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Abstract Most research concerning the influence of

network structure on phenomena taking place on the

network focus on relationships between global statistics

of the network structure and characteristic properties

of those phenomena, even though local structure has

a significant effect on the dynamics of some phenom-

ena. In the present paper, we propose a new analysis

method for phenomena on networks based on a cate-

gorization of nodes. First, local statistics such as the

average path length and the clustering coefficient for

a node are calculated and assigned to the respective

node. Then, the nodes are categorized using the self-

organizing map (SOM) algorithm. Characteristic prop-

erties of the phenomena of interest are visualized for

each category of nodes. The validity of our method is

demonstrated using the results of two simulation mod-
els. The proposed method is useful as a research tool

to understand the behavior of networks, in particular,

for the large-scale networks that existing visualization

techniques cannot work well.

Keywords Complex Network · Multi-Agent Simula-

tion · Data Mining · Visualization

1 Introduction

Many phenomena in the real world have been stud-

ied with respect to the network structure behind them
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(Boccaletti et al., 2006). Numerical experiments with

mathematical models to simulate such phenomena on

networks are performed in most such studies. These

networks are generated using some network model, in

which each node and edge represents an agent and a re-

lationship between the agents, respectively. The simula-

tion proceeds by allowing the states of agents to evolve

according to transition rules.

The analyses of such simulations using complex net-

works have revealed fundamental mechanisms of such

phenomena as epidemic outbreaks (Pastor-Satorras and

Vespignani, 2001; Moreno et al., 2002; Parshani et al.,

2010), decision making with respect to a social dilemma

(Nowak et al., 2004; Tomochi, 2004; Tsukamoto and

Shirayama, 2010), and synchronization of interactive

units (Gómez-Gardenes et al., 2007). This type of anal-

ysis is also performed for some real networks such as

the blogosphere(Cha et al.).

The analysis methods used in previous studies can

mainly be classified into two types. One is to investi-

gate the relationships between phenomena and the sta-

tistical properties of the network structure, such as the

average path length and the clustering coefficient. The

mechanisms of the phenomena are analyzed on the basis

of the global structure of the network. This analysis is

from a macroscopic standpoint. The other type is based

on the relationships between phenomena and the local

characteristics of the nodes or edges, such as degree,

node or edge betweenness, and the local clustering co-

efficient. This type of analysis explains the mechanisms

of phenomena from a microscopic perspective based on

the important nodes or edges in the network. These

two methods are often used simultaneously to examine

the relationships between phenomena and the network

structure. In most cases, it is obvious that these are in-

sufficient to reveal the details of network phenomena,
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since the former methods lacks any local perspective,

and using the latter methods, it is difficult to associate

the role of important nodes with the global dynamics of

phenomena. One of the most important issues for both

types of method is how to connect the influence of local

structure on phenomena with the global dynamics.

To address this issue, a visualization method in which

the states of agents are visualized on the positions of

nodes determined by a graph layout technique is some-

times used to analyze phenomena. Such visualization

enables intuitive analysis using local and global struc-

tures of networks(Rosen et al., 2011; Adnan et al., 2011;

Pham et al., 2011). However, the many possible lay-

outs for the same network make interpreting the re-

sults difficult. In addition, as the number of nodes in-

creases, the graph layout itself becomes more compli-

cated (Van Ham and Wattenberg, 2008; Uchida and

Shirayama, 2007), making the extraction of useful in-

formation from a large-scale network visualization quite

difficult. Another method to address the abovemen-

tioned issue is to use the community structure of net-

works. The community structure is that which connects

the local structure with the global one, and it can pro-

vide some mesoscopic perspective to the analysis (New-

man, 2006a,b; Saravanan et al., 2011). However, since

the community structure depends on the definition of

the community and the extraction method, it is possi-

ble to extract different community structures from the

same network(Fortunato, 2010). In this way, an analysis

method based on community structure has a difficulty

similar to that of visualization methods with respect to

the interpretation of the results.

In the present paper, we propose a new analysis

method for simulations using networks. Our method is

based on the categorization of nodes. The nodes of the

network being used in a simulation are categorized ac-

cording to their local characteristics, and the simulation

results for the network is visualized for each category

of nodes. We apply our method to two simulations, and

the validity of our method is discussed.

2 Proposal Method

2.1 Node Categorization

2.1.1 Characteristic properties of nodes

Several of the statistical properties of network struc-

tures, average path length and the clustering coeffi-

cient, are obtained by averaging over the local values

at each node. Therefore, such properties which can be

calculated for individual nodes are used for our node

categorization.

First, we define the property of nodes as a multivari-

ate variable n. The variable n is composed of the degree,

the average degree of neighboring nodes, the node be-

tweenness, the average path length, and the clustering

coefficient.

Let N be the number of nodes in the network. The

i-th node of the network is denoted by vi(i = 1, .., N).

The degree of the node vi is denoted by ki. The average

degree of neighboring nodes of vi is denoted by kinn and

defined as the average degree of nodes linked to vi.

The node betweenness of vi is denoted by bi and de-

fined as the proportion of shortest paths between other

pairs which include vi. bi is calculated as follows. Let vis
and vit be the start and terminal nodes, respectively.

bi =

∑N
is=1;is 6=i

∑is−1
it=1;it 6=i

g
(isit)

i

Nisit

(N − 1)(N − 2)/2
(1)

where g
(isit)
i is the number of shortest paths between

vis and vit via vi, Nisit is the total number of shortest

paths between vis and vit , and the denominator is a

normalization factor.

Let Li and Ci be the average path length and clus-

tering coefficient of vi, respectively. Li is calculated by

Li =
∑
i 6=j

d(vi, vj)

N − 1
(2)

where d(vi, vj) is the length of the shortest path be-

tween vi and vj . Ci is calculated by

Ci =
Ei

ki(ki − 1)/2
(3)

where Ei is the total number of links existing between

pairs of nodes adjacent to vi.

The property of node vi, multivariate variable n, is

ni = (ki, k
i
nn, bi, Li, Ci). ni is calculated for each node

and stored with the identifier of the network.

2.1.2 Categorization method

Systematical data mining operations are applied to the

dataset which consists of ni(i = 1, ..., N) in order to

categorize the nodes.

In this paper, the nodes are categorized using the

self-organizing map (SOM) algorithm. The results from

applying the SOM algorithm are displayed on a two-

dimensional lattice. Figure 1 is an example of a 5 by

5 lattice. We consider each region to be a cell, which

is identified as (X,Y ) according to the axes shown in

Figure 1. Let M denote the cell. Using the SOM algo-

rithm, the N nodes are each assigned to one of the cells.

Herein, each category corresponds to one of these cells

(Figure 1).
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(0,4) (1,4) (2,4) (3,4) (4,4)

(0,3) (1,3) (2,3) (3,3) (4,3)

(0,2) (1,2) (2,2) (3,2) (4,2)

(0,1) (1,1) (2,1) (3,1) (4,1)

(0,0) (1,0) (2,0) (3,0) (4,0)

X

Y

Fig. 1 Location of categories in the SOM

Fig. 2 Example of node categorization in a network

Figure 2 shows an example of node categorization in

a network. The network is visualized by Pajek (Batagelj

and Mrvar, 2003) using the Kamada-Kawai graph lay-

out algorithm (Kamada and Kawai, 1989). The nodes

are colored corresponding to each category.

The results of categorization is checked using heat

maps for each component of n. The heat maps are gen-

erated according to the cell average for each component,

which are obtained for each cell by averaging over the

nodes belonging to that cell.

2.2 Visualization of Simulation Results

In the present study, we are interested in simulations

using networks. Each node and edge represents an agent

and a relationship between the agents, respectively. The

simulations proceed so that the state of an agent evolves

by applying transition rules.

The nodes in the network used for the simulation

are categorized according to their local characteristics.

We visualize the simulation results on the network for

t = 1 t = 2 t = 3

� ; state1 � ; state2 � ; state3

Fig. 3 Example of a visualization

each category, which contains agents with similar char-

acteristics of the local network structure.

Herein, pie charts are used to visualize the results.

The areas of the pie charts are proportional to the rate

of each state of the agents in each category. The pie

charts are displayed at the spatial location of each cell

in the SOM. Time variation of the proportion in each

category is also visualized using pie charts. Figure 3 is

an example of this visualization.

Combining the heat maps which show the features

of the categorized nodes with the pie charts which show

the results of simulation, we analyze phenomena on the

networks.

3 Experiments and Results

3.1 Simulation Models

3.1.1 Generation of networks

In this paper, the networks used in the two simulations

are generated using the HK model (Holme and Kim,

2002) and the CNN model (Vázquez, 2003). Each net-

work is composed of 10000 nodes (N = 10000). The

average degree < k > is set to be about 8.

The HK model is that proposed by Holme and Kim

(2002). The network is generated by processes based

on “growth of the network”, “preferential attachment”,

and “triad formation”. The generated network has a

scale-free property in which the degree distribution fol-

lows the power law. It has been shown that the cluster-

ing coefficient tends to be high in such networks.

The CNN model is that proposed by Vázquez (2003).

The network is generated by processes based on “growth

of the network” and “change of potential links to real

links”. The generated network has a scale-free prop-

erty. It has been shown that the clustering coefficient is

high and the network becomes “assortative”, by which

is meant that nodes with similar degrees tend to be

linked to each other.
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On these networks, both an epidemic propagation

and a spatial prisoner’s dilemma described below are

examined.

3.1.2 Epidemic propagation on networks

We employ the SIR model for the epidemic propagation

simulation. Each agent (node) takes one of three differ-

ent states: S (susceptible or healthy), I (infectious), or

R (removed, immunized, or dead). Each agent changes

its state according to the states of neighboring agents.

Let λ and µ be the infection and recovery rates, re-

spectively. The number of neighboring infectious agents

is denoted by n(I). At the beginning, all the agents

(nodes) are in the state S. Then, several agents are cho-

sen randomly, and their states are changed to I. The

simulation proceeds by the following process after each

time increment dt, where dt is small:

(a) One agent is chosen randomly.

(b1) If the chosen agent is in state S, its state changes to

I with probability λn(I)dt.

(b2) If the chosen agent is in state I, its state changes to

R with probability µdt.

(b3) If the chosen agent is in state R, its state does not

change.

(c) Processes (a) and (b) are repeated N times.

The processes ((a), (b), and (c)) are repeated until there

are no agents in state I in the network.

In this simulation, the number of infectious agents

at the initial stage is set to be 10 and the following

parameter values are used: λ = 0.2, µ = 1 and dt =

0.01.

3.1.3 Spatial prisoner’s dilemma

The spatial prisoner’s dilemma is a model for decision

making with respect to a social dilemma. Each agent

takes one of two strategies: C (cooperation) or D (de-

fection). These two strategies are regarded as the states

of the agents.

First, each agent occupies a node of the generated

network and has an equal probability of choosing co-

operation or defection as an initial strategy. All agents

simultaneously update their strategy as follows:

(a) Each agent plays the prisoner’s dilemma game with

all neighboring agents and receives the resulting pay-

off shown in Table 1 (T stands for the temptation

of defection).

(b) Each agent imitates the strategy of the wealthiest

among its neighbors. If an agent has the highest pay-

off among the neighbors, it retains its own strategy

for the next iteration.

Table 1 Payoff matrix of the spatial prisoner’s dilemma

Cooperator Defector

Cooperator 1,1 0, T
Defector T ,0 ε, ε

In this simulation, T = 1.5, and ε = 0, as in the work

of Nowak and May (1992).

3.2 Node Categorizations

First, the property ni = (ki, k
i
nn, bi, Li, Ci) of the node

vi is calculated for each node of the networks generated

by the HK model and CNN model. Then, the nodes are

categorized into the 5 by 5 lattice shown in Figure 1

using the SOM algorithm.

Next, the heat maps for each component of the prop-

erty n are created. The heat maps for the networks

generated by the HK and CNN models are shown in

Figures 4 and 5, respectively. In these figures, the num-

ber of nodes in each category is shown in the upper left

panel of each figure.

For the network generated by HK model, each cat-

egory is characterized as follows:

- the degree k increases for increasing X. The maxi-

mum value appears at (4, 4).

- the average degree of neighboring nodes knn increases

for increasing Y , and, for fixed Y , the maximum

values is in the central X region.

- the node betweenness b increases for both increasing

X and increasing Y . The maximum value is at (4, 4)

and is significantly larger than the values for other

categories.

- the average path length L decreases for both increas-

ing X and increasing Y . Compared to b, L varies

little from category to category.

- the clustering coefficient C decreases for increasing

X.

For the CNN model, each category is characterized

as follows:

- k decreases for increasing X.

- knn decreases (increases) for increasing X (Y ).

- b decreases for increasing X.

- L increases (decreases) for increasing X (Y ).

- C increases for both increasing X and increasing Y .

3.3 Simulation of Epidemic Propagation

SIR states over time for the networks generated using

the HK and CNN models are shown in Figures 6 and

7, respectively.
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Fig. 4 Heat maps for the HK model

For the HK model, Figure 6 shows that the initial

outbreaks start around (4, 4) at t = 3.0. Since k is also

largest in this category (Figure 4), the model indicates

epidemic outbreaks start near hubs, after which the

epidemic expands. From t = 3.0 to 4.0, the epidemic

spreads from category(3, 4) to (0, 4) in the negative X
direction and from category(4, 3) to (4, 1) in the nega-

tive Y direction. Referring to Figure 4, these categories

coincide with those which have large k or knn, and short

L. After t = 4, the epidemic seems to spread toward

category (0, 0). This means that the speed of propaga-

tion of the epidemic within categories with smaller k

and knn and longer L is relatively slow. At the termi-

nal state (t = 16.78), the pattern of the distribution of

proportions of infected agents, which is shown by the

distribution of state R, is almost the same as that of b

in Figure 4. From this, one can conclude that agents on

the shortest paths tend to transmit the epidemic.

For the CNN model, Figure 7 shows that a violent

outbreak occurs in the category (0, 4) at t = 0.5. As

shown in Figure 5, this category has the largest k and

knn. Therefore, it is assumed that the mutual infections

of agents in hubs causes a violent outbreak. After t =

0.5, the epidemic spreads from category (0, 4) toward

(4, 0). The proportions of infected agents are quite small

in categories near (4, 0). As shown in Figure 5, these

categories have small k and knn and long L. This means

that the agents which have fewer links with and are

distant from other agents have a lower probability of

infection. This trend in the CNN model (Figure 7) is

more obvious than that in the HK model(Figure 6).

We also found that the pattern of the distribution of

the proportions of infected agents at the terminal state

(t = 12.6) is almost same as those of knn and L shown

in Figure 5, whereas, for the HK model, the pattern

was similar to that of b.

3.4 Simulation of Spatial Prisoner’s Dilemma

The variation over time of the distribution of coopera-

tors and defectors within the network generated by the

HK and CNN models were visualized using the pro-

pose method. The visualized results for the HK model

is shown in Figure 8. For simplicity, we show only the

case in which cooperative agents are dominant.

For the HK model, cooperators have increased in

several categories by t = 1, in particular, in categories

(2, 4), (3, 4), and (4, 4). Referring to Figure 4, the cat-

egories (2, 4) and (4, 4) are characterized by having the

largest knn and k, respectively. From t = 2 to 6, the
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Fig. 5 Heat maps for the CNN model

defectors come to dominate the network. However, at

t = 8 the cooperators increase once more in categories

(2, 4), (3, 4), and (4, 4). Later, the defectors again come

to dominate, as shown at t = 13, but then the coop-

erators increase again. At this stage, the increase in

cooperators starts first in categories characterized by
large knn. The speed of the increase is then faster in

categories with relatively large k. Finally, the cooper-

ators come to dominate almost the whole network, as

shown at t = 21. At this time, defectors survive only in

categories with small knn, such as (0, 0) and (0, 1).

For the CNN model, the variation over time of the

distribution of cooperators and defectors as observed

using the proposed method is similar to that for the

network generated by the HK model. Defectors dom-

inate initially, and cooperators expand outward from

categories with large knn, starting from categories with

large k. However, compared the results for the HK model,

more defectors remain in categories with small k or

large C.

4 Conclusions

In this paper, we proposed a new analysis method for

phenomena on networks based on a categorization of

nodes. First, local statistics such as the average path

length and the clustering coefficient for a node are cal-

culated and assigned to the respective node to be used

as the property of the node, denoted by multivariate

variable n. Then, the nodes are categorized by applying

the SOM algorithm to sets of n. Characteristic proper-

ties of some phenomena are visualized for each category.

The results are easily displayed in a two-dimensional

lattice composed of the categories, even for the large-

scale networks that existing visualization techniques can-

not work well. In our approach, the relationships be-

tween the phenomena and the network structure are

revealed by the transition of the states of agents among

the categories.

An epidemic propagation and a spatial prisoner’s

dilemma were examined using our method. In our anal-

ysis of two simulations, it was shown that the hubs play

important roles on transmitting the state. In the case

of the epidemic propagation, we found that the epi-

demic outbreak starts near hubs and continues by ex-

pand outward. In the spatial prisoner’s dilemma, the

visualization showed that cooperators expand outward

from the cooperative hubs after the defectors have come

to be dominant in almost the whole rest of the net-

work. Although these results have been reported in pre-
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t = 0 (initial state) t = 3.0

t = 4.0 t = 5.0

t = 7.5 t = 16.78 (terminal state)

X

Y

��S ��I ��R

Fig. 6 SIR states over time for the network generated using
the HK model

vious studies (Moreno et al., 2002; Tsukamoto and Shi-

rayama, 2010), several new findings, such as that the

agents in categories with large knn also promote the

expansion of epidemic and cooperation, independent of

the degree k, and that, for epidemic propagation, the

pattern of the distribution of proportions of infected

agents R is almost the same as that of node betweenness

b were both obtained by using the proposed method. In

future work, we will apply our method to the other

kinds of simulations using networks, and then show the

criteria which must be satisfied before our method may

be applied.
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Fig. 8 CD states over time for the network generated using
the HK model
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