “minor player only” model used previously by offering the producers the option
to withdraw their entire production, de facto walking away from the contract imposed by the
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regulator. This decision is made when the expected cost to the producer is higher than a fixed
level above which producing at such a level of loss does not make sense. If we refer to the
plots in Fig. 1, we can see that the cost of the minor player is increasing with higher tax and
the penalty for not matching the demand. Therefore, the regulator should be careful not to
enact policies with very high values of τ and c2.

In the newmodel, the regulator does not have a private state per se. The regulator only has
2 controls which are the carbon tax level (τ ∈ R+) and the penalty (c2 ∈ R+). Both controls
are assumed to be time independent. This assumption is especially realistic when the period
[0, T ] is too short for changes in regulation to make sense. The cost function of the regulator
is given as:

J
(
τ, c2; N , Re

)
=α1

(
P̄ N ,Re

T − P̄∗
T

)
+

Term 1

−α2τ
(
P̄ N ,Re

T

)2
Term 2

+α3
∣∣τ ∣∣2

Term 3

+
∫ T

0
α4

∣∣Q̄N ,Re
t − Dt

∣∣2dt

Term 4

+α5c22
Term 5

.
(18)

where α1, α2, α3, α4 and α5 are nonnegative constants whose role is explained below.
The first term is the cost for exceeding the pollution target denoted by P̄∗

T . Here, we
use the notation x+ = max(0, x), so there is no penalty if the terminal pollution level is
below the target. The constant α1 quantifies the size of the penalty. The second term is the
revenue from the carbon tax. Here, we assume that the regulator collects the tax incurred
to the producers and for the sake of consistency with the producers’ model, it is chosen to
be quadratic in the pollution. To prevent the regulator from choosing an abusive high tax
to increase their revenue, Term 3 is added to represent a reputation cost. The joint roles of
Term 4 and Term 5 are to ensure that the responsibility of matching the demand is not only
incumbent on the producers, but also on the regulator, influencing the choice of α4. This is
consistent with our characterization of our major player/regulator as a policy maker as well
as a system operator bearing the brunt of managing the ancillary services to avoid disruptions
like system blackouts. Criteria (18) are chosen to take into account possible objectives of a
policy maker and system operator. The coefficients of the terms can be chosen depending on
the objectives of the regulator’s priorities. For example, if the regulator cares more about the
pollution levels, they can choose a higher α1. In the same way, the regulator can drop any
term by choosing the related coefficient equal to 0.

We assume that if the tax level τ and the penalty c2 are such that the representative minor
player’s cost cannot be higher than a preset level ν; otherwise, the minor player chooses to
walk away. In this case, we define the regulator’s cost to be J (τ, c2; N , Re) = ∞. In this
way, the regulator’s optimal tax level and penalty are such that the minor players’ cost is at
most ν.

Then, the regulator’s problem becomes:

inf
τ,c2

inf
(N ,Re)∈A(τ,c2)

C(N ,Re;X̄(N ,Re),τ,c2)≤ν

J (τ, c2; N , Re) (19)

Above, the setA(τ, c2) refers to theMFC optimum orMFG equilibrium depending on the
problem setting. This set is nonempty by the existence results of Theorem 2 and Theorem 4.
In expression (19), the first line below the second infimum shows the fact that the population
is assumed to respond with a Social Optimum or Nash equilibrium. On the other hand, the
second line shows the fact that the cost of the representative player should not be higher than
the preset level ν. This condition ensures that minor players will not walk away from the
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game. Note that once a minor player decides to play the game, they stay in the game until
the terminal time.

5.1 EquilibriumNotions

We analyze two types of equilibria in the models with a regulator. In both cases, we consider
that the regulator announces their policy first, and the producers react accordingly. This is in
the realm of Stackelberg games. We call the first equilibrium Stackelberg MFC equilibrium.
In this case, the regulator assumes that a social planner chooses the controls used by the elec-
tricity producers. The latter behave like one big monopolistic firm. Therefore, the regulator
chooses the tax level, τ and penalty coefficient c2, assuming that the producers will settle in
a MFC optimum. Note that in this interpretation the regulator and the social planner are two
different entities. We define this equilibrium formally as:

Definition 3 (Stackelberg MFC equilibrium) For every (τ, c2), let
(

N̂ (τ, c2), R̂e(τ, c2)
)
be

the social planner’s MFC optimum given the tax level τ and the penalty coefficient c2. In
other words, for every τ, c2 and any admissible

(
N , Re

)
, we have:

C
((

N , Re
); X̄

(
N , Re

)
, (τ, c2)

)

≥ C
((

N̂ (τ, c2), R̂e(τ, c2)
); X̄

(
N̂ (τ, c2), R̂e(τ, c2)

)
, (τ, c2)

)
,

where we added the notation X̄
(
N , Re

)
to emphasize the parameters for which the mean

field term X̄ is computed. Then, the strategy profile (τ̂ , ĉ2) is Stackelberg MFC equilibrium
with a regulator if, for any admissible (τ, c2):

J
(
τ, c2; N̂ (τ, c2), R̂e(τ, c2)

)
≥ J

(
τ̂ , ĉ2; N̂ (τ̂ , ĉ2), R̂e(τ̂ , ĉ2)

)
.

The second equilibrium is called Stackelberg MFG equilibrium. In this one regulator assumes
electricity producers are competitive and chooses τ and c2 levels by assuming that the minor
player population is at Nash equilibrium. We can define this equilibrium formally as

Definition 4 (Stackelberg MFG equilibrium) For every (τ, c2), let
(

N̂ (τ, c2), R̂e(τ, c2)
)
be

the producers MFG Nash equilibrium given the tax level τ and the demand satisfaction
coefficient c2. In other words, for any admissible

(
N , Re

)
, we have:

C
((

N , Re
); X̄

(
N̂ (τ, c2), R̂e(τ, c2)

)
, (τ, c2)

)

≥ C
((

N̂ (τ, c2), R̂e(τ, c2)
); X̄

(
N̂ (τ, c2), R̂e(τ, c2)

)
, (τ, c2)

)
.

Then, the strategy profile (τ̂ , ĉ2) is a Stackelberg MFG equilibrium with a regulator if, for
any admissible (τ, c2), we have:

J
(
τ, c2; N̂ (τ, c2), R̂e(τ, c2)

)
≥ J

(
τ̂ , ĉ2; N̂ (τ̂ , ĉ2), R̂e(τ̂ , ĉ2)

)
.
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6 Numerical Results in the Presence of a Regulator

6.1 Algorithms

To implement the walk-away option of the producers, we modify the SocialOpt and
NashEq algorithms. This is done by simply adding an IF condition to these algorithms
that assigns Accept=1 if the cost of the minor player is lower than the threshold and
Accept=0 otherwise. After the algorithms for the producers are modified and called
“ModifiedSocialOpt” and “ModifiedNashEq,” respectively, we implement the
Stackelberg equilibrium algorithm where we assume that if the producers reject the con-
tract (Accept=0), the regulator cost is equal to infinity.

Algorithm 5 Computation of Regulator’s Cost

1: function RegulatorCost(τ, c2, X̄ ,Accept)

2: if Accept = 1 then
3: Compute the regulator’s cost J = J (τ, c2; X̄) by using (18)

4: else
5: J = ∞
6: return J

Algorithm 6 Search for a Stackelberg equilibrium with MFC and MFG

1: function StackelbergEq(Type)

2: if Type = MFC then
3: Search for optimal (τ̂ , ĉ2) couplewhere optimalmean field (τ, c2) → X̄(τ, c2), investment in renew-

able (τ, c2) → Re(τ, c2) and minor cost (τ, c2) → c(τ, c2) are computed by ModifiedSocialOpt
algorithm and optimal cost of regulator (τ, c2) → J (τ, c2; X̄(τ, c2),Accept) is found by using
RegulatorCost

4: else if Type = MFG then
5: Search for optimal (τ̂ , ĉ2) couple where optimal mean field (τ, c2) → X̄(τ, c2), investment in

renewable (τ, c2) → Re(τ, c2) and minor cost (τ, c2) → c(τ, c2) are computed by ModifiedNashEq
algorithm and optimal cost of regulator (τ, c2) → J (τ, c2; X̄(τ, c2),Accept) is found by using
RegulatorCost

6: Let (τ̂ , ĉ2) = argminτ,c2 J (τ, c2; X̄(τ, c2)),
ˆ̄X = X̄(τ̂ , ĉ2), R̂e = Re(τ̂ , ĉ2), ĉ = c(τ̂ , ĉ2) and

Ĵ = J (τ̂ , ĉ2; ˆ̄X)

7: return (τ̂ , ĉ2,
ˆ̄X , R̂e, ĉ, Ĵ )

Remark 2 In the two Stackelberg equilibria, the numerical algorithms only differ in the solu-
tion of producers’ problem.
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Fig. 4 Regulator cost in both MFC and MFG settings where penalty for not matching the demand, c2, (left)
or the carbon tax, τ , (right) kept fixed

6.2 Numerical Experiments

6.2.1 Analysis of Regulator’s Cost

For the experiments of this section, we used the same parameters as for the producers’ model
in the previous section. For the regulator we used11:

α1 = 1, α2 = 0.1, α3 = 105, α4 = 5, α5 = 20
τ ∈ {0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100}
c2 ∈ {50, 100, 250, 500, 750, 1000, 1500, 2000, 2500, 3000, 4000, 5000}

First, we analyze the regulator’s expected cost for different values of the carbon tax given
a fixed penalty for not matching the demand. Then, we switch the roles of the two controls of
the regulator. Plots in Fig. 4 show that the cost of the regulator is convex as a function of the
carbon tax or the penalty, when the other control is fixed. We also analyze the effect of the
coefficients in the regulator’s cost. First, we start with the analysis of the importance given
to demand matching by the regulator by tracking the effect of α4 in regulator’s cost. The left
subfigure in Fig. 5 shows that when the tax is fixed, the regulator’s minimum cost is attained
at higher c2 values when α4 is higher. This shows that the regulator should impose higher
penalties for not matching the demand to producers when demand matching is more important
for the regulator. The middle subfigure shows that when the penalty for not matching the
demand is fixed and when α4 is higher, then the optimal tax is lower. The reasoning here is
that when the regulator cares about demand matching since the production from renewable
energy is more unpredictable, the regulator is not opposed to the nonrenewable energy usage
in order to have more stable demand matching. Finally, the right subfigure shows the effect
of the importance given to minimizing the excess pollution by the regulator by tracking the

11 For the minor player’s problem, we have been able to choose realistic parameters by using real life data
as explained in Sect. 4.3. However, the parameters for the regulator’s cost depend on the type of the regulator
we focus on. For example, a regulator can care about minimizing the pollution relatively more than the other
objectives or the regulator’s main goal can be to maximize demand matching by the producers. Therefore, in
the experiments, we focus on showing the effect of these different parameter choices on the decision of the
regulator.



916 Dynamic Games and Applications (2022) 12:897–928

Fig. 5 Effects of the coefficients of the regulator’s cost and decisions: the effect of the importance given to the
demandmatching by the regulator, α4, on the decision of the penalty imposed onminor player for not matching
the demand (left), the effect of α4, on the decision of the carbon tax (middle), the effect of the importance
given to minimizing the excess pollution, α1, on the decision of the carbon tax (right). In the subplots, the
dashed vertical lines show the position of the minimizers of the regulator’s cost with the corresponding color

Fig. 6 Regulator cost given admissible c2 and τ values in when the regulator cares about matching the demand
in MFC (left) and in MFG (middle); the difference of the regulator’s cost between MFC and MFG given any
admissible c2 and τ couples (right)

effect of α1 in regulator’s cost. Here, it can be seen that when the penalty for not matching the
demand is fixed, the optimal carbon tax is higher when the regulator wants to keep pollution
at a lower level. These subfigures are for the MFC case, but similar results hold in the MFG
case as well.

Finally, Fig. 6 gives 3D plots of the regulator cost as a function of their controls τ and
c2. Here, the minimum is attained at (τ̂ , ĉ2) = (55, 1500) in the MFC case and at (τ̂ , ĉ2) =
(55, 1000) in the MFG case. Also, we see that for any given tax and penalty, the expected
cost of the regulator is higher if the producers are cooperative instead of competitive when
the regulator gives more importance to demand matching. This is because for any given
couple (τ, c2), in the cooperative setting producers are behaving like a big monopolistic
firm and care less about matching the demand than in the competitive setting in order to
maximize their revenues by keeping the prices higher. When demand matching is important
for the regulator, the regulator benefits from the competition among the electricity producers
even if this competition creates adverse effect for the producers themselves. Furthermore, the
regulator optimally chooses a higher penalty for not matching the demand in the cooperative
case (1500 vs. 1000) in order to make the monopolistic producers match the demand better.
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7 Conclusion

In this paper, we investigate the behavior of rational electricity producers in the presence of
a carbon tax. We analyze how they manage the trade-off between reliance on traditional and
predictable fossil fuel power production assets which emit greenhouse gas and hence cost
revenues because of the carbon tax, and the temptation to invest in clean energy production
assets which will not be the source of emissions but which make matching the demand prob-
lematic because of the volatility of their output. We study a large population of producers in
two different models: a first one in which they compete and hopefully reach a Nash equi-
librium and a second one in which they cooperate and rely on the solution of a centralized
optimization problem. In a second set of models, we introduce a regulator choosing the level
of the carbon tax in hope to control the overall emissions in the economy, and a penalty to be
imposed on producers failing to meet the demand in hope to avoid power outages and repu-
tation costs. In this way, we aim to find the optimal carbon tax levels. Our models are based
on recent progress in the theory and the numerical analysis of mean field games and mean
field control problems. As a contribution to the theory, since we both have time-dependent
and time-independent controls, we propose nonstandard forward–backward stochastic dif-
ferential equation systems and show the existence and uniqueness of the Nash equilibrium
and social optimum.

We showed that when the producers cooperate, they are better off by behaving like a
single monopolistic firm. However, if the regulator raises excessively the penalty to match
the demand, they can take advantage of the competitive behavior of the producers. While our
models remain stylized, they open the door to more complex models, e.g., involving time-
dependent policies the regulator could base on the response of the producers. Furthermore,
our models could be the used to include more features of the energy markets such as storage
and the interactions between neighboring states or countries.
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A Proofs of Theorems

Proof (of Theorem 1)
Assume that the strategy couple (N̂ , R̂e) is optimal in the mean field game and the corre-
sponding mean field flow is given as Q̄ = Q̄(N̂ , R̂e). Now, assume that the representative

player deviates from the optimal strategy and uses (N̂ + ε

̂

N , R̂e + ε

̂

Re). Then:

dC(N̂ + ε

̂

N , R̂e + ε

̂

Re; Q̄)

dε
|ε=0 =E

[ ∫ T

0

[
2c1 N̂t

̂

Nt + p1
ˇ̃Nt + 2c2(Q̂t − Dt )

̂

Qt

− c3
(
ρ0 + ρ1(Dt − Q̄t )

) ̂

Qt

]
dt + 2τ P̂T

̂

PT + p′(R̂e)

̂

Re

]
.

(20)

Furthermore, we have the following dynamics:

d

̂

Qt = κ1

̂

Ntdt + κ2

̂

Re

(
α cos(αt)dt + (θ − St )dt + σ0d

̂

Wt

)
, d

̂

Et = δ

̂

Ntdt,

d

̂

Pt =

̂

Etdt, d ˇ̃Nt =

̂

Ntdt,

with initial conditions:

̂

Q0 =

̂

E0 =

̂

P0 = ˇ̃N0 = 0. We can introduce the adjoint variables
with the following dynamics:

dY 1
t =

(
− 2c2(Q̂t − Dt ) + c3

(
ρ0 + ρ1(Dt − Q̄t )

))
dt + Z1,1

t dW̃t + Z1,2
t dWt , Y 1

T = 0

dY 2
t =

(
κ2 R̂eY 1

t + Y 2
t

)
dt + Z2,1

t dW̃t + Z2,2
t dWt , Y 2

T = 0

dY 3
t = −Y 4

t dt + Z3,1
t dW̃t + Z3,2

t dWt , Y 3
T = 0

dY 4
t = Z4,1

t dW̃t + Z4,2
t dWt , Y 4

T = 2τ P̂T

dY 5
t = −p1dt + Z5,1

t dW̃t + Z5,2
t dWt , Y 5

T = 0.

Plugging these dynamics in the perturbed cost function (20) and applying integration by
parts:

dC(N̂ + ε

̂

N , R̂e + ε

̂

Re; Q̄)

dε
|ε=0

= E

[ ∫ T

0

[
2c1 N̂t

̂

Nt + ( − dY 5
t + Z5,1

t dW̃t + Z5,2
t dWt

) ˇ̃Nt

+ ( − dY 1
t + Z1,1

t dW̃t + Z1,2
t dWt

) ̂

Qt

]
dt + Y 4

T

̂

PT + p′(R̂e)

̂

Re

]

= E

[ ∫ T

0

̂

Nt

(
2c1 N̂t + Y 5

t + Y 1
t κ1 + Y 3

t δ
)
dt

]

+ E

[ ∫ T

0

(
κ2Y 1

t

(
α cos(αt) + (θ−St )

)
dt + p′(R̂e)

) ̂

Re

]
.

By optimality, the above expression should be equal to 0 for any given

̂

Nt and

̂

Re; therefore:

N̂t = −Y 1
t κ1 + Y 3

t δ + Y 5
t

2c1
and R̂e = (p′)−1

(
− E

[ ∫ T

0
κ2Y 1

t

(
α cos(αt) + (θ−St )

)
dt

])
.

(21)
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For the proof of the FBSDE system in the mean field control setting, assume that strategy
couple (N̂ , R̂e) is optimal in the mean field control problem and the corresponding mean

field is given as ̂̄Q. Now, assume that the representative player deviates from optimal strategy

and uses (N̂ + ε

̂

N , R̂e + ε

̂

Re). Since in the mean field control version every player is going

to deviate, the mean field term also changes to ̂̄Q + ε ˇ̄Qt . Then:

dC(N̂ + ε

̂

N , R̂e + ε

̂

Re; Q̄)

dε
|ε=0 = E

[ ∫ T

0

[
2c1 N̂t

̂

Nt + p1
ˇ̃Nt + 2c2(Q̂t − Dt )

̂

Qt

−c3
(
ρ0 + ρ1(Dt − 2̂̄Qt )

) ̂

Qt

]
dt + 2τ P̂T

̂

PT + p′(R̂e)

̂

Re

]
.

(22)

For the sufficiency, let us assume that (Nt , Re) is the Nash equilibrium. Then, we want to

show by using FBSDE result, ∀(

̂

Nt ,

̂

Re), we have:

C(N , Re; Q̄) − C(Ň , Ře; Q̄) ≤ 0.

Therefore, we have:

C(Nt , Re; Q̄) − C(Ňt , Ře; Q̄)

= E

[
τ(P2

T − P̌2
T ) + p(Re) − p(Ře)

+
∫ T

0

(
c1(N 2

t − Ň 2
t ) + p1(Nt − ˇ̃Nt ) + c2(Q2

t −
̂

Q2
t ) − 2c2(Qt −

̂
Qt )Dt

−c3ρ0(Qt −

̂

Qt ) − c3ρ1(Dt − Q̄t )(Qt −

̂

Qt )
)
dt

]

≤ E

[
Y 4

T (PT −

̂

PT ) + p(Re) − p(Ře)

+
∫ T

0

(
c1(N 2

t − Ň 2
t ) + p1(Nt − ˇ̃Nt ) + c2(Q2

t −

̂

Q2
t ) − 2c2(Qt −

̂

Qt )Dt

−c3ρ0(Qt −

̂

Qt ) − c3ρ1(Dt − Q̄t )(Qt −

̂

Qt )
)
dt

]

= E

[
Y 4

T (PT −

̂

PT ) + p(Re) − p(Ře)

+
∫ T

0
−dY 1

t (Qt −

̂

Qt ) +
∫ T

0
[−2c2Qt (Qt −

̂

Qt ) + c2(Q2
t −

̂

Q2
t ) + c1(N 2

t −

̂

N 2
t )

+p1(Ñt − ˇ̃Nt )]dt +
∫ T

0
Z1,1

t (Qt −

̂

Qt )d

̂

Wt +
∫ T

0
Z1,2

t (Qt −

̂

Qt )dWt

]

≤ E

[
Y 4

T (PT −

̂

PT ) + p(Re) − p(Ře)

+
∫ T

0
−dY 1

t (Qt −

̂

Qt ) +
∫ T

0
[−2c2Qt (Qt −

̂

Qt ) + 2c2Qt (Qt −

̂

Qt )

+2c1Nt (Nt −

̂

Nt ) + p1(Ñt − ˇ̃Nt )]dt
]

= E

[
Y 4

T (PT −

̂

PT ) + p(Re) − p(Ře)
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+
∫ T

0
−dY 1

t (Qt −

̂

Qt ) +
∫ T

0
2c1Nt (Nt −

̂

Nt )dt +
∫ T

0
−dY 5

t (Ñt − ˇ̃Nt )
]
.

Now, we apply integration by parts:

E

[
Y 4

T (PT −

̂

PT ) + p(Re) − p(Ře)

+
∫ T

0
−dY 1

t (Qt −

̂

Qt ) +
∫ T

0
2c1Nt (Nt −

̂

Nt )dt +
∫ T

0
−dY 5

t (Ñt − ˇ̃Nt )
]

= E

[
Y 4

T (PT −

̂

PT ) + p(Re) − p(Ře) +
∫ T

0
(κ1Y 1

t + 2c1Nt + Y 5
t )(Nt −

̂

Nt )dt

+
∫ T

0
κ2(Re −

̂

Re)Y
1
t (α cos(αt) + (θ − St ))dt

]

= E

[
p(Re) − p(Ře) +

∫ T

0
(δY 3

t + κ1Y 1
t + 2c1Nt + Y 5

t )(Nt −

̂

Nt )dt

+
∫ T

0
κ2(Re −

̂

Re)Y
1
t (α cos(αt) + (θ − St ))dt

]
.

By using the optimality conditions, we have:

δY 3
t + κ1Y 1

t + 2c1Nt + Y 5
t = 0,

p′(Re) = −E

[ ∫ T

0
κ2Y 1

t (α cos(αt) + θ − St )dt
]
.

Therefore, we have:

E

[
p(Re) − p(Ře) +

∫ T

0
(δY 3

t + κ1Y 1
t + 2c1Nt + Y 5

t )(Nt −

̂

Nt )dt

+
∫ T

0
κ2(Re −

̂

Re)Y
1
t (α cos(αt) + (θ − St ))dt

]

= p(Re) − p(

̂

Re) − (Re −

̂

Re)p′(Re)

≤ 0,

by using the convexity of function p(·).
��

Proof (of Theorem 2) In order to show existence of the MFG equilibrium mean field flow
system,we show the existence of the solution of the FBSDEgiven in (4).Wefirst fix an Re and
then solve the FBSDE and calculate a new Re by using the optimality condition in (5). In other
words, we need to show that there exists a fixed point for a function f , f (Re) = Re, by using
Brouwer fixed point theorem. Therefore, we need to show that f : [0, Rmax

e ] �→ [0, Rmax
e ]

is continuous in Re. In order to simplify the notations, we define Xt := [Qt , St , Et , Pt , Ñt ],
Yt := [Y 1

t , Y 2
t , Y 3

t , Y 4
t , Y 5

t ] and

Zt :=
[

Z1,1
t Z2,1

t Z3,1
t Z4,1

t Z5,1
t

Z1,2
t Z2,2

t Z3,2
t Z4,2

t Z5,2
t

]	
.
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Further, we define:

K x = − 1

2c1

⎡
⎢⎢⎢⎢⎣

κ2
1 0 κ1δ 0 κ1
0 0 0 0 0

κ1δ 0 δ2 0 δ

0 0 0 0 0
κ1 0 δ 0 1

⎤
⎥⎥⎥⎥⎦

, Lx = −(K y)	 =

⎡
⎢⎢⎢⎢⎣

0 −κ2Re 0 0 0
0 −1 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦

,

O y =

⎡
⎢⎢⎢⎢⎣

−c3ρ1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦

,

L y =

⎡
⎢⎢⎢⎢⎣

−2c2 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦

, M y
t =

⎡
⎢⎢⎢⎢⎣

(2c2 + c3ρ1)Dt

0
0
0

−p1

⎤
⎥⎥⎥⎥⎦

, Mx
t =

⎡
⎢⎢⎢⎢⎢⎣

κ2Re

(
αcos(αt) + θ

)

θ

0
0
0

⎤
⎥⎥⎥⎥⎥⎦

,

ST =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 2τ 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦

, 	 =

⎡
⎢⎢⎢⎢⎣

κ2Reσ0 0
σ0 0
0 σ1
0 0
0 0

⎤
⎥⎥⎥⎥⎦

, W̃t =
[ ̂

Wt

Wt

]
.

When Re is fixed, we can write the FBSDE system as

dXt = K x Yt + Lx Xt + Mx
t + 	dW̃t , X0 = x0

dYt = K yYt + L y Xt + O y X̄t + M y
t + Zt dW̃t , YT = ST XT .

(23)

For the proof of continuity, we first focus on the mean processes:

d X̄t = K x Ȳt + Lx X̄t + Mx
t ,

dȲt = K yȲt + (L y + O y)X̄t + M y
t .

(24)

By introducing ansatz Ȳt = Āt X̄t + B̄t , we can decouple the forward–backward ODE
and end up with

d X̄t = (K x Āt + Lx )X̄t + (K x B̄t + Mx
t ), (25)

where Āt is the solution of the following matrix Riccati differential equation and B̄t is the
solution of the linear ODE system:

˙̄At = − Āt K x Āt + K y Āt − Āt Lx + L y + O y,

˙̄Bt = (K y − Āt K x )B̄t + M y
t − Āt Mx

t .
(26)

By using the general ODE continuity results with respect to parameters, we can analyze
the continuity of Āt with respect to Re. Since the solution of the matrix Riccati equation is
bounded (conditions that give the boundedness of a matrix Riccati differential equation can
be found in [21]), the necessary Lipschitzness assumption holds and we can conclude that
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Āt is continuous in Re. Further, again by using the general ODE continuity results and the
fact that Āt is continuous in Re, we can conclude that B̄t is continuous in Re. In this way, we
have shown that X̄t is continuous in Re.

Now, assume that X̄ is exogenous and define Ut := κ2
(
αcos(αt) + θ − St

)
, �Y 1

t :=
Y 1,Re

t − Y 1,R̃e
t . We can write:

R̂ Re
r − R̂ R̃e

r = (p′)−1
(
E

[ ∫ T

0
−(

Y 1,Re
t − Y 1,R̃e

t
)
Utdt

])

≤ (p′)−1
( ∫ T

0
E

[∣∣�Y 1
t Ut

∣∣]dt
)

≤ (p′)−1
( ∫ T

0

(
E
[|�Y 1

t |2]
)1/2(

E
[|Ut |2

])1/2
dt

)

≤ (p′)−1
(

CT

(
sup

t∈[0,T ]
E
[|�Y 1

t |2]
)1/2)

≤ (p′)−1
(

C̃TE

[( ∫ T

0

∣∣∣(Lx − L̃ x )Xt + (Mx − M̃x
t ) + (K x − K̃ y)Yt

+O y(X̄t − ˜̄Xt )

∣∣∣dt
)2 +

∫ T

0
|	 − 	̃|2dt

]1/2)
,

(27)

where the first inequality comes from the convexity of p, the second inequality comes from
Cauchy–Schwarz inequality and the last inequality is the result of [20, Theorem 5.4]. By
using the continuity of X̄ in Re and the continuity of (p′)−1(·), as Re − R̃e goes to 0, the

upper bound goes to 0. Therefore, we can infer that R̂ Re
r − R̂ R̃e

r also goes to 0, which gives
continuity.

Since we assume that (p′)−1 : R �→ [0, Rmax
e ], we also have f : [0, Rmax

e ] �→ [0, Rmax
e ].

We conclude the existence proof by using Brouwer fixed point theorem.
Uniqueness can be concluded as follows: assume there exist two mean field game equi-

libria: (N , Re, Q̄) = (Nt , Re, Q̄t )t∈[0,T ] and (N ′, R′
e, Q̄′) = (N ′

t , R′
e, Q̄′

t )t∈[0,T ] such that
Q̄ �= Q̄′. Then, the control processes (N , Re) and (N ′, R′

e) should differ since if they are the
same, we would have the same state processes and the distributions would be the same. By
using the definition of “minimizer” of a cost functional, we have:

C(N , Re; Q̄) ≤ C(N ′, R′
e; Q̄), C(N ′, R′

e; Q̄′) ≤ C(N , Re; Q̄′).

By adding the two inequalities, we get:
(

C(N , Re; Q̄) − C(N , Re; Q̄′)
)

−
(

C(N ′, R′
e; Q̄) − C(N ′, R′

e; Q̄′)
)

≤ 0. (28)

Now, we use the fact that the drift and the volatility terms are independent of the state
distribution,L(X) = µ. Therefore, in environmentµ , the controlled path driven by (N ′, R′

e)

is Q̄′ and in environment µ′ , the controlled path driven by (N , Re) is Q̄. By using this, we
write:

C(N , Re; Q̄) − C(N , Re; Q̄′) = c3ρ1

∫ T

0
Q̄t (Q̄t − Q̄′

t )dt .

In the same way, we have:

C(N ′, R′
e; Q̄) − C(N ′, R′

e; Q̄′) = c3ρ1

∫ T

0
Q̄′

t (Q̄t − Q̄′
t )dt .
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Therefore, the expression on the left of the inequality (28) becomes:
(

C(N , Re; Q̄) − C(N , Re; Q̄′)
)

−
(

C(N ′, R′
e; Q̄) − C(N ′, R′

e; Q̄′)
)

= c3ρ1

∫ T

0
(Q̄t − Q̄′

t )
2dt > 0.

By contradiction, we conclude the uniqueness.
��

Proof (of Theorem 3)We introduce the same adjoint variables as for theMFGFBSDE except
that for Y 1

t we take:

dY 1
t =

(
− 2c2(Q̂t − Dt ) + c3

(
ρ0 + ρ1(Dt − 2̂̄Qt )

))
dt + Z1,1

t d

̂

Wt + Z1,2
t dWt , Y 1

T = 0.

By plugging the adjoint variable dynamics in the perturbed cost (22) and applying integration
by parts, we end up with the same optimality conditions as in (21). The sufficiency condition
is proved by following the same ideas as in the proof of Theorem 1: We have

C(Nt , Re; Q̄t ) − C(Ňt , Ře; ˇ̄Qt )

= p(Re) − p(Ře) − p′(Re)(Re − Ře)

+E

[ ∫ T

0

[
c3ρ1(Qt Q̄t − Q̌t

ˇ̄Qt ) − 2c3ρ1 Q̄t (Qt − Q̌t )
]
dt

]

= p(Re) − p(Ře) − p′(Re)(Re − Ře) −
∫ T

0

[
c3ρ1(Q̄t + ˇ̄Qt )

2]dt

≤ 0.

which is obtained by using the convexity of the function p(·). ��
Proof (of Theorem 4)
The proof of the existence of the solution in the MFC case follows the same ideas of the
proof of Theorem 2, and for the sake of space, it is omitted. To prove uniqueness of the MFC
optimal mean field term, we introduce an auxiliary MFG which has the same FBSDE as the
MFC problem and for which we prove uniqueness. To wit, we first focus on the mean field
game problem that has the same dynamics as in (2) and that has the following cost functional
for an infinitesimal agent given a mean field flow (Q̄t )t :

E

[ ∫ T

0

[
c1|Nt |2 + p1 Ñt + c2|Qt − Dt |2 − c3

(
ρ0 + ρ1(Dt − 2Q̄t )

)
Qt

]
dt + τ |PT |2 + p(Re)

]
.

Following the idea given in the proof of Theorem 1, the FBSDE system that characterizes
the solution of this new game is found to be the same FBSDE that characterizes the solution
of the mean field control. Uniqueness of the mean field flow of the new mean field game can
be proved by using the approach given in the proof of Theorem 2 and it is omitted for the
sake of space. This in turn concludes the uniqueness for the mean field control problem.

��
Proof (of Lemma 1) Following [10, ch. 3], we write the Hamiltonian:

H(t, N , X , X̄ , q) = (Ax)	q + (B · N )	q + C	
t q

+ R

2
|N |2 + H	

t X + X̄	F X + X	G X + Jt , (29)
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where q is the adjoint process. Therefore, the optimal N to optimize H can be expressed as:

N̂ (q) = −R−1B	q. (30)

By plugging N̂ (q) in the Hamiltonian (29), the optimal Hamiltonian can be written as:

Ĥ(t, X , X̄ , q) = −1

2
q	B R−1B	q + X	 A	q + C	

t q + H	
t X + X̄	F X + X	G X + Jt .

(31)

Then, the Hamilton–Jacobi–Bellman (HJB) equation can be written as:

− ∂u(t, X)

∂t
− tr(aD2u(t, X)) = Ĥ(t, X , X̄t , Du(t, X)), u(T , X) = X	ST X + p2Re,

(32)

where X̄t = ∫
R5 Xm(t, X)dX . The Kolmogorov–Fokker–Planck (KFP) equation for our

MFG problem can be written as:

∂m(t, X)

∂t
− tr(aD2m(t, X)) + ∇x

(
m(t, X)(AX − Br−1B	 Du(t, X) + Ct )

) = 0,

m(0, X) = m0(X).

(33)

Introduce the following ansatz for the value function:

u(t, X) = 1

2
X	ηt X + X	rt + st . (34)

We have Du(t, X) = ηt X + rt and D2u(t, x) = ηt . By plugging (34) into the HJB equation
in (32), we obtain that ηt is the solution of the following symmetric matrix Riccati equation:

dηt

dt
− ηt B R−1B	ηt + A	ηt + ηt A + 2G = 0, ηT = 2ST . (35)

ThisRiccati equation has a unique positive symmetric solution, see [22, ch. 14.3].Byplugging
(34) into the HJB Eq. (32), we also obtain the differential equation for rt that is coupled with
X̄t :

− drt

dt
=

(
A	 − ηt B R−1B	)

rt + ηt Ct + Ht + F	 X̄t , rT = 0. (36)

The differential equation for X̄t can be found by plugging the ansatz in the KFP equation:

d X̄t

dt
= d

dt

∫

R5
X · m(t, X)dX =

∫

R5
X · ∂m(t, X)

∂t
dX

=
∫

R5
X ·

(
tr(aD2m(t, X)) − ∇x

(
m(t, X)(AX − B R−1B	(ηt X + rt ) + Ct )

))
dX

= −
∫

R5
X · ∂m(t, X)

∂ X
(AX − B R−1B	(ηt X + rt ) + Ct )dX

−
∫

R5
X · m(t, X)(A − B R−1B	ηt )dX

= (A − B R−1B	ηt )X̄t − B R−1B	rt + Ct .

(37)

Finally, from the HJB equation where the ansatz is plugged in we find that:

dst

dt
= −tr(aηt ) + 1

2
rt

	 B R−1B	rt − C	
t rt − Jt , sT = p2Re.
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Therefore, we have:

st = p2Re +
∫ T

t

(
tr(aηs) − 1

2
rs

T B R−1B	rs + C	
s rs + Js

)
ds. (38)

The expected cost of the representative minor player given fixed mean field and Re can be
calculated by using:

inf
(Nt )t

C̃ M FG
(

N ; Re, X̄
)

= E [u(0, X0)]

= E

[
1

2
X	
0 η0X0 + X	

0 r0 + s0

]

= 1

2

(
V ar(

√
η0X0) + E[√η0X0]2

) + X̄	
0 r0 + s0.

��
Proof (of Theorem 5) For the existence and uniqueness proof, we make use of Banach fixed
point theorem.We follow the line of proof used for a stochastic system in [25, Thm 5.1]. First,
we fix (r1t )t and (r2t )t , and then, corresponding (X̄ i

t )t can be found by solving the following
ODE:

d X̄ i
t = [(A − B R−1B	ηt )X̄ i

t − B R−1B	r i
t + Ct ]dt, X̄ i

0 = x̄0, i = {1, 2}.
Further let ˜̄Xt = X̄1

t − X̄2
t and r̃t = r1t − r2t , then we have:

d˜̄Xt = [(A − B R−1B	ηt )
˜̄Xt − B R−1B	r̃t ]dt, ˜̄X0 = 0.

Now, we introduce (r i ′
t )t that solves:

dri ′
t = [(ηt B R−1B	 − A	)r i

t − ηt Ct − Ht − F	 X̄ i
t ]dt, r i ′

T = 0, ∀i ∈ {1, 2},
and let r̃

′
t = r1

′
t − r2

′
t . Then, we have the following ODE:

dr̃
′
t = [(ηt B R−1B	 − A	)r̃t − F	˜̄Xt ]dt, r̃

′
T = 0.

Therefore, we have defined a mapping r �→ r
′
. We now show that it is a contraction mapping

to be able to use the Banach fixed point theorem.

Step 1. Using Itô’s formula, we write the dynamics for ||˜̄Xt ||2:
d||˜̄Xt ||2 = 2(˜̄Xt )

	d˜̄Xt = 2(˜̄Xt )
	[(A − B R−1B	ηt )

˜̄Xt − B R−1B	r̃t ]dt .

By using these dynamics, we can find a bound for ||˜̄Xt ||2:

||˜̄Xt ||2 =
∫ t

0
2(˜̄Xs)

	[(A − B R−1B	ηs)
˜̄Xs − B R−1B	r̃s]ds

≤
∫ t

0
(||2(A − B R−1B	ηs)||)||˜̄Xs ||2ds +

∫ t

0
||B R−1B	||2 < ˜̄Xs, r̃s > ds

≤
∫ t

0
(||2(A − B R−1B	ηs)||)||˜̄Xs ||2ds +

∫ t

0
||B R−1B	||(||˜̄Xs ||2 + ||r̃s ||2

)
ds

≤ exp
( ∫ t

0
(2||A − B R−1B	ηs || + ||B R−1B	||)ds

) ∫ t

0
(||B R−1B	||)||r̃s ||2ds

≤ C (1)
∫ T

0
||r̃s ||2ds, (39)
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where the third to last inequalities stem from the Gronwall’s inequality, and we define

C (1) = exp
(

T
(
2||A|| + 2(||B R−1B	||)||η||T + ||B R−1B	||)

)
||B R−1B	|| with ||η||T :=

sup0≤t≤T ||ηt ||.
Step 2. We write the dynamics for ||r̃ ′

t ||2:

d||r̃ ′
t ||2 = 2(r̃

′
t )

	dr̃
′
t = 2(r̃

′
t )

	[(ηt B R−1B	 − A	)r̃t − F	˜̄Xt ]dt .

Now, we find a bound for ||r̃ ′
t ||2 as follows by using Young’s inequality:

||r̃ ′
t ||2 =

∫ T

t
2(r̃

′
s)

	[(A	 − ηs B R−1B	)r̃s + F	˜̄Xs]ds

≤
∫ T

t
||A	 − ηs B R−1B	||2 < r̃

′
s, r̃s > ds +

∫ T

t
||F	||2 < r̃

′
s,

˜̄Xs > ds

=
∫ T

t
(||A	 − ηs B R−1B	|| + ||F	||)||r̃ ′

s ||2ds

+
∫ T

t
(||A	 − ηs B R−1B	||)||r̃s ||2ds +

∫ T

t
(||F	||)||˜̄Xs ||2ds.

Now, the expression found in (39) can be plugged in and by using Gronwall’s inequality:

||r̃ ′
t ||2 ≤

∫ T

t
(||A	 − ηs B R−1B	|| + |F	||)||r̃ ′

s ||2ds +
∫ T

0
(||A	 − ηs B R−1B	||)||r̃s ||2ds

+
∫ T

0
||F	||C (1)

( ∫ T

0
||r̃s ||2ds

)
ds

≤
∫ T

t
(||A	 − ηs B R−1B	|| + |F	||)||r̃ ′

s ||2ds +
∫ T

0
(||A	 − ηs B R−1B	||)||r̃s ||2ds

+ T
[
||F	||C (1)

( ∫ T

0
||r̃s ||2ds

)]

≤ exp
(

T (||A|| + (||B R−1B	||)||η||T + ||F	||)
)

∫ T

0

[
||A	 − ηs B R−1B	|| + T ||F	||C (1)

]
||r̃s ||2ds.

Now, define ||r ||T := sup0≤t≤T ||rt ||, then we have: ||r̃ ′ ||2T ≤ cT ||r̃ ||2T , where cT is

cT =T eT (||A||+(||B R−1B	||)||η||T +||F	||)

×(||A	|| + (||η||T + T ||F	||eT (2||A||+(2||η||T +1)||B R−1B	||))||B R−1B	||).

With small T , we have cT < 1, which concludes the proof. ��
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Proof (of Lemma 2) For mean field control problems, we have the following HJB and FP
systems. The detailed proof of the derivation can be found in [8, ch. 6].

− ∂u(t, X)

∂t
− tr(aD2u(t, X)) = Ĥ(t, X , m(t), Du(t, X))

+
∫

Rn

∂ Ĥ

∂m
(t, ξ, m(t), Du(t, ξ))(x)m(t, ξ)dξ,

u(T , X) = X	ST X + p2Re

∂m(t, X)

∂t
− tr(aD2m(t, X)) + ∇x

(
m(t, X)(AX − B R−1B	 Du(t, X) + Ct )

) = 0,

m(0, X) = x0,

where ∂ Ĥ
∂m denotes the Gâteaux differential of Ĥ on L2(R5). As it can be seen, the KFP

equation stays same as in MFC but HJB equation changes. By rewriting (31) as:

Ĥ(t, X , m, q) = −1

2
q	 B R−1B	q + X	 A	q + C	

t q + H	
t X

+
( ∫

Rn
ξm(ξ)dξ

)	
F X + X	G X + Jt . (40)

We find that
∫

Rn

∂ Ĥ(t, X , m, q)

∂m
(x)m(ξ)dξ =

∫

Rn
X	Fξm(ξ)dξ = X	F X̄ . (41)

Therefore, the HJB equation becomes:

− ∂u

∂t
− tr(aD2u) = Ĥ(t, X , X̄ , Du) + X	F X̄ , u(XT , T ) = X	

T ST XT + p2Re.

(42)

We introduce the same ansatz as in (34). By plugging this ansatz in the HJB equation given
in (42), we end up with the same Riccati equation and equation for s0. Only the differential
equation of rt changes as follows:

−drt

dt
=

(
A	 − ηt B R−1B	)

rt + ηt Ct + Ht + F	 X̄t + F X̄t , rT = 0,

where X̄t = ∫
R5 Xm(t, X)dX . Since the Kolmogorov–Fokker–Planck equation stayed the

same, we have the same expression for the differential equation of X̄t as in (37). We obtain
the MFC cost given any fixed Re by using the ansatz (see, e.g., [24] for more details):

inf
(Nt )t

C̃ M FC
(

N ; Re

)
= E

[
u(0, X0)−

∫ T

0
X	

t F X̄tdt

]

= E

[
1

2
X	
0 η0X + X	

0 r0 + s0

]
−

∫ T

0
X̄	

t F X̄tdt

= 1

2

(
V ar(

√
η0X0) + E[√η0X0]2

) + X̄	
0 r0 + s0−

∫ T

0
X̄	

t F X̄tdt .

��
Proof (of Theorem 6) For the sake of space, we omit the proof of existence and uniqueness,
which follows the same steps as in the proof of Theorem 5. ��
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