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Summary. One of the most interesting scientific challenges nowadays deals with
the analysis and the understanding of complex networks’ dynamics. In particular,
a major issue is the definition of new frameworks for the visualization and the
exploration of the dynamics at play in real dynamic networks. In this paper we
focus in particular on scientific communities by analyzing the “social part” of Science
through a descriptive approach that aims at identifying the social determinants (e.g.
goals and potential interactions among individuals) behind the emergence and the
resilience of scientific communities. We consider that scientific communities are at
the same time communities of practice (through co-authorship) and that they exist
also as representations in the scientists’ mind, since references to other scientists’
works is not merely an objective link to a relevant work, but it reveals social objects
that one manipulates and refers to. In this paper we identify the patterns about
the evolution of a scientific field by analyzing a portion of the arXiv repository
covering a period of 10 years of publications in physics. As a citation represents a
deliberative selection related to the relevance of a work in its scientific domain, our
analysis approaches the co-existence between co-authorship and citation behaviors
in a community by focusing on the most proficient and cited authors interactions
patterns. We focus in turn, on how these patterns are affected by the selection process
of citations. Such a selection a) produces self-organization because it is played by a
group of individuals which act, compete and collaborate in a common environment
in order to advance Science and b) determines the success (emergence) of both topics
and scientists working on them. The dataset is analyzed a) at a global level, e.g.
the network evolution, b) at the meso-level, e.g. communities emergence, and c) at
a micro-level, e.g. nodes’ aggregation patterns.

Key words: social networks, scientific communities, emergence, time-varying
graphs, temporal metrics, self-organisation.
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1 Introduction

The evolution of the scientific fields is one of the big issues in Science. On the
one hand it deals with the understanding of the factors that play a significant
role in such an evolution, not all of them being neither objective nor ratio-
nal e.g., the existence of a star system [36], [24], [25], [2] the blind imitation
concerning the citations [21], the reputation and community affiliation bias
[10]. On the other hand, having some elements to understand such a dynamics
could enable a better detection of the hot topics and of the vivid subfields and
how the scientific production is advanced with respect to selection process in-
side the community itself. Among the available data to analyze such a system,
a subset of the publications in a given field is the most frequently used such
as in [30], [23], [26], and [31].

The scientific publications correspond to the production of such a system
and clearly identify who are the producers (the authors), which institution
they belong to (the affiliation), which funded project they are working on
(the acknowledgement) and what are the related publications (the citations),
having most of the time a public access to such data explain also a part of its
frequent use in the analyses of the scientific field. Classical analyses on these
data concern either the co-authorship network ([2, 24]) or the citation net-
work ([13, 32]), more rarely the institutional network ([29]). Moreover, these
networks are often considered as static and their structure is rarely analyzed
overtime (an exception is the one performed by [31] on Physical Review). In
the current paper we introduce two main innovations compared to classical
analysis. The first one consists in analyzing the scientists’ representations of
the collaboration structure within the scientific field. Such a representation is
captured through the network of cited collaborations, i.e. from a publication
we have several references to other papers, each one corresponds to a promo-
tion of the scientists authoring the work. In order to outline the role of this
selection process, performed through citations on the scientific advances, we
study the evolution of the most cited co-authorship. The second innovation
deals with the use and analysis of dynamical networks. All the papers are not
published at the same time, there is an order that plays a significant role in
the structuring and in the advancing of the scientific field. Hence, we decided
to take into account such an order while analyzing the cited collaborations.
One of the problem when trying to characterize such a structure is that clas-
sical indicators from either graph theory or social network analysis cannot
be applied directly. Therefore, we used an algebra, the Time-Varying Graphs
(TVG) ([5]) that enables to take into account the dynamical aspects of net-
works and allows for the definition of temporal indicators ([1]) to characterize
patterns in evolving structures.

In the current paper, after presenting the current state of the art concern-
ing the analysis of scientific networks and their results, we present into details
the TVG framework as well as the indicators adapted to the dynamical case.
Hereafter, we introduce the hep-arxiv dataset we used to make an analysis
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and we detail the transformation we used in order to obtain the cited collab-
orations network. In the final part, we present the results of the performed
analysis and we conclude our paper with a critical discussion on this method
and the next envisioned steps of our work.

2 Context

In this paper we address the problem of characterizing the processes of emer-
gence and self-organization in the scientific systems by selecting a set of in-
dicators able to capture and provide insights about the interaction patterns
among scientists (in terms of citations and collaborations). In addition we
are interested in outlining how the captured patterns reflect the social factors
(goals and related strategies) beyond the scientific production.

In [24] the network of scientific collaborations, explored upon several
databases, shows a clustered and small world structure. Moreover several dif-
ferences in the collaboration patterns in the different fields studied are cap-
tured. Such differences have been deepened in [25] with respect to the number
of papers produced by a given group of authors, the number of collaborations
and the topological distances between scientists. Peltomaki and Alava n [28]
propose a new (emulative) model for the growth of scientific network, incor-
porating bipartition and sub-linear preferential attachment. A model for the
self-assembly of creative teams based on three parameters (e.g. team size, the
rate of newcomers in the scientific production and the tendency to collaborate
with the same group) has been introduced in [11]. The connectivity patterns
in a citation network have been studied in relation to the development of the
DNA theory [13]. Klemm and Eguiluz in [14] observed that real networks (e.g.
movie actors, co-authorship in science, and word synonyms) growing patterns
are characterized by a clustering trend that reaches an asymptotic value larger
than regular lattices of the same average connectivity. In this work we com-
bine both the social processes (i.e. co-authoring on a paper) and their results
(i.e. citations) on a temporal perspective. In particular we show how the most
proficient authors behave both with respect to co-authorships strategies (the
properties of the nodes which they work with) and citations (the productions
considered to be relevant by the community).

In the field of social network analysis several works have approached the
problem of temporal metrics [12, 16, 15]. Actually, the aim is mainly devoted to
capture the intrinsic properties of complex system evolution, that is, capturing
and characterizing the dependencies between local behaviors (interactions)
and their global effect (emergence) on real networks [8, 22, 38, 9, 35]. The
research approach to social network evolution patterns, at the very beginning
was mainly based upon simulations, while in the past few years, due to the
large availability of real datasets, either the methodology of analysis and the
object of research have changed ([34, 20, 15, 6, 18]). In particular, the latter
paper states as central problem, for the social networks in general and for
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the scientific communities networks analysis in particular, the definition of
mathematical models able to capture and to reproduce all the properties of
dynamical real networks such as the shrinking diameter ([19]), or the “small
world” effect [37]. Actually instruments and paradigms affording this challenge
are mainly based upon stochastic definitions ([17]) or conceptualized as a
sequence of static graphs at different times [33].

3 Tools and Methods

In this section we first present the empirical dataset explored, then we de-
tail the mathematical framework (TVG) and the related data transformation
implemented for the visualization and the analysis of the network evolution.

3.1 The Empirical Dataset

The scientific community analyzed in this work has been extracted from the
hep-th (High Energy Physics Theory) portion of the arXiv website, an on-line
repository available at http://arxiv.org/.

The dataset is composed by a collection of papers and therefore their
related citations over the period within January 1992 to May 2003. For each
paper the set of authors, the dates of the on-line publications on arXiv.org,
and the references are provided. There are 352 807 citations within the total
amount of 29 555 papers written by 59 439 authors. The broadness of the
time window covered allows us to explore the dataset in order to extract,
capture and characterize the evolution of the interaction patterns within the
community. In particular we will focus on the patterns of the most proficient
authors, i.e. the authors that the community, through the selection process of
citations, makes emerge.

3.2 Time Varying Graphs

The temporal analysis on the dataset is based on Time-Varying Graphs (TVG)
formalism, a mathematical framework [5] designed to deal with the tempo-
ral dimension of networks and to express interactions on interaction-based
dynamical systems.

Consider a set of entities V (or nodes), a set of relations E between these
entities (edges), and an alphabet L accounting for any property such a relation
could have (label); that is, E ⊆ V ×V ×L. L can contain multi-valued elements.

The relations (interactions) among entities are assumed to take place over
a time dimension T the lifetime of the system which is generally a subset of
N (discrete-time systems) or R (continuous-time systems). The dynamics of
the system can subsequently be described by a time-varying graph, or TVG,
G = (V,E,T, ρ, ζ), where
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• ρ : E × T → {0, 1}, called presence function, indicates whether a given
edge or node is available at a given time.

• ζ : E ×T→ T, called latency function, indicates the time it takes to cross
a given edge if starting at a given date (the latency of an edge could vary
in time).

Notice that due the nature of the dataset, in the analysis of the current
paper the latency function is not considered.

The underlying graph

Given a TVG G = (V,E,T, ρ, ζ), the graph G = (V,E) is called underlying
graph of G. This static graph should be seen as a sort of footprint of G, which
flattens the time dimension and indicates only the pairs of nodes that have
relations at some time in a given time interval T. It is a central concept that is
used recurrently for the analysis in the following sections. In most studies and
applications, G is assumed to be connected; in general, this is not necessarily
the case. Note that the connectivity of G = (V,E) does not imply that G
is connected at a given time instant; in fact, G could be disconnected at all
times. The lack of relationship, with regards to connectivity, between G and
its footprint G is even stronger: the fact that G = (V,E) is connected does
not even imply that G is “connected over time”, as illustrated on Figure 1.

a

b c
d

[0, 1)
[2, 3)

[0, 1)

Fig. 1. A example of TVG that is not “connected over time”, although its under-
lying graph G is connected. Here, the nodes a and d have no mean to reach each
other through a chain of interaction.

Edge-centric evolution

From an edge point of view, the evolution derives from variations of the
availability and the latency over time. TVG defines the available dates of
an edge e, noted i(e), as the union of all dates at which the edge is available,
that is, i(e) = {t ∈ T : ρ(e, t) = 1}. Given a multi-interval of availability
i(e) = {[t1, t2) ∪ [t3, t4)...}, the sequence of dates t1, t3, ... is called appearance
dates of e, noted App(e), and the sequence of dates t2, t4, ... is called disap-
pearance dates of e, noted Dis(e). Finally, the sequence t1, t2, t3, ... is called
characteristic dates of e, noted ST(e).
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Graph-centric evolution

From a global standpoint, the evolution of the system can be given by a
sequence of (static) graphs SG = G1, G2.. where every Gi corresponds to a
static snapshot of G such that e ∈ EGi

⇐⇒ ρ[ti,ti+1)(e) = 1, with two
possible meanings for the tis: either the sequence of tis is a discretization of
time (for example ti = i); or it corresponds to the set of particular dates when
topological events occur in the graph, in which case this sequence is equal to
sort(∪{ST(e) : e ∈ E}). In the later case, the sequence is called characteristic
dates of G, and noted ST(G).

Subgraphs of a time-varying graph

Upon this framework it is possible to define a temporal subgraph G′ by re-
stricting the lifetime T of G, and leading to the graph G′ = (V,E′,T′, ρ′, ζ ′)
such that

• T′ ⊆ T
• E′ = {e ∈ E : ∃t ∈ T′ : ρ(e, t) = 1 ∧ t+ ζ(e, t) ∈ T′}
• ρ′(e, t) = ρ(e, t) for any e ∈ E′ and t ∈ T′

• ζ ′(e, t) = ζ(e, t) for any e ∈ E′ and t ∈ T′

3.3 Expliciting Interactions

As social interaction in scientific communities depends principally upon com-
petitions and collaborations among authors and groups, in the analysis we
want to capture both the resulting emerging effects caused by these two op-
posite motivations and how they are expressed in terms of connectivity and
citations patterns.

The dataset analyzed in the current paper presents two explicit interac-
tions: the papers’ co-authorships and the citations between papers.

The former can be influenced by authors’ proximity (working in the same
institution or in the same scientific field), by the nature of the problems ad-
dressed, and often by the complementarity between scientists’ skills (in order
to cover all the aspects addressed in a scientific work). The latter, in turns, is
affected by the authors’ background knowledge and by the scientific histories
of the addressed topics (i.e. milestones, fundamental contributions, etc.). In
addition, there is an implicit level of interaction that depends upon the goals
behind each research paper: the quality and, at the same time, the neces-
sity to be highly cited (competition). Hence, often both the collaborations’
and citations’ strategies are optimized in order to have the highest impact
with respect to the problem addressed and to collect the highest number of
citations.
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The Interaction Network

In order to exploit and express all the descriptive potential of the dataset’s
social interaction domain, we approach the data transformation in order to
explicit the co-authorships and cited collaboration patterns. We represent the
dataset as an undirected graph, namely interaction network, having as nodes
the authors, weighted links representing the co-authorship on a paper, and
when a paper is cited by another work, the links’ weights, connecting the
authors of the referenced paper, are incremented.

More formally, the graph of the cited co-authorships is defined as G =
(V,E,T, ρ, ζ)on a discrete time and with the value of the latency functionζ
fixed to 0. Here the elements v ∈ V are the authors, the set of edges E ⊆
V ×V ×L represents the collaborations L on a paper’s production. The nodes
appear on the graph the first time a paper they wrote has been published, and
the interaction L is weighted with a variable wi, namely the strength value
of a collaboration, that is incremented of one for each citation received by a
given couple of nodes (u, v).

In the paper we analyze and report on the behaviors and on the interac-
tion’s strategies within the most cited authors’ network, such a graph, namely
Gi, is a subset of the global interaction network G = (V,E,T, ρ, ζ). In partic-
ular the nodes considered in the analysis are only the authors having links’
strength values higher than 150, that is, all the groups having more than 150
citations on a work. Such a network in its maximal expansion, during the 10
years temporal window observed, is composed by 12 583 nodes and 84 512
edges.

4 Results

The results drawn from the analysis are presented and discussed in this sec-
tion. The presentation is structured in order to provide to the reader a three-
fold top-down perspective on the emergent processes characterizing the evo-
lution of the scientific network. First, we provide an outline of the global net-
work dynamics, then we show the meso and micro levels of the interactions
network by presenting the community formation patterns and the evolution
of nodes’ interconnections (cited co-authorships). For each metric used in the
analysis the related definition in terms of the time-varying graph formalism
is provided.

4.1 The Network

From a global point of view, the evolution of the interaction network is charac-
terized by computing a collection of temporal indicators, defined in the TVG
formalism, at different time intervals - e.g., the evolution of the clustering co-
efficient, the temporal trend of the average degree, of the average path length,
of the degree power law, of the modularity and of the density [1].
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These values are computed on the temporal subgraph sequence Sn of the
interaction network formed by the most cited groups (authors with more than
150 citations). Each element si of the sequence is a time-varying graph defined
as GTi = (V (Ti), E(Ti)) with i being a given time interval such that

• E(Ti) : {e ∈ E|ρ(e, t) = 1∀t ∈ Ti}
• V (Ti) : {v ∈ V |∃y ∈ V ∧ (x, y) ∈ E(Ti)}

Note that the indicators for each element of the sequence are computed
over the underlying graph (see section 3.2) at a time interval of one year.

The Phase Transition

The most important element that emerges at this level of observation of the
network evolution is a phase transition occurring within 1999 and 2000.

Density Evolution

A dense network is one in which the number of edges is close to the maximal
number of edges. Figure 2 shows the density values for each element of the
temporal subgraphs sequence of the interaction network.

Fig. 2. Density

The density trend starts with very low values and then an increase of
the graph sparsity during the evolution occurs with a very low counter-trend
during the period of 1999 and 2000.

Modularity Evolution

The modularity, introduced by [4], measures how a network can be decom-
posed into subparts, i.e. classically finding partitions within a graph. It allows
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to look at communities at different resolutions in order to detect the network
structure and its evolution. Given two nodes u and v and the number of edges
between them, in order to compute the modularity, we have to find the right
partitioning of the network in a number of groups (some recent algorithms
enable however to overcome the partitioning constraint and enable to detect
overlapping communities [27] [7]). Note that such partition is temporal, i.e.
related to a temporal subgraph of the interaction network.

The modularity for each subgraph of the interaction network’s subgraphs
sequence is shown in Figure 3.

Fig. 3. Modularity

It shows how the quality of a division of a network into modules or com-
munities evolves during time. The trend of these values says that there is an
increase of dense internal connections between the nodes within modules but
only sparse connections between different submodules. Hence the communi-
ties tend to remains separated, only few nodes act as bridges between different
groups. The growing rate of the modularity is characterized by an increase
until 1993, then it reaches its highest values during the 1999-2000 interval, but
through a smoothed increasing rate. As far as we can see by the modularity
evolution, the interconnections among separated groups of authors starts in
1993, then their interconnection continues, but with a gradual rate.

Average Clustering Coefficient Evolution

In order to capture the global nodes’ interconnections patterns we show the
clustering coefficient evolution during the time window observed. The clus-
tering coefficient C(vi) is the proportion of edges between the node vi within
its neighborhood divided by the number of edges that could potentially exist
between them [37].
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Fig. 4. Clustering

Figure 4 a phase transition during this period that was not present neither
in the density nor in the modularity evolution. The chart suggests that there
is a trend among authors to remain clustered in tightly knit groups. Such a
tendency increases between 1999 and 2000.

4.2 A Matter of Interconnections

As shown in Figure 5, where the trend of the ratio between nodes and edges
of both the whole interaction network and the network of the most proficient
scientists are depicted, the phase transition process, evinced in the clustering
coefficient evolution in Figure 4 , is not caused by an increase of the number of
authors in the period between 1999 and 2000, neither it is a pattern common to
the whole dataset. We can see that in the collaborations network of all authors
(in black) there are no particular change in 1999, while the collaboration
network of the most proficient authors shows a phase transition, caused by
the increasing number of connections (i.e. collaborations) among the most
cited nodes.

In Table 4.2 we display the evolution of the average degree, the average
path length and of the power law degree within the temporal window observed.
As for the previous indicators these values are computed on the underlying
graph of the interaction network of the most proficient scientists.

In bold the values when the phase transition occurs. Neither the average
path length, indicating the average distances among nodes, the power law
degree, measuring how closely the degree distribution of a network follows
a power-law scale and the evolution of average degree, counting the average
number of connections at each node, are immune to the phase transition.
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Fig. 5. Average connectivity: average number of edges per node for the entire
network in the dataset (in black) and for the network of the most proficient authors
(in red)

Year Average Degree Average Path Len Power Law

1992 0,0095 1 0

1993 0,0176 1 -1,386

1994 0,012 1 -1,79

1995 0,0135 1,16 -2,16

1996 0,132 1,13 -2,27

1997 0,0118 1,12 -2,5

1998 0,106 1,12 -2,5

1999 0,066 3,92 -5,08

2000 0,64 3,79 -5,27

2001 0,6 3,82 -5,25

Table 1. Other interaction network’s measurements

4.3 Communities Emergence

As the phenomena behind the change phase transition are mainly caused
by the evolution of the interconnections among the nodes of the cited co-
authorship graph. In this section we outline the connectivity patterns at a
community level.

Beyond Preferential Attachment

We start with the introducing of a sequence of screen-shots showing the nodes’
aggregation patterns. The pictures, obtained with the gephi platform ([3]),
refer to the biggest community within the most proficient authors’ network
during the phase transition period (i.e. 1999-2000). The sequence of snapshots
is the interaction patterns behind the formulation of the “String Theory”
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and of its consequent developments. In fact, among the nodes in this portion
of the network there are E.Witten, N.Seiberg and so forth playing the role
of attractors. Authors in the same community start to join their group, it
is a picture of what is beyond the preferential attachment - e.g.,mechanism
used to explain the power law degree distributions in social networks - when
the system is goal-driven. At the beginning (Figure 6(a)) there are several
separated components, that start to mix by co-authoring papers (Figure 6(b)).

(a) Several separated connected
components

(b) that start to connect with each
other

Fig. 6. Connections within the islands

This group starts to play the role of attractor with respect to the neighbor-
ing nodes as it is shown in Figure 7(a) until the maximum level of connections
in the group is reached in Figure 7(b).

Note that in Figure 6 and in Figure 7 the links are emphasized in pro-
portion to the number of citations received by the papers’ authors. The com-
ponent in the center is highly cited and is playing the role of attractor on
the neighboring nodes (authors). It is a goal-driven preferential attachment
due to the number of citations (representing the emergence through selec-
tion) to a given group, that in terms of the goal of any scientific community
clearly evinces a strategy oriented to the community belonging and to the
couplage between topics and sub-communities, authors tend to join highly
cited groups to satisfy both the quality and the possibility to be highly cited
requirements. Moreover, considering that at the beginning there are several
separated groups, the phenomenon can be interpreted as a three-fold process
with a first phase as the exploration of ideas by means of separated works
afforded by separated groups, a second one when a part of the ideas explored
starts to be cited more than the others, and a third one when authors tend
to join groups that have produced highly cited works.

Such a process presents the phases of the the natural selection, e.g. the
exploration, the selection and migration. But here a) such a (social) selection
produces self-organization because it is played by a group of individuals which
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(a) The number of connections
within authors continues to increase.

(b) The maximum level of con-
nectivity is reached.

Fig. 7. The growing phase of interaction among authors

act, compete and collaborate in order to advance science and b) it determines
the success (emergence) of a topic and of the scientists working on it.

Community Evolution

In this section, we are going to quantify in a temporal fashion the patterns
observed in the previous section. Table 4.3 summarizes the network evolution
by means of a) basic indicators, e.g. the number of nodes, the number of edges
and the community’s diameter) and b) aggregated indicators, e.g. the cyclo-
matic number, the alpha, beta, and gamma index. The cyclomatic number
counts the number of cycles on the graph, its magnitude characterizes the de-
velopment of the nodes’ accessibility. The alpha index is the ratio between the
number of cycles in the graph and their possible maximum value. The range of
the alpha index spread within 0 to 1, that are from no cycles to a completely
interconnected network. The beta index, is a simple measure of connectivity.
It relates to the total number of edges to the total number of nodes. The
higher the value, the greater the connectivity. The gamma index measures the
ratio between the number of edges on the network and the maximum num-
ber of possible edges among nodes. The gamma index spreads within 0 and
100, respectively indicating the minimum and the maximum number of edges
between nodes.

As we can see from the evolution of these parameters, the aggregation
pattern among separated components is evident for each one of the metric
proposed. In terms of nodes that join the community and their mutual con-
nections, the diameter over time passes through a phase of expansion and
then tends to stabilize.
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Measures April 00 October 00 April 01 October 01 April 02 October 02 April 03

Vertices: 23 51 65 66 67 70 72

Edges: 29 75 99 100 106 110 114

Diameter: 6 10 10 10 8 8 8

Cyclomatic: 17 25 35 35 40 41 43

Alpha: 0,73 0,02 0,017 0,016 0,018 0,017 0,017

Beta: 1,69 1,47 1,52 1,51 1,58 1,57 1,58

Gamma: 61,9 51,02 52,38 52,08 54,3 53,92 54,28

Table 2. network measurement of the biggest community

5 Conclusions

In this paper we analyse the behavior of the most cited authors in a collection
of papers extracted from the on-line repository of arXiv. We were captured and
characterized the evolution of the network in terms of interactions (citations
and co-authorships) within a given scientific community.

The temporal dimension and the metrics used for the analysis were formal-
ized using Time-Varying Graphs (TVG), a mathematical framework designed
to represent the interactions and their evolution in dynamically changing en-
vironments.

The analyses, focusing on the cited co-authorship’s patterns, have been
performed at different levels. At a global level with respect to the network
evolution; at a meso-level with respect to the communities aggregation pat-
terns and finally at a micro-level, characterizing the accessibility trend of the
biggest community in the network. Each level has shown a particular trend,
that, as far as we can see on the analysis, is given by a phase transition within
1999-2000. Such trend is caused by an increase of the interconnections among
nodes in the network. It is a sort of preferential attachment driven by the
number of citations received by a given group, that in terms of the goal of
any scientific community clearly evinces a strategy oriented to the commu-
nity belonging, authors tends to join highly cited groups. This fact together
with the fact that at the beginning there are several separated groups can be
interpreted as a three-fold process: the first phase is the exploration of ideas
by means of works, once some ideas start to be cited more than others, then,
finally authors tend to join groups that have produced highly cited works.
Such a process is similar to the natural selection, in fact it passes through
the exploration, the selection and migration phase. But here the selection is
performed by individuals in a goal oriented environment and such a (social)
selection produces self-organization because it is played by a group of indi-
viduals which act, compete and collaborate in order to advance Science. In
addition, the social selection determines the emergence of a topic and of the
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scientists working on it by determining the preferential attachment patterns.
In the next future we are going to outline the behavior of the most proficient
scientist in terms of their aggregation patterns, and on how their works are
diffused within the community, that is, characterizing the reasons behind the
selection process beyond the network evolution. Such aspects will be addressed
both with new analyses on different datasets and by means multi-agent simu-
lations. The former stream will be devoted to the definition of new patterns,
the latter will be used for the understanding of how changing some parameters
of the network influences the evolution, and consequently the quality, of the
scientific production.
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14. Konstantin Klemm and Vı́ctor M. Egúıluz. Highly clustered scale-free networks.
Physical Review E, 65(3):036123+, Feb 2002.

15. G. Kossinets, J. Kleinberg, and D. Watts. The structure of information pathways
in a social communication network. In Proc. of the 14th ACM SIGKDD Intl.
Conf. on Knowledge Discovery and Data Mining (KDD 2008), pages 435–443,
2008.

16. V. Kostakos. Temporal graphs. Physica A: Statistical Mechanics and its Appli-
cations, 388(6):1007–1023, 2009.

17. Jure Leskovec, Deepayan Chakrabarti, Jon Kleinberg, and Christos Faloutsos.
18. Jure Leskovec, Deepayan Chakrabarti, Jon M. Kleinberg, Christos Faloutsos,

and Zoubin Ghahramani. Kronecker graphs: An approach to modeling networks.
Journal of Machine Learning Research, 11:985–1042, 2010.

19. Jure Leskovec, Jon Kleinberg, and Christos Faloutsos.
20. Jure Leskovec, Jon M. Kleinberg, and Christos Faloutsos. Graph evolution:

Densification and shrinking diameters. TKDD, 1(1), 2007.
21. M.H. MacRoberts and B.R. MacRoberts. Problems of citation analysis. Scien-

tometrics, vol.36, no.3, pages 435–444, 1996.
22. M. Mataric. Designing emergent behaviors: From local interactions to collective

intelligence. In In Proceedings of the International Conference on Simulation of
Adaptive Behavior: From Animals to Animats, volume 2, pages 432–441, 1992.

23. M. E. J. Newman. Clustering and preferential attachment in growing networks.
In Physical Review E, vol.64, 2001.

24. M. E. J. Newman. The structure of scientific collaboration networks. 98(2):404–
409, January 2001.

25. M. E. J. Newman. Coauthorship networks and patterns of scientific collabo-
ration. In Proceedings of the National Academy of Sciences, pages 5200–5205,
2004.

26. M. E. J. Newman. Who is the best connected scientist? a study of scientific
coauthorship networks. In Complex Networks, lecture notes in Physics, 2004.

27. G. Palla, A. Barabasi, and T. Vicsek. Quantifying social group evolution. Na-
ture, 446:664–667, April 2007.

28. Matti Peltomaki and Mikko Alava. Correlations in bipartite collaboration net-
works. J.STAT.MECH., page P01010, 2006.

29. W.W Powell, D.R. White, and K.W. Koput. Network dynamics and field evolu-
tion: The growth of interorganizational collaboration in the life sciences. Amer-
ican Journal of Sociology, vol.110, no.4, pages 1132–1205, 2005.

30. D.J. De Solla Price. Networks of scientific papers. Science, vol.149, no.3683,
pages 510–515, 1965.

31. F .Radicchi, S. Fortunato, B. Markiness, and A. Vespignani. Diffusion of scien-
tific credits and the ranking of scientists. Physical Review E, vol.80, 2009.

32. S. Redner. Citation statistics from 110 years of physical review. Physical Review,
Physics Today, vol.58, pages 49–54, 2005.



Selection in Scientific Networks 17

33. J. Tang, S. Scellato, M. Musolesi, C. Mascolo, and V. Latora. Small-world
behavior in time-varying graphs. Arxiv preprint arXiv:0909.1712, 2009.

34. Carla Taramasco, Jean-Philippe Cointet, and Camille Roth. Academic team
formation as evolving hypergraphs. Scientometrics, April 2010.

35. Quattrociocchi W., Conte R., and Lodi E. Simulating opinion dynamics in
heterogeneous communication systems. ECCS 2010 - Lisbon Portugal, 2010.

36. C.S Wagner and K. Leydesdorff. Network structure, self-organization, and the
growth of international collaboration in science. Research Policy vol 34 n10,
pages 1608–1618, 2005.

37. Duncan J. Watts. Networks, dynamics and the small world phenomenon. AJS,
1999.

38. David R. Woolley. PLATO: The Emergence of Online Community, 1994.


