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Abstract
Multi-agent actor-critic algorithms are an important part of the Reinforcement Learning
(RL) paradigm. We propose three fully decentralized multi-agent natural actor-critic (MAN)
algorithms in this work. The objective is to collectively find a joint policy that maximizes
the average long-term return of these agents. In the absence of a central controller and
to preserve privacy, agents communicate some information to their neighbors via a time-
varying communication network. We prove convergence of all the three MAN algorithms to
a globally asymptotically stable set of theODE corresponding to actor update; these use linear
function approximations. We show that the Kullback–Leibler divergence between policies
of successive iterates is proportional to the objective function’s gradient. We observe that the
minimum singular value of the Fisher information matrix is well within the reciprocal of the
policy parameter dimension. Using this, we theoretically show that the optimal value of the
deterministic variant of the MAN algorithm at each iterate dominates that of the standard
gradient-based multi-agent actor-critic (MAAC) algorithm. To our knowledge, it is the first
such result in multi-agent reinforcement learning (MARL). To illustrate the usefulness of
our proposed algorithms, we implement them on a bi-lane traffic network to reduce the
average network congestion. We observe an almost 25% reduction in the average congestion
in 2 MAN algorithms; the average congestion in another MAN algorithm is on par with the
MAAC algorithm.We also consider a generic 15 agent MARL; the performance of theMAN
algorithms is again as good as the MAAC algorithm.
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1 Introduction

Reinforcement learning (RL) has been explored in recent years and is of great interest to
researchers because of its broad applicability in many real-life scenarios. In RL, agents
interact with the environment and take decisions sequentially. It is applied successfully to
various problems, including elevator scheduling, robot control, etc. There are many instances
where RL agents surpass human performance, such as openAI beating the world champion
DOTA player, DeepMind beating the world champion of Alpha Star.1

The sequential decision-making problems are generally modeled via Markov decision
process (MDP). It requires the knowledge of system transitions and rewards. In contrast,
RL is a data-driven MDP framework for sequential decision-making tasks; the transition
probability matrices and the reward functions are not assumed, but their realizations are
available as observed data.

In RL, the purpose of an agent is to learn an optimal or nearly-optimal policy that max-
imizes the “reward function" or functions of other user-provided “reinforcement signals"
from the observed data. However, in many realistic scenarios, there is more than one agent.
To this end, researchers explore the multi-agent reinforcement learning (MARL) methods,
but most are centralized and relatively slow. Furthermore, these MARL algorithms use the
standard/vanilla gradient, which has limitations. For example, the standard gradients cannot
capture the angles in the state space and may not be effective in many scenarios. The natural
gradients are more suitable choices because they capture the intrinsic curvature in the state
space. In this work, we are incorporating natural gradients in the MARL framework.

In the multi-agent setup that we consider, the agents have some private information and a
common goal. This goal could be achieved by deploying a central controller and converting
the MARL problem into a single-agent RL problem. However, deploying a central controller
often leads to scalability issues. On the other hand, if there is no central controller and the
agents do not share any information, then there is almost no hope of achieving the common
goal. An intermediate model is to share some parameters via (possibly) a time-varying, and
sparse communication matrix [53]. The algorithms based on such intermediate methods are
often attributed as consensus-based algorithms.

The consensus-based algorithm models can also be considered as intermediate between
dynamic non-cooperative and cooperative game models. Non-cooperative games, as multi-
agent systems, model situations where the agents do not have a common goal and do not
communicate. On the contrary, cooperative gamesmodel situations where a central controller
achieves a common goal using complete information.

Algorithm 2 of [53] is a consensus-based actor-critic algorithm. We call it MAAC (multi-
agent actor-critic) algorithm.TheMAACalgorithmuses the standardgradient andhence lacks
in capturing the intrinsic curvature present in the state space. We propose three multi-agent
natural actor-critic (MAN) algorithms and incorporate the curvatures via natural gradients.
These algorithms use the linear function approximations for the state value and reward func-
tions.We prove the convergence of all the threeMAN algorithms to a globally asymptotically
stable equilibrium set of ordinary differential equations (ODEs) obtained from the actor
updates.

Here is a brief overview of our two time-scale approach. Let J (θ) be the global MARL
objective function of n agents, where θ = (θ1, . . . , θn) is the actor (or policy) parameter.
For a given policy parameter θ of each MAN algorithm, we first show in Theorem 4 the
convergence of critic parameters (to be defined later) on a faster time scale. Note that these

1 A detailed version of this paper is available at: arXiv:2109.01654.

https://arxiv.org/abs/2109.01654.
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critic parameters are updated via the communication matrix. We then show the convergence
of each agent’s actor parameters to an asymptotically stable attractor set of its ODE. These
actor updates use the natural gradients in the form of Fisher informationmatrix and advantage
parameters (Theorem 6, 8 and 10). The actor parameter θ is shown to converge on the slower
time scale.

Our MAN algorithms use a log-likelihood function via the Fisher information matrix
and incorporate the curvatures. We show that this log-likelihood function is indeed the KL
divergence between the consecutive policies, and it is the gradient of the objective function
up to scaling (Lemma 1). Unlike standard gradient methods, where the updates are restricted
to the parameter space only, the natural gradient-based methods allow the updates to factor in
the curvature of the policy distribution prediction space via the KL divergence between them.
Thus, two of our MAN algorithms, FI-MAN and FIAP-MAN, use a certain representation
of the objective function gradient in terms of the gradient of this KL divergence (Lemma 1).
It turns out these two algorithms have much better empirical performance (Sect. 5.1).

We nowpoint out a couple of important consequences of the representation learning aspect
of our MAN algorithms for reinforcement learning. First, we show that under some condi-
tions, our deterministic version of the FI-MAN algorithm converges to local minima with a
better objective function value than the deterministic counterpart of the MAAC algorithm,
Theorem 3. To the best of our knowledge, this is a new result in non-convex optimization;
we are not aware of any algorithm that is proven to converge to a better local maxima [13,
37]. This relies on the important observation, which can be of independent interest, that 1/m
is uniform upper bound on the smallest singular value of Fisher information matrix G(θ),
Lemma 2; here, m is the common dimension of the compatible policy parameter θ and the
Fisher information matrix G(θ).

The natural gradient-based methods can be viewed as quasi-second order methods, as the
Fisher information matrix G(·) is an invertible linear transformation of basis that is used in
first-order optimizationmethods [1]. However, they are not regarded as second-ordermethods
because the Fisher information matrix is not the Hessian of the objective function.

To validate the usefulness of our proposed algorithms, we perform a comprehensive set of
computational experiments in two settings: a bi-lane traffic network and an abstract MARL
model. On a bi-lane traffic networkmodel, the objective is to find the traffic signaling plan that
reduces the overall network congestion. We consider two different arrival patterns between
various origin-destination (OD) pairs. With the suitable linear function approximations to
incorporate the humongous state space (5016) and action space (34), we observe a significant
reduction (≈ 25%) in the average network congestion in two of our MAN algorithms. One of
our MAN algorithms that are only based on the advantage parameters and never estimate the
Fisher information matrix inverse is on-par with theMAAC algorithm. In the abstract MARL
model, we consider 15 agents with 15 states and two actions in each state and generic reward
functions [18, 53]. Each agent’s reward is private information and hence not known to other
agents. OurMAN algorithms either outperform or are on-par with theMAAC algorithmwith
high confidence.

2 MARL Framework and Natural Gradients

Let N = {1, 2, . . . , n} denote the set of agents. Each agent independently interacts with a
stochastic environment and takes a local action. We consider a fully decentralized setup in
which a communication network connect the agents.
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This network is used to exchange information among agents in the absence of a central
controller so that agents’ privacy remains intact. The communication network is possibly
time-varying and sparse. We assume the communication among agents is synchronized, and
hence there are no information delays. Moreover, only some parameters (that we define later)
are shared among the neighbors of each agent. It also addresses an important aspect of the
privacy protection of such agents. Formally, the communication network is characterized by
an undirected graph Gt = (N , Et ), where N is the set of all nodes (or agents) and Et is the
set of communication links available at time t ∈ N. We say, agents i, j ∈ N communicate at
time t if (i, j) ∈ Et .

Let S denote the common state space available to all the agents. At any time t , each agent
observes a common state st ∈ S, and takes a local action ait from the set of available actions
Ai . We assume that for any agent i ∈ N , the entire action set Ai is feasible in every state
s ∈ S. The action ait is taken as per a local policyπ i : S×Ai → [0, 1], whereπ i (st , ait ) is the
probability of taking action ait in state st by agent i ∈ N . LetA:= ∏n

i=1 Ai be the joint action
space of all the agents. To each state and action pair, every agent receives a finite reward from
the local reward function Ri : S ×A → R. Note that the reward is private information of the
agent, and it is not known to other agents. The state transition probability of MDP is given
by P : S ×A×S → [0, 1]. Using only local rewards and actions, it is hard for any classical
reinforcement learning algorithm to maximize the averaged reward determined by the joint
action of all the agents. To this end,we consider themulti-agent networkedMDPgiven in [53].
The multi-agent networked MDP is defined as (S, {Ai }i∈N , P, {Ri }i∈N , {Gt }t≥0), with each
component described as above. Let joint policy of all agents be denoted byπ : S×A → [0, 1]
satisfying π(s, a) = ∏

i∈N π i (s, ai ). Let at = (a1t , . . . , a
n
t ) be the action taken by all the

agents at time t . Depending on the action ait the agent i receives a random reward r it+1 with
the expected value Ri (st , at ).Moreover, with probability P(st+1|st , at ) themulti-agentMDP
shifts to next state st+1 ∈ S.

Due to the large state and action space, it is often helpful to consider the parameterized
policies [23, 45].Weparameterize the local policy,π i (·, ·)by θ i ∈ Θ i ⊆ R

mi , whereΘ i is the
compact set. To find the global policy parameters, we can pack all the local policy parameters
as θ = [(θ1)�, . . . , (θn)�]� ∈ Θ ⊆ R

m , where Θ:=∏
i∈N Θ i , and m = ∑n

i=1 mi . The
parameterized joint policy is then given by πθ (s, a) = ∏

i∈N π i
θ i

(s, ai ). The objective of the
agents is to collectively find a joint policy πθ that maximizes the averaged long-term return
J (θ), provided each agent has local information only, i.e.,

maxθ J (θ) = lim
T→∞

1

T
E

(
T−1∑

t=0

1

n

∑

i∈N
rit+1

)

=
∑

s∈S
dθ (s)

∑

a∈A
πθ (s, a)R̄(s, a), (1)

where R̄(s, a) = 1
n

∑
i∈N Ri (s, a) is the globally averaged reward function. Let r̄t =

1
n

∑
i∈N rit . Thus, R̄(s, a) = E[r̄t+1|st = s, at = a].

Like single-agent RL [7], we also require following regularity assumption on networked
multi-agent MDP and parameterized policies.

X 1 For each agent i ∈ N, the local policy function π i
θ i

(s, ai ) > 0 for any s ∈ S, ai ∈ Ai

and θ i ∈ Θ i . Also π i
θ i

(s, ai ) is continuously differentiable with respect to parameters θ i

over Θ i . Moreover, for any θ ∈ Θ , let Pθ be the transition matrix for the Markov chain
{st }t≥0 induced by policy πθ , that is, Pθ (s′|s) = ∑

a∈A πθ (s, a)P(s′|s, a) for any s, s′ ∈ S.
Further, the Markov chain {st }t≥0 is ergodic under πθ with stationary distribution dθ (s) over
S.
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The regularity assumption X. 1 on a multi-agent networked MDP is standard in the work
of single agent actor-critic algorithms with function approximations [7, 27]. The continuous
differentiability of policy πθ (·, ·) with respect to θ is required in policy gradient theorem
[45], and it is commonly satisfied by well-known class of functions such as neural networks
or deep neural networks. Moreover, assumption X. 1 also implies that the Markov chain
{(st , at )}t≥0 has stationary distribution d̃θ (s, a) = dθ (s) · πθ (s, a) for any s ∈ S, a ∈ A.

Based on the objective function given in Eq. (1), the global state-action value function
associated with state-action pair (s, a) for a given policy πθ is defined as Qθ (s, a) =∑

t≥0 E[r̄t+1 − J (θ)|s0 = s, a0 = a, πθ ]. Note that Qθ (s, a) is motivated from the gain
and bias relation for average reward criteria of the single-agent MDP as given in say, Sect.
8.2.1 in [41]. It captures the expected sum of fluctuations of the global rewards about the
globally averaged objective function (“average adjusted sum of rewards” [30]) when action
a is taken in state s ∈ S at time t = 0, and thereafter the policy πθ is followed. The global
state value function is defined as Vθ (s) = ∑

a∈A πθ (s, a) · Qθ (s, a).
Let Aθ (s, a):=Qθ (s, a)−Vθ (s) be the global advantage function. Note that the advantage

function captures the benefit of taking action a in state s and thereafter following the policy
πθ over the case when policy πθ is followed from state s itself. For the multi-agent setup, we
define the local advantage function for each agent i ∈ N as Ai

θ (s, a):=Qθ (s, a)−Ṽ i
θ (s, a−i ),

where Ṽ i
θ (s, a−i ):= ∑

ai∈Ai π i
θ i

(s, ai )Qθ (s, ai , a−i ). Note that Ṽ i
θ (s, a−i ) represents the

value of state s to an agent i ∈ N when policy π(·, ·) is parameterized by θ , and all other
agents are taking action a−i = (a1, . . . , ai−1, ai+1, . . . , an).

Theorem 1 (Policy gradient theorem forMARL [53])Under assumption X. 1, for any θ ∈ Θ ,
and each agent i ∈ N, the gradient of J (θ) with respect to θ i is given by

∇θ i J (θ) = E[∇θ i logπ i
θ i

(s, ai ) · Aθ (s, a)] = E[∇θ i logπ i
θ i

(s, ai ) · Ai
θ (s, a)].

We refer to Appendix A. 1 of [49] for complete proof. The idea of the proof is as follows:
we first recall the policy gradient theorem for single agent. Now using the fact that for multi-
agent case, the global policy is product of local policies, i.e., πθ (s, a) = ∏n

i=1 π i
θ i

(s, ai ),

and
∑

ai∈Ai π i
θ i

(s, ai ) = 1, hence ∇θ i

[∑
ai∈Ai π i

θ i
(s, ai )

]
= 0, we show ∇θ i J (θ) =

Es∼dθ ,a∼πθ [∇θ i logπ i
θ i

(s, ai ) ·Qθ (s, a)]. Now, observe that adding/subtracting any function
Λ that is independent of the action ai taken by agent i ∈ N to Qθ (s, a) does not make any
difference in the above expected value. In particular, considering two suchΛ functions Vθ (s)
and Ṽ i

θ (s, a−i ), we have desired results.
We call ψ i (s, ai ) := ∇θ i logπ i

θ i
(s, ai ), the score function. We will see in Sect. 3.2 that

the same score function is called the compatible features. This is because the above policy
gradient theorem with linear function approximations require the compatibility condition
(Theorem 2 [46]). The policy gradient theorem for MARL relates the gradient of the global
objective function w.r.t. θ i and the local advantage function Ai

θ (·, ·). It also suggests that the
global objective function’s gradients can be obtained solely using the local score function
ψ i (s, ai ), if agent i ∈ N has an unbiased estimate of the advantage functions Ai

θ or Aθ .
However, estimating the advantage function requires the rewards r it of all the agents i ∈ N ;
therefore, these functions cannot be well-estimated by any agent i ∈ N alone. To this end,
[53] have proposed two fully decentralized actor-critic algorithms based on the consensus
network. These algorithms work in a fully decentralized fashion and empirically achieve the
same performance as a centralized algorithm in the long run. We use algorithm 2 of [53]
which we are calling as multi-agent actor-critic (MAAC) algorithm.
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In the fully decentralized setup, we consider the weight matrixCt = [ct (i, j)], depending
on the network topology of communication network Gt . Here, ct (i, j) represents the weight
of themessage transmitted from agent i to agent j at time t . For generality, we take the weight
matrix Ct to be random. This is either because Gt is a time-varying graph or the randomness
in the consensus algorithm [14]. Following are the assumptions on the matrix Ct .

X 2 The sequence of nonnegative random matrices {Ct }t≥0 ⊆ R
n×n satisfy

1. Ct is row stochastic, i.e., Ct1 = 1.Moreover,E(Ct ) is column stochastic, i.e.,1�
E(Ct ) =

1�. Furthermore, there exists a constant γ ∈ (0, 1) such that for any ct (i, j) > 0, we
have ct (i, j) ≥ γ .

2. Weight matrix Ct respects Gt , i.e., ct (i, j) = 0, if (i, j) /∈ Et .
3. The spectral norm of E[C�

t (I − 11�/n)Ct ] is smaller than one.
4. Given the σ -algebra generated by the random variables before time t, Ct is conditionally

independent of r it+1 for each agent i ∈ N.

Assumption X. 2(1) of considering a doubly stochastic matrix is standard in the work of
consensus-based algorithms [10, 32]. To prove the stability of the consensus update (see
Appendix A of [53] for detailed proof), we require the lower bound on the weights of
the matrix [35]. Assumption X. 2(2) is required for the connectivity of Gt . For geometric
convergence in distributed optimization, authors in [34] provide the connection between the
time-varying network and the spectral norm property. The same is required for convergence
in our work also (assumption X. 2(3)). Assumption X. 2(4) on the conditional independence
of Ct and rt+1 is common in many practical multi-agent systems.

Next, we outline the actor-critic algorithm using linear function approximations in a fully
decentralized setting. The actor-critic algorithm consists of two steps—critic step and actor
step. At each time t , the actor suggests a policy parameter θt . The critic evaluates its value
using the policy parameters and criticizes or gives the feedback to the actor. Using this
feedback, actor then update the policy parameters, and this continues until convergence. Let
the global state value temporal difference (TD) error be defined as δ̄t = r̄t+1 − J (θ) +
Vθ (st+1) − Vθ (st ). It is known that the state value temporal difference error is an unbiased
estimate of the advantage function Aθ [45], i.e.,E[δ̄t | st = s, at = a, πθ ] = Aθ (s, a), ∀ s ∈
S, a ∈ A. The TD error specifies how different the new value is from the old prediction.
In many applications [16, 17], the state space is either large or infinite. To this end, we use
the linear function approximations for state value function. Later in Sect. 3.2, we use linear
function approximation for advantage function also.

Let the state value function Vθ (s) be approximated using the linear function as Vθ (s; v) :=
v�ϕ(s), where ϕ(s) = [ϕ1(s), . . . , ϕL (s)]� ∈ R

L is the feature associated with state s, and
v ∈ R

L . Note that L << |S|; hence, the value function is approximated using very small
number of features. Moreover, let μi

t be the estimate of the global objective function J (θ)

by agent i ∈ N at time t . Note that μi
t tracks the long-term return to each agent i ∈ N .

The MAAC algorithm (Appendix C. 4 of [49]) uses consensus network and consists of the
following updates for objective function estimate and the critic parameters

μ̃i
t = (1 − βv,t ) · μi

t + βv,t · r it+1; μi
t+1 =

∑

j∈N
ct (i, j)μ̃

j
t (2)

ṽit = vit + βv,t · δit · ∇vVt (v
i
t ); vit+1 =

∑

j∈N
ct (i, j)ṽ

j
t , (3)

where βv,t > 0 is the critic step-size and δit = r it+1 − μi
t + Vt+1(v

i
t ) − Vt (vit ) is the local

TD error. Here, Vt+1(v
i
t ) := vi

�
t ϕ(st+1), and hence, Vt+1(v

i
t ) = Vθ (st+1; vit ). It is a linear
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function approximation of the state value function, Vθ (st+1) by agent i ∈ N . Note that the
estimate of the advantage function Aθ (s, a) require r̄t+1 which is not available to each agent
i ∈ N . Therefore, we parameterize the reward function R̄(s, a) used in the critic update as
well.

Let R̄(s, a) be approximated using a linear function as R̄(s, a; λ) = λ� f (s, a), where
f (s, a) = [ f1(s, a), . . . , fM (s, a)]� ∈ R

M , M << |S||A| are the features associated with
state action pair (s, a). To obtain the estimate of R̄(s, a), we use the following least square
minimization:

minλ

∑

s∈S,a∈A
d̃θ (s, a)[R̄(s, a) − R̄(s, a; λ)]2,

where R̄(s, a) := 1
n

∑
i∈N Ri (s, a), and d̃θ (s, a) = dθ (s) · πθ (s, a). This optimization

problem can be equivalently characterized as follows:

minλ

∑

i∈N

∑

s∈S,a∈A
d̃θ (s, a)[Ri (s, a) − R̄(s, a; λ)]2,

i.e., both the optimization problems have the same stationary points.
For more details on stationary points, see Appendix A.2 of [49]. Taking first-order deriva-

tive with respect to λ implies that we should also do the following in critic update:

λ̃it = λit + βv,t · [r it+1 − R̄t (λ
i
t )] · ∇λ R̄t (λ

i
t ); λit+1 =

∑

j∈N
ct (i, j)λ̃

j
t , (4)

where R̄t (λ
i
t ) is the linear function approximation of the global reward R̄t (st , at ) by agent

i ∈ N at time t , i.e., R̄t (λ
i
t ) = λi

�
t f (st , at ). The TD error with parameterized reward R̄t (·)

is given by δ̃it :=R̄t (λ
i
t ) − μi

t + Vt+1(v
i
t ) − Vt (vit ).

Note that each agent i ∈ N know its local reward function r it+1(st , at ), but at the same
time also seeks to get some information about the global reward, r̄t+1(st , at ) because the
objective is to maximize the globally averaged reward function. Therefore, in Eq. (4), each
agent i ∈ N uses R̄t (λ

i
t ) as an estimate of the global reward function. Let βθ,t > 0 be the

actor step-size, then each agent i ∈ N updates the policy/actor parameters as

θ it+1 = θ it + βθ,t · δ̃it · ψ i
t .

Note that we have used δ̃it · ψ i
t instead of gradient of the objective function ∇θ i J (θ) in the

actor update. However, δ̃it · ψ i
t may not be an unbiased estimate of ∇θ i J (θ). That is,

Est∼dθ ,at∼πθ [δ̃it ·ψ i
t ] = ∇θ i J (θ)+b,where b = Est∼dθ ,at∼πθ [(R̄t (λ

i
t )− R̄(st , at )) ·ψ i

t ]+
Est∼dθ [(Vθ (st ) − Vt (vit )) · ψ i

t ] is the bias term. (For more details, please refer to page 6 of
[49].)

The bias term captures the sum of the expected linear approximation errors in the reward
and value functions. If these approximation errors are small, the convergence point of the
ODE corresponding to the actor update (as given in Sect. 4) is close to the local optima of
J (θ). In fact, in Sect. 4, we show that the actor parameters converge to asymptotically stable
equilibrium set of the ODEs corresponding to actor updates, hence possibly nullifying the
bias.

To prove the convergence of actor-critic algorithm, we require βθ,t = o(βv,t ), and
limt

βv,t+1
βv,t

= 1. Moreover, we also require (a)
∑

t βv,t = ∑
t βθ,t = ∞; (b)

∑
t

(
β2

v,t + β2
θ,t

)
< ∞, i.e., critic update is made at the faster time scale than the actor

update. Condition in (a) ensures that the discrete time steps βv,t , βθ,t used in the critic and
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actor steps do cover the entire time axis while retaining βv,t , βθ,t → 0. We also require the
error due to the estimates used in the critic and actor updates are asymptotically negligible
almost surely. So, condition in (b) asymptotically suppresses the variance in the estimates
[11]; see [47] for some recent developments that do away with this requirement.

The MAAC algorithm uses standard gradients. However, they are most useful for the
reward functions that have single optima and whose gradients are isotropic in magnitude
for any direction away from its optimum [3]. None of these properties are valid in typical
reinforcement learning environments. Apart from this, the performance of standard gradient-
based RL algorithms depends on the coordinate system used to define the objective function.
It is one of the most significant drawbacks of the standard gradient [26].

Moreover, in many applications such as robotics, the state space contains angles, so the
state space has manifolds (curvatures). The objective function will then be defined in that
curved space, making the policy gradients methods inefficient. Thus, we require a method
that incorporates the knowledge about curvature of the space into the gradient. The natural
gradients are the most “natural" choices in such cases.

2.1 Natural Gradients and the Fisher InformationMatrix

For single agent actor-critic methods, the natural gradients of the objective function J (θ) are
defined in [7, 39] as ∇̃θ J (θ) = G(θ)−1∇θ J (θ), where G(θ) := E[∇θ logπθ (s, a)∇θ logπθ

(s, a)�] is the Fisher information matrix, and ∇ J (θ) is the standard gradient. The Fisher
information matrix is the covariance of score function. It can also be interpreted via KL
divergence between the policy π(·, ·) parameterize at θ and θ + Δθ as [31, 42]

K L(πθ (·, ·)||πθ+Δθ (·, ·)) ≈ 1

2
Δθ� · G(θ) · Δθ. (5)

The above expression is obtained from the second-order Taylor expansion of logπθ+Δθ (s, a),
and using the fact that the sum of the probabilities is one. In above, the right-hand term is a
quadratic involving positive definite matrix G(θ), and hence G(θ) approximately captures
the curvature of the KL divergence between policy distributions at θ and θ + Δθ .

Lemma 1 The gradient of the KL divergence between two consecutive policies is approxi-
mately proportional to thegradient of the objective function, i.e.,∇K L(πθt (·, ·)||πθt+Δθt (·, ·))
∝ ∇ J (θt ).

Proof From Eq. (5), the KL divergence is a function of the Fisher information matrix and
delta change in the policy parameters.

We find the optimal step-size Δθ�
t via the following optimization problem:

Δθ�
t = argmaxΔθt J (θt + Δθt ) s.t . K L(πθt (·, ·)||πθt+Δθt (·, ·)) = c.

Writing the Lagrange function L(θt +Δθt ; ρt ) (where ρt is the Lagrangian multiplier) of
the above optimization problem and using the first-order Taylor approximation along with
the KL divergence approximation as given in Eq. (5), we have

Δθ�
t = argmaxΔθt J (θt + Δθt ) + ρt (K L(πθt (·, ·)||πθt+Δθt (·, ·)) − c)

≈ argmaxΔθt J (θt ) + Δθ�
t ∇θ J (θt ) + 1

2
· ρt · Δθ�

t · G(θt ) · Δθt − ρt c.

Setting the derivative (w.r.t. Δθt ) of Lagrangian to zero, we have ∇θ J (θt ) + ρt · Δθ��
t ·

G(θt ) = 0 �⇒ Δθ�
t = − 1

ρt
G(θt )

−1∇ J (θt ), i.e., upto the factor of − 1
ρt
, we get an
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optimal step-size in terms of the standard gradients and the Fisher information matrix at
point θt . Moreover, from Eq. (5), we have ∇K L(πθt (·, ·)||πθt+Δθt (·, ·)) ≈ G(θt )Δθ�

t and
G(θt )Δθ�

t = − 1
ρt

∇ J (θt ). Hence, ∇K L(πθt (·, ·)||πθt+Δθt (·, ·)) ≈ − 1
ρt

∇ J (θt ). This ends
the proof. ��
The above lemma relates the gradient of the objective function to the gradient of the KL
divergence between the policies separated byΔθt . It provides a valuable observation because
we can adjust the updates (of actor parameter θt ) just by moving in the prediction space of the
parameterized policy distributions. Thus, those MAN algorithms discussed later that rely on
Fisher information matrix G(·) implicitly use the above representation for ∇ J (·). We recall
these aspects in Sect. 3.6 for the Boltzmann policies.

2.2 Multi-Agent Natural Policy Gradient Theorem and Rank-One Update of Gi−1

t+1

In this section, we provide some details of natural policy gradient methods and the Fisher
information matrix in the multi-agent setup. Similar to single agent setup, in a multi-agent
model the natural gradient of the objective function is ∇̃θ i J (θ) = G(θ i )−1∇θ i J (θ), ∀ i ∈
N , where the Fisher information matrix G(θ i ):=Es∼dθ ,a∼πθ [∇θ i logπ i

θ i
(s, ai )∇θ i logπ i

θ i

(s, ai )�] is a positive definite matrix for each agent i ∈ N . We now present the policy
gradient theorem for multi-agent setup involving the natural gradients.

Theorem 2 (Policy gradient theorem for MARL with natural gradients) Under assumption
X. 1, the natural gradient of J (θ) with respect to θ i for each i ∈ N is

∇̃θ i J (θ) = G(θ i )−1
Es∼dθ ,a∼πθ [∇θ i logπ i

θ i
(s, ai ) · Aθ (s, a)]

= G(θ i )−1
Es∼dθ ,a∼πθ [∇θ i logπ i

θ i
(s, ai ) · Ai

θ (s, a)].
The proof follows from the multi-agent policy gradient Theorem 1 and definition of natural
gradients, i.e., ∇̃θ i J (θ) = G(θ i )−1∇θ i J (θ), ∀ i ∈ N .

It is known that inverting a Fisher information matrix is computationally heavy [26,
40], whereas in our natural gradient-based multi-agent actor-critic methods, we require
G(θ i )−1, ∀ i ∈ N . To this end, for every t > 0, let Gi

t+1 = 1
t+1

∑t
l=0 ψlψ

�
l be the

sample average of the Fisher information matrix G(θ i ) by agent i ∈ N . Using the Sherman–
Morrison–Woodbury matrix inversion [43] (see also [7, 37]), we recursively estimate the
G(θ i )−1 for each agent i ∈ N at the faster time scale (more details are available in Sect. 2.2
in [49]).

Gi−1

t+1 = 1

1 − βv,t

[

Gi−1

t − βv,t
(Gi−1

t ψ i
t )(G

i−1

t ψ i
t )

�

1 − βv,t + βv,tψ
i�
t Gi−1

t ψ i
t

]

. (6)

The following section provides three multi-agent natural actor-critic (MAN) RL algo-
rithms involving consensus matrices. Moreover, we will also investigate the relations among
these algorithms and their effect on the quality of the local optima they attain.

3 Multi-Agent Natural Actor-Critic (MAN) Algorithms

This section provides three multi-agent natural actor-critic (MAN) reinforcement learning
algorithms. Two of the three MAN algorithms explicitly use the Fisher information matrix
inverse, whereas one uses the linear function approximation of the advantage parameters.
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3.1 FI-MAN: Fisher Information BasedMulti-Agent Natural Actor-Critic Algorithm

Our first multi-agent natural actor-critic algorithm uses the fact that natural gradients can be
obtained via the Fisher information matrix and the standard gradients. The updates of the
objective function estimate, critic, and the rewards parameters in FI-MAN algorithm are the
same as given in Eqs. (2), (3), and (4), respectively. The major difference between theMAAC
and the FI-MAN algorithm is in the actor update. FI-MAN algorithm uses the following actor
update:

θ it+1 ← θ it + βθ,t · Gi−1

t · δ̃it · ψ i
t , ∀ i ∈ N .

FI-MAN: Fisher information based multi-agent natural actor critic

Input: Initial values of μi
0, μ̃

i
0, v

i
0, ṽ

i
0, λ

i
0, λ̃

i
0, θ

i
0,G

i−1

0 , ∀ i ∈ N ; initial state s0; stepsizes
{βv,t }t≥0, {βθ,t }t≥0.

Each agent i implements ai0 ∼ π
θ i0

(s0, ·).
Initialize the step counter t ← 0.
repeat

for all i ∈ N do
Observe state st+1, and reward r

i
t+1.

Update: μ̃i
t ← (1 − βv,t ) · μi

t + βv,t · r it+1.

λ̃it ← λit + βv,t · [r it+1 − R̄t (λit )] · ∇λ R̄t (λ
i
t ), where R̄t (λit ) = λi

�
t f (st , at ).

Update: δit ← r it+1 − μi
t + Vt+1(v

i
t ) − Vt (vit ), where Vt+1(v

i
t ) = vi

�
t ϕ(st+1).

Critic Step: ṽit ← vit + βv,t · δit · ∇vVt (vit ),
Update: δ̃it ← R̄t (λit ) − μi

t + Vt+1(v
i
t ) − Vt (vit ); ψ i

t ← ∇
θ i logπ i

θ it
(st , ait ).

Actor Step: θ it+1 ← θ it + βθ,t · Gi−1
t · δ̃it · ψ i

t .

Send μ̃i
t , λ̃

i
t , ṽ

i
t to the neighbors over Gt .

for all i ∈ N do

Consensus Update: μi
t+1 ← ∑

j∈N ct (i, j)μ̃
j
t ;

λit+1 ← ∑
j∈N ct (i, j)λ̃

j
t ; vit+1 ← ∑

j∈N ct (i, j)ṽ
j
t .

Fisher Update: Gi−1

t+1 ← 1
1−βv,t

[

Gi−1
t − βv,t

(Gi−1
t ψ i

t )(G
i−1
t ψ i

t )
�

1−βv,t+βv,tψ
i�
t Gi−1

t ψ i
t

]

.

Update: t ← t + 1.
until Convergence;

FI-MANalgorithm explicitly usesGi−1

t in the actor update. Though the Fisher information
inverse matrix is updated according to the Sherman–Morrison inverse at a faster time scale,
it may be better to avoid explicit use of the Fisher inverse in the actor update. To this end, we
use the linear function approximation of the advantage function. This leads to the AP-MAN
algorithm, i.e., advantage parameters based multi-agent natural actor-critic algorithm.
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3.2 AP-MAN: Advantage Parameters-BasedMulti-Agent Natural Actor Critic
Algorithm

Consider the local advantage function Ai (s, ai ) : S × A → R for each agent i ∈ N .
Let the local advantage function Ai (s, ai ) be linearly approximated as Ai (s, ai ;wi ) :=
wi�ψ i (s, ai ), where ψ i (s, ai ) = ∇θ i logπ i

θ i
(s, ai ) are the compatible features, and wi ∈

R
mi are the advantage function parameters. Recall, the same ψ i (s, ai ) was used to represent

the score function in the policy gradient theorem, Theorem 1. However, it also serves as the
compatible featurewhile approximating the advantage function as it satisfies the compatibility
condition in the policy gradient theorem with linear function approximations (Theorem 2
[46]). The compatibility condition as given in [46] is for single agent; however, we are using
it explicitly for each agent i ∈ N . Whenever there is no confusion, we write ψ i instead of
ψ i (s, ai ), to save space.

We can tune wi in such a way that the estimate of least squared error in linear function
approximation of advantage function is minimized, i.e., Eπθ (wi ) = 1

2

∑
s∈S,ai∈Ai d̃θ (s, ai )

[wi�ψ i (s, ai ) − Ai (s, ai )]2 is minimized. Here, d̃θ (s, ai ) = dθ (s) · π i
θ i

(s, ai ) as defined

earlier. Taking the derivative of above equation w.r.t wi , we have ∇wi Eπθ (wi ) =
∑

s∈S,ai∈Ai d̃θ (s, ai )[wi�ψ i − Ai (s, ai )]ψ i . Noting that parameterized TD error δ̃it is an

unbiased estimate of the local advantage function Ai (s, ai ), we will use ∇̂wi Eπθ (wi
t ) =

ψ i
t ψ

i�
t wi

t −δ̃itψ
i
t as an estimate of∇wi Eπθ (wi ). Hence, the update of advantage parameterwi

in theAP-MANalgorithm iswi
t+1 = wi

t −βv,t ∇̂wi Eπθ (wi
t ) = (I−βv,tψ

i
t ψ

i�
t )wi

t +βv,t δ̃
i
tψ

i
t .

The updates of the objective function estimate, critic, and reward parameters in the AP-MAN
algorithm are the same as given in Eqs. (2), (3), and (4), respectively. Additionally, in the
critic step, we update the advantage parameters as given above. For single-agent RL with
natural gradients [39, 40], show that ∇̃θ J (θ) = w. In MARL with natural gradient, we sep-
arately verified and hence use ∇̃θ i J (θ) = wi for each agent i ∈ N in the actor update of
AP-MAN algorithm. The AP-MAN actor-critic algorithm thus uses θ it+1 ← θ it +βθ,t ·wi

t+1
in the actor update. The algorithm’s pseudo-code involving advantage parameters is given in
the AP-MAN algorithm.

Remark 1 Wewant to emphasize that theAP-MANalgorithmdoes not explicitly useG(θ i )−1

in the actor update (as also in [7]); hence, it requires fewer computations. However, it involves
the linear function approximation of the advantage function that itself requires ψ i

t ψ
i�
t which

is an unbiased estimate of the Fisher information matrix. We will see later in Sect. 3.4 that
the performance of the AP-MAN algorithm is almost the same as the MAAC algorithm. We
empirically verify this observation in Sect. 5.

Remark 2 The advantage function is a linear combination of Qθ (s, a) and Vθ (s); there-
fore, the linear function approximation of the advantage function alone enjoys the benefit of
approximating the Qθ (s, a) or Vθ (s). Moreover, MAAC uses the linear function approxima-
tion of Vθ (s); hence, we expect the behavior of AP-MAN to be similar to that of MAAC;
this comes out in our computational experiments in Sect. 5.

The FI-MAN algorithm is based solely on the Fisher information matrix and the AP-
MAN algorithm on the advantage function approximation. Our next algorithm, FIAP-MAN
algorithm, i.e., Fisher information and advantage parameter-based multi-agent natural actor-
critic algorithm combines them in a certain way. We see the benefits of this combination in
Sects. 3.4 and 5.1.
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AP-MAN: Advantage parameters based multi-agent natural actor critic

Input: Initial values of μi
0, μ̃

i
0, v

i
0, ṽ

i
0, λ

i
0, λ̃

i
0, θ

i
0, w

i
0, ∀i ∈ N ; initial state s0; stepsizes

{βv,t }t≥0, {βθ,t }t≥0.

Each agent i implements ai0 ∼ π
θ i0

(s0, ·).
Initialize the step counter t ← 0.
repeat

for all i ∈ N do
Observe state st+1, and reward r

i
t+1.

Update: μ̃i
t ← (1 − βv,t ) · μi

t + βv,t · r it+1.

λ̃it ← λit + βv,t · [r it+1 − R̄t (λit )] · ∇λ R̄t (λ
i
t ), where R̄t (λit ) = λi

�
t f (st , at ).

Update: δit ← r it+1 − μi
t + Vt+1(v

i
t ) − Vt (vit ), where Vt+1(v

i
t ) = vi

�
t ϕ(st+1).

Critic Step: ṽit ← vit + βv,t · δit · ∇vVt (vit ).

Update: δ̃it ← R̄t (λit ) − μi
t + Vt+1(v

i
t ) − Vt (vit ); ψ i

t ← ∇θ i logπ i
θ it

(st , ait ).

Update: wi
t+1 ← (I − βv,tψ

i
t ψ

i�
t )wi

t + βv,t δ̃
i
tψ

i
t .

Actor Step: θ it+1 ← θ it + βθ,t · wi
t+1.

Send μ̃i
t , λ̃

i
t , ṽ

i
t to the neighbors over Gt .

for all i ∈ N do

Consensus Update: μi
t+1 ← ∑

j∈N ct (i, j)μ̃
j
t ;

λit+1 ← ∑
j∈N ct (i, j)λ̃

j
t ; vit+1 ← ∑

j∈N ct (i, j)ṽ
j
t .

Update: t ← t + 1.
until Convergence;

3.3 FIAP-MAN: Fisher Information and Advantage Parameter BasedMulti-Agent
Natural Actor-Critic Algorithm

Recall in Sect. 3.2, for each agent i ∈ N , the local advantage function has linear function
approximation Ai (s, ai ;wi ) = wi�ψ i (s, ai ), where ψ i (s, ai ) are the compatible features
as before, and wi ∈ R

mi are the advantage function parameters. In AP-MAN algorithm the
Fisher inverse G(θ i )−1 is not estimated explicitly; however, in FIAP-MAN algorithm, we
explicitly estimateG(θ i )−1, and hence use ∇̂wi Eπθ (wi

t ) = Gi−1

t (ψ i
t ψ

i�
t wi

t −δ̃itψ
i
t ), ∀ i ∈ N

as an estimate of ∇wi Eπθ (wi ). The update of advantage parameters wi along with the
critic update in the FIAP-MAN algorithm is wi

t+1 = wi
t − βv,t ∇̂wi Eπθ (wi

t ) = wi
t −

βv,tGi−1

t (ψ i
t ψ

i�
t wi

t − δ̃itψ
i
t ) = (1 − βv,t )w

i
t + βv,t Gi−1

t δ̃itψ
i
t .

Remark 3 Note that we take Gi−1

t ψ i
t ψ

i�
t = I , ∀ i ∈ N , though Gt+1 = 1

t+1

∑t
l=0 ψlψl

�.
A similar approximation is also implicitly made in natural gradient algorithms in [7, 8] for
single-agent RL. Convergence of FIAP-MAN algorithm with above approximate update in
MARL is given in Sect. 4. Later, we use these updates in our computations to demonstrate
their superior performance in multiple instances of traffic network (Sect. 5).

The updates of the objective function estimate, critic, and reward parameters in the FIAP-
MAN algorithm are the same as given in Eqs. (2), (3), and (4), respectively. Similar to
the AP-MAN algorithm, the actor update in FIAP-MAN algorithm is θ it+1 ← θ it + βθ,t ·
wi
t+1, ∀ i ∈ N . Again for the same reason as in the AP-MAN algorithm, we take ∇̃θ i J (θ) =

wi .
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FIAP-MAN: Fisher information and advantage parameters based multi-agent natural
actor-critic

Input: Initial values of μi
0, μ̃

i
0, v

i
0, ṽ

i
0, λ

i
0, λ̃

i
0, θ

i
0, w

i
0,G

i−1

0 , ∀ i ∈ N ; initial state s0; stepsizes
{βv,t }t≥0, {βθ,t }t≥0.

Each agent i implements ai0 ∼ π
θ i0

(s0, ·).
Initialize the step counter t ← 0.
repeat

for all i ∈ N do
Observe state st+1, and reward r

i
t+1.

Update: μ̃i
t ← (1 − βv,t ) · μi

t + βv,t · r it+1.

λ̃it ← λit + βv,t · [r it+1 − R̄t (λit )] · ∇λ R̄t (λ
i
t ), where R̄t (λit ) = λi

�
t f (st , at ).

Update: δit ← r it+1 − μi
t + Vt+1(v

i
t ) − Vt (vit ), where Vt+1(v

i
t ) = vi

�
t ϕ(st+1).

Critic Step: ṽit ← vit + βv,t · δit · ∇vVt (vit ).
Update: δ̃it ← R̄t (λit ) − μi

t + Vt+1(v
i
t ) − Vt (vit ); ψ i

t ← ∇
θ i logπ i

θ it
(st , ait ).

Update: wi
t+1 ← (1 − βv,t )w

i
t + βv,t Gi−1

t δ̃itψ
i
t .

Actor Step: θ it+1 ← θ it + βθ,t · wi
t+1.

Send μ̃i
t , λ̃

i
t , ṽ

i
t to the neighbors over Gt .

for all i ∈ N do

Consensus Update: μi
t+1 ← ∑

j∈N ct (i, j)μ̃
j
t ;

λit+1 ← ∑
j∈N ct (i, j)λ̃

j
t ; vit+1 ← ∑

j∈N ct (i, j)ṽ
j
t .

Fisher Update: Gi−1

t+1 ← 1
1−βv,t

[

Gi−1
t − βv,t

(Gi−1
t ψ i

t )(G
i−1
t ψ i

t )
�

1−βv,t+βv,tψ
i�
t Gi−1

t ψ i
t

]

.

Update: t ← t + 1.
until Convergence;

3.4 Relationship Between Actor Updates in Algorithms

Recall, the actor update for each agent i ∈ N in FIAP-MAN algorithm is θ it+1 = θ it +
βθ,tw

i
t+1, where wi

t+1 = (1−βv,t )w
i
t +βv,t Gi−1

t δ̃itψ
i
t . Therefore, the actor update of FIAP-

MAN algorithm is θ it+1 = θ it + βθ,t (1 − βv,t )w
i
t + βv,t

(
βθ,tGi−1

t δ̃itψ
i
t

)
. The above update

is almost the same as the actor update of the FI-MAN algorithm with an additional term
involving advantage parameterwi

t . However, the contribution of the second term is negligible
after some time t . Moreover, the third term is a positive fraction of the second term in the
actor update of FI-MAN algorithm. Therefore, the actor parameters in FIAP-MAN and FI-
MAN algorithms are almost the same after time t . Hence, both the algorithms are expected
to converge almost to the same local optima.

Similarly, consider the actor update of the AP-MAN algorithm, i.e., θ it+1 = θ it +βθ,tw
i
t+1,

where wi
t+1 = (I − βv,tψ

i
t ψ

i�
t )wi

t + βv,t δ̃
i
tψ

i
t . Therefore, the actor update of AP-MAN

algorithm is θ it+1 = θ it + βθ,t (I − βv,tψ
i
t ψ

i�
t )wi

t + βv,t

(
βθ,t δ̃

i
tψ

i
t

)
. Again, the second term

in the above equation is negligible after some time t , and the third term is a positive fraction
of the second term in the actor update of the MAAC algorithm. Hence, the actor update in
AP-MAN algorithm is almost the same as the MAAC algorithm; therefore, AP-MAN and
MAAC are expected to converge to the same local optima.
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3.5 Comparison of Variants of MAN andMAAC Algorithms

In this section, we show that under some conditions the objective function of a variant of the
FI-MAN algorithm dominates that of the corresponding variant of the MAAC algorithm for
all t ≥ t0, for some t0 < ∞. For this purpose, we propose amodel to evaluate the “efficiency”
of MAAC and FI-MAN algorithms in terms of their goal; maximization of MARL objective
function, J (θ). This comparison exploits the intrinsic property of the Fisher information
matrix G(θ) (Lemma 2, an uniform upper bound on its minimum eigenvalue).

Let θM
t and θN

t be the actor parameters in MAAC and FI-MAN algorithms, respectively.
Recall the actor updates inMAAC and FI-MAN algorithmswere θM

t+1 = θM
t +βθ,t δ̃t ·ψt , and

θN
t+1 = θN

t +βθ,tG
−1
t δ̃t ·ψt , respectively. However, these updates use the biased estimate of

∇ J (·).Moreover, the Fisher informationmatrix inverse is updated via the Sherman–Morrison
iterative method. In this section, we work with the deterministic variants of these algorithms
where we use∇ J (·) instead of δ̃t ·ψt , andG(θN

t )−1 instead of usingG−1
t in the actor updates.

This avoids the approximation errors; however, the same is not possible in the computations
since the gradient of the objective function is not known. For ease of notation, we denote the
actor parameters in the deterministic variants of MAAC and FI-MAN algorithms by θ̃M , and
θ̃N , respectively. In particular, we consider the following actor updates.

Deterministic MAAC θ̃M
t+1 = θ̃M

t + βθ̃,t∇ J (θ̃M
t );

Deterministic FI-MAN θ̃N
t+1 = θ̃N

t + βθ̃,tG(θ̃N
t )−1∇ J (θ̃N

t ).
(7)

We give sufficient conditions when the objective function value of the limit point of the
deterministic FI-MAN algorithm is not worse off than the value by deterministic MAAC
algorithmwhile using the above actor updates.Wewant to emphasize that with these updates,
the actor parameters in Eq. (7) will converge to a local maxima under some conditions
(for example, the strong Wolfe’s conditions) on the step-size [37]. Let θ̃M�

and θ̃N �
be the

corresponding local maxima. The existence of the local maxima for the deterministic MAN
algorithms is also guaranteed via the Wolfe’s conditions in the natural gradients space. Note
that these localmaxima need not be the same as the one obtained from actor updates ofMAAC
and FI-MAN algorithms. However, the result given below may be valid for the MAAC and
FI-MAN algorithms because both δ̃ · ψ and ∇ J (·) go to zero asymptotically.

Wealso assume that both algorithmsuse the same sequenceof step-sizes, {βθ̃,t }. The results
in this section uses Taylor’s series expansion and comparison of the objective function, J (·),
rather than its estimate μ. Similar ideas are used in [4, 38] where the certainty equivalence
principle holds, i.e., the random variables are replaced by their expected values. However,
we work with the estimates in convergence theory/proofs and computations since the value
of global objective is unknown to the agents. We first bound the minimum singular value of
the Fisher information matrix in the following Lemma.

Lemma 2 ForG(θ) = E[ψψ�], such that ||ψ || ≤ 1, theminimumsingular valueσmin(G(θ))

is upper bounded by 1
m , i.e., σmin(G(θ)) ≤ 1

m .

The proof of this Lemma is based on the observation that the trace of matrix ψψ� is ||ψ ||2.
Though this is a new result, we defer its detailed proof to Appendix A. 3 of [49] due to space
considerations.

Remark 4 In the literature, the compatible features are assumed to be uniformly bounded,
Assumption X. 3. For the linear architecture of features that we are using, assuming this
bound to be 1 is not restrictive. The features ψ that we use in our computational experiments
in Sect. 5 automatically meet the condition of being normalized by 1, i.e., ||ψ || ≤ 1.
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Lemma 3 Let J (·) be twice continuously differentiable function on a compact set Θ , so that
|{∇2 J (θ̃M

t )}(i, j)| ≤ H , ∀ i, j ∈ [m] for some H < ∞. Moreover, let J (θ̃M
t ) ≤ J (θ̃N

t ),
||∇ J (θ̃M

t )|| ≤ ||∇ J (θ̃N
t )||, and βθ̃,t

mH
2 + 1 − m2 ≤ 0. Then, J (θ̃M

t+1) ≤ J (θ̃N
t+1).

Proof The Taylor series expansion of a twice differentiable function J (θ̃M
t+1) with Lagrange

formof remainder [22] is J (θ̃M
t+1) = J (θ̃M

t +Δθ̃M
t ) = J (θ̃M

t )+Δθ̃M�
t ∇ J (θ̃M

t )+RM (Δθ̃M
t ),

where RM (Δθ̃M
t ) = 1

2!Δθ̃M�
t ∇2 J (θ̃M

t + cM · Δθ̃M
t )Δθ̃M

t for some cM ∈ (0, 1).
Similarly, the Taylor series expansion of J (θ̃N

t+1) with Lagrange remainder form is

J (θ̃N
t+1) = J (θ̃N

t + Δθ̃N
t ) = J (θ̃N

t ) + Δθ̃N�
t ∇̃ J (θ̃N

t ) + RN (Δθ̃N
t ), where RN (Δθ̃N

t ) =
1
2!Δθ̃N�

t ∇̃2 J (θ̃N
t + cN · Δθ̃N

t )Δθ̃N
t for some cN ∈ (0, 1).

Now, consider the difference

J (θ̃M
t+1) − J (θ̃N

t+1)

= J (θ̃M
t ) − J (θ̃N

t ) + Δθ̃M�
t ∇ J (θ̃M

t )

−Δθ̃N�
t ∇̃ J (θ̃N

t ) + RM (Δθ̃M
t ) − RN (Δθ̃N

t )

(i)≤ Δθ̃M�
t ∇ J (θ̃M

t ) − Δθ̃N�
t G(θ̃N

t )−1∇ J (θ̃N
t ) + RM (Δθ̃M

t )

(i i)= (θ̃M
t+1 − θ̃M

t )� J (θ̃M
t ) − (θ̃N

t+1 − θ̃N
t )�G(θ̃N

t )−1∇ J (θ̃N
t ) + RM (Δθ̃M

t )

(i i i)= βθ̃,t

(
||∇ J (θ̃M

t )||2 − ||G(θ̃N
t )−1∇ J (θ̃N

t ))||2
)

+ RM (Δθ̃M
t )

(iv)≤ βθ̃,t

(
||∇ J (θ̃N

t )||2 − ||G(θ̃N
t )−1∇ J (θ̃N

t ))||2
)

+ RM (Δθ̃M
t ), (8)

where (i) follows because J (θ̃M
t ) ≤ J (θ̃N

t ), RN (Δθ̃N
t ) ≥ 0 and ∇̃ J (θ̃N

t ) = G(θ̃N
t )−1

∇ J (θ̃N
t ). (i i) uses the fact thatΔθ̃M

t = θ̃M
t+1 − θ̃M

t ; Δθ̃N
t = θ̃N

t+1 − θ̃N
t . (i i i) is consequence

of the updates in Eq. (7). Finally, (iv) follows from the fact that ||∇ J (θ̃M
t )|| ≤ ||∇ J (θ̃N

t )||.
Now, from Eq. (8) and using the fact that for any positive definite matrix A and a vector

v, ||Av|| ≥ σmin(A)||v||, we have ||G(θ̃N
t )−1∇ J (θ̃N

t ))||2 ≥ σ 2
min(G(θ̃N

t )−1)||∇ J (θ̃N
t ))||2.

Therefore, from Eq. (8), we have

J (θ̃M
t+1) − J (θ̃N

t+1) ≤ βθ̃,t

(

1 − 1

σ 2
min(G(θ̃N

t ))

)

||∇ J (θ̃N
t ))||2 + RM (Δθ̃M

t )

(v)≤ βθ̃,t

(
1 − m2) ||∇ J (θ̃N

t ))||2 + RM (Δθ̃M
t ), (9)

(v) follows from Lemma 2 as σmin(G(θ̃N
t )) ≤ 1

m , implies − 1
σ 2
min(G(θ̃N

t ))
≤ −m2.

Since J (·) is twice continuously differentiable function on the compact set Θ , we have
for all i, j ∈ [m], |{∇2 J (θ̃M

t }(i, j)| ≤ H < ∞. Therefore, we have |RM (Δθ̃M
t )| ≤

H
2! ||Δθ̃M

t ||21
(vi i)= β2

θ̃ ,t
H
2 ||∇ J (θ̃M

t )||21
(vi i i)≤ β2

θ̃ ,t
mH
2 ||∇ J (θ̃M

t )||2 (i x)≤ β2
θ̃ ,t

mH
2 ||∇ J (θ̃N

t )||2,
where (vi i) follows from actor update of the FI-MAN algorithm. (vi i i) holds because for
any x ∈ R

l , the following is true:
||x||2 ≤ ||x||1 ≤ √

l ||x||2 [25]. (i x) comes from the assumption that ||∇ J (θ̃M
t )||2 ≤

||∇ J (θ̃N
t )||2. From Eq. (9) and upper bound on |RM (Δθ̃M

t )|, we have
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J (θ̃M
t+1) − J (θ̃N

t+1) ≤ βθ̃,t

(
1 − m2) ||∇ J (θ̃N

t ))||2 + β2
θ̃ ,t

mH

2
||∇ J (θ̃N

t )||2

= βθ̃,t

{

βθ̃,t
mH

2
+ 1 − m2

}

||∇ J (θ̃N
t )||2 ≤ 0,

where the last inequality follows from the assumption βθ̃,t
mH
2 + 1 − m2 ≤ 0. Therefore,

J (θ̃M
t+1) ≤ J (θ̃N

t+1). ��
Theorem 3 Let J (·) be twice continuously differentiable function on a compact setΘ , so that
|{∇2 J (θ̃M

t )}(i, j)| ≤ H , ∀ i, j ∈ [m] for some H < ∞. Moreover, let J (θ̃M
t0 ) ≤ J (θ̃N

t0 ) for

some t0 > 0, and for every t ≥ t0, let ||∇ J (θ̃M
t )|| ≤ ||∇ J (θ̃N

t )||, and βθ̃,t
mH
2 +1−m2 ≤ 0.

Then, J (θ̃M
t ) ≤ J (θ̃N

t ), for all t ≥ t0. Further, for the local maxima θ̃M�
, and θ̃N �

of the
updates in Eq. (7), we have J (θ̃M�

) ≤ J (θ̃N �
).

Proof We prove this theorem via principle of mathematical induction (PMI). From assump-
tion, we have J (θ̃M

t0 ) ≤ J (θ̃N
t0 ). Now, using t = t0 in Lemma 3, we have J (θ̃M

t0+1) ≤ J (θ̃N
t0+1).

Thus, the base case of PMI is true.
Next, we assume that J (θ̃M

t ) ≤ J (θ̃N
t ) for any t = t0 + k, where k ∈ Z

+. Also from
assumption, for every t ≥ t0+k, we have ||∇ J (θ̃M

t )|| ≤ ||∇ J (θ̃N
t )||, and βθ̃,t

mH
2 +1−m2 ≤

0. Therefore, again from Lemma 3, we have J (θ̃M
t0+k+1) ≤ J (θ̃N

t0+k+1). From PMI, we have

J (θ̃M
t ) ≤ J (θ̃N

t ), ∀ t ≥ t0.
Finally, consider the limiting case. Taking the limit t → ∞ in the above equation and

using the fact that J (·) is continuous on the compact set Θ , we have limt→∞ J (θ̃M
t ) =

J (θ̃M�
), and limt→∞ J (θ̃N

t ) = J (θ̃N �
), so that J (θ̃M�

) ≤ J (θ̃N �
). This ends the proof. ��

3.6 KL Divergence-Based Natural Gradients for Boltzmann Policy

One specific policy that is often used in RL literature is the Boltzmann policy [20]. Recall,

the parameterized Boltzmann policy is πθt (s, a) = exp(q�
s,aθt )∑

b∈A exp(q�
s,bθt )

, where q�
s,a is the feature

for any state-action pair (s, a). Here, the features qs,a are assumed to be uniformly bounded
by 1.

Lemma 4 For the Boltzmann policy, we have K L(πθt (s, a)||πθt+Δθt (s, a)) =
E

[
log

(∑
b∈A πθt (s, b) exp(Δq�

s,baΔθt )
)]

, where Δq�
s,ba = q�

s,b − q�
s,a.

The proof of this Lemma just uses the definition of KL divergence and the Boltzmann
policy. So, we defer it to Appendix A.4 of [49]. The above KL divergence suggests that we
have a nonzero curvature if the action taken is better than the averaged action. Moreover,
exp(Δqs,baΔθt ) �= 1 if and only if Δqs,ba is orthogonal to Δθt . So, except when they are
orthogonal, log(

∑
b∈A πθt (s, b) · exp (Δqs,baΔθt )) �= 0 as

∑
b∈A πθt (s, b) = 1. Thus, the

curvature is nonzero, larger or smaller depends on the direction Δθt makes with the feature
difference q�

s,b − q�
s,a ; if the angle is zero, it is better.

Lemma 5 For the Boltzmann policy, we have ∇K L(πθt (·, ·)||πθt+Δθt (·, ·)) = −E[∇ log
πθt+Δθt (s, a)].
So, ψθt+1 = ∇ logπθt+Δθt is an unbiased estimate of ∇K L(πθt (·, ·)||πθt+Δθt (·, ·)). The
proof uses the fact that the action set is finite and hence expectation and gradients can be
interchanged. Moreover, for Boltzmann policies, the compatible features are same as the
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features associated to policy, except normalized to be mean zero for each state. Proof follows
from the definition of KL divergence and the Boltzmann policy. For details, we refer to
Appendix A.5 of [49].

Recall from Eq. (5), we have ∇K L(πθt (·, ·)||πθt+Δθt (·, ·)) ≈ G(θt )Δθt . Also, in
Lemma 1, we obtain that G(θt )Δθt = − 1

ρt
∇θ J (θt ). Moreover, we obtain ∇K L(πθt

(·, ·)||πθt+Δθt (·, ·)) ≈ − 1
ρt

∇ J (θt ). Thus, from Lemma 5, and above equations, we have

E[∇ logπθt+Δθt (s, a)] ≈ 1
ρt

∇ J (θt ). So, ∇ logπθt+Δθt = ψθt+1 is approximately an unbi-

ased estimate of ∇ J (θt ) upto scaling of 1
ρt

for the Boltzmann policies. It is a valuable
observation because to move along the gradient of objective function J (·), we can adjust the
updates (of actor parameter) just by moving in the πθt prediction space via the compatible
features.

We now prove the convergence of FI-MAN, AP-MAN, and FIAP-MAN algorithms. The
proofs majorly use the idea of two-time scale stochastic approximations from [11].

4 Convergence Analysis

We now provide the convergence proof of all the threeMAN algorithms. To this end, we need
following assumptions on the features ϕ(s), and f (s, a) for the value and rewards function,
respectively, for any s ∈ S, a ∈ A. This assumption is similar to [53], and also used in
single-agent natural actor-critic methods [7].

X 3 The feature vectors ϕ(s), and f (s, a) are uniformly bounded for any s ∈ S, a ∈ A.
Moreover, let the feature matrix Φ ∈ R

|S|×L have [ϕl(s), s ∈ S]� as its l-th column for
any l ∈ [L], and feature matrix F ∈ R

|S||A|×M have [ fm(s, a), s ∈ S, a ∈ A]� as its m-th
column for any m ∈ [M], then Φ and F have full column rank, and for any ω ∈ R

L , we have
Φω �= 1.

Apart from assumption X. 3, let Ds
θ = [dθ (s), s ∈ S], and R̄θ = [R̄θ (s), s ∈ S]� ∈ R

|S|
with R̄θ (s) = ∑

a πθ (s, a) · R̄(s, a). Define the operator T V
θ : R

|S| → R
|S| for any state

value vector X ∈ R
|S| as T V

θ (X) = R̄θ − J (θ)1 + Pθ X . The proof of all the three MAN
algorithms are done in two steps: (a) convergence of the objective function estimate, critic
update, and rewad parameters keeping the actor parameters θ i fixed for all agents i ∈ N ,
and (b) convergence of the actor parameters to an asymptotically stable equilibrium set of
the ODE corresponding to the actor update. So, we require the following assumption on Gi

t

and its inverse Gi−1

t . This assumption is used for single-agent natural actor-critic algorithms
in [7]; here, we have modified it for multi-agent setup.

X 4 The recursion of Fisher information matrix Gi
t and its inverse Gi−1

t satisfy supt,θ i ,s,ai

||Gi
t || < ∞; supt,θ i ,s,ai ||Gi−1

t || < ∞ for each agent i ∈ N.

Assumption X. 4 ensures that the FI-MAN and FIAP-MAN actor-critic algorithms does
not get stuck in a non-stationary point. To ensure the existence of local optima of J (θ), we
make the following assumptions on policy parameters θ it , for each agent i ∈ N .

X 5 The policy parameters {θ it }t≥0 of the actor update include a projection operator Γ i :
R
mi → Θ i ⊂ R

mi that projects θ it onto a compact set Θ
i . Moreover, Θ = ∏n

i=1 Θ i is large
enough to include a local optima of J (θ).

For each agent i ∈ N , let Γ̂ i be the transformed projection operator defined for
any θ ∈ Θ with h : Θ → R

∑
i∈N mi being a continuous function as Γ̂ i (h(θ)) =
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lim0<η→0
Γ i (θ i+ηh(θ))−θ i

η
. If the above limit is not unique, Γ̂ i (h(θ)) denotes the set of all

possible limit points. This projection operator is useful in convergence proof of the pol-
icy parameters. It is an often-used technique to ensure boundedness of iterates in stochastic
approximation algorithms. However, we do not require a projection operator in computations
because the iterates remain bounded.

We begin by proving the convergence of the critic updates given in Eqs. (2), (3), and
(4), respectively. The following theorem will be common in the proof of all the three MAN
algorithms. For proof see Appendix A. 6 of [49].

Theorem 4 [53] Under assumptions X. 1, X. 2, and X. 3, for any policy πθ , with sequences
{λit }, {μi

t }, {vit }, we have limt μi
t = J (θ), limt λit = λθ , and limt vit = vθ a.s. for

each agent i ∈ N, where J (θ), λθ , and vθ are unique solutions to F�Ds,a
θ (R̄ − Fλθ ) =

0; Φ�Ds
θ [T V

θ (Φvθ ) − Φvθ ] = 0.

4.1 Convergence of FI-MAN Actor-Critic Algorithm

To prove the convergence of FI-MAN algorithm, we first show the convergence of recursion
for the Fisher information matrix inverse as in Eq. (6).

Theorem 5 For each agent i ∈ N, and given parameter θ i , we have Gi−1

t → G(θ i )−1 as
t → ∞ with probability one.

Please refer to Theorem 5 of [49] for detailed proof. Next, we prove the convergence of
actor update. To this end, we can view −r it+1 as the cost incurred at time t . Hence, transform

the actor recursion in the FI-MAN algorithm as θ it+1 ← θ it − βθ,t · Gi−1

t · δ̃it · ψ i
t . The

convergence of the FI-MAN actor-critic algorithm with linear function approximation is
given in the following theorem.

Theorem 6 Under the assumptions X. 1 - X. 5, the sequence {θ it }t≥0 obtained from the actor
step of the FI-MAN algorithm converges almost surely to asymptotically stable equilibrium
set of the ODE

θ̇ i = Γ̂ i [−G(θ i )−1
Est∼dθ ,at∼πθ (δ̃

i
t,θψ

i
t,θ )], ∀ i ∈ N . (10)

Proof Let Ft,1 = σ(θτ , τ ≤ t) be the σ -field generated by {θτ }τ≤t . Moreover, let ξ it+1,1 =
−G(θ it )

−1
{
δ̃itψ

i
t − Est∼dθt ,at∼πθt

(δ̃itψ
i
t |Ft,1)

}
, and ξ it+1,2 = −G(θ it )

−1
Est∼dθt ,at∼πθt

((δ̃it −
δ̃it,θt )ψ

i
t |Ft,1), where δ̃it,θt = f �

t λθt − J (θt ) + ϕ�
t+1vθt − ϕ�

t vθt . The actor update in the FI-

MANalgorithmwith local projection then become θ it+1 = Γ i [θ it −βθ,tG(θ it )
−1

Est∼dθt ,at∼πθt

(δ̃itψ
i
t |Ft,1) + βθ,tξ

i
t+1,1 + βθ,tξ

i
t+1,2]. For a.s. convergence to the asymptotically stable

equilibria set of the ODE Eq. (10) for each i ∈ N , we appeal to Kushner–Clark lemma (see
appendix C. 3 of [49] and references therein), and we verify its three main conditions below.

First, note that ξt+1,2 = o(1) since critic converges at the faster time scale, i.e., δ̃it → δ̃it,θt
a.s. Next, let M1,i

t = ∑t
τ=0 βθ,τ ξ

i
τ+1,1; then {M1,i

t } is a martingale sequence. The sequences

{zit }, {ψ i
t }, {Gi−1

t }, and {ϕi
t } are all bounded (by assumptions), and so is the sequence {ξ it,1}

(Here zit = [μi
t , (λ

i
t )

�, (vit )
�]� is the same vector used in the proof of Theorem 4). Hence,

∑
t E[||M1,i

t+1 − M1,i
t ||2 | Ft,1] < ∞ a.s., so the martingale sequence {M1,i

t } converges a.s.
[36]. So, for any ε > 0, we have lim

t→∞ P[supp≥t || ∑p
τ=t βθ,τ ξ

i
τ,1|| ≥ ε] = 0, as needed.
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Regarding continuity of g1,i (θt ) = −G(θ it )
−1

Est∼dθt ,at∼πθt
(δ̃itψ

i
t |Ft,1), we note that

g1,i (θt ) = −G(θ it )
−1 ∑

st∈S,at∈A dθt (st ) ·πθt (st , at ) · δ̃it,θt ·ψ i
t,θt

. Firstly, ψ i
t,θt

is continuous

by assumption X. 1. The term dθt (st ) · πθt (st , at ) is continuous in θ it since it is the stationary
distribution and solution to dθt (s)·πθt (s, a) = ∑

s′∈S,a′∈A Pθt (s′, a′|s, a)·dθt (s
′)·πθt (s

′, a′)
and

∑
s∈S,a∈A dθt (s) · πθt (s, a) = 1, where Pθt (s′, a′|s, a) = P(s′|s, a) · πθt (s

′, a′). From
assumption X. 1, πθt (s, a) > 0 and hence the above set of linear equations has a unique
continuous solution in θt by assumption X. 1. Moreover, δ̃it,θt is continuous in θ it since vθt as

the unique solution to the linear equation Φ�Ds
θ [T V

θ (Φvθ ) − Φvθ ] = 0 is continuous in θt .
Thus, g1,i (θt ) is continuous in θ it , as needed in Kushner–Clark lemma. ��

4.2 Convergence of AP-MAN Actor-Critic Algorithm

The convergence of critic step, the reward parameters and the objective function estimate
are the same as in Theorem 4. So, we show the convergence of advantage parameters and
actor updates as given in the AP-MAN algorithm. Similar to the FI-MAN algorithm we
again consider the transformed problem; rewards replaced with costs. Thus, the transformed
recursion is wi

t+1 ← (I − βv,tψ
i
t ψ

i�
t )wi

t − βv,t δ̃
i
tψ

i
t . Section 4.2 of [49] has proof details.

Theorem 7 Under the assumptions X. 3 andX. 4, for each agent i ∈ N,with actor parameters
θ i , we have wi

t → −G(θ i )−1
E[δ̃it,θψ i

t ] as t → ∞ with probability one.

We now consider the convergence of actor update of the AP-MAN algorithm.

Theorem 8 Under the assumptions X. 1 - X. 5, the sequence {θ it } obtained from the actor
step of AP-MAN algorithm converges a.s. to asymptotically stable equilibrium set of θ̇ i =
Γ̂ i [−G(θ i )−1

Est∼dθ ,at∼πθ (δ̃
i
t,θψ

i
t,θ )], ∀ i ∈ N.

4.3 Convergence of FIAP-MAN Actor-Critic Algorithm

Thecritic convergence, the convergenceof rewardparameters, andobjective function estimate
are the same as in Theorem 4. Like FI-MAN and AP-MAN algorithms, we again consider the
transformed problem; rewards are replaced with costs. Therefore, we consider the following
recursion: wi

t+1 = (1 − βv,t )w
i
t − βv,tGi−1

t δ̃itψ
i
t . Again, we refer to Sect. 4.3 of [49] for

detailed proofs.

Theorem 9 Under the assumptions X. 3 andX. 4, for each agent i ∈ N,with actor parameters
θ i , we have wi

t → −G(θ i )−1
E[δ̃it,θψ i

t ] as t → ∞ with probability one.

Theorem 10 Under assumptions X. 1 - X. 5, the sequence {θ it } obtained from the actor step
of FIAP-MAN algorithm converges a.s. to asymptotically stable equilibrium set of the ODE
θ̇ i = Γ̂ i [−G(θ i )−1

Est∼dθ ,at∼πθ (δ̃
i
t,θψ

i
t,θ )], ∀ i ∈ N.

Remark 5 Though the ODEs corresponding to actor update in all MAN algorithms seem
similar, we emphasize that they come from three different algorithms, each with a different
critic update implicitly. Moreover, all the three MAN algorithms have their ways of updating
the advantage parameters. Also, the objective function J (θ) can have multiple stationary
points and local optima. Thus, all the three algorithms can potentially attain different optima,
and this was clearly illustrated in our comprehensive computational experiments in Sect. 5.1.
See also the discussion in Sects. 3.4 and 3.5.
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Fig. 1 A bi-lane traffic network with four traffic lights T1, T2, T3, T4. All the other nodes
N1, N2, S1, S2, E1, E2,W1, and W2 act as the source and destination nodes

To validate the usefulness of our proposed MAN algorithms, we implement them on a
bi-lane traffic network and an abstract multi-agent RL model. The detailed computational
experiments follow in the next section.

5 Performance of Algorithms in Traffic Network and Abstract MARL
Models

This section provides comparative and comprehensive experiments in two different setups.
Firstly, we model traffic network control as a multi-agent reinforcement learning problem.
A similar model is available in [9] in a related but different context. Another setup is an
abstract multi-agent RL model with 15 agents, 15 states, and 2 actions in each state. The
model, parameters, rewards, and the linear function approximation features are as given in
[18, 53].

All the computations are done in python 3.8 on a machine equipped with 8 GB RAM
and an Intel i5 processor. For the traffic network control, we use TraCI, i.e., “Traffic Control
Interface.” TraCI uses a TCP-based client/server architecture to provide access to sumo-gui,
thereby sumo act as a server [28].

5.1 Performance of Algorithms for Traffic Network Controls

Consider the bi-lane traffic network as shown in Fig. 1. The network consists of
N1, N2, S1, S2, E1, E2,W1, and W2 that act as the source and the destination nodes.
T1, T2, T3, and T4 represents the traffic lights and act as agents. All the edges in the net-
work are assumed to be of equal length. The agent’s objective is to find a traffic signaling
plan to minimize the overall network congestion. Note that the congestion to each traffic light
is private information and hence not available to other traffic lights.

The sumo-gui requires the user to provide T , the total number of time steps the simulation
needs to be performed, and Nv , the number of vehicles used in each simulation. As per the
architecture of sumo-gui, vehicles arrive uniformly from the interval {1, 2, . . . , T }. Once a
vehicle arrives, it has to be assigned a source and a destination node.We assign the source node
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Table 1 Probability ps,ap for source node s and arrival pattern ap. ap = 1 assigns high probability to N2, S2
and E1,W1, whereas ap = 2 assigns high probability to all north and south nodes N1, S1, N2, S2 in Fig. 1

Source Node (s) W1 W2 N1 N2 E1 E2 S1 S2

ap 1 probability 3/16 1/16 1/16 3/16 3/16 1/16 1/16 3/16

ap 2 probability 1/28 1/28 3/14 3/14 1/28 1/28 3/14 3/14

to each incoming vehicle according to various distributions. Different arrival patterns (ap) can
be incorporated by considering different source-destination node assignment distributions.
We first describe the assignment of the source node. Two different arrival patterns to capture
high or low number of vehicles assigned to the source nodes in the network are taken. Let
ps,ap be the probability that a vehicle is assigned a source node s if arrival pattern is ap.
Table 1 gives probabilities, ps,ap for two arrival patterns (ap ∈ {1, 2}) that we consider. The
destination node is sampled uniformly from the nodes except the source node. We assume
that vehicles follow the shortest path from the source node to the destination node. However,
if there are multiple paths with the same path length, then any one of them can be chosen
with uniform probability.

For ap = 1, we have higher ps,ap for north–south nodes N2, S2, and east–west nodes
E1,W1. Thus, we expect to see heavy congestion for traffic light T2; almost same congestion
for traffic lights T1 and T4; and the least congestion for traffic light T3. For ap = 2, more
vehicles are assigned to all the north–south nodes. So we expect that all the traffic lights will
be equally congested. We now provide the distribution of the number of vehicles assigned to
a source node s at time t for a given arrival pattern ap.

Let Nt be the number of vehicles arrived at time t , and Ns
t be the number of vehicles

assigned to source node s at time t . Thus, Nt = ∑
s N

s
t . Note that the arrivals are uniform in

{0, 1, . . . , T }, so Nt is a binomial random variable with parameters
(
Nv,

1
T

)
. Therefore, we

have P(Nt = r) = (Nv

r

) ( 1
T

)r (
1 − 1

T

)Nv−r
, ∀ r = 0, 1, · · · , Nv . Moreover, using the law

of total probability, for all ap ∈ {1, 2}, we obtain

P(Ns
t = k | ap) =

(
Nv

k

) ( ps,ap
T

)k (
1 − ps,ap

T

)Nv−k
, ∀ k = 0, 1, · · · , Nv, (11)

i.e., the distribution of Ns
t for a given arrival pattern ap is also binomial with parameters(

Nv,
ps,ap
T

)
. More details on above probability are available in Appendix B.2.3 of [49].

In our experiments, we take T = 180000 seconds which is divided into simulation cycle
(called decision epoch) of Tc = 120 seconds each. Thus, there are 1500 decision epochs.
The number of vehicles are taken as Nv = 50000.

5.1.1 Decentralized Framework for Traffic Network Control

In this section, we model the above traffic network control as a fully decentralized MARL
problemwith traffic lights as agents, N = {T1, T2, T3, T4}. Let Ein = {e1, e2, e12, e16, e3, e4,
e9, e15, e8, e7, e11, e13, e5, e6, e10, e14} be the set of edges directed toward the traffic lights.
Let the maximum capacity of each lane in the network be C = 50. The state-space of the
system consists of the number of vehicles in the lanes belonging to Ein . Hence, the size of the
state space is 5016. At every decision epoch, each traffic light follows one of the following
traffic signal plans for the next Tc = 120 simulation steps.

1. Equal green time of Tc
2 for both north–south and east–west lanes
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2. 3Tc
4 green time for north–south and Tc

4 green time for east–west lanes

3. Tc
4 green time for north–south and 3Tc

4 green time for east–west lanes.

Thus, the total number of actions available at each traffic light is 34 = 81. The rewards
given to each agent is equal to the negative of the average number of vehicles stopped at its
corresponding traffic light. Note that the rewards are privately available to each traffic light
only.We aim to maximize the expected time average of the globally averaged rewards, which
is equivalent tominimize the (time averageof) number of stoppedvehicles in the system.Since
the state space is huge (5016), we use the linear function approximation for the state value
function and the reward function. The approximate state value for state s isV (s; v) = v�ϕ(s),
where ϕ(s) ∈ R

L , L << |S|, is the feature vector for the state s. Moreover, the reward
function is approximated as R(s, a; λ) = λ� f (s, a) where f (s, a) ∈ R

M , M << |S||A|
are the features associated with each state-action pair (s, a). Next, we describe these features
[9].

Let xit denote the number of vehicles in lane ei ∈ Ein at time t . We normal-
ize xit via maximum capacity of a lane C to obtain zit = xit /C . We define ξ(s) =(
z1t , z

2
t , · · · , z16t , z1t z

2
t , · · · , z6t z

5
t , z

1
t z

2
t z

12
t , · · · , z5t z

6
t z

10
t

)
as a vector having components

containing zit , as well as components with products of two or three zit ’s. The product terms

are of the form zit z
j
t and z

i
t z

j
t z

l
t , where all terms in the product correspond to the same traffic

light. The feature vector ϕ(s) is defined as having all the components of ξ(s) along with an
additional bias component, 1. Thus, ϕ(s) = (

1, ξ(s)
)�

. The length of the feature vector ϕ(s)
is L = 1 + (16 + 4 × (42 + 43)) = 337.

For each agent i ∈ N , we parameterize the local policy π i (s, ai ) using the Boltzmann

distribution as π i
θ i

(s, ai ) = exp(q�
s,ai

·θ i )
∑

bi∈Ai exp(q�
s,bi

·θ i ) , where qs,bi ∈ R
mi is the feature vector of

dimension same as θ i , for any s ∈ S and bi ∈ Ai , for all i ∈ N . The feature vector is

qs,ai = (
1, ai,1ξ(s), ai,2ξ(s), ai,3ξ(s)

)�
, ∀ i ∈ N , where ξ(s) is defined as earlier, and

ai, j is 1 if signal plan j is selected in action ai by agent i ∈ N , and 0 otherwise. The length
of qs,ai , i.e., mi = 3 × 336 + 1 = 1009. For the Boltzmann policy function π i

θ i
(s, ai ),

we have ∇θ i logπ i
θ i

(s, ai ) = qs,ai −
∑

bi∈Ai π i
θ i

(s, bi )qs,bi , where ∇θi logπ i
θi
(s, ai ) are the

compatible features as in the policy gradient Theorem [46]. Note that the compatible features
are same as the features associated to policy, except normalized to be mean zero for each
state. The features f (s, a) for the rewards function are similar to qs,ai for each i ∈ N , thus
M = 4 × 3 × 336 + 1 = 4033.

We implement all the three MAN algorithms and compared the average network conges-
tion with the MAAC algorithm. For all i ∈ N , the initial value of parameters μi

0, μ̃
i
0, v

i
0, ṽ

i
0,

λi0, λ̃
i
0, θ

i
0, w

i
0 are taken as zero vectors of appropriate dimensions. The Fisher information

matrix inverse, Gi−1

0 , is initialized to I , ∀ i ∈ N . The critic and actor step-sizes are taken
as βv,t = 1

(t+1)0.65
, and βθ,t = 1

(t+1)0.85
, respectively. These step-sizes satisfy the Robbins–

Monro conditions. We assume that the communication graph Gt is a complete graph at all
time instances t and ct (i, j) = 1

4 for all pairs i, j of agents. Although we do not use the eli-
gibility traces in the convergence analysis, we use them (λ = 0.25 for TD(λ) [45]) to provide
better performance in case of function approximations. We believe that the convergence of
MAN algorithms while incorporating eligibility traces is easy to follow, so we avoid them
here.
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Table 2 Average network congestion, standard deviation and 95% confidence interval for arrival pattern 1.
FIAP-MAN has ≈ 18%, and FI-MAN has ≈ 14% less congestion than MAAC algorithm. The congestion for
the AP-MAN algorithm is almost the same as the MAAC algorithm with high confidence

Algorithms Avg network congestion Standard Deviation Confidence Interval (95%)

MAAC 14.01687 0.08405 (13.96478, 14.06896)

FI-MAN 12.02819 1.48071 (11.11045, 12.94593)

AP-MAN 14.07899 0.08266 (14.02776, 14.13022)

FIAP-MAN 11.28657 1.04137 (10.64113, 11.93201)

5.1.2 Performance of Traffic Network for Arrival Pattern 1

Recall, for arrival pattern 1 we assign high probability ps,ap to the source nodes N2, S2 and
E1, E2 and low probability to other source nodes. Table 2 provides the average network
congestion (averaged over 10 runs, and round off to 5 decimal places), standard deviation
and 95% confidence interval.

We observe an≈ 18% reduction in average congestion for FIAP-MAN and≈ 14% reduc-
tion for FI-MAN algorithms compared to the MAAC algorithm. These observations are
theoretically justified in Sect. 3.4.

To show that these algorithms have attained the steady state, we provide average con-
gestion, and the correction factor (CF), i.e., the 95% confidence value which is defined as
CF = 1.96 × std dvn√

10
for last 200 decision epochs in Table 8 of Appendix B.2.1 of [49].

The average network congestion for the MAN algorithms are almost (up to 1st decimal) on
decreasing trend w.r.t. network congestion; however, this decay is prolonged (0.1 fall in con-
gestion in 200 epochs), suggesting the convergence of these algorithms to local minimum.
Thus, we see that algorithms involving the natural gradients dominate those involving stan-
dard gradients. Figure 2 shows the (time) average network congestion for single run (thus
lower the better).

For almost 180 decision epochs, all the algorithms have the same (time) average network
congestion. However, after 180 decision epochs, FI-MAN and FIAP-MAN follow different
paths and hencefinddifferent localminima as shown inTheorem3.Wewant to emphasize that
theTheorem3 is formaximization framework.As given inSect. 5.1.1,we are alsomaximizing
the globally average rewards, which is equivalent to minimizing the (time average of) number
of stopped vehicles.

Actor Parameter Comparison for Arrival Pattern 1

Recall, in Theorem 3, we show that under some conditions J (θ̃N
t+1) ≥ J (θ̃M

t+1), for all
t ≥ t0, and hence at each iterate the average network congestion in FI-MAN, and FIAP-
MAN algorithms are better than MAAC algorithm. To investigate this further, we plot the
norm of difference of the actor parameter of all the three MAN algorithms with MAAC
algorithm for each agent. For traffic light T1 (or agent 1), these differences are shown in Fig.
3 (for other agents see Fig. 8 in Appendix B.2.1 of [49]).

We observe that all the three MAN algorithms pick up θ2 (i.e., the actor parameter at
decision epoch 2) that is different from that of the MAAC scheme at varying degrees, with
FI-MAN being a bit more “farther.” However, a significant difference is observed around
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Fig. 2 (Time) average network congestion of all the algorithms with ap 1. The congestion is least for FIAP-
MAN and FI-MAN algorithms. However, MAAC and AP-MAN algorithms have almost the same congestion.
For a few initial decision epochs ≈ 180, all the algorithms have almost the same performance, but afterward,
they find different directions and ends in different optima

Fig. 3 Normof difference in the actor parameter of agent 1 for all the 3MANalgorithmswithMAACalgorithm
for arrival pattern 1. Figure (a) is shown for 350 decision epochs; to show that the differences in the actor
parameter are from decision epoch 2 itself, we zoom it in figure (b) in the left panel. However, the significant
differences are observed only after ≈ 180 epochs. This illustrates Theorem 3 and related discussions in Sect.
3.4

decision epoch ≈ 180. For better understanding, the same graphs are also shown in the
logarithmic scale for agent 1 and agent 2 with arrival pattern 1 in Fig. 4.

We see that the norm difference is linearly increasing in FI-MAN and FIAP-MAN algo-
rithms, whereas it is almost flat for the AP-MAN algorithm. So, the iterates of these 2
algorithms are exponentially separating from those of the MAAC algorithm. This again
substantiates our analysis in Sect. 3.4.

Though we aim to minimize the network congestion, in Table 3, we also provide the
average congestion and the correction factor (CF) to each traffic light for last decision epoch
(Table 8 in Appendix B.2.1 shows these values for last 200 decision epochs). Expectedly, the
average congestion for traffic light T2 is highest; it is almost same for traffic lights T1, T4;
and least for T3.
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Fig. 4 Norm of differences of the actor parameters for agents 1 and 2with traffic arrival pattern 1 in logarithmic
scale illustrating Theorem 3 and related discussions in Sect. 3.4

Table 3 Average congestion and correction factor (CF) for each traffic light for arrival pattern 1 (described in
Sect. 5.1.2). CF is defined as 1.96 × std dvn√

10

Algorithms Congestion (Avg ± CF)

T1 T2 T3 T4

MAAC 3.733 ± 0.067 4.336 ± 0.050 2.249 ± 0.013 3.699 ± 0.040

FI-MAN 2.613 ± 0.110 4.492 ± 0.868 2.359 ± 0.161 2.564 ± 0.038

AP-MAN 3.748 ± 0.073 4.338 ± 0.046 2.247 ± 0.013 3.746 ± 0.039

FIAP-MAN 2.711 ± 0.214 3.785 ± 0.371 1.907 ± 0.148 2.883 ± 0.147

Table 4 Average network congestion, standard deviation and 95% confidence interval at last decision epoch
for arrival pattern 2 (described in Sect. 5.1.3). FI-MAN and FIAP-MAN algorithms has ≈ 25% less average
network congestion than MAAC algorithm. The performance of AP-MAN algorithm is almost similar to
MAAC algorithm as shown in Theorem 3 and in Sect. 3.4

Algorithms Avg network congestion Standard deviation Confidence Interval (95%)

MAAC 13.64571 0.19755 (13.52327, 13.76815)

FI-MAN 10.16988 0.11877 (10.09627, 10.24349)

AP-MAN 13.77573 0.18925 (13.65843, 13.89303)

FIAP-MAN 10.19858 0.21248 (10.06689, 10.33027)

5.1.3 Performance of Traffic Network for Arrival Pattern 2

In arrival pattern 2, the traffic origins N1, N2, S1 and S2 have higher probabilities of being
assigned a vehicle.We take ps,ap for these nodes as 3

14 , and for all other nodes, it is
1
28 . So, we

expect almost the same average congestion to all the traffic lights. This observation is reported
in Appendix B.2.2 of [49]. Table 4 provides the average network congestion (averaged over
10 runs, and round off to 5 decimal places), standard deviation and 95% confidence interval
for arrival pattern 2.

We observe an≈ 25% reduction in the average congestion with FI-MAN and FIAP-MAN
algorithms as compared to the MAAC algorithm. AP-MAN is on par with the MAAC algo-
rithm. This again shows the usefulness of the natural gradient-based algorithms. As opposed
to ap 1 where FIAP-MAN algorithm has slightly better performance than FI-MAN algo-
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Fig. 5 (Time) average network congestion for arrival pattern 2. For few initial decision epochs ≈ 180 all
the algorithms have almost same performance, but afterward they find different directions, and hence ends in
different optima

rithm, in ap 2, both algorithms have almost similar average network congestion. Moreover,
the standard deviation in ap 1 is much higher than in ap 2. Figure 5 shows the (time) average
congestion for single simulation run of all the algorithms.

Actor Parameter Comparison for Arrival Pattern 2

Similar to arrival pattern 1, in Fig. 6, we plot the norm of the difference for traffic light
T1 (for other traffic lights (agents) see Fig. 9 of [49]). For better understanding, the same
graphs are also shown for agent 1 and 2 in the logarithmic scale in Fig. 7 of [49]. Again, we
see that the norm difference is linearly increasing in FI-MAN and FIAP-MAN algorithms,
whereas it is almost flat for the AP-MAN algorithm. So, the iterates of these 2 algorithms are
exponentially separating from the MAAC algorithm. This again substantiates our analysis
in Sect. 3.4. Moreover, we also compute the average congestion and (simulation) correction
factor for each traffic light. Table 5 of [49] shows these values for last decision epoch (See
Table 9 for last 200 decision epochs). As expected, the average congestion to each traffic
light is almost the same.

We now present another computational experiment where we consider an abstract MARL
with n = 15 agents. The model, algorithm parameters, including transition probabilities,
rewards, and features for state value function, and rewards are the same as given in [18, 53]

5.2 Performance of Algorithms in Abstract MARLModel

The abstract MARL model that we consider consists of n = 15 agents and |S| = 15 states.
Each agent i ∈ N is endowed with the binary valued actionsAi ∈ {0, 1}. Therefore, the total
number of actions are 215. Each element of the transition probability is a random number
uniformly generated from the interval [0, 1]. These values are normalized to incorporate the
stochasticity. To ensure the ergodicity, we add a small constant 10−5 to each entry of the
transition matrix. The mean reward Ri (s, a) are sampled uniformly from the interval [0, 4]
for each agent i ∈ N , and for each state-action pair (s, a). The instantaneous rewards r it are
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Fig. 6 Norm of difference in the actor parameter of agent 1 for all the 3 MAN algorithms with MAAC
algorithm. Figure (a) is shown for 350 decision epochs; to show that the differences in the actor parameter are
from decision epoch 2 itself, we zoom it in Figure (b). However, the significant differences are observed only
after ≈ 180 epochs

Table 5 Globally averaged rewards, standard deviation and 95% confidence for all the algorithms for the
abstract multi-agent RL problem. We observe that globally averaged rewards and standard deviation are
almost same for all the algorithms with high confidence. All the values are averaged over 25 runs

Algorithm Avg Rewards Std Dvn Confidence interval

MAAC 1.993280 0.066421 (1.967243, 2.019316)

FI-MAN 2.008412 0.055538 (1.986642, 2.030183)

AP-MAN 1.982451 0.079404 (1.951325, 2.013576)

FIAP-MAN 1.981089 0.093754 (1.944338, 2.017839)

sampled uniformly from the interval [Ri (s, a) − 0.5, Ri (s, a) + 0.5]. We parameterize the
policy using the Boltzmann distribution with mi = 5, ∀ i ∈ N . All the feature vectors (for
the state value and the reward functions) are sampled uniformly from the set [0, 1] of suitable
dimensions. The following table compares the globally averaged return from all the three
MAN actor-critic algorithms with the MAAC algorithm. The globally averaged rewards are
almost close to each other. To provide more details we also compute the relative V values for
each agent i ∈ N that is defined as Vθ (s; vi ) = vi

�
ϕ(s); this way of comparison of MARL

algorithms was earlier used by [53]. Thus, the higher the value, the better is the algorithm.
More details of model and computations are available in Appendix B.1 of [49].

6 RelatedWork

Reinforcement learning has been extensively studied and explored by researchers because of
its varied applications and usefulness in many real-world applications [16, 17, 21]. Single-
agent reinforcement learning models are well-explained in many works including [5, 6, 45].
The average reward reinforcement learning algorithms are available in [19, 30].

Various algorithms to compute the optimal policy for single-agent RL are available; these
are mainly classified as off-policy and on-policy algorithms in the literature [45]. More-
over, because of the large state and action space, it is often helpful to consider the function
approximations of the state value functions [46]. To this end, actor-critic algorithms with
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function approximations are presented in [27]. In actor-critic algorithms, the actor updates
the policy parameters, and the critic evaluates the policy’s value for the actor parameters
until convergence. The convergence of linear architecture in actor-critic methods is known.
The algorithm in [27] uses the standard gradient while estimating the objective function.
However, as mentioned in Sect. 2, we outlined some drawbacks of using standard gradients
[31, 42].

To the best of our knowledge, the idea of natural gradients stems from the work of [3].
Afterward, it has been expanded to learning setup in [2]. For recent developments and work
on natural gradients we refer to [31]. Some recent overviews of natural gradients are available
in [13] and lecture slides byRoger Grosse.2 The policy gradient theorem involving the natural
gradients is explored in [26]. For the discounted reward [1, 33] recently showed that despite
the non-concavity in the objective function, the policy gradient methods under tabular setting
with softmax policy characterization find the global optima. However, such a result is not
available for average reward criteria with actor-critic methods and the general class of policy.
Moreover, we also see in our computations in Sect. 5.1 thatMAN algorithms are stabilizing at
different local optima. Actor-critic methods involving the natural gradients for single-agent
are available in [7, 40]. On the contrary, we deal with the multi-agent setup where all agents
have private rewards but have a common objective. For a comparative survey of the MARL
algorithms, we refer to [15, 50, 52].

The MARL algorithms given in [52] are majorly centralized, and hence relatively slow.
However, in many situations [16, 17] deploying a centralized agent is inefficient and costly.
Recently, [53] gave two different actor-critic algorithms in a fully decentralized setup; one
based on approximating the state-action value function and the other approximating the state
value function. Another work in the same direction is available in [24, 32, 44, 51]. In par-
ticular, for distributed stochastic approximations, authors in [32] introduced and analyzed
a non-linear gossip-based distributed stochastic approximation scheme. We use some proof
techniques as part of consensus updates from it. We build on algorithm 2 of the [53] and
incorporate the natural gradients into it. The algorithms that we propose use the natural gra-
dients as in [7]. We propose three algorithms incorporating natural gradients into multi-agent
RL based on Fisher’s information matrix inverse, approximation of advantage parameters,
or both. Using the ideas of stochastic approximation available in [11, 12, 29], we prove the
convergence of all the proposed algorithms.

7 Discussion

This paper proposes three multi-agent natural actor-critic (MAN) reinforcement learning
algorithms. Instead of using a central controller for taking action, our algorithms use the
consensus matrix and are fully decentralized. These MAN algorithms majorly use the Fisher
information matrix and the advantage function approximations. We show the convergence of
all the three MAN algorithms, possibly to different local optima.

We prove that a deterministic equivalent of the natural gradient-based algorithmdominates
that of the MAAC algorithm under some conditions. It follows by leveraging a fundamental
property of the Fisher informationmatrix that we show: theminimum singular value is within
the reciprocal of the dimension of the policy parameterization space.

The Fisher information matrix in the natural gradient-based algorithms captures the KL
divergence curvature between the policies at consecutive iterates. Indeed,we show that theKL

2 https://csc2541-f17.github.io/slides/lec05a.pdf.

https://csc2541-f17.github.io/slides/lec05a.pdf
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divergence is proportional to the objective function’s gradient. The use of natural gradients
offered a new representation to the objective function’s gradient in the prediction space of
policy distributions which improved the search for better policies.

To demonstrate the usefulness of our algorithm, we empirically evaluate them on a bi-lane
traffic network model. The goal is to minimize the overall congestion in the network in a fully
decentralized fashion. Sometimes the MAN algorithms can reduce the network congestion
by almost ≈ 25% compared to the MAAC algorithm. One of our natural gradient-based
algorithms, AP-MAN, is on par with the MAAC algorithm. Moreover, we also consider an
abstract MARL with n = 15 agents; again, the MAN algorithms are at least as good as the
MAAC algorithm with high confidence.

We now mention some of the further possibilities. Firstly, some assumptions on the com-
munication network can be relaxed [48]. A careful study of the trade-off between extra per
iterate computation versus the gain in the objective function value of the learned MARL
policy obtained by these MAN algorithms would be useful. It is in the context of a similar
phenomenon in optimization algorithms [13, 37] and other computational sciences.

Moreover, further understanding of the natural gradients and its key ingredient, the Fisher
information matrix G(θ), is needed in their role as learning representations. Our uniform
bound on the smallest singular value of G(θ) and its role in the dominance of determinis-
tic MAN algorithms are initial results in these directions. More broadly, various learning
representations for RL like natural gradients and others are further possibilities.
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