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Abstract In contrast to many other scientific disciplines, computer science con-
siders conference publications. Conferences have the advantage of providing fast
publication of papers and of bringing researchers together to present and discuss
the paper with peers. Previous work on knowledge mapping focused on the map
of all sciences or a particular domain based on ISI published JCR (Journal Ci-
tation Report). Although this data covers most of important journals, it lacks
computer science conference and workshop proceedings. That results in an im-
precise and incomplete analysis of the computer science knowledge. This paper
presents an analysis on the computer science knowledge network constructed from
all types of publications, aiming at providing a complete view of computer sci-
ence research. Based on the combination of two important digital libraries (DBLP
and CiteSeerX), we study the knowledge network created at journal/conference
level using citation linkage, to identify the development of sub-disciplines. We
investigate the collaborative and citation behavior of journals/conferences by an-
alyzing the properties of their co-authorship and citation subgraphs. The paper
draws several important conclusions. First, conferences constitute social structures
that shape the computer science knowledge. Second, computer science is becoming
more interdisciplinary. Third, experts are the key success factor for sustainability
of journals/conferences.
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1 Introduction

Recent studies on knowledge mapping in scientometrics are concerned with build-
ing, visualizing and qualitatively analyzing the knowledge networks of sciences
[5L4126L[34]. Similar to the geographical map, the knowledge network of sciences,
or the map of sciences is used to provide us an insight into the structure of sci-
ence. It can be used to visually identify major areas of science, their similarity
and interconnectedness. Methods developed in bibliometrics and scientometrics
such as citation analysis, content analysis and recently proposed method based on
clickstream data [2] are commonly used in this domain.

Computer science is a fast-changing research field. Unlike other disciplines
where academic standard of publishing is to publish in journals, in computer sci-
ence we consider conference publication. Previous work on knowledge mapping
typically focused on single disciplines [44L[10,830)4] or on the whole science [521]
2] based on the analysis of massive citation data such as Journal Citation Report
(JCR), Science Citation Index (SCI), Science Citation Index Expanded (SCIE)
and Social Science Citation Index (SSCI), published by Thompson Scientific (TS,
formally ISI). Those datasets cover most of important journals of science, but
they do not contain computer science conference and workshop proceedings. That
makes any attempt to map computer science knowledge either imprecise or limited
to small fields.

With the recent availability of large-scale citation index from digital libraries
in computer science such as ACM Portaﬂ, IEEE Xplor(E, DBLPE and CiteSeerXH,
it is possible to study the relationship between publication venues and provide a
more precise and complete view of today’s computer science research landscape
at both local and global scale. In this paper (some of results are published in
an earlier conference paper [39]), we are concerned with studying the structure
of knowledge network and the publication culture in computer science. Using the
combination of two large important digital libraries in computer science, DBLP
and CiteSeerX, we build a so-called knowledge map of the computer science and
provide a comprehensive visualization which allows us to explore its macro struc-
ture and its development over time. To get an insight into the collaborative and
citation behavior in computer science, we investigate the graphical features of the
citation and collaboration subgraphs of journals/conferences. One of our main
findings is that conferences constitute social structures that shape the computer
science knowledge. By analyzing the combined knowledge network of journal and
conference publications, we are able to identify clusters (or sub-disciplines) and
trace their development, which is not possible by the analysis of journals only.
We also find that computer science publications are very heterogeneous and the
field is becoming more interdisciplinary as each sub-disciplines tends to connect to
many other sub-disciplines. Finally, there is a connection between the local struc-
ture of the citation and collaboration subgraphs of journals/conferences and their
impact. On the one hand, high impact journals/conferences successfully build the
core topic and attract the contributions from research community. On the other
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hand, experts are the key success factor for maintaining and cultivating the com-
munity of journals/conferences (hereafter called venues).

The paper is organized as follows. In Section 2, we briefly survey the related
work. In Section 3, we discuss about the role of conferences in computer science. In
Section 4, we describe the data set used in our study. In Section 5, the creation of
networks used in our study is presented. In Section 6, we discus about the network
visualization. In Section 7 we discuss about the development of sub-disciplines in
computer science. In Section 8, we present the venues ranking using SNA metrics.
In section 9, we present our analysis on the properties of venue’s subgraph and
their relation to the impact of venues. The paper finishes with some conclusions
and our directions for future research.

2 Related Work

Social network analysis and visual analytics have been applied to represent the
knowledge [47], to detect the communities and hierarchical structures in dynamic
networks [141[29]. In scientometrics, the knowledge maps have been generated from
citation data to visualize the relationship between scholarly publications or disci-
plines. Early work on mapping journals focused on single disciplines. Morris [33]
explored the interdisciplinary nature of medical informatics and its internal struc-
ture using inter-citation and co-citation analysis. Combination of the SCI and SSCI
data was used in this study. McCain [30] performed the co-citation analysis for
journals in neural network research. Cluster analysis, principal component analysis
and multidimensional scaling (MDS) maps were used to identify the main research
areas. Regarding to computer science, Ding [I0] studied the relationship between
journals in information retrieval area using the same techniques. Based on the
ScieSearch database, Tsay [44] mapped semiconductor literature using co-citation
analysis. The datasets used in these studies were rather small, ranging from tens
to several hundred journals. In more recent work, Boyack [4] mapped the structure
and evolution of chemistry research over a 30-year time frame. Based on a general
map generated from the combined SCIE and SSCI from 2002, he assigned journals
to clusters using inter-citation counts. Journals were assigned to the chemistry do-
mains using JCR categories. Then, the maps of chemistry at different time periods
and at domain level were generated. Maps show many changes that have taken
place over the 30 years development of chemistry research.

Recently, several maps based on large-scale digital libraries have been pub-
lished. IST has published journal citation reports for many years. This dataset
allows for generating the map of all of sciences. Leydesdorff has used the 2001
JCR dataset to map 5,748 journals from the SCI [26] and 1,682 journals from the
SSCI [27] in two separate studies. In those studies, Leydesdorff used Pearson corre-
lation on citation counts as the edge weight and progressive lowering threshold to
find the clusters. These clusters can be considered as disciplines or sub-disciplines.
Moya-Anegén et al. [34] created category maps using documents with a Spanish
address and ISI categories. The high level map shows the relative positions, sizes
and relationships between 25 broad categories of science in Spain. Boyack [5] com-
bined SCIE and SSCI from 2000 and generated maps of 7,121 journals. The main
objective of this study was to evaluate the accuracy of maps using eight different
inter-citation and co-citation similarity measures.



There are several studies which applied SNA measures to derive useful infor-
mation from knowledge maps. Leydesdorff [28] used the combination of SCIE and
SSCI, and generated centrality measures (betweenness, closeness and degree cen-
trality). These measures were analyzed in both global (the entire digital library)
and local (small set of journals where citing is above a certain threshold) environ-
ments. Bollen et al. [2] generated the maps of science based on clickstream data
logged by six web portals (Thomson Scientific, Elsevier, JSTOR, Ingenta, Uni-
versity of Texas and California State University). They validated the structure of
the maps by two SNA measures: betweenness centrality [46] and PageRank [6]. In
another study, Bollen [3] performed a principal component analysis on 39 scientific
impact factors, including four SNA factors (degree centrality, closeness centrality,
betweenness centrality and PageRank).

Regarding to the research on the performance of individuals and their local
social network structures, Shi et al. [41I] studied the citation projection graphs of
publications in different disciplines, including natural science, social science and
computer science, to understand their citation behaviors. Using several social net-
work analysis measures, they identified the idiosyncratic citers, within-community
citers and brokerage citers. They found that there are significant differences in
how high, low and medium impact papers position their citation. There are also
other studies on the optimal network structure for the individuals’ performance
[23], the benefits of the communities in fostering trust, facilitating the enforcement
of social norm and common culture [9], and the benefits of structural holes and
weak ties in accessing new information and ideas [I5].

3 The Role of Conferences in Computer Science Research

Computer science history can be traced back from 1936, with the invention of Tur-
ing machine. Till early 1970s, the main publication outlet is journals. The Jour-
nal of Symbolic Logic (born in 1936), IEEE Transactions on Information Theory
(1953), Journal of the ACM (1954), Information and Computation (1957) and
Communications of the ACM (CACM) (1959) are probably the oldest journals in
computer science. In late 1960s and early 1970s, some conferences emerged. IFIP
Congress (1962), SYMSAC(Symposium on Symbolic and Algebraic Computation)
(1966), the ACM Symposium on Operating Systems Principles (SOSP) (1966),
Symposium on Operating Systems Principles (SOSP) (1967), International Joint
Conference on Artificial Intelligence (IJCAI) (1969), Architecture of Computing
Systems (ARCS) (1970), International Colloquium on Automata, Languages and
Programming (ICALP) (1972), Symposium on Principles of Programming Lan-
guages (POPL) (1973) are some examples of the earliest conference series. Since
early 1980s, conference has had a dominant present in computer science. Accord-
ing to DBLP digital library, as of 2010 there are 2716 conference series and 774
journals.

In 2009 and 2010, a dozen of articles, letters and blog entries discussed about
the role of conferences, the quality and impact of conference publications [45[32]
11]. In [42], Menczer supports the abolition of conference proceedings altogether
and submissions should instead go to journals, which would receive more and more
better ones. The impact and quality of conference publications are also questioned,
mainly dues to the review process. Every conference has a desire to be “competitive



and reducing the acceptance rate is an easy way. The great papers always are
accepted and the worst papers mostly get rejected, but the problem here is for
the vast majority of papers landing in the middle. That leads to an emphasis
on safe papers (incremental and technical) versus those that explore new models
and research directions outside the established core areas of the conferences [LI].
Nevertheless, recent study by J. Chen and J. Kostan [7] shows that within ACM,
papers in highly selective conferences are cited at a rate comparable to or greater
than ACM transactions and journals. Freyne et al. [12] demonstrates that papers
in leading conferences match the impact of papers in mid-ranking journals and
surpass the impact of papers in journals in the bottom half of the Thompson
Reuters rankings.

Why conference becomes an important outlet in computer science? In [I1], L.
Fortnow gave a short history of computer science conferences and the reasons for
that computer science holds conferences. The fundamental reason is that the quick
development of the field requires a rapid review and distribution of results. A com-
plete journal publishing decision takes at least one year, comparing to 6 months
for publishing in a conference. That delay is unacceptable for such a fast-changing
field. Secondly, conferences bring the community together to disseminate new re-
search and results, to network and discuss about the issues. That rarely happens
in journals, where the only possible communication is between reviewers, edito-
rial board and authors in review process. Lastly, with the tremendous continual
growth in computer science, there are too many papers to publish and archival
journals alone can not handle.

Our work is based on the above intuitions. We show that analysis on journal
only can not fully capture the characteristics and development of computer sci-
ence research since focusing exclusively on journal papers misses many significant
papers published by conferences. We further show that conferences facilitate the
communication and build a community between participants.

4 Data Collection

The dataset used in our study is the combination of DBLP and CiteSeerX dig-
ital libraries. We choose them because they cover most of sub-disciplines, while
IEEE Xplore and ACM Portal cover only IEEE and ACM journals and conference
proceedings. We retrieve the publication list of journals/conferences from DBLP.
Unfortunately, DBLP does not record citations. Therefore, we use CiteSeerX to
fill the citation list of publications in DBLP.

DBLP data was downloaded in July, 2009 which consists of 788,259 author’s
names, 1,226,412 publications and 3,490 venues. At the same time, we obtained
CiteSeerX data by first download the OAI (Open Archives Initiative) dataset using
the OAIHavester API. Since the OAI dataset contains only references between
publications which are stored in CiteSeerX (with PDF documents), we continued
to crawl XML documents from CiteSeerX site to obtain full citation list for each
publication. Overall, we had complete CiteSeerX data with 7,385,652 publications
(including publications in reference lists), 22,735,140 references and over 4 million
author names.

Naming is a problem that many digital libraries are faced because one author
may have several names (synonyms) or there are several authors with the same
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Fig. 1: Citation distribution

name (homonyms). For example, in DBLP we can find seven authors with the
name Chen Li. Consequently, several techniques have been developed for naming
problem in digital libraries [16l[38/[24[43]. In our analysis, we realize on the ap-
proaches that are implemented in CiteSeerX [I] and DBLP [25] and consider that
the authors in these databases are identical.

We combined DBLP and CiteSeerX using a simple technique called canopy
clustering [31]. The basic idea of is to use a cheap comparison metric grouping
records into overlapping clusters called canopies. After that, records in the same
cluster are compared using more expensive (and more accurate) similarity mea-
sures. We employed this idea to solve our problem. Firstly, publications in DBLP
and CiteSeerX are clustered using the last name of authors. It can be argued as
to whether the last name of authors give us the correct clusters, since one name
can be expressed differently (e.g. Michael Ley vs. Ley Michael). However, in most
cases author names of the same papers are presented in the same way in both
digital libraries. In the second step, we used two similarity metrics to compare pa-
per titles in each cluster: one less expensive Jaccard similarity to filter out papers
which are clearly un-matched, another more expensive Smith- Waterman distance
to correctly identify pair of matched papers. The process was implemented in Java
using the SecondStrin£ library and an Oracle database.

Overall, the matching algorithm gave us 864,097 pairs of matched publications,
meaning about 70% publications in DBLP were matched to publications in Cite-
SeerX. On average, each venue cites others 2306 times and is cited 2037 times.
The distribution of the citations over years is given in Fig. [[l where the number
of citations in 2009 and 2010 are low, simply because new publications are not
crawled by CiteSeerX yet. It is not known whether this result reflects the real
coverage of DBLP and CiteSeerX. However, in our experience lots of publications
in CiteSeerX are not indexed in DBLP. The reason is that DBLP does not index
some publication types such as pre-prints, in-prints, technical reports and letters,

5 lhttp://secondstring.sourceforge.net/
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and it covers a limited number of PhD theses, master theses and books. That does
not affect our analysis since we focuss on journal and conference publications.
On the other hand, not all publications in DBLP are indexed by CiteSeerX. If a
publication is not online and public, it will not be crawled by CiteSeerX.

5 Networks Creation

We created two networks using the dataset described above: one knowledge network
K based on relatedness of venues and one citation network F' based on citation
counts. We processed as following:

Bibliography coupling counts were calculated at the publication level on the
whole digital libraries. These counts were aggregated at the venue level (3,490
venues), giving us the bibliography coupling counts between pairs of venues. Of
3,490 venues, 303 venues which have no citations were excluded. The result is a
symmetric bibliography coupling frequency matrix V with venues as columns and
rows. Based on this matrix, we created the knowledge network K by normalizing
bibliography coupling counts using cosine similarity as suggested in [21], in which
the full version of cosine index was used. Concretely, cosine similarity between pair
of venues is computed as:

n
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where C}; ; is the cosine similarity between venue V; and Vj, B; is the vector
representation of the list of citations from venue V; to all publications, n is number
of publications in the database, and B; j is the number of times venue V; cites
publication k. The resulting network consists of 1,930,471 un-directed weighted
edges. 120 venues whose cosine similarity to others equal to zero were not included
in the network.

The citation network F is formulated by counting the inter-citation between
venues. Nodes are venues and there is an edge from venue V; to venue Vj if V; cited
V;, weighted by number of that citations. The network contains 351,756 directed
edges, resulting in a network density of 3.5%.

To prevent noise in the visualization and analysis, we consider the most rele-
vant connections between venues. For the knowledge network K, we eliminated all
connections which have cosine similarity smaller than 0.1, obtaining the reduced
network K’ whose connection cosine similarity is in the range [0.1, 1.0]. Although
this threshold is arbitrary, the network K’ retains 1,739 nodes and 9,637 connec-
tions, corresponding to 57% of the nodes and 0.5% of the edges of the original
network. For the citation network F', the same procedure was performed in which
we only keep the connections whose citation counts were greater than 50. The
remaining network F’ contains 1,060 venues and 9,964 connections, corresponding
to 33% of the nodes and 2.8% of the edges of the original network. A summary of
networks properties is given in Table [



Table 1: Networks Summary

Property F oK K K’ |
Nodes 3,187 1,060 3,067 1,739
Edges 351,756 9,964 1,930,471 9,637
Components 1 6 1 71
Density 3.5% 0.89%  20% 0.3%
Clustering coef. 0.569 0.764 0.786 0.629

The reason for creating two networks is as follows. Because of the diversity of
publication types and interdisciplinary nature of computer science, publications
often refer to the publications (e.g. preprints, letters) which may not be published
by any journals, conferences or workshops. The references also point to the pub-
lications in other disciplines. For example, lots of papers on SNA cite the work
done by Newman and Barabasi which are published in science journals (Phy. Rev.
Letters or Nature). That should be considered when calculating the similarity be-
tween venues. Therefore, we computed the cosine similarity on the complete list
of references at the paper level, then aggregated at the venue level to create the
knowledge network. However, to study the information diffusion and the impact of
venues in the domain, we need only the citation counts between themselves. The
citation network was created based on the inter-citation counts between venues,
accordingly.

6 Knowledge Network Visualization

We visualized the knowledge network K’ using smart organic layout implemented
in the yFilesE library, based on the force-directed paradigm [I3]. The visualization
is given in Fig. 2] where venues are represented as circles with diameter denot-
ing the number of publications and the thickness of connections denotes the cosine
similarity. Nodes are colored according to their assignment to domain categories in
Microsoft Academic Searclﬂ(Libra). White color nodes are un-categorized venues.
Libra assigns 2637 venues to 23 domains, so 430 venues in our database remain
un-categorized. We also accounted that some venues are assigned to multiple do-
mains. For those, we randomly chose one of the assigned domains. Fig. B gives
the visualization of the knowledge network using journals only, which allow us to
compare the visual structures of the two networks.

Any interpretation of the visual structure of the knowledge network in Fig.
has to take into account the following considerations. Firstly, different iterations of
force-directed algorithm can converge on different visualizations of the knowledge
network. Fig.[2is not the only or best possible visualization. It is selected because
it represents a clear visualization of connections between venues in the knowledge
network and its main structural features were stable across many iterations of the
visualization algorithm. Secondly, the force-directed algorithm groups together
venues that are strongly connected in the knowledge network. The appearance of
clusters is thus depends on the weight of the connections in the knowledge network
and is not the artifact of the visualization. Finally, the exact geometric coordinates

6 http://www.yworks.com/
7 lhttp://academic.research.microsoft.com/
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Fig. 2: The combined knowledge network (giant component)

of journals/conferences and clusters vary depending on the visualization algorithm
and are thus considered artifacts of the visualization.

Fig.Rlshows us a clear cluster structure in which venues in the same domain are
placed in clusters. In contrast, the network of journals only (Fig. B)) is little “un-
ordered “ and one can not identify sub-disciplines from this network. In Fig.[2 large
and coherent clusters are algorithms and theory, artificial intelligence, software
engineering, security and privacy, distributed and parallel computing, networks
and communications, computer graphics, computer vision, databases, data mining
and machine learning. They cover most of the core topics of computer science.
Some domains do not have their own clusters. Venues in those domains are placed
in the same clusters with venues from closely related domains. For example, data
mining and machine learning are combined in one cluster; information retrieval
sticks to databases; natural language and speech processing is a sub-group of the
artificial intelligence cluster etc. That result reflects the hierarchical structure of
domain classification.
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Connections between venues in the network cross multiple domains. Domi-
nating in the middle of the network are venues in algorithms and theory. This
domain are connected to many other domains in the border of the wheel. The sec-
ond dominator at the center is databases. In clockwise order, starting at 12AM,
databases is tightly connected to information retrieval, data mining and machine
learning (1PM), artificial intelligence (2PM), as well as software engineering (the
green color, at 3PM to 4 PM). Computer graphics connects to computer vision,
multimedia and human-computer interaction studies. We can also easily identify
the cluster of bioinformatics which has connections to artificial intelligence, data
mining and machine learning. At the bottom of the wheel, there is a mixed clus-
ter of venues from hardware and architecture, real-time and embedded systems,
security and privacy. This cluster connects strongly to software engineering and
distributed computing.

Although the visualization of the knowledge network at venues level shows us
a clear cluster structure, it would be more pleasant to see the visualization at the



cluster level. During the network reduction process, lots of venues were excluded.
To make the visualization at cluster level more precise, we process as follows:

— The knowledge network K’ is clustered using a density-based clustering algo-
rithm proposed by Newman and Clauset [35][8]. The basic idea of the algorithm
is to find a division of the network into clusters within which the network con-
nections are dense, but between which they are sparser. To measure the quality
of a division, the modularity @ [36,37] is used. In our case, the algorithm gives
us 92 clusters with the modularity @ = 0.771.

— Using the bibliography coupling frequency matrix V' where columns and rows
are venues, the counts were aggregated to cluster level for the venues which were
assigned to clusters, thus give us the bibliography coupling counts between un-
clustered venues and clusters. That results in a bibliography coupling frequency
matrix V' with venues and clusters in both columns and rows. We calculate
the cosine index between 1328 un-clustered venues and 92 clusters, and assign
un-clustered venues to clusters with which they have highest cosine values.

— After that, cosine index is re-computed for pairs of clusters in the same way
as we did for venues.

Fig. [ the visualization at cluster level where clusters are squares with the size
denoting the number of venues and the weight of the connection between clusters
is the cosine similarity. Clusters are colored using the same color scheme as in Fig.
The colors show the fraction of domain venues in clusters. To prevent clutter,
for each cluster we retain the 2 strongest outbound relationships. The network is
manually labeled based on the assignment of clusters to particular domains.

The network in Fig. 4 can be interpreted as follows. In general, the appearance
of the network is similar to the network in Fig.[2l Most of domains are assigned to
more than one clusters in which they dominate or share the “power“ with other
related fields. The exceptions are graphics and bioinformatics which are uniquely
assigned to one cluster. Large clusters are composed of several closely related
domains (except for the large clusters of algorithms and theory, and software engi-
neering, where the venues of these fields dominate the clusters). For example, one
cluster in the upper half of the diagram contains machine learning, Al, databases,
data mining, information retrieval and the world wide web. These fields seem to
be very exciting research areas with one large cluster and many small ones closely
connected to each other. Al is the most interdisciplinary area. Venues in this field
are distributed in multiple clusters which have many connections to other areas
such as databases, data mining, information retrieval, machine learning, WWW,
software engineering, algorithms and theory, bioinformatics and HCI. Computer
vision, multimedia and graphics are quite marginal topics which have relationships
only to machine learning.

7 The Evolution of the Knowledge Network

The visualization given in Fig. [ is useful for observing the recent organization
of the computer science knowledge. Now the interesting question is that how the
computer science knowledge comes to this stage. In particular, we would like to
see the development of the research areas - how the new fields emerge and develop
over time, how venues come together to form clusters (sub-disciplines) and how



HCI s
[gilGraphics

NN Computer
3 Vision and

Fig. 4: The knowledge network at a cluster level

they split into sub-clusters, how new venues are connected to the existing venues
and clusters, and how the strength of the connections between clusters increases
to form the ”shape” of the computer science knowledge.

To answer these questions, we visualize the knowledge network at different
time points, from 1990 to 2005, with 5-year intervals using the same technique as
presented in Section 3 and Section 4. To compute the similarity between venues
at a certain time, we consider only the papers published from this time point
backwards. The scales for cosine similarities (the thickness of connections) and
venue size (node size) have been kept constant to enable easy inspection of the
changes. Note that the assignment of venues to sub-disciplines by Libra is not
perfect, so there are some misclassifications. To interpret the visualization, we have
to base on both the clusters of venues grouped by the visualization algorithm and
the sub-discipline labels, where in each cluster, if a sub-discipline has a dominant
number of venues then this cluster represents that sub-discipline.

The visualizations of the knowledge network in 1990, 1995, 2000 and 2005 are
given in Fig. Bl [6] [ and Bl A close inspection of these figures and Fig. 2l reveals
many changes. In 1990, the knowledge network is not clearly clustered. Although
we can identify the groups of venues in some sub-disciplines such as database, ar-
tificial intelligent, algorithms and theory, software engineering and programming
languages, privacy and security, the venues in these domains are distributed in sev-
eral groups and the connection in these groups is very sparse (low density). Some
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sub-disciplines even are separated into disconnected components (e.g. a group of
software engineering venues at the bottom left corner). In 1995 there are still
some disconnected groups, but venues start to come closer to form the core of
sub-disciplines. We can also observe the early connections between fields. At the
center, there is a large body of algorithms and theory which has many connections
to other large clusters such as software and programming languages, database,
artificial intelligence, distributed and parallel computing. Computer graphics (on
the right hand) starts a cluster and has connections to human-computer interac-
tion. Some other sub-disciplines emerge, such as machine learning and data mining
emerge from artificial intelligence, networking separates from operating system and
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Fig. 6: The knowledge network in 1995

distributed and parallel computing. Well established venues (shown in Fig.[B) con-
tinue to play the central role in the domains, such as VLDB, SIGMOD and TKDE
in database, TSE and ICSE in software and programming languages, SIGCOMM
and INFORCOM in networking, AAAI, Al and IJCAI in artificial intelligence.
We observe these trends also in 2000 and 2005 where sub-disciplines become
more organized and mature. The connections between sub-disciplines are also be-
come clearer, reflecting the interdisciplinary nature of computer science research.
Sub-disciplines are also starting to separate, as we see in Fig. [l and Fig. 8 where
artificial intelligence is divided into several clusters, or bioinformatics emerge from
database research. However, merging seems to dominate the development trend,
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where disconnected components of the network join to the giant component. For
example, in 1990 there are several disconnected components of software engineer-
ing, privacy and security as well as other domains. In 1995, a big disconnected
component of software engineering joins the giant component. The component of
privacy and security stays disconnected, but becomes bigger. Then in 2000, that
component finally joins the giant component. It is interesting to connect these ob-
servations to what actually happened at that time. For example, in 1996, HTML
2.0 specification was maintained as a standard and in 1997, it became an interna-
tional standard (RFC 2070). That is the reason for the blow of the Internet with
many commercial software vendors and platforms, especially Internet Explorer
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developed in the Windows 95 system. Before that time, privacy and security was
quite an isolated research domain in computer science. However, with the increas-
ing use of the Internet where people can exchange information quickly and freely,
security becomes one of the main concerns and attracts a lot of attention from
both industry and research community. That could be the reason why in 1995,
security and privacy research stays as a disconnected component, but in 2000 it
connects to the giant component and is one of the large clusters.

The visualizations in Fig.[Bl [6] [7l Blreveal a lot of information, more than we can
describe here. Thus, we highlight the main changes and trends. Over time, main
topics in computer science, including algorithms and theory, artificial intelligent,



database, networking, and software engineering, develop consistently. Domains
become more and more interdisciplinary where they connect more or less to other
domains or sub-domains. Fields are starting to split into sub-fields, though merging
dominates the development trend. New fields or sub-fields continuously emerge
from the existing sub-disciplines. With the growth of the Web, data mining and
information retrieval, emerging from database and artificial intelligence, as well
as privacy and security are becoming more and more exciting fields with a lot of
conferences and journals.

8 Venue Ranking

There are different metrics to evaluate the performance and prestige of individuals
and journals such as citations count, H-index [17], impact factorﬁ by the Institute
for Scientific Information (ISI), now part of Thomson Reuters. However, these
metrics are controversial [40,22] and it turns out that using one single metric
cannot judiciously evaluate the impact of a journal or a scientist. A metric should
be used in the combination with other metrics to fully and reliably justify the
performance of scientists, publications and venues.

We employ two social network measures, betweenness centrality and PageRank,
for venue ranking. These measures do not intend to be a replacement, but a com-
plement to the existing metrics. Given the assignment of venues to domains and
the citation network F’, we calculated node’s betweenness centrality and PageR-
ank to determine interdisciplinary and high prestige venues, respectively. Using
PageRank has one advantage over the impact factor: PageRank does highly rank
venues which are cited by other highly ranked venues, so new venues have a higher
impact when they are cited by well-known venues.

Betweenness centrality [46] of a venue Vj is defined as the number of shortest
paths in the network that pass through V; and it is computed as follows:

cvi)= 3 Pij(k) (2)

Pi;
itk 7

where P; ; is the number of (weighted) shortest paths between venues V; and Vj,
P; j(k) is the number of that shortest paths which go through venue Vj. Highly
value of betweenness centrality indicates a venue as a ”gateway” which connects
a large number of venues and venue clusters. Venues with high betweenness cen-
trality values often are interdisciplinary. Table [2] gives the list of top 30 centrality
venues. They are indeed highly interdisciplinary venues. The first position is CORR
(Computing Research Repository) with the betweenness 0.185. DBLP classifies it
as a journal, but in fact CORR is a repository to which researchers could submit
technical reports. CORR covers almost every topic of computer science. Papers
published in CORR are not peer reviewed, only the relatedness to the topic area
is checked. That is the reason for the appearance of CORR as a large venue in
the visualization (Fig.[2]) and as a top interdisciplinary venue. Among others, Al,
machine learning, databases and the world wide web contribute ten venues to this
list. That confirms their interdisciplinary nature reflected in Fig. [l

8 lhttp://thomsonreuters.com/products_services/science/academic/impact_factor/


http://thomsonreuters.com/products_services/science/academic/impact_factor/

Table 2: Top betweenness centrality venues

Rank Name Type Libra classification

1 CORR J Un-categorized

2 TCS J Algorithms and Theory

3 INFOCOM C Networks&Communications
4 Al J Artificial Intelligence

5 CSUR J Un-categorized

6 TC J Un-categorized

7 TSE J Software Engineering

8 JACM J Un-categorized

9 CACM J Un-categorized

10 CHI C Human-Computer Interaction
11 ML J Machine Learning

12 1JCAI C Artificial Intelligence

13 TOPLAS J Software Engineering

14 AAAI C Artificial Intelligence

15 PAMI J Un-categorized

16 ICRA C Artificial Intelligence

17 SIAMCOMP J Un-categorized

18 TPDS J Distributed&Parallel Computing
19 ICDE C Databases

20 WWW C World Wide Web

21 TKDE J Databases

22 CVPR C Computer Vision

23 ENTCS J Algorithms and Theory

24 VLDB C Databases

25 IPPS C Scientific Computing

26 ALGORITHMICA J Algorithms and Theory

27 ICDCS C Networks&Communications
28 CAV C Software Engineering

29 SIGGRAPH C Graphics

30 CN J Networks&Communications

The PageRank score of a venue is computed according to the PageRank algorithm[0].

The algorithm iteratively calculates the PageRank score of a venue based on the
score of its predecessors in the network as in the following equation.

PV) = (1= d)+d 30 52 3

where P(V;) is the PageRank score of venue V;, V; is the predecessor of V; and
O(Vj;) is out-degree of V;. Parameter d is the dumping factor which usually is set
to 0.85 in literature. We note that the dumping factor d models the random Web
surfer. Web surfing behavior is different to citing behavior, so the value of d maybe
different in our case. We use here the same value of d and keep this note in mind.

The list of 30 highest PageRank venues is given in Table [3] where column Type
denotes type of venue (J for journal and C for conference/workshop). PageRank
favors venues that are well-connected to other well-connected venues. Surprisingly,
CORR is in sixteenth position though it mostly consists of technical reports. The
list in Table [3] contains not only journals, but also the leading conferences in the
fields. From the list, one can see the well-known venues such as Communication of
the ACM (CACM), Journal of the ACM (JACM), Journal of Artificial Intelligence
(AI), SIAM Journal on Computing (SIAMCOMP) and ACM Transaction on Com-



puter Systems (TCS) as well as conferences in different fields such as SIGGRAPH,
AAAI SOSP, SIGCOMM, POPL, VLDB, NIPS etc.

Table 3: Top PageRank venues

Rank Name Type Libra classification

1 CACM J Un-categorized

2 JACM J Un-categorized

3 Al J Artificial Intelligence

4 SIAMCOMP J Un-categorized

5 TCS J Algorithms and Theory
6 SIGGRAPH C Graphics

7 TSE J Software Engineering

8 JCSS J Un-categorized

9 AAAI C Artificial Intelligence
10 SOSP C Operating Systems

11 SIGCOMM C Networks&Communications
12 PAMI J Machine Learning

13 INFOCOM C Networks&Communications
14 1JCAI C Artificial Intelligence
15 POPL C Software Engineering
16 CORR J Un-categorized

17 IANDC J Un-categorized

18 TOCS J Un-categorized

19 ISCA C Hardware and Architecture
20 TC J Un-categorized

21 STOC C Un-categorized

22 VLDB C Databases

23 ML J Machine Learning

24 PLDI C Software Engineering
25 TOPLAS J Software Engineering
26 TON J Un-categorized

27 SODA C Algorithms and Theory
28 NIPS C Machine Learning

29 COMPUTER J Un-categorized

30 TIT J Algorithms and Theory

9 Understanding the Collaboration and Citation Behavior
9.1 Venues Subgraphs

To understand the collaboration and citation behavior of the communities of
venues, we study the properties of the co-authorship and citation subgraphs of
venues. We take all the papers published in a venue and extract its co-authorship
network. The resulting network consits only the collaborations of the authors in the
venue. Note that two authors might collaborate with each other in other venues,
but might not collaborate in the venue under consideration. However, since we
investigate the collaborations of authors working on the topics of the venue and
how the venue maintains and cultivates these collaborations, it is not necessary
to consider the collaborations of these authors in other venues. To create citation
subgraphs, we take all the publications cited by papers published in a given venue,



project them on the underlying citation graph and extract the subgraph of cita-
tions among these publications. Formally, we define the co-authorship subgraph
Gq = (A, E) of a venue is a graph where A is the set of authors who published
some papers in this venue and there is a connection e € E between author a; and
aj € A if they wrote a paper published in this venue together. Similarly, we define
the citation subgraph of a venue G. = (P, C), where P is the set of publications
cited by papers published in this venue and C' is the set of citations among these
publications.

Given the co-authorship and citation subgraphs of venues, we then elaborate
a set of network metrics that characterize and describe their structure. To give
an idea about what type of networks we are trying to classify, let us take a look
at the example given in Fig. [ Fig. 9a (type 1) shows a network that is sparsely
connected. The density of this network is rather low. In Fig. 9b (type 2), nodes are
clustered in small disconnected components. Fig. 9¢ (type 3) describes a network
where several small disconnected components come together to form a large con-
nected component. In Fig. 9d (type 4), there exists a dense, large component and
several small components connected to it. Intuitively, for citation subgraphs, net-
work type 2 demonstrates the venues where the citations are placed in un-related
sub-disciplines, meaning that it is unfocused. In network type 3, different clusters
of papers that correspond to different sub-disciplines are cited but the connections
between these sub-disciplines are also identified. Network type 4 illustrates a fo-
cused and interdisciplinary venue where the cited papers are clustered in a big
largest component that can be considered as the main theme of the venue, and
this component is connected to many other smaller components corresponding to
the related sub-disciplines.

We employ four network metrics [46] in order to distinguish the four types of
network. For every venue, we use these four metrics to characterize the features of
its citation and co-authorship subgraphs. The four metrics are defined as follows:

— Density (M1): Density of a graph G = (V, E) where V is the set of vertices,
FE is the set of edges, is defined as:
2| E|

D@ = v @

— Clustering coefficient(M2): Local clustering coefficient of a node v; is de-
fined as follows:

number of closed triads connected to v;

C(vi) = (5)

number of triples of vertices centered on v;

The average local clustering coefficient is defined as

o- 25

— Maximum betweenness (M3): is the highest betweenness of the nodes in
G. The betweenness of a node v; is defined as

By = Y Z () @

= a(vj, vk)
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(a) Network Type 1 (b) Network Type 2

(c) Network Type 3 (d) Network Type 4

Fig. 9: Network types

where ¢V (v;, vg) is the number of shortest paths from node v; to node v that
pass through v; and o(vj,vg) is the total number of shortest paths from v; to
vg. The betweenness may be normalized by dividing through the number of
pairs of vertices not including v;, which is (n — 1)(n — 2) for directed graphs
and (n — 1)(n — 2)/2 for undirected graphs, where n is the number of vertices
in the network.

Largest connected component (M4): the fraction of nodes in the largest
connected component.

To summarize, the four metrics allow us to differentiate the four types of network
based on the scheme in table [l

Table 4: Network types and properties

Type M1 M2 M3 M4
Type 1 Very low Very low Very low Very low
Type 2 Low/Medium High Low Medium
Type 3  Low/Medium Medium Low/Medium High
Type 4 Medium/High Medium Very high Very high
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Fig. 10: Properties of collaboration and citation graphs of venues

9.2 Characteristics of Computer Science Venues

The first question we address is that to what extend the venues in computer science
are focused and how authors collaborate on that basic. In particular, we compare
the properties of citation and co-authorship subgraph of journals and conferences
to identify the differences between two types of publishing. To gain insights into the
above questions, we process as follows: for all venues, we create their collaboration
and citation subgraphs G, and G.. Then we compute the four metrics defined in
Section 9.1. For each metric we create a normalized histogram and by observing
these histograms we are able to examine the characteristics of venues.

The normalized histograms of the four metrics are given in Fig.[I0l Firstly, most
of the venues are not narrow, but they are indeed interdisciplinary (shown by low
density and medium clustering coefficient of citation subgraphs in Fig. 10a and Fig.
10b). However, venues also tend to develop a main theme which is the main focused
and closely related topics as the core topics. That is shown by big largest connected
component in the citation subgraphs (Fig. 10d). According to the scheme in Table
[, most of the venues fall into the network type 3, characterized by low/medium
density, medium clustering coefficient, low/medium maximum betweenness and
big largest connected component.



We now consider the collaborative behavior of researchers in the venues. In
Fig. [0l we can see that most of the co-authorship subgraphs are of network type
2 (low/medium density, high clustering coeflicient, low maximum betweenness and
medium largest connected component). That means researchers in the venues are
clustered in disconnected working groups. The relative small number of venues that
have big largest connected component (Fig. 10d) implies that though venues tend
to develop the main theme, not so many of them successfully stimulates authors
to collaborate on that theme. Low maximum betweenness (Fig. 10c) suggests that
the gateways who connect several working groups rarely exist in the venues. We
will investigate the relation between the existence of the gateways and the impact
of venues in the next section.

Now we compare the properties of citation and co-authorship subgraphs of
conference and journal. The question we try to address is that whether confer-
ences expose the same pattern in citation and collaborative behavior as journals.
Fig. I and Fig. show the comparison of network properties of citation and
co-authorship subgraphs of journal and conference. In general, most of journal
and conference citation subgraphs are of network type 3 (low/medium density,
medium clustering coefficient, medium maximum betweenness and big largest con-
nected component). However, clustering coefficient of conferences’ citation graph
is higher than that of journals and maximum betweenness is lower. That means
citations of conferences are placed in more disconnected clusters, which suggests
that conferences are less focused than journals. A close look at the Fig. [I2] reveals
some differences in collaborative behavior. Clustering coefficient and maximum be-
tweenness of conferences’ co-authorship subgraph are higher than journals’, mean-
ing that there exists more gateways in conferences than in journals and researchers
in conferences tend to collaborate with peers in other working groups.

To summarize, venues in computer science are indeed interdisciplinary. Most of
them established a core area while still connecting to other related areas. Journals
are more focused than conferences, but conferences facilitate the communication
between participants whose collaborations tend to cross different communities.

9.3 Venues Subgraph and the PageRank

Now we investigate the relation between the ranking of venues and the properties
of collaboration and citation subgraphs. Our interest is whether the properties of
collaboration and citation subgraphs reflect the impact of venues. In Fig. [[3] we
plot the median of the network properties for each PageRank value in order to
analyze this relation.

Several observations can be made here. On the one hand, citation network of
highly-ranked venues are of network type 3 (low/medium density, medium cluster-
ing coefficient, low/medium betweenness and big largest connected component),
meaning that highly-ranked venues are focused. The co-authorship network of
highly-ranked venues fall into network type 4, characterized by medium cluster-
ing coefficient, very high maximum betweenness and very big largest connected
component. The vast majority of authors in those venues are connected in a large
component and that component is connected to many other small groups via gate-
keepers. On the other hand, it is not easy to identify the type of the citation sub-
graph of low-ranked venues. They might lay between network type 2 and type 3,
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Fig. 11: A comparison of network properties of citation subgraph of journals and
conferences

with high/medium clustering coefficient, low /medium maximum betwenness and
low/medium largest connected component. However, co-authorship subgraph of
low-ranked venues are clearly of type 2, where authors are clustered in discon-
nected groups.

To summarize, highly-ranked venues are focused as they develop the main
topics as the core and successfully motivate authors to collaborate on these topics.
In these venues, there exist key members who connect different subgroups to the
core. They serve as a gate to join the new ideas to the main theme of the venue.
This is very important for every community of practice since one of the key success
factors is not only to retain the well-developed ideas but also attract people to
bring new ideas to the community [T9/[I820]. Although low ranked venues might
also develop the main theme, but they mostly do not successfully build up a large
community to work on that or they are still in the early phase of developing their
community.
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Fig. 12: A comparison of network properties of co-authorship subgraph of journals
and conferences

10 Conclusions

In this paper, we presented our study on knowledge network of computer science.
Based on the combined DBLP and CiteSeerX databases, the knowledge network
is generated using both journal and conference publications. The visualizations
show the cluster structure of computer science knowledge network, which is not
possible by the analysis of journals-only. Venues of the same fields or related fields
are grouped into clusters which can be defined as disciplines or sub-disciplines. We
analyze the development of computer science disciplines by visualizing the knowl-
edge network at different time points. One important conclusion is that conferences
constitute the social structures that shape the computer science knowledge and
the field is becoming more interdisciplinary as sub-disciplines are connected to
many others.

We analyze the citation and collaboration subgraphs of venues by different
SNA metrics. We find that venues are interdisciplinary and they develop their
core topics as the main focus. By comparing the citation, collaboration subgraphs
of journal and conference, our study shows that though journals are more focused
than conferences, the latter facilitate the communication between researchers. We
further analyze the relation between the impact and the properties of citation and
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collaboration subgraph of venues. One important conclusion is that highly ranked
venues successfully develop their theme as well as their community and experts
are the key success factor for the development of a venue. That confirms one of
the principle for cultivating scientific community of practice studied by several
researchers.

In the future, more digital libraries need to be integrated to obtain complete
citation information. Given the objective of this paper is to study the macro struc-
ture of computer science, DBLP and CiteSeerX are quite sufficient. However, to
study the structure of knowledge network at more detail and local level (i.e at the
sub-discipline level), more citation data and venue proceedings are needed. Sev-
eral datasets are possible, e.g ACM, IEEE Xplore, Microsoft Academic Research,
CEUR—WS.O@B. Citation information could also be gathered from search engines
like Google Scholar. Furthermore, the ranking studied in this paper is global rank-
ing. It probably does not reflect the complete importance of a venue in a particular
field, especially in some more marginal disciplines such as computer graphics or
bioinformatics. Therefore a deep analysis and ranking at the sub-discipline level is

9 http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/


http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/

necessary to gain an insight into a particular domain and to have a full evaluation
of the impact of venues.
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