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Abstract

A large body of empirical literature has shown that market impact of finan-

cial prices is transient. However, from a theoretical standpoint, the origin of this

temporary nature is still unclear. We show that an implied transient impact arises

from the Nash equilibrium between a directional trader and one arbitrageur in a

market impact game with fixed and permanent impact. The implied impact is the

one that can be empirically inferred from the directional trader’s trading profile

and price reaction to order flow. Specifically, we propose two approaches to de-

rive the functional form of the decay kernel of the Transient Impact Model, one of

the most popular empirical models for transient impact, from the behaviour of the

directional trader at the Nash equilibrium. The first is based on the relationship

between past order flow and future price change, while in the second we solve an

inverse optimal execution problem. We show that in the first approach the implied

kernel is unique, while in the second case infinite solutions exist and a linear kernel

can always be inferred.
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1. Introduction

Markets are far from being perfectly elastic and any order or trade causes prices to

move, which results in a cost for traders termed market impact cost. Therefore, in

order to minimize market impact cost, agents typically fragment their orders into small

pieces, which are executed incrementally over the day, see, e.g., Almgren and Chriss

(2001), Moallemi et al. (2012a). On the other hand, other agents might take advantage

of the knowledge that a trader is purchasing a certain amount of assets progressively by

buying at the beginning and selling at the end of the trader’s execution using predatory

trading strategies, Brunnermeier and Pedersen (2005), Carlin et al. (2007). All these

results produce a correlation in order flows which subsequently generate and increase the

market impact effect.

The relation between trades and price is known as market impact. In the seminal

work of Almgren and Chriss (2001) the market impact is modelled by a constant fixed

over time, making market impact permanent and constant. However, many empirical

evidences Bouchaud et al. (2009, 2004), Zarinelli et al. (2015), Taranto et al. (2018) have

shown that market impact is in great part transient, i.e. the effect of order flow on prices

is not constant but decays with time. One of the most popular methods to describe

transient impact is the so called Transient Impact Model (TIM) of Bouchaud et al. (2009,

2004), also known as the propagator model. The TIM postulates that price is a linear

combination of past order flow modulated by a decaying function of time. Nevertheless,

the origin of transient impact is still unclear from a theoretical point of view.

In this work, we investigate theoretically how observed transient impact can emerge as

the result of the interaction between different types of agents, even when the underlying

impact is fixed and permanent. To this end we use the market impact game framework

of Schied and Zhang (2019) which allows us to study the equilibrium characterizing the

price dynamics in terms of the activity of two or more agents simultaneously trading,

Schöneborn (2008), Schied and Zhang (2019), Luo and Schied (2020) 1. In particular,

we consider a market impact game with linear permanent price impact between two

traders who want to liquidate their position in a finite time horizon. This market impact

1Although market impact games suffer from Nash equilibrium oscillations, which may affect price
dynamics and trigger market instability, see Cordoni and Lillo (2022), we set up the parameter model in
such a way that these spurious oscillations are controlled and prevented.
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game model with linear permanent impact corresponds to the classical Almgren-Chriss

framework generalized to two agents. As in Moallemi et al. (2012a), one of the agents acts

as an arbitrageur, which attempts to make a profit by exploiting market price movements

caused by the liquidation of the other agent named directional. However, in contrast to

them, we consider the symmetric information game2 of Schied and Zhang (2019). The

price dynamics is obtained as the Nash equilibrium of the game. Even if recent works have

highlighted how market impact games can be studied in the more general setting with

J risk-averse agents trading M assets, see Luo and Schied (2020) and Cordoni and Lillo

(2022), respectively, we consider the simplest setting with J = 2 risk-neutral agents

trading the same asset (M = 1) of the original framework of Schied and Zhang (2019).

We may interpret these two traders as representative agents of the market. However, in

the following we discuss also the generalization of this setting to the multi-agent case.

Once the Nash equilibrium solution of the market impact game with linear permanent

impact is found, we consider it from the perspective of an external observer who looks

at the price dynamics and at the execution of the directional agent and tries to estimate

from this data the market impact function. More specifically, we consider two different

approaches: in the first, the observer estimates the impact function from the observed

relation between the trading volume of the directional agent and the price dynamics.

This corresponds to the financial industry practice of estimating price impact models

by regressing price realizations over past traded volumes exploiting large datasets of

algorithmic executions. In the second approach, the observer looks at the executions of

the directional agent and infers which price impact he might have used for the optimal

execution. This second approach has been sometimes used in the literature, see for

example Zarinelli et al. (2015).

In both cases, we find that the inferred impact is transient and that it is consistent

with the TIM of Bouchaud et al. (2009, 2004), despite the fact the equilibrium solution of

the game has been obtained with a permanent impact as in Almgren and Chriss (2001).

Thus, in this setting, the transient impact is the result of how the market impact model

is derived, specifically because it has been obtained by considering only part of the order

flow and its relation with the price. For these reasons in the following we will term the

inferred impact as implied transient impact3.

Related literature. Trading in financial markets can be naturally modelled as a

dynamic game between agents who trade a given asset. Since trading affects price, the

reward (or cost) of an agent depends on how the other trade. Thus each player is trying

to anticipate and respond to the actions of the others. In optimal execution, if the liqui-

2To be precise, in the market impact game none of the agents has private information on the funda-
mental value of the asset.

3To better clarify our contribution, we remark that the purpose of this work is not to provide a general
optimal execution model, but to exhibit evidence of transient impact in a suitable simple market setting,
as described as follows.
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dation of the large trade order is performed too quickly, other market participants may

notice it and try to front-run the trade, driving up the price and potentially reducing

the trader’s profit. On the other hand, if the trader moves too slowly, the opportunity

to execute the trade at a favourable price may vanish. Therefore, traders must find the

optimal execution strategy based on their best guess of what other market participants

will do. Thus at each time the decision of a trader depends on the past actions of the

other trader(s) as typically happens in a dynamic game. Moreover the process is not

simply a repeated game, because the conditions change at each time and the trading

decision taken at one time step affects the payoff in future time steps.

Dynamic games are widely used in finance from investment and corporate finance

problems to bankruptcy games, for an exhaustive review, see Breton (2018). For the

above reasons, in recent years the interest toward optimal execution problems in the

dynamic games literature has grown, e.g., Moallemi et al. (2012b), Huang et al. (2019),

Dong et al. (2022). Standard optimal execution algorithms (e.g., Almgren and Chriss,

2001) aims at minimizing market impact cost without considering the presence of other

investors or, to be more precise, consider them in an aggregated and non strategic form.

Moallemi et al. (2012a) shows that such an approach leads to optimal schedules that

are quite unrealistic and counterproductive. Indeed, they exhibit predictive behaviour

which can be easily detected by arbitrageurs and therefore they increase execution market

impact cost. Thus, in an optimal execution problem, a trader should acknowledge the

simultaneous presence of other agents. In Moallemi et al. (2012a) the authors formulate

the optimal execution problem as a dynamic game with asymmetric information, with a

trader and a single arbitrageur. The market impact is modelled as a linear permanent

price impact model. The authors analyzed and computed the Bayesian equilibrium of

the game numerically.

Our setting is different, since we consider the symmetric market impact game frame-

work of Schied and Zhang (2019), where the authors show the existence and uniqueness

of the related Nash equilibrium, which turns out to be deterministic with a closed-form

expression. Moreover, this framework aligns with the optimal execution algorithm con-

text, where a trader has to plan the liquidation schedule with an a priori strategy. The

resulting equilibrium turns out to reduce transaction costs even when no other competi-

tors are present during the considered optimal liquidation trading time interval in the

sense of Nash equilibrium. In this paper, we exhibit how to relate the market impact

function to the dynamic activity of agents in optimal execution problems. We show how

the interaction of different traders generates an implied transient impact, even when the

underlying impact is fixed and permanent. The dynamic nature of our game is determined

by the fact that the optimal strategy takes into account both past and future actions of

the agents. To better highlight the dynamic nature of our game, in Section 2.2.1, we also

present a different version of the game where agents are assumed to be myopic, i.e. they
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find the Nash equilibrium sequentially at each time step, and we show that the solution

is different from the one obtained from the game used in this paper.

The paper is loosely related to the “fair pricing” theory of Farmer et al. (2013) where

an equilibrium condition is derived between liquidity providers and a broker aggregating

informed orders from several funds, in which the average price paid during the execution

is equal to the price at the end of the reversion phase. Authors connect the distribution

of order size with the shape of impact trajectory and to the price reached after the end

of the execution. The reversion predicted by the model is a clear sign of a partially

transient nature of impact in the model. Farmer et al. (2013) propose that the transient

nature of impact is related to the fact that liquidity providers, who observe an algorithmic

execution of a large trade, are uncertain whether the execution is finished or not, while

in the present paper the execution horizon is fixed. Moreover Farmer et al. (2013) do not

derive the explicit form of the decay kernel.

A different modeling approach to explain the transient nature of impact is via the

modeling of the Latent Limit Order Book of Donier et al. (2015) which assumes that

each long term investor has a reservation price (to buy or to sell) that they update,

due to incoming news, price changes, noise, etc. All these trading intentions constitute

the latent liquidity, i.e. is not immediately posted in the public order book. When the

market price hits the reservation price of a given buy (sell) investor, his order is executed.

Reservation prices remain sticky during a typical memory time and impact is expected to

decay as a power-law of time, reaching a small asymptotic value after times corresponding

to the memory time of the market. This decay is again a sign of the transient nature of

impact and, in fact, under the assumption of a small trading rate, the price dynamics

in the Latent Limit Order Book coincides with the one of TIM. Although interesting,

this approach is quite different from ours, which is based on a Nash equilibrium solution

between two different types of agents.

A closer point of comparison is the recent study of Vodret et al. (2021), where the

authors proposed a micro-foundation for the propagator using a self-consistent equation

for the propagator function derived (as a limit) by an equilibrium of an agent-based

system. However, even if propagator like models can be seen as equilibria of suitable

agent-based models, the evidence of Vodret et al. (2021) does not fully explain the typical

propagator shape of transient impact in terms of order flows derived by optimal schedule

strategies.

Structure of the paper. The paper is organized as follows. In Section 2 we recall

the market impact games framework and we analyze the related Nash equilibrium by

showing its symmetries when the price impact is constant. In Section 3 we propose the

price dynamics approach to implied transient impact, whereas. in Section 4 we show how

to relate the Nash equilibrium to an equivalent optimal execution problem by presenting

theoretical results which characterize the implied transient impact function. Finally, in
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Section 5 we conclude. All the proofs are reported in Appendix B.

2. Market Impact Games and Transient Impact Model

2.1. The Schied and Zhang setting

Following Schied and Zhang (2019), we consider the standard framework of market im-

pact games, i.e., two risk-neutral traders who want to liquidate the same asset during the

same time interval T = {t0, t1, . . . , tN}, where 0 = t0 < t1 < · · · < tN = T .

Given a suitable probability space (Ω, (Ft)t≥0,F ,P), the price dynamics is described

by a right-continuous martingale, S0
t , when none of the agents trade. However, the two

traders want to unwind a given initial position with inventory Z ∈ R, where a positive

(negative) inventory represents a short (long) position, during a given trading time grid

T and following an admissible strategy, which is a sequence of random variable ζ =

(ζ0, ζ1, . . . , ζN) such that ζk ∈ Ftk and bounded ∀k = 0, 1, . . . , N , and ζ0+ζ1+ · · ·+ζN =

Z, see Schied and Zhang (2019) for further details. The components of ζ represent the

order flow during the trading time tk for each k = 0, 1, . . . , N . We denote with X1 and X2

the initial inventories of the two considered agents, with Ξ = (ξi,k) ∈ R
2×(N+1) the matrix

of the respective strategies, where ξ1,· = {ξ1,k}k∈T and ξ2,· = {ξ2,k}k∈T are the strategies of

trader 1 and 2, respectively. Thus, when the two agents place orders, the price dynamics is

characterized by the market impact. In the original work of Schied and Zhang (2019) it is

assumed that the price impact is described by transient impact model of Bouchaud et al.

(2009, 2004), which describes the price process SΞ
t affected by the strategies Ξ of the two

traders, i.e.,

SΞ
t = S0

t −
∑

tk<t

G(t− tk)(ξ1,k + ξ2,k), ∀ t ∈ T, (1)

where G : R+ → R+ is the market impact function, also called decay kernel, describing

the lagged price impact of a unit buy or sell order overtime.

The objective of the agents is to minimize their expected costs given the other traders

strategies, E[CT(ξ1,·|ξ2,·)], where the cost function is CT(ξ1,·|ξ2,·) is described by the sum

of the permanent impact and the temporary impact modeled by a quadratic term θξ21,k
at trading time k. More precisely, let (εi)i=0,1,...N be an i.i.d. sequence of Bernoulli(
1
2

)
-distributed random variables that are independent of σ(

⋃
t≥0 Ft). Then the cost of

ξ1,· ∈ X (X1,T) given ξ2,· ∈ X (X2,T) is defined as

CT(ξ1,·|ξ2,·) =
N∑

k=0

(
G(0)

2
ξ21,k − Sξ,η

tk
ξ1,k + εkG(0)ξ1,kξ2,k + θξ21,k

)
+X1S

0
0 , (2)

where X (X,T) is the set of admissible strategies for the initial inventory X on a specified
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time grid T. Similarly, the cost of ξ2,· given ξ1,· is defined in analogous way. The Bernoulli

variable εk models the execution priority at time tk, which is given to the trader who wins

the independent (Bernoulli) coin toss game. We refer to Schied and Zhang (2019) for a

complete discussion on the definition of the cost functional. The temporary impact θξ2j,k,

for each trader j, models the slippage cost, even if it can also be interpreted as a quadratic

transaction fee. In this work, we adopt the mathematical modeling of Schied and Zhang

and we do not specify exactly what this term represents.

Since we are interested in studying the optimal strategies of the two agents, under

complete and perfect information assumption, where the agents want to minimize the

expected costs of their strategies, we consider the following definition of Nash equilibrium.

Given the expected costs functionals of the two agents, the Nash Equilibrium of a market

impact games is a pair (ξ∗
1,·, ξ

∗
2,·) of strategies in X (X1,T)× X (X2,T) such that

E[CT(ξ
∗
1,·|ξ

∗
2,·)] = min

ξ1,·∈X (X1,T)
E[CT(ξ1,·|ξ

∗
2,·)] and

E[CT(ξ
∗
2,·|ξ

∗
1,·)] = min

ξ2,·∈X (X2,T)
E[CT(ξ2,·|ξ

∗
1,·)].

Then, Schied and Zhang (2019) showed that for any strictly positive definite (in the sense

of Bochner) decay kernel G, time grid T, transaction cost parameter θ ≥ 0, and initial

inventories X1, X2 there exists a unique Nash equilibrium (ξ∗
1,·, ξ

∗
2,·) and it is deterministic.

Moreover, it is provided by

ξ∗
1,· =

1

2
(X1 +X2)v +

1

2
(X1 −X2)w (3)

ξ∗
2,· =

1

2
(X1 +X2)v −

1

2
(X1 −X2)w, (4)

where the fundamental solutions v and w are defined as v = 1

eT (Γθ+Γ̃)−1e
(Γθ + Γ̃)−1e

and w = 1

eT (Γθ−Γ̃)−1e
(Γθ − Γ̃)−1e and e = (1, . . . , 1)T ∈ R

N+1. The solutions are called

fundamentals, since they represent the Nash equilibrium when X1 = X2 = 1 and when

X1 = −X2 = 1, respectively. The kernel matrix Γ ∈ R
(N+1)×(N+1) is given by Γij =

G(|ti−1− tj−1|), i, j = 1, 2, . . . , N +1, for θ ≥ 0, Γθ := Γ+2θI, and the matrix Γ̃ is given

by

Γ̃ij =





Γij if i > j

1
2
G(0) if i = j,

0 otherwise.

For the sake of simplicity, we refer to the previous framework as “Schied and Zhang

market-impact game”.
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2.2. Market impact games with constant impact

The above setting cannot be used when G(t) ≡ G1 ∈ R+ ∀t, i.e. in a Almgren and Chriss

(2001) setting. In fact, the assumption of strictly positive definite (in the sense of

Bochner) of t 7→ G(|t|) no longer holds and the kernel matrix Γ = GeeT ∈ R
(N+1)×(N+1) is

singular. However, the existence and uniqueness of Nash Equilibrium associated with the

two agents (ξ∗, η∗) is guaranteed when Γθ = Γ+2θI is definite positive, and the matrices

Γθ ± Γ̃ are invertible, see proof of Theorem 1 and Lemma 3 and 4 of Schied and Zhang

(2019). Thus, by the matrix determinant lemma4, see also Theorem 1 of Ding and Zhou

(2007), the eigenvalues of Γθ are λ1 = G · (N +1) + 2θ and λ2:(N+1) = 2θ, so it is definite

positive as long as θ > 0. Γθ − Γ̃ = Γ̃T + 2θI is an upper triangular matrix where its

diagonal elements are different from zero, i.e., it is non singular and finally Γθ + Γ̃ is

non singular if θ > 0, see Appendix A. Therefore, provided that θ > 0, we proved that

also when G(t) = G > 0 is constant the Nash equilibrium exists and it is given by the

previous equations (3) and (4).

In the previous framework, we have described the market impact game model, i.e., a

Schied and Zhang market-impact game with a constant impact function. Since the market

impact function G1 ∈ R+ is constant, without loss of generality, we may fix G1 = 1 and

in order to prevent market instability5 we set θ ≥ G1/4, e.g., θ = 1.

We consider the interaction between a directional seller and an arbitrageur, where

without loss of generality, we may assume that their inventory is given by Xdirec = 1 and

Xarb = 0, respectively. Then, the Nash equilibrium for the directional is given by the

average of the fundamental vectors v and w. Interestingly both the optimal strategies

are symmetric in time. All the proofs are given in Appendix B.

Proposition 2.1. Let θ > 0, then the fundamental solutions, v and w, of a Schied and

Zhang market-impact game where the market impact function G1 is constant, are equal

up to a time-symmetry, i.e.,

vk = wN+2−k, k = 1, 2, · · · , N + 1. (5)

Furthermore, if we denote (Γθ + Γ̃) = A,

v =
A−Te

eTA−Te
, w =

A−1e

eTA−1e
, (6)

and v1 = 1
λ·(1−aN+1)

and vn = an−1

λ·(1−aN+1)
for n = 2, . . . , N + 1, where λ = 2θ/G + 1

2
and

4If A ∈ R
N×N is a non singular square matrix and u,v ∈ R

N , then det(A + uvT ) = (1 +
vTA−1u) det(A).

5The instability appears as a result of oscillating Nash equilibria, which in turn affect price dynamics,
see Cordoni and Lillo (2022) for further details. However, if θ ≥ G(0)/4 these spurious oscillations
disappear, see Schied and Zhang (2019).
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a = 1− 1/λ.

In the standard single-agent Almgren and Chriss (2001) framework, the optimal sched-

ule for the directional is to trade with a constant rate over the trading periods, making

the optimal execution independent from the permanent impact. However, when in the

market impact game we specify a constant market impact function, the optimal solution

for the directional provided by the Nash equilibrium has a U-shape, although it is as-

sumed a permanent impact model as in Almgren and Chriss (2001). On the other hand,

for the arbitrageur, the optimal schedule has a round-trip shape, see Figure 1.

Theorem 2.2. In a Schied and Zhang market-impact game where the two agents are

a directional and an arbitrageur, then the Nash Equilibrium is given by the following

strategies:

ξ∗
direc,· =

1

2
Xdirec(v +w), (7)

ξ∗
arbi,· =

1

2
Xdirec(v −w), (8)

where v and w are the fundamental solutions and Xdirec is the inventory of the direc-

tional agent. Moreover, if the market impact function is constant and θ > 0, the Nash

equilibrium is time-symmetric, i.e.,

ξ∗direc,k = ξ∗direc,N+2−k, k = 1, 2, . . . , N + 1, (9)

ξ∗arbi,k = −ξ∗arbi,N+2−k, k = 1, 2, . . . , N + 1. (10)

Specifically, even if the Nash equilibrium of the directional agent is time-symmetric

when θ > 0 in the market-impact games with constant market impact function, when

θ > θ∗ = G1/4 it is also positive, strictly decreasing in the first ⌊(N + 1)/2⌋ components

and convex, i.e., it has a U-shape.

Corollary 2.3. In a Schied and Zhang market-impact game where the two agents are

a directional, with inventory Xdirec > 0, and an arbitrageur, the market impact G1 is

constant and θ > θ∗ = G1/4, the Nash equilibrium of the directional, ξ∗
direc,·, has a

U-shape, i.e., it is time-symmetric, positive, strictly decreasing in the first ⌊(N + 1)/2⌋

components and convex, where N + 1 is the number of the trading time step.

2.2.1. Myopic market-impact game

To highlight the dynamic nature of the our game, we present here a different model where

agents optimize their trading by finding the Nash equilibrium at each time interval, i.e.

without considering the effect of their action on future prices (and rewards). For this

reason we term the agents as myopic. This new game might be thought of as a repeated

9
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Figure 1: Nash equilibrium ξ∗
direc of the directional (left) and ξ∗

arbi of the arbitrageur
(right) trading only one asset. The trading time grid is equidistant with 26 points and
θ = 1. The market impact is constant G1 = 1.

game problem, even if the game will still remain dynamic, due to the fact that, as we will

see, the optimal actions depend on past price. We show that the solution of the myopic

market-impact game is different from the fully dynamical Schied-Zhang game.

For the sake of simplicity, we focus on the case where both agents are fundamentalist

and identical. Then, if we denote by Sξ,η
tk

the price at the beginning of the interval and

assume a constant6 G, the cost function for agent 1 is (see Eq. 2)

C(ξ1,k|ξ2,k) =
G

2
ξ21,k − Sξ,η

tk
ξ1,k + εkGξ1,kξ2,k + θξ21,k.

whose expectation is

E[C(ξ1,k|ξ2,k)] =
G

2
ξ21,k − Sξ,η

tk
ξ1,k +

G

2
ξ1,kξ2,k + θξ21,k.

6The computation is straightforwardly extended to the case of a variable G(t).
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Therefore, the best response function of agents 1 and 2 is:

ξbrf1,k = argminE[C(ξ1,k|ξ2,k)] =
Sξ,η
tk

− G
2
ξ2,k

G+ 2θ
,

ξbrf2,k = argminE[C(ξ2,k|ξ1,k)] =
Sξ,η
tk

− G
2
ξ1,k

G+ 2θ
.

Thus, considering

ξbrf1,k = argminE[C(ξ1,k|ξ2,k)] =
Sξ,η
tk

− G
2
ξbrf2,k

G+ 2θ

we may recover the related Nash equilibrium at time k for both agents

ξ∗∗1,k = ξ∗∗2,k =
2Sξ,η

tk

3G+ 4θ
≡ αSξ,η

tk
.

Therefore, the Nash equilibrium depends only on the price at the beginning of each

interval. Notice that we have not set any type of constraint on the inventory that each

agent wants to liquidate.

The price increment in interval k is

Sξ,η
tk+1

− Sξ,η
tk

= −G(ξ∗∗1,k + ξ∗∗2,k) = −2αGSξ,η
tk

.

thus Sξ,η
tk

= (1 − 2αG)kS0. If 0 < 1 − 2αG < 1 the price decays exponentially fast

until the full inventory has been liquidated. Clearly 1 − 2αG < 1 because α and G are

positive. Interestingly, 1−2αG > 0 avoid price oscillations, and this condition is satisfied

if θ > G/4, i.e., the stability condition of Schied and Zhang market impact games, see

Schied and Zhang (2019) and Cordoni and Lillo (2022).

Finally, the number of time intervals is set by the condition, X1 =
∑N+1

k=1 ξ∗∗1,k which

gives N = log(1−2X1G/S0)
log(1−2αG)

, so that the number of trading rounds is fixed at the beginning,

as in the Schied and Zhang game.

The solution of the myopic game is an admissible strategy for the Schied and Zhang

market impact game. However, using Proposition 2.1, a direct inspection shows that the

Nash equilibrium of the latter is different from the solution of the former. Specifically,

at the first interval it is ξ∗∗1,1 > ξ∗1,1, which means that the myopic traders prefer to

liquidate more at the beginning. Finally, by computing the average expected cost of the

whole execution, the Nash Equilibrium of the myopic version is in general suboptimal,

i.e. providing a larger cost (for both traders) than the fully dynamic Schied and Zhang

impact game.
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Figure 2: Optimal execution schedule η∗
direc of a directional agent in a TIM model. The

trading time grid is equidistant with 26 points and θ = 1. The market impact function
is an exponential decay kernel G2(t) = exp(−t).

2.3. Optimal execution in the Transient Impact Model

We now recall how to derive the optimal execution schedule in the standard TIM. In this

case, the equation of price, similarly to Eq. (1), is

Sη
t = S0

t −
∑

tk<t

G2(t− tk) ηk, ∀ t ∈ T,

where, to avoid confusion with the market impact game, we denote with η the trading

strategy. Only one agent trade and thus there is no explicit interactions with other agents.

It is possible to show (Bouchaud et al., 2009, Schied and Zhang, 2019) that the ex-

pected cost of the directional agent is E[CT (η)] =
1
2
ηTΓθ,2η, where Γθ,2 is the decay

matrix defined above and corresponding to the kernel G2(t). Minimizing the expected

cost, the optimal solution for a directional trader with inventory Xdirec is obtained by

η∗
direc =

Xdirec

eTΓ−1
θ,2e

Γ−1
θ,2e.

Since Γθ,2 is symmetric then it is trivial that η∗
direc is also time symmetric as ξ∗

direc.

Moreover, it is straightforward that if we assume a constant market impact function G2

the solution of η∗
direc is constant in time as for the classical Almgren and Chriss (2001)

solution. In the general case, where G2(t) is a strictly positive decay kernel, the optimal

execution is characterized by a U-shape, e.g., see Figure 2.
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3. Implied Transient Impact via Price Dynamics

We first present a direct approach to obtain evidence of transient market impact, by look-

ing at the (average) price dynamics obtained in the market impact game described in Sec-

tion 2.2. Remind that the price dynamics on a given trading time grid T = {t0, t1, . . . , tN}

is described by

SΞ
t = S0

t −
∑

tk<t

G(t− tk)(ξ1,k + ξ2,k),

where S0
t is a right-continuous martingale defined on a given probability space which acts

as volatility term. Therefore, if we discard the noise due to volatility, the above relation

holds between the expected value of price increments and order flow. Thus, if S0 = S0
0 ,

S
Ξ

t − S0 = −
∑

tk<t

G(t− tk)(ξ1,k + ξ2,k),

where X denotes the expectation of X , which can be recasted in a matrix form,

S = −CΞ, (11)

where S = (S
Ξ

t1−S0, . . . , S
Ξ

tN+1
−S0) is the aggregate drift, Ξ = ξ1+ξ2 = (Ξ1, . . . ,ΞN+1)

T

is the aggregate order flow and

C =




G(t1 − t0) 0 0 · · · · · · 0

G(t2 − t0) G(t2 − t1) 0 0 · · · 0

G(t3 − t0) G(t3 − t1) G(t3 − t2) 0
. . . 0

...
. . .

. . .
. . .

. . .
...

G(tN − t0) G(tN − t1) · · · · · · G(tN − tN−1) 0

G(tN+1 − t0) G(tN+1 − t1) G(tN+1 − t2) · · · · · · G(tN+1 − tN )




.

Notice that we may rewrite the above system as S = −Mg, where, in the case that T is

an equidistant time grid, g = (G(t0), G(t1), . . . , G(tN))
T and

M =




Ξ1 0 0 · · · · · · 0

Ξ2 Ξ1 0 0 · · · 0

Ξ3 Ξ2 Ξ1 0
. . . 0

...
. . .

. . .
. . .

. . .
...

ΞN ΞN−1 · · · · · · Ξ1 0

ΞN+1 ΞN ΞN−1 · · · · · · Ξ1




.
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If the aggregate net order flow is different from zero at t0, i.e., Ξ1 6= 0, the matrix M is

non singular and therefore there is always an unique solution

g = −M−1S (12)

from which we can recover the kernel G(t).

Thus, one could use ξ1 and ξ2 , the Nash equilibrium solution of Schied and Zhang

market impact game and obtain S, from Equation (11). Then, assuming only one agent

(the directional, say agent 1) one solves Equation (12) using the order flow of the direc-

tional, i.e., Ξ = ξ1, so that we can obtain the implied decay kernel associated with the

single agent TIM characterised by the price dynamics of the market impact games model.

This procedure to infer the (transient) impact model corresponds to the usual practice,

in the academia and in the financial industry, to estimate market impact from large sets

of algorithmic executions by regressing price changes over past traded volumes. Equation

(12) leads to a first definition of implied transient impact function, which we emphasise

as:

Definition 3.1. (Implied transient impact function - Price Approach). The transient

impact function G
(P )
impl(t) which satisfies S = −Mg, where M depends on ξdirec and S

is recovered by the aggregate (drift) order flows, Ξ, of the market impact game is called

implied transient impact function.

The implied decay is uniquely identified. We emphasise these results in the following

theorem.

Theorem 3.2. If the aggregate net order flow is different from zero at t0, i.e., Ξ1 6= 0,

the linear system S = −Mg has unique solution for g.

As a specific first example we consider the market impact model where the directional

and the arbitrageur trade on an equidistant time grid TN = {kT
N
|k = 0, 1, . . .N} where

T = 1, N = 25, θ = 1, with inventory equal to 1 and 0, respectively. The decay kernel

is set to G1 ≡ 1. Then, we compute the cumulative drift S generated by the interaction

of the two agents in the market impact games. We solve the system (12) where M is

computed by considering only the drift generated by the directional ξdirec and we report

in the left panel of Figure 3 the implied transient impact function.

Before commenting on this figure, we note that this approach can be easily extended

to the case when more arbitrageurs are present. Specifically, we compute G
(P )
impl(t) in

a market impact game with one directional trader and two arbitrageurs, following the

Luo and Schied (2020) model, where the decay kernel is again set to G1 ≡ 1. We recall

that the Nash Equilibrium, in this case, is not anymore time-symmetric, see Figure 5

below. The right panel of Figure 3 shows the implied transient impact function in this

three player game.
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Figure 3: Scaled implied transient impact function, computed with the price approach,
solving the system (12). The blue, red and orange lines correspond to the scaled G

(P )
impl(t)

obtained from a game with one directional and one arbitrageur, from a game with one
directional and two arbitrageurs, and from a game with one directional and four arbi-
trageurs, respectively. Each function was scaled in such a way its initial value is equal to
one.

Figure 3 indicates that the implied market impact G
(P )
impl(t) is transient and nonlinear

in all settings. Qualitatively, we observe that the implied transient impact kernels differ

in terms of “size impact”, i.e., the absolute value of G
(P )
impl(0) is greater for the five/three

agent game than those obtained starting from the two agent game, but they exhibit the

same shape and they are both decreasing functions. Therefore, to compare them fairly,

we have divided each G
(P )
impl(t) by the related value at zero, G

(P )
impl(0). The initial values

for the (non-scaled) implied market impact functions were 2, 3 and 5, for the two, three

and five players game, respectively. We observe that the implied market impact function

has a more sharp decline when the number of arbitrageurs increases. We remark that in

order to account the way by which impact depends on the number of agents, a proper

scaling factor should be applied on both implied kernels, as the one discussed in Cordoni

and Lillo (2022). However, for our purpose is sufficient to equally compare both implied

market functions as done in Figure 3.

In conclusion, following this approach, we have found evidence of the transient nature

of market impact. However, the implied impact results to be a concave function, in

contrast to what many empirical studies have found, e.g., Bouchaud et al. (2004). In

Appendix C we investigate how we can fix this undesired feature of the implied transient

impact function, by solving Eq. (12) employing the scheduling of Almgren and Chriss

optimal execution model. However, the motivation of this alternative solution is not
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straightforward.

In the next section we propose a different approach to recover the implied market

impact function by solving an inverse optimal execution problem.

4. Implied Transient Impact via Optimal Execution

In the second approach we propose to derive the implied transient impact from the optimal

execution schedule. As in the previous section, we assume that the actual decay kernel is a

constant G1 ∈ R+. As shown in Section 2.2, the optimal solution of the directional trader

at the Nash equilibrium ξ∗
direc has a U-shape. As discussed in section 2.3, a U-shape is also

exhibited in the optimal execution problem using the transient impact model. Therefore,

when a suitable transient impact function is selected, the U-shape of ξ∗
direc is equivalent

to optimal schedules obtained by single-agent transient impact models. In other words,

given the optimal solution ξ∗
direc it is possible to select an appropriate propagator function

so that ξ∗
direc = η∗

direc. We denote this implied transient impact function as Gimpl(t), More

precisely we define:

Definition 4.1 (Implied transient impact function - Optimal execution approach). The

transient impact function G
(OE)
impl (t) such that the optimal schedule obtained by a TIM

with a single agent, η∗
direc, is equal to the Nash equilibrium of the directional trader in

the market impact game, ξ∗
direc, is called implied transient impact function.

Thus the question we plan to answer is: given the solution obtained by a market im-

pact game, how is it possible to derive the corresponding implied decay kernel associated

with the single-agent TIM? Moreover, is the implied transient impact function unique?

Without loss of generality we assume Xdirec = 1. Given ξ∗
direc ∈ R

N+1 we ask whether

the equation

ξ∗
direc =

Γ−1
θ e

eTΓ−1
θ e

(13)

has solution and if it is unique. Since θ > 0 is given, the only unknown is the symmetric

Toeplitz matrix Γ such that Γθ = Γ + 2θI, which depends on N + 1 parameters, thus in

principle there are N +1 equations in N +1 unknowns. However, it is clear that if Γ is a

solution, then any Γ +KeeT , where K ∈ R− { −1
eTΓ−1

θ
e
} is a solution, as observed in the

following remark.

Remark 4.2. Using Sherman-Morrison formula7, it is straightforward that

(Γθ+KeeT )−1e = Γ−1
θ e−

KΓ−1
θ eeTΓ−1

θ e

1 +KeTΓ−1
θ e

=

(
1−

KeTΓ−1
θ e

1 +KeTΓ−1
θ e

)
Γ−1
θ e =

Γ−1
θ e

1 +KeTΓ−1
θ e

,

7If Γ is a solution of (13), Γ−1

θ
is positive i.e., xTΓ−1

θ
x > 0 ∀x ∈ R

N+1, see e.g. Lemma 2 of
Schied and Zhang (2019). Therefore 1 +KeTΓ−1

θ
e 6= 0 if and only if K 6= −1

e
TΓ

−1

θ
e

.
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for each K ∈ R. Then,

eT (Γθ +KeeT )−1e =
eTΓ−1

θ e

1 +KeTΓ−1
θ e

,

thus,
(Γθ +KeeT )−1e

eT (Γθ +KeeT )−1e
=

Γ−1
θ e

eTΓ−1
θ e

.

So G(t) and G(t) +K, where K ∈ R−{ −1
eTΓ−1

θ
e
}, generate the same optimal execution of

a TIM, then the decay kernel is identifiable up to a constant.

Moreover, Γθ is identified up to a multiplicative constant, i.e., if Γθ satisfies (13) then

any αΓθ where α 6= 0 is a solution. Therefore, we may set G(0) such that the elements of

the main diagonal of Γθ, which are G(0) + 2θ, are equal to 1. However, even if we select

a particular class of decay kernel we show that in general the identification of G
(OE)
impl (t) is

not related only to a constant and multiplicative scaling.

To solve problem (13), let us set

Π−1 =
Γ−1
θ

eTΓ−1
θ e

hence

Π = (eTΓ−1
θ e)Γθ

and we may rewrite Equation (13) as

Πξ∗
direc = e (14)

where the unknowns are the N+1 different entries of Π = Toep(g0, g1, . . . , gN) = Toep(g).

Moreover Π is symmetric and satisfies eTΠ−1e = 1. Thus, we recast Equation (14) into

a linear system in the unknowns g. Let us consider as an example the case of N +1 = 4.

The original system is formulated as




g0 g1 g2 g3

g1 g0 g1 g2

g2 g1 g0 g1

g3 g2 g1 g0







ξ1

ξ2

ξ3

ξ4



=




1

1

1

1



,
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where we omit the upper ∗ for the sake of simplicity, which can be rewritten as




ξ1 ξ2 ξ3 ξ4

ξ2 ξ1 + ξ3 ξ4 0

ξ3 ξ2 + ξ4 ξ1 0

ξ4 ξ3 ξ2 ξ1







g0

g1

g2

g3



=




1

1

1

1



,

i.e., as

Hg = e (15)

from which we may recover g. However, since ξ∗
direc has a U-shape, in particular it is time-

symmetric, Equation (15) has in general infinite solutions. This means that the implied

transient impact function can not be identified without imposing some restrictions. Before

showing the main results we provide two examples.

Remark 4.3. If for some reasons ξ∗
direc is not time-symmetric (for example it is the result

of the Nash equilibrium of a directional trader against M > 1 arbitrageurs, see Section

4.3) and there are no other symmetries, the matrix H is full rank and invertible. The

unique solution is the constant vector g = e
eT ξ∗

direc

, which provides however a singular

matrix Π. Therefore, as we expect, when ξ∗
direc is not time-symmetric there is no Γ which

satisfies Eq. (13).

Example 4.4. Let us consider the case when N + 1 = 4 and let us suppose ξ∗
direc be a U-

shaped. As a consequence the matrix H is not full rank. We recover ξ∗
direc by the optimal

execution of a TIM where Γθ = Toep(1, 0.6, 0.5, 0.2), thus ξ∗
direc = 12−1(5, 1, 1, 5). The

rank of the matrixH is 2, so the space of the solutions is infinite and it has dimension 2 and

can be parametrized as g =
(
60
29

− α
29

− 30
29
β, 48

29
− 24

29
α+ 5

29
β, α, β

)
. Choosing α = β = 0

we obtain Π = Toep(60/29, 48/29, 0, 0), which is clearly not proportional to the “original”

Γθ, which can be recovered with α = 0.8450704, β = 0.3380282, getting Π = 1.6901408Γθ.

Theorem 4.5 (Identification Problem of the Implied Transient Impact Function). Let

us suppose that ξ∗
direc ∈ R

N+1 has a U-shape, then the system

Πξ∗
direc = e ⇐⇒ Hg = e (16)

where Π = Toep(g) is symmetric and g ∈ R
N+1 has strictly decreasing components, has

infinite solutions, where the rank of H is equal to (N +1)/2 if N +1 is even and N/2+1

if N + 1 is odd, respectively.

In other words, in general, there are (N +1)/2 and N/2 solutions as much as implied

transient impact functions, when N + 1 is even and odd, respectively.
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4.1. The Implied Linear Transient Impact Function

We now investigate the previous problem when the implied decay kernel is restricted

to be linear. We assume that the time grid is equidistant TN = {kT
N
|k = 0, 1, . . . , N},

where withouth loss of generality T = 1 and N ∈ N. If G
(OE)
impl (t) = α + βt, where

β < 0 and, since the kernel is identified up to a constant term, we impose without loss of

generality that α is such that G
(OE)
impl (T ) = 0. The previous matrix Π is proportional up

to a constant to the decay kernel matrix Γθ, so we search for a Π = Toep(g0, g1, . . . , gN),

where gk = 2θδk,0+α+ β k
N
, for k = 0, 1, . . . , N where δk,0 is 1 for k = 0 and 0 otherwise.

Then, if Xdirec is the inventory of the directional agent, since Πξ∗
direc = 1 we may recover8

the first ⌊N/2 + 1⌋ conditions:

(Eq. 1) αXdirec + 2θξ1 +
β
N

∑N+1
i=2 (i− 1)ξi = 1;

(Eq. 2) αXdirec + 2θξ2 +
β
N

(
ξ1 +

∑N+1
i=3 (i− 2)ξi

)
= 1;

(Eq. k) αXdirec+2θξ3+
β
N

(
(k − 1)ξ1 + (k − 2)ξ2 + · · · + 2ξk−2 + ξk−1 +

∑N+1
i=k+1(i− k)ξi

)
= 1,

where k ≤ ⌊N/2 + 1⌋. From Corollary 2.3 if θ > θ∗ = G1/4, the components of ξ are all

positive. Thus, subtracting each equation from the previous one we obtain that

(Eq. 1) − (Eq. 2) : 2θ(ξ1 − ξ2) +
β
N

(∑N+1
i=2 ξi − ξ1

)
= 0;

(Eq. k − 1) − (Eq. k) : 2θ(ξk−1−ξk)+
β
N

(∑N+1
i=k ξi −

∑k−1
i=1 ξi

)
= 0, where k ≤ ⌊N/2 + 1⌋.

Therefore, since Xdirec =
∑N+1

i=1 ξi, we may compute β using the previous equation (Eq.

1) − (Eq. 2),

β =
−2θN · (ξ1 − ξ2)

Xdirec − 2ξ1
,

but from (Eq. k − 1) − (Eq. k)

β =
−2θN · (ξk−1 − ξk)

Xdirec − 2
∑k−1

i=1 ξi
, k ≤ ⌊N/2 + 1⌋.

Therefore, it must hold for k ≤ ⌊N/2 + 1⌋

−2θN · (ξ1 − ξ2)

Xdirec − 2ξ1
=

−2θN · (ξ2 − ξ3)

Xdirec − 2ξ1 − 2ξ2
= · · · =

−2θN · (ξk−1 − ξk)

Xdirec − 2
∑k−1

i=1 ξi
, (17)

which, since θ 6= 0, is equivalent to

(ξ1 − ξ2)

Xdirec − 2ξ1
=

(ξ2 − ξ3)

Xdirec − 2ξ1 − 2ξ2
= · · · =

(ξk−1 − ξk)

Xdirec − 2
∑k−1

i=1 ξi
, k ≤ ⌊N/2 + 1⌋. (18)

8For the sake of simplicity we remove the upper ∗ and direc from the component of ξ∗
direc

.
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Then, we have proven that if the components of ξ∗
direc satisfy the relations (18) then

Π = Toep(g), where gk = 2θδk,0+α+β k
N
, k = 0, 1, . . . , N is a solution for (16). Actually,

the above conditions on ξ∗
direc are a necessary and sufficient conditions for the existence of

linear implied transient impact function in the above model setting. We now may prove

the following result.

Theorem 4.6 (Linear Implied Transient Impact Function). Let TN = {kT
N
|N ∈ N, k =

0, 1, . . . , N}, be an equidistant time grid and θ > θ∗ = G1/4. There always exists a

linear implied transient impact described by Π = Toep(g), where gk = 2θδk,0 + α + β k
N
,

k = 0, 1, . . . , N and β = −2θN ·(ξ1−ξ2)
Xdirec−2ξ1

.

The theorem tells that linear solutions of (13) are contained in a one dimensional

affine space, so if we impose that G
(OE)
impl (T ) = 0, then we may identify the unique implied

linear transient impact function. The slope is provided by −θN (1−a)2

a
= −

4θNG2
1

16θ2−G2
1
, since

a = 1 − 1/λ, λ = 2θ/G1 +
1
2
. Since θ > G1/4 then the slope is always negative, i.e., the

linear implied market impact function is effectively a decay kernel. We also observe that

this slope is in absolute value an increasing function of G1 and it decreases with θ. We

further investigate this latter relation in Section 4.2

Remark 4.7. We observe that if θ = 0, then the relations (17) are satisfied. However, the

Nash Equilibrium of the market impact game model exists and it has no oscillations when

θ ≥ θ∗ > 0. Therefore, we may set two different θ one for the market impact game, θ1,

such that the Nash equilibrium is well defined and one for the optimal execution model

θ2 where we set θ2 = 0. We discuss this particular case in Section 4.4.

4.2. Role of Transaction Costs

In general, the implied transient impact depends on the level of transaction costs. This

is due to the fact that in the market impact game, the Nash equilibrium depends on the

parameter θ. To give a concrete example, let us consider the same setting as in Section

2 and let us focus on the implied impact via optimal execution, restricting our attention

to linear functions. In Section 4.1 we proved that the slope of the implied impact is

−
4θNG2

1

16θ2−G2
1
. So, the absolute value of the slope is a decreasing function of θ and it goes

to zero for large values of θ. This phenomenon can also be explained by looking at the

interaction between the two agents in the market impact game. Indeed, when transactions

costs increase, the interaction between agents in market impact game disappears, since

the arbitrageur gradually reduces the traded volume, so that the optimal schedule of the

directional becomes the same as in the standard Almgren-Chriss framework, see Figure

4. Therefore, when θ increases, there is less and less interaction between the agents and

the implied transient impact function vanishes.
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Figure 4: Nash equilibria of market impact games with fixed G1 = 1, and equidistant
time grid where T = 1, N = 25, when the transaction costs level θ increases.

4.3. The Multi-Agent Case

Even if, in the previous setting, we may interpret the two traders as representative agents,

we now analyze the general setting with more than two agents. In a multi-asset mar-

ket impact game with J > 2 agents, we use the results of Luo and Schied (2020) and

Cordoni and Lillo (2022) to derive the Nash equilibria of agents. However, the results

of Section 2.2 are no more valid when we consider J > 2 traders, since the fundamental

solutions depend on the number of agents, which implies that the decay kernel matrix is

no more Toeplitz in general, see e.g., Luo and Schied (2020). As an example, we consider

2 arbitrageurs and a directional trader9, which trade the same asset. Figure 5 exhibits

the related Nash equilibria for the agents when we set T = 1, N = 25, G1 = 1, θ = 1.

We observe that the solutions of the two arbitrageurs are identical. Even if for the arbi-

trageur the optimal solution is always a round-trip strategy facing the same direction of

the directional trader at the beginning of the session, it is quite evident that the optimal

solution for the directional is a U-shape which is no more time-symmetric. In particular,

it is optimal for him/her to trade more at the end of session, exploiting the arbitrageur’s

impact.

9All the agents are assumed to be risk-neutral.
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Figure 5: Nash equilibria for the market impact game model with a directional trader
and two arbitrageur, where T = 1, N = 25, G1 = 1, θ = 1. The solution of the two
arbitrageurs are identical.

4.4. Is it possible to incorporate transaction costs in the decay

kernel?

In this section we examine the relations between the transaction cost level θs and the

implied transient impact function. Specifically, we generalize the above setting by con-

sidering two different θs for the two models and by asking whether it is possible to select

a kernel function for the TIM optimal execution problem in such a way the kernel incor-

porates the transaction cost level without estimating it. We focus our attention on the

case when θ1 ≥ G1/4, while θ2 = 0 for the optimal execution model. This last condition

implies that η∗
direc is characterized by the vector Γ−1e and the implied transient impact

function G
(OE)
impl (t) is such that it incorporates the interaction between the two agents

together with the transaction costs of the market impact games, without relying on the

transaction cost level.

In Section 4.1 we have shown that there exists a linear implied transient impact

function, which is unique up to constant, where the slope is uniquely identified. However,

when θ1 = G1/4 but θ2 = 0 any linear decay kernel (regardless of the slope coefficient)

can be selected as an implied market impact function. When θ1 6= G1/4 and θ2 =

0 there are no linear implied transient impact solution. To show that, we consider a

different perspective when solving the optimal execution inverse problem. We start by

choosing a specific kernel G2(t) in the optimal execution model and we search for a

suitable parameter setting of the market impact game model so that the selected decay

kernel are the corresponding implied impact function, i.e., G2(t) ≡ G
(OE)
impl (t). In other

words, given η∗
direc we search a suitable parameter setting for the market impact game
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such that ξ∗
direc = η∗

direc. G2(t) is specified to be linear.

If G2(t) = α + βt, where β 6= 0, then for an equidistant time grid, ti = i/N, i =

0, 1, . . . , N , Γi,j =
β|i−j|
N

+ α. The inverse of Γ is given by, see Dow (2003),

Γ−1 =
1

2β




−ηN/ηN+1 1 0 · · · 0 β2/ηN+1

1 −2 1 0 · · · 0

0 1 −2 1 0 0
. . .

. . .
. . .

0 · · · 0 1 −2 1

β2/ηN+1 0 · · · 0 1 −ηN/ηN+1




where ηN = 2αβ+ β2(N − 1). Then, η∗
direc =

Xdirec

eTΓ−1e
Γ−1e = [Xdirec/2, 0, · · · , 0, Xdirec/2]

T

regardless of any choice of β and α.

Therefore, when θ2 = 0 in the optimal execution model, the optimal schedules are

given by a vector that concentrates the orders at the two extremes of the trading session

and it has a (zero) constant trading rate for all intermediate trading times10. So, the

question is whether the solution of a market impact game has a shape that looks like the

one described above for the single-agent TIM.

Example 4.8. We observe that when11 θ1 = G1/4, Γθ1 = 2θ1I + G1ee
T = G1

2
I + G1ee

T

and so

(Γθ1 + Γ̃) = G1




2 1 1 · · · 1

2 2 1 · · · 1
...

. . .
...

2 · · · 2 1

2 · · · · · · 2




, (Γθ1 + Γ̃)−1 = G−1
1




1 −1/2

−1 1
. . .

. . .

−1 1




(Γθ1 − Γ̃) = G1




1 1 · · · 1

1 · · · 1
. . .

...

1



, (Γθ1 − Γ̃)−1 = G−1

1




1 −1
. . .

. . .

1 −1

1



.

Therefore, v = [1, 0, · · · , 0]T and w = [0, · · · , 0, 1]T and the solution for the directional

ξ∗
direc in the market impact game model is exactly equal to the one obtained by the

10The same trading profile schedule is also exhibited in the exponential decay kernel case, where the
trading velocity at intermediary trading times is constant but different from zero.

11We remark that when θ1 = θ∗1 = G(0)/4, and other generic assumptions, the continuous time Nash
equilibrium of a general market impact game exists and it coincides with the high-frequency limits
(N → ∞) of the discrete-time equilibrium, as showed in Schied et al. (2017).
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optimal execution model with no transaction cost and linear decay kernel, i.e.,

ξ∗
direc = [Xdirec/2, 0, · · · , 0, Xdirec/2]

T .

Thus, when θ1 = θ∗1, any linear decay kernel G2(t) can be selected as the implied

transient impact function G
(OE)
impl (t) in the market impact game model. Furthermore, it

holds the following results.

Proposition 4.9. In the market impact game described in Section 2.2,

ξ∗
direc = [Xdirec/2, 0, · · · , 0, Xdirec/2]

T ,

if and only if θ1 = G1/4.

Therefore, when θ2 = 0 the implied transient impact function is linear if and only if

θ1 = G1/4, and all linear decay kernel functions are solution of the implied decay kernel

problem, i.e., ξ∗
direc = η∗

direc for all G
(OE)
impl (t) linear. We remark that, contrary to Section

4.1, in this setting we may select any slope coefficient for G
(OE)
impl (t).

5. Conclusion

Understanding the transient nature of market impact is essential as it describes how

prices react to trades and it is related to the information content of a trade. Rather than

postulating its existence, this paper contributes to the recent literature by providing an

explanation for its origin. We showed that transient impact naturally emerges from the

Nash equilibrium of a market impact game with permanent and fixed impact. Using the

setting of market impact games, our paper indicates that, in general, the impact function

describing in the model the effect of trade volume on price is different from the impact

function that can be inferred by an external observer who measures it from the trading

activity of a specific agent (the directional in our setting). We term this inferred impact

as “implied”, and we show that the implied impact of a permanent market impact game

is transient.

More specifically, we propose two approaches to derive implied impact. The first con-

siders the lagged correlation between the directional trading volume and price changes,

while the second one considers the execution of the directional trader as optimal with re-

spect to a transient impact model and derives the possible kernel (or propagator) function.

Although the implied impact is transient in both cases, there are substantial differences.

In the first case, the solution is unique, while in the second one an infinite number of

possible solutions. In particular, under mild assumptions on the parameters of the mar-

ket impact game, a linear solution can be derived and characterized in terms of the Nash

equilibrium. We also analyze the sensitivity of the implied transient impact function
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to transaction costs level. Since the implied decay kernel results from the interaction

between a directional and an arbitrageur trader, when we increase the transaction costs

parameter, the volume of the arbitrageur reduces until the implied transient impact no

longer exists. Finally, we show that when we extend our framework allowing to incorpo-

rate the transaction costs in the implied price impact function, any linear family can be

selected as implied market impact.

In conclusion, our paper shows a possible origin of the transient nature of market

impact and highlights an essential difference between the real impact ruling the game

and the one that can be measured with statistical methods from trade data.

As a possible extension, one may ask whether the evidence of transient impact under

the notion of implied market impact function might be extended in a continuous-time

setting. However, the continuous-time extension of the Schied and Zhang market impact

game model is well defined only for θ = G(0)/4, where Schied et al. (2017) have shown

that the continuous Nash equilibrium exists and it coincides with the high-frequency

limit of the discrete model. Therefore, only in this special case the same evidence in the

continuous-time model might be found. The constraining assumption on θ makes the

continuous-time model of marginal interest from an economic perspective. On the other

hand, the discrete-time market impact game turns out to be more flexible and relevant.

Moreover, as remarked in Strehle (2017b), “continuous trading is an idealization” and

every continuous-time trading strategy has to be discretized via block trades in order to

be executed. Another way to employ continuous-time modelling, which is not affected by

constraining conditions on θ of continuous-time market impact game, is to follow Strehle

(2017a), where a different approach to modelling transaction costs is presented, so that

we may avoid the singularity presented by the parameter θ. One could solve the optimal

execution problem with Fredholm integral equation, but only in the exponential case

a closed-form solution may be derived, and in the general case, the equation must to

solved numerically. An interesting question is to analyze whether the discretization of

this different model could be led back to one of the approaches we have analyzed, where

we might expect to solve a discretization of a Fredholm integral equation. However, this

further aspect is beyond the scope of this work and we leave it for further research and

study.
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Appendix A. When Γθ + Γ̃ is singular?

Let G(t) ≡ G > 0 and θ > 0. Then, Γθ + Γ̃ = 2θI + Γ̃ + Γ = A+GeeT where

A = G




λ

1 λ
...

. . .
. . .

1 · · · 1 λ



, λ = 2

θ

G
+

1

2
,

is non singular since λ > 0. Moreover, it is a straightforward computation to verify that

A−1 =
1

G




1
λ

− 1
λ2

1
λ

− (λ−1)
λ3 − 1

λ2
1
λ

...
...

. . .
. . .

− (λ−1)N−2

λN − (λ−1)N−3

λN−1 · · · − 1
λ2

1
λ

− (λ−1)N−1

λN+1 − (λ−1)N−2

λN · · · · · · − 1
λ2

1
λ




.

Then, since A is non singular, for the matrix determinant lemma A + GeeT is non

singular if and only if 1 + G · eTA−1e 6= 0. Let x = GA−1e, where x1 = 1/λ and

xn = 1
λ
− 1

λ2

∑n−2
k=0

(
λ−1
λ

)k
, n = 2, . . . , N +1. We first observe that when λ = 1, A+GeeT

is non singular, since 1 +GeTA−1e = 1 +G · eTA−1e = 2.

Thus we assume that λ 6= 1. Then if 1+G · eTA−1e > 1
λ
> 0 the matrix A+GeeT is

non singular. In particular if θ > 0 then 1+G ·eTA−1e > 1
λ
. Indeed, 1+G ·eTA−1e > 1

λ

if and only if

1 +
1

λ
+

N+1∑

n=2

(
1

λ
−

1

λ2

n−2∑

k=0

(
λ− 1

λ

)k
)

>
1

λ

⇐⇒
N + 1

λ
−

1

λ
−

1

λ2

N+1∑

n=2

(
1− an−1

1− a

)
> −1, a =

λ− 1

λ
6= 0, and a 6= 1

⇐⇒
N + 1

λ
−

1

λ2

N+1∑

n=1

(
1− an−1

1− a

)
> −1, since

1

λ
=

1

λ2
·

1

1− a

⇐⇒
N + 1

λ
+ 1 >

1

λ

N+1∑

n=1

(1− an−1) ⇐⇒ 1 > −
1

λ

(
1− aN+1

1− a

)

⇐⇒ 1 > (aN+1 − 1) ⇐⇒ aN+1 < 2 ⇐⇒ a < 2
1

N+1

⇐⇒ 1−
1

λ
< 2

1
N+1 ⇐⇒ 1− 2

1
N+1 <

1

λ
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since λ = 2 θ
G
+ 1

2
> 0 and 1− 2

1
N+1 < 0

⇐⇒ λ >
(
1− 2

1
N+1

)−1

,

⇐⇒ θ >

(
1

1− 2
1

N+1

−
1

2

)
G

2
.

However,

(
1

1−2
1

N+1
− 1

2

)
G
2
< 0, therefore if θ > 0, θ >

(
1

1−2
1

N+1
− 1

2

)
G
2
and so 1 + G ·

eTA−1e 6= 0. Thus, if θ > 0 and G > 0 then Γθ + Γ̃ is non singular.

Appendix B. Proofs of the results.

Lemma B.1. Let θ > 0, then the inverse of the following matrices

(Γθ − Γ̃) = G1




2θ
G1

+ 1
2

1 1 · · · 1 1

0 2θ
G1

+ 1
2

1 · · · 1 1

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . . 2θ

G1
+ 1

2
1

0 · · · · · · · · · 0 2θ
G1

+ 1
2




(Γθ + Γ̃) = G1




2θ
G1

+ 3
2

1 1 · · · 1 1

2 2θ
G1

+ 3
2

1 · · · 1 1

2
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . . 2θ

G1
+ 3

2
1

2 · · · · · · · · · 2 2θ
G1

+ 3
2




are given by the matrices,

(Γθ − Γ̃)−1 =
1

G1




1
λ

− 1
λ2 −λ−1

λ3 · · · − (λ−1)N−2

λN − (λ−1)N−1

λN+1

0 1
λ

− 1
λ2 · · · − (λ−1)N−3

λN−1 − (λ−1)N−2

λN

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . . 1

λ
− 1

λ2

0 · · · · · · · · · 0 1
λ




,

(Γθ + Γ̃)−1 = (Γθ − Γ̃)−T −G1 ·
(Γθ − Γ̃)−TeeT (Γθ − Γ̃)−T

1 +G1 · eT (Γθ − Γ̃)−Te
,
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where λ = 2θ
G1

+ 1
2
.

Proof of Lemma B.1. The computation of (Γθ − Γ̃)−1 is straightforward, see also proof

of Proposition 3 of Schied and Zhang (2019). For (Γθ + Γ̃)−1 we may use the Sher-

man–Morrison formula. Indeed, (Γθ + Γ̃) = (Γθ − Γ̃)T + G1ee
T , then since (Γθ − Γ̃)T

is non singular by the Sherman–Morrison formula we have the results, (Γθ + Γ̃)−1 =

(Γθ − Γ̃)−T −G1 ·
(Γθ−Γ̃)−T eeT (Γθ−Γ̃)−T

1+G1·eT (Γθ−Γ̃)−T e
.

Proof of Proposition 2.1. Without loss of generality we may assume that G1 = 1. Indeed,

let ξ1,· and ξ2,· be the admissible strategy for X1 and X2 respectively. Then, since G1

is constant, we may scale the trading strategies by G1. In particular, we may introduce

ηi,· = G1 ·ξi,· for i = 1, 2, i.e., the corresponding admissible strategies for the transformed

inventory Yi = G1 · Xi, i = 1, 2. Then, the two games are equivalent since, SΞ
t =

S0
t −

∑
tk<tG1(ξ1,k + ξ2,k) = S0

t −
∑

tk<t(η1,k + η2,k), ∀ t ∈ T.

If we denote (Γθ − Γ̃) = A, then by Lemma B.1, (Γθ + Γ̃)−1 = A−T − A−T eeTA−T

1+eTA−Te
.

However,

(Γθ+Γ̃)−1e = A−Te−A−Te ·
eTA−Te

1 + eTA−Te
= A−Te ·

(
1−

eTA−Te

1 + eTA−Te

)
=

A−Te

1 + eTA−Te
.

Thus, eT (Γθ + Γ̃)−1e = eTA−Te
1+eTA−Te

, then

v =
1

eT (Γθ + Γ̃)−1e
(Γθ + Γ̃)−1e =

A−Te

eTA−Te

w =
1

eT (Γθ − Γ̃)−1e
(Γθ − Γ̃)−1e =

A−1e

eTA−1e
.

Moreover, if we denote A−1e = x and using the explicit formula for A−1 we obtain that

xN+1 = 1
λ
, xn = 1

λ
− 1

λ2

∑N−n
k=0

(
λ−1
λ

)k
= 1

λ
− 1

λ
(1 − aN−n+1) = aN−n+1

λ
, for n = 1, . . . , N ,

where λ = 2θ+ 1
2
and a = λ−1

λ
. Then,

∑N+1
n=1 xn = aN

λ

∑N+1
n=1 a−(n−1) = aN

λ

∑N
k=0 a

−k = aN

λ
·

1−a−(N+1)

1−a−1 = 1− aN+1, since 1− a = 1
λ
. Therefore, wN+1 =

1
λ·(1−aN+1)

and wn = aN−n+1

λ·(1−aN+1)

for n = 1, 2, . . . , N . On the other hand, if A−Te = y, y1 =
1
λ
, yn = 1

λ
− 1

λ2

∑n−2
k=0

(
λ−1
λ

)k
=

1
λ
− 1

λ
(1−an−1) = an−1

λ
, for n = 2, . . . , N +1. Then,

∑N+1
n=1 yn = 1

λ

∑N+1
n=1 an−1 = 1−aN+1

(1−a)λ
=

1− aN+1. Therefore, v1 =
1

λ·(1−aN+1)
and vn = an−1

λ·(1−aN+1)
for n = 2, . . . , N + 1.

Proof of Theorem 2.2. Without loss of generality, we may assume that the first agent is

the Directional, so that X1 = Xdirec and X2 = Xarbi = 0. From Schied and Zhang (2019)

the Nash equilibrium is provided by Eq. (3)-(4), and we have Eq. (7)-(8). Then, since v

and w are time-symmetric from Lemma 2.1 we have

v1 ± w1 = wN+1 ± vN+1

vk ± wk = wN+2−k ± vN+2−k, k = 1, 2, . . . , N + 1
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and it is straightforward to verify Eq. (9)-(10)

Proof of Corollary 2.3. W.l.o.g. we may assume G1 = 1. From Theorem 2.2 we have

the time-symmetry. On the other hand, from the characterization of the fundamental

solution v and w, see Proposition 2.1, ξ∗
direc,k = Xdirec

2
· ak−1+aN−k+1

λ(1−aN+1)
, where λ = 2θ + 1/2

and a = 1 − 1/λ. Since θ > 1/4, then λ > 1 and a ∈ (0, 1) so each component of the

Nash equilibrium is positive. Let us denote with ξ̃k the components of ξ̃ =
2ξ∗

direc,k

Xdirec
. Let

∆k = ξ̃k+1 − ξ̃k be the first difference for k = 1, 2, . . . , N . Then, since λ(1 − aN+1) > 0,

∆k = (a−1)(ak−1−aN−k)
λ(1−aN+1)

= (a−1)a−k(a2k−1−aN )
λ(1−aN+1)

< 0 for k < ⌊(N + 1)/2⌋. For the convex-

ity we consider the first difference of ∆k, i.e., ∆k − ∆k−1 for k = 2, 3, . . . , N . How-

ever, ∆k − ∆k−1 = (a−1)(ak−1−aN−k)−(a−1)(ak−2−aN−k+1)
λ(1−aN+1)

= (a−1)(ak−1−aN−k−ak−2+aN−k+1)
λ(1−aN+1)

=
(a−1)(a−1)(ak−2+aN−k)

λ(1−aN+1)
> 0 and we conclude.

Proof of Theorem3.2. If Ξ1 6= 0 the matrix M is non singular.

Proof of Theorem 4.5. Let us first consider the case when N + 1 is even. From the left-

hand side, since Π is symmetric and ξ∗
direc is time symmetric, the first (N+1)/2 equations

are equal to the last (N+1)/2, where the first is equal to the N+1-th, the second is equal

to the N -th and so on. This, means that rk(H) ≤ (N + 1)/2. However, since ξ∗
direc has

a U-shape, in particular it is not constant but strictly decreasing with positive elements,

and g is strictly decreasing, then the first (N + 1)/2 equations are different from each

other, since for each equation there are mixed products which are not contained in the

remaining equations. Thus, rk(H) = (N+1)/2. The case of N+1 odd is straightforward,

since using the same reasoning of the even case, we obtain that the first N/2 equations

are equal to the last N/2 where in addition, we have another equation at the N/2 + 1

coordinate. So, rk(H) = N/2 + 1.

Proof of Theorem 4.6. From the discussion at the beginning of Section 4.1 it is sufficient

to show that the components of ξ∗
direc satisfy the relations (18).

W.l.o.g. we may assume the impact function of the market impact game be equal to

G1 = 1. From the characterization of the fundamental solutions v and w, see Proposition

2.1, ξ∗direc,k = Xdirec

2
· ak−1+aN−k+1

λ(1−aN+1)
, where λ = 2θ + 1

2
and a = 1 − 1/λ. So, let ξk be the

components of ξ∗
direc, then, for k ≤ ⌊N/2 + 1⌋,

(ξk−1 − ξk)

Xdirec − 2
∑k−1

i=1 ξi
=

ak−2 + aN−k+2 − ak−1 − aN−k+1

2λ(1− aN+1)
·

1

1−
∑k−1

i=1
ai−1+aN−i+1

λ(1−aN+1)

=

=
ak−2 + aN−k+2 − ak−1 − aN−k+1

2λ(1− aN+1)
·

λ(1− aN+1)

λ(1− aN+1)−
∑k−1

i=1 (a
i−1 + aN−i+1)

=

=
1

2
·

ak−2 + aN−k+2 − ak−1 − aN−k+1

λ(1− aN+1)−
∑k−1

i=1 (a
i−1 + aN−i+1)

.
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Since
∑k−1

i=1 a
i−1 = (1 − ak−1)/(1 − a) and aN+1 ·

∑k−1
i=1 a−i = (aN−k+2 − aN+1)/(1 − a),

and λ(1− a) = 1

1

2
·

ak−2 + aN−k+2 − ak−1 − aN−k+1

λ(1− aN+1)−
∑k−1

i=1 (a
i−1 + aN−i+1)

=
1− a

2
·

ak−2 + aN−k+2 − ak−1 − aN−k+1

λ(1− a)(1− aN+1)− (1− ak−1 + aN−k+2 − aN+1)

=
1− a

2
·
ak−2 + aN−k+2 − ak−1 − aN−k+1

ak−1 − aN−k+2
=

1− a

2
·
ak−2(1− a)− aN−k+1(1− a)

ak−1 − aN−k+2

=
(1− a)2

2
·
ak−2 − aN−k+1

ak−1 − aN−k+2
=

a(1− a)2

2a
·
ak−2 − aN−k+1

ak−1 − aN−k+2
=

(1− a)2

2a
·
ak−1 − aN−k+2

ak−1 − aN−k+2

=
(1− a)2

2a
.

Therefore, (ξk−1−ξk)

Xdirec−2
∑k−1

i=1 ξi
= (1−a)2

2a
and so it is independent for each k ≤ ⌊N/2 + 1⌋ and

we conclude.

Proof of Proposition 4.9. From Example 4.8 if θ1 = G1/4 then the Nash equilibrium of

the market impact game is given by ξ∗
direc = [Xdirec/2, 0, · · · , 0, Xdirec/2]

T . Vice-versa,

using the characterization of the Nash equilibrium, see Proposition 2.1 and Theorem

2.2, ξ∗direc,1 = X0

2
· (1+aN )

λ(1−aN+1)
, where a = 1 − 1/λ and λ = 2θ1

G1
+ 1

2
, where θ1 ≥ G1/4

so that a ∈ [0, 1). Thus, if ξ∗direc,1 = X0/2, then 1 + aN = 1−aN+1

1−a
⇐⇒ 1 + aN =

1 + a+ a2 + · · ·+ aN ⇐⇒ 0 = a + a2 + · · ·+ aN−1, so a = 0, i.e., θ1 = G1/4.

Appendix C. A Different Solution to Equation (12)

We now follow the same argument of Section 3 with a particular difference.

One could use ξ1 and ξ2, the Nash equilibrium solution of Schied and Zhang (e.g.,

using a linear constant decay kernel) and obtain the (equilibrium) price dynamics S,

from Equation (11). Then, we ask the following question. What is the impact faced

by the only directional trader when the directional does not consider the presence of

other agents? Precisely, what is the propagator function inferred by directional traders

if they solve the optimal execution problem in the standard Almgren-Chriss framework?

In this case, the market impact considered by the directional is the same as that of the

MIG, i.e., it is constant, even if the directional agent does not take into account any other

competitors. This is a substantial difference with respect to the previous approach. Thus,

once derived the optimal execution for the directional, ξAC = X0

N+1
e, we wonder what the

market impact inferred by the trader is. To answer this question, we solve the Equation

(12), where Ξ = ξAC, so that we can obtain the intrinsic decay kernel associated with the

single-agent characterized by the price dynamics of the market impact games.

We first consider the same setting of Section 3, wherein the market impact game
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there are the directional and one arbitrageur and the decay kernel is set to G1(t) ≡ 1.

Then, we compute the cumulative drift S generated by the interaction of the two agents.

We solve system (12) where M is computed by considering only the drift generated by

the directional derived by the same model by without considering the presence of the

arbitrageur, i.e., an Almgren and Chriss optimal schedule ξAC and we report in Figure

6 the implied transient impact function G
(P )
intr(t). Moreover, we compute G

(P )
intr(t) when

we consider a market impact game with 1 directional trader and 2 arbitrageurs using the

Luo and Schied (2020) model, where the decay kernel is set to G1(t) ≡ 1.

As for the previous approach, we observe that the two implied transient impact kernels

seem to differ in terms of “size impact”, i.e., the absolute value of G
(P )
intr(0) is greater for

the Luo and Schied game than those obtained starting from the Schied and Zhang model,

but they exhibit the same shape. In particular, they are both positive and qualitatively

decreasing functions.

The following motivation can interpret the shape of the fitted decay kernel. Since

the cumulative drift S is generated by the interactions of the fundamentalist and arbi-

trageur(s), it converges (in absolute value) to the inventory of the fundamentalist (1 in

our example). Precisely, due to the symmetry of Nash equilibrium, the aggregate order

flow decreases to zero since in the last trading times, the arbitrageur(s) and the direc-

tional have opposite orders which compensate each other, see Figure 7. This shape is

obtained by setting a constant market impact. Therefore when we consider a constant

order flow, like the one obtained by the Almgren and Chriss optimal schedule ξAC , we

derive a strictly decreasing market impact function with an appropriate scaling factor

provided by G(t0) = (N + 1) · Ξ1. Moreover, since we set G1(t) to a constant, the ag-

gregate volume traded is directly proportional to the price dynamics, see Figure 7 right

panels.
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Figure 6: The implied temporary impact function computed solving system (12) when we
consider the cumulative drift generated by a Schied and Zhang game with a 1 directional
trader and 1 arbitrageur, exhibit (a), and when we consider the cumulative drift generated
by a Luo and Schied game with a 1 directional trader and 2 arbitrageur, exhibit (b).
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Figure 7: Aggregate volume traded and its relation with price dynamics derived by a
directional and an arbitrageur following the Schied and Zhang game and, panel (a), and
by a directional and two arbitrageurs following a Luo and Schied game, panel (b).
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