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Abstract In a “tipping” model, each node in a social network, representing an
individual, adopts a property or behavior if a certain number of his incoming
neighbors currently exhibit the same. In viral marketing, a key problem is
to select an initial ”seed” set from the network such that the entire network
adopts any behavior given to the seed. Here we introduce a method for quickly
finding seed sets that scales to very large networks. Our approach finds a set
of nodes that guarantees spreading to the entire network under the tipping
model. After experimentally evaluating 31 real-world networks, we found that
our approach often finds seed sets that are several orders of magnitude smaller
than the population size and outperform nodal centrality measures in most
cases. In addition, our approach scales well - on a Friendster social network
consisting of 5.6 million nodes and 28 million edges we found a seed set in under
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3.6 hours. Our experiments also indicate that our algorithm provides small
seed sets even if high-degree nodes are removed. Lastly, we find that highly
clustered local neighborhoods, together with dense network-wide community
structures, suppress a trend’s ability to spread under the tipping model.

Keywords social networks · viral marketing · tipping model

1 Introduction

A much studied model in network science, tipping[19,30,20] (a.k.a. determin-
istic linear threshold[21]) is often associated with “seed” or “target” set selec-
tion, [12] (a.k.a. the maximum influence problem). In this problem, we have
a social network in the form of a directed graph and thresholds for each in-
dividual. Based on this data, the desired output is the smallest possible set
of individuals (seed set) such that, if initially activated, the entire popula-
tion will become activated (adopting the new property). This problem is NP-
Complete [21,15] so approximation algorithms must be used. Though some
such algorithms have been proposed, [24,12,3,13] none seem to scale to very
large data sets. Here, inspired by shell decomposition, [9,22,2] we present a
method guaranteed to find a set of nodes that causes the entire population to
activate - but is not necessarily of minimal size. We then evaluate the algo-
rithm on 31 large, real-world, social networks and show that it often finds very
small seed sets (often several orders of magnitude smaller than the population
size). We also show that the size of a seed set is related to Louvain modularity
and average clustering coefficient. Therefore, we find that dense community
structure combined with tight-knit local neighborhoods inhibit the spreading
of activation under the tipping model. We also found that our algorithm out-
performs the classic centrality measures and is robust against the removal of
high-degree nodes.

The rest of the paper is organized as follows. In Section 2, we provide
formal definitions of the tipping model. This is followed by the presentation
of our new algorithm in Section 3. We then describe our experimental results
in Section 4. Finally, we provide an overview of related work in Section 5.

2 Technical Preliminaries

Throughout this paper we assume the existence of a social network, G =
(V,E), where V is a set of vertices and E is a set of directed edges. We will
use the notation n and m for the cardinality of V and E respectively. For
a given node vi ∈ V , the set of incoming neighbors is ηini , and the set of
outgoing neighbors is ηouti . The cardinalities of these sets (and hence the in-
and out-degrees of node vi) are dini , d

out
i respectively. We now define a threshold

function that for each node returns the fraction of incoming neighbors that
must be activated for it to become activate as well.
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Definition 1 (Threshold Function) We define the threshold function
as mapping from V to (0, 1]. Formally: θ : V → (0, 1].

For the number of neighbors that must be active, we will use the shorthand
ki. Hence, for each vi, ki = dθ(vi) · dini e. We now define an activation function
that, given an initial set of active nodes, returns a set of active nodes after one
time step.

Definition 2 (Activation Function) Given a threshold function, θ, an ac-
tivation function Aθ maps subsets of V to subsets of V, where for some
V ′ ⊆ V ,

Aθ(V
′) = V ′ ∪ {vi ∈ V s.t. |ηini ∩ V ′| ≥ ki} (1)

We now define multiple applications of the activation function.

Definition 3 (Multiple Applications of the Activation Function) Given
a natural number i > 0, set V ′ ⊆ V , and threshold function, θ, we define the
multiple applications of the activation function, Aiθ(V

′), as follows:

Aiθ(V
′) =

{
Aθ(V

′) if i = 1

Aθ(A
i−1
θ (V ′)) otherwise

(2)

Clearly, when Aiθ(V
′) = Ai−1θ (V ′) the process has converged. Further, this

always converges in no more than n steps (as, prior to converging, a process
must, in each step, activate at least one new node). Based on this idea, we
define the function Γ which returns the set of all nodes activated upon the
convergence of the activation function.

Definition 4 (Γ Function) Let j be the least value such that Ajθ(V
′) =

Aj−1θ (V ′). We define the function Γθ : 2V → 2V as follows.

Γθ(V
′) = Ajθ(V

′) (3)

We now have all the pieces to introduce our problem - finding the mini-
mal number of nodes that are initially active to ensure that the entire set V
becomes active.

Definition 5 (The MIN-SEED Problem) The MIN-SEED Problem is de-
fined as follows: given a threshold function, θ, return V ′ ⊆ V s.t. Γθ(V

′) = V ,
and there does not exist V ′′ ⊆ V where |V ′′| < |V ′| and Γθ(V

′′) = V .

The following theorem is from the literature [21,15] and tells us that the
MIN-SEED problem is NP-complete.

Theorem 1 (Complexity of MIN-SEED [21,15]) MIN-SEED in NP-
Complete.
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3 Algorithms

In this section, we introduce an integer program that solved the MIN-SEED
problem exactly and our new decomposition-based heuristic.

3.1 Exact Approach

Below we present SEED-IP, an integer program that if solved exactly, guaran-
tees an exact solution to MIN-SEED (see Proposition 1). Though, in general,
solving an integer program is also NP-hard, suggesting that an exact solu-
tion will likely take exponential time, good approximation techniques such
as branch-and-bound exist and mature tools such as QSopt and CPLEX can
readily take and approximate solutions to integer programs.

Definition 6 (SEED-IP)

min
∑
i xi,1, w .r .t . (4)

∀i, t ∈ {1, . . . , n}, xi,t ∈ {0, 1} (5)

∀i, xi,n = 1 (6)

∀i,∀t > 0, xi,t ≤ xi,t−1 + 1
dini θ(vi)

∑
vj∈ηini

xj,t−1 (7)

Proposition 1 If V ′ is a solution to MIN-SEED, then setting ∀vi ∈ V ′, xi,1 =
1 and ∀vi /∈ V ′, xi,1 = 0 is a solution to SEED-IP.
If the vector [xi,t] is a solution to SEED-IP, then {vi|xi,1 = 1} is a solution
to MIN-SEED.

Proof Claim 1: If V ′ is a solution to MIN-SEED, then setting ∀vi ∈ V ′, xi,1 = 1
and ∀vi /∈ V ′, xi,1 = 0 is a solution to SEED-IP.
Let [xi,t] be a vector for SEED-IP created as per claim 1. Suppose, by way
of contradiction (BWOC), there exists vector [x′i,t] s.t.

∑
i x
′
i,1 <

∑
i xi,1.

However, consider the set of nodes V ′′ = {vi|x′i,1 = 1}. By Constraint 7 of
SEED-IP, we know that, for t > 1, that if x′i,t = 1, we have vi ∈ Atθ(V ′′). Hence,
by Constaint 6 V ′′ is a solution to MIN-SEED. This means that |V ′′| < |V ′|
as

∑
i x
′
i,1 <

∑
i xi,1, which is a contradiction.

Claim 2: If the vector [xi,t] is a solution to SEED-IP, then {vi|xi,1 = 1} is a
solution to MIN-SEED.
Suppose, BWOC, there exists set V ′′ that is a solution to MIN-SEED s.t.
|V ′′| < |{vi|xi,1 = 1}|. Consider the vector [x′i,t] where ∀i, x′i,0 = 1 iff vi ∈ V ′′.
By Constraint 7 of SEED-IP, we know that, for t > 1, that if vi ∈ Atθ(V ′′), we
have x′i,t = 1. Hence, as Atθ(V

′′) = V , know that [x′i,t] satisfies Constraint 6.
Hence, as |V ′′| < |{vi|xi,1 = 1}|, we know

∑
i x
′
i,1 <

∑
i xi,1, which is a

contradiction.
Proof of theorem: Follows directly form claims 1-2.

However, despite the availability of approximate solvers, SEED-IP requires
a quadratic number of variables and constraints (Proposition 2), which likely
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will prevent this approach from scaling to very large datasets. As a result, in
the next section we introduce our heuristic approach.

Proposition 2 SEED-IP requires n2 variables and 2n2 constraints.

3.2 Heuristic

To deal with the intractability of the MIN-SEED problem, we design an al-
gorithm that finds a non-trivial subset of nodes that causes the entire graph
to activate, but we do not guarantee that the resulting set will be of minimal
size. The algorithm is based on the idea of shell decomposition often cited in
physics literature [31,9,22,2] but modified to ensure that the resulting set will
lead to all nodes being activated. The algorithm, TIP DECOMP is presented
in this section.

Algorithm 1 TIP DECOMP
Require: Threshold function, θ and directed social network G = (V,E)
Ensure: V ′

1: For each vertex vi, compute ki.
2: For each vertex vi, disti = dini − ki.
3: FLAG = TRUE.
4: while FLAG do
5: Let vi be the element of v where disti is minimal.
6: if disti =∞ then
7: FLAG = FALSE.
8: else
9: Remove vi from G and for each vj in ηouti , if distj > 0, set distj = distj − 1.

Otherwise set distj =∞.
10: end if
11: end while
12: return All nodes left in G.

Intuitively, the algorithm proceeds as follows (Figure 1). Given network
G = (V,E) where each node vi has threshold ki = dθ(vi) · dini e, at each
iteration, pick the node for which dini − ki is the least but positive (or 0) and
remove it. Once there are no nodes for which dini − ki is positive (or 0), the
algorithm outputs the remaining nodes in the network.

Now, we prove that the resulting set of nodes is guaranteed to cause all
nodes in the graph to activate under the tipping model. This proof follows
from the fact that any node removed is activated by the remaining nodes in
the network.

Theorem 2 If all nodes in V ′ ⊆ V returned by TIP DECOMP are initially
active, then every node in V will eventually be activated, too.

Proof Let w be the total number of nodes removed by TIP DECOMP, where
v1 is the last node removed and vw is the first node removed. We prove the
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Fig. 1 Example of our algorithm for a simple network depicted in box A. We use a threshold
value set to 50% of the node degree. Next to each node label (lower-case letter) is the value

for dini − ki (where ki = d d
in
i
2
e). In the first four iterations, nodes e, f, h, and i are removed

resulting in the network in box B. This is followed by the removal of node j resulting in
the network in box C. In the next two iterations, nodes a and b are removed (boxes D-E
respectively). Finally, node c is removed (box F). The nodes of the final network, consisting
of d and g, have negetive values for di − θi and become the output of the algorithm.

theorem by induction on w as follows. We use P (w) to denote the inductive
hypothesis which states that all nodes from v1 to vw are active. In the base
case, P (1) trivially holds as we are guaranteed that from set V ′ there are at
least k1 edges to v1 (or it would not be removed). For the inductive step,
assuming P (w) is true, when vw+1 was removed from the graph distw+1 ≥ 0
which means that dinw+1 ≥ kw+1. All nodes in ηinw+1 at the time when vw+1 was
removed are now active, so vw+1 will now be activated - which completes the
proof.

We also note that by using the appropriate data structure (we used a
binomial heap in our implementation), for a network of n nodes and m edges,
this algorithm can run in time O(m log n).

Proposition 3 The complexity of TIP DECOMP is O(m · log(n)).

Proof If we use a binomial heap as described in [14], we can create a heap
where we store each node and assign it a key value of disti for each node
vi. The creation of a heap takes constant time and inserting the n vertices
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will take O(nlog(n)) time. We can also maintain a list data structure as well.
In the course of the while loop, all nodes will either be removed (as per the
algorithm), decreased in key-value no more than dini or increased to infinity
(which we can implement as being removed and added to the list). Hence, the
number of decrease key or removal operations is bounded by n +

∑
i d
in
i . As∑

i d
in
i = m (where m is the number of edges). As O(m · log(n)), the statement

follows.

4 Results

In this section we describe the results of our experimental evaluation. We
describe the datasets we used for the experiments in Section 4.1. We evaluate
the run-time of TIP DECOMP in Section 4.1.5. In Section 4.1.6, we evaluate
the size of the seed-set returned by the algorithm and we compare this to the
seed size returned by known centrality measures in Section 4.2. The speed of
the activiation process initiated with seed sets discovered by our algorithm is
described in Section 4.3. We then study how the removal of high-degree nodes
and community structure affect the results of the algorithm in Sections 4.4
and 4.4.1 respectively.

The algorithm TIP DECOMP was written using Python 2.6.6 in 200 lines
of code that leveraged the NetworkX library available from
http://networkx.lanl.gov/. The code used a binomial heap library written by
Björn B. Brandenburg available from http://www.cs.unc.edu/∼bbb/. The ex-
periments were run on a computer equipped with an Intel X5677 Xeon Proces-
sor operating at 3.46 GHz with a 12 MB Cache running Red Hat Enterprise
Linux version 6.1 and equipped with 70 GB of physical memory. All statistics
presented in this section were calculated using R 2.13.1.

4.1 Datasets

In total, we examined 36 networks: nine academic collaboration networks,
three e-mail networks, and 24 networks extracted from social-media sites. The
sites included included general-purpose social-media (similar to Facebook or
MySpace) as well as special-purpose sites (i.e. focused on sharing of blogs,
photos, or video).

All datasets used in this paper were obtained from one of four sources:
the ASU Social Computing Data Repository, [35] the Stanford Network Anal-
ysis Project, [23] the University of Michigan, [26] and Universitat Rovira i
Virgili.[1] 31 of the networks considered were symmetric – i.e. if a directed
edge from vertex v to v′ exists, there is also an edge from vertex v′ to v. Ta-
bles 1 (A-C) show some of the pertinent qualities of the symmetric networks.
The networks are categorized by the results for the MIN-SEED experiments
(explained later in this section). Additionally, we also looked at several non-
symmetric (directed) networks and placed them in their own category. In what
follows, we provide their real-world context.

http://networkx.lanl.gov/
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4.1.1 Category A

– BlogCatalog is a social blog directory that allows users to share blogs
with friends. [35] The first two samples of this site, BlogCatalog1 and 2,
were taken in Jul. 2009 and June 2010 respectively. The third sample,
BlogCatalog3 was uploaded to ASU’s Social Computing Data Repository
in Aug. 2010.

– Buzznet is a social media network designed for sharing photographs, jour-
nals, and videos. [35] It was extracted in Nov. 2010.

– Douban is a Chinese social medial website designed to provide user re-
views and recommendations. [35] It was extracted in Dec. 2010.

– Flickr is a social media website that allows users to share photographs. [35]
It was uploaded to ASU’s Social Computing Data Repository in Aug. 2010.

– Flixster is a social media website that allows users to share reviews and
other information about cinema. [35] It was extracted in Dec. 2010.

– FourSquare is a location-based social media site. [35] It was extracted in
Dec. 2010.

– Frienster is a general-purpose social-networking site. [35] It was extracted
in Nov. 2010.

– Last.Fm is a music-centered social media site. [35] It was extracted in
Dec. 2010.

– LiveJournal is a site designed to allow users to share their blogs. [35] It
was extracted in Jul. 2010.

– Livemocha is touted as the “world’s largest language community.” [35] It
was extracted in Dec. 2010.

– WikiTalk is a network of individuals who set and received messages while
editing WikiPedia pages. [23] It was extracted in Jan. 2008.

4.1.2 Category B

– Delicious is a social bookmarking site, designed to allow users to share
web bookmarks with their friends. [35] It was extracted in Dec. 2010.

– Digg is a social news website that allows users to share stories with
friends. [35] It was extracted in Dec. 2010.

– EU E-Mail is an e-mail network extracted from a large European Union
research institution. [23] It is based on e-mail traffic from Oct. 2003 to May
2005.

– Hyves is a popular general-purpose Dutch social networking site. [35] It
was extracted in Dec. 2010.

– Yelp is a social networking site that allows users to share product re-
views. [35] It was extracted in Nov. 2010.

4.1.3 Category C

– CA-AstroPh is a an academic collaboration network for Astro Physics
from Jan. 1993 - Apr. 2003. [23]
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– CA-CondMat is an academic collaboration network for Condense Mat-
ter Physics. Samples from 1999 (CondMat99), 2003 (CondMat03), and
2005 (CondMat05) were obtained from the University of Michigan. [26]
A second sample from 2003 (CondMat03a) was obtained from Stanford
University. [23]

– CA-GrQc is a an academic collaboration network for General Relativity
and Quantum Cosmology from Jan. 1993 - Apr. 2003. [23]

– CA-HepPh is a an academic collaboration network for High Energy Physics
- Phenomenology from Jan. 1993 - Apr. 2003. [23]

– CA-HepTh is a an academic collaboration network for High Energy Physics
- Theory from Jan. 1993 - Apr. 2003. [23]

– CA-NetSci is a an academic collaboration network for Network Science
from May 2006.

– Enron E-Mail is an e-mail network from the Enron corporation made
public by the Federal Energy Regulatory Commission during its investiga-
tion. [23]

– URV E-Mail is an e-mail network based on communications of members
of the University Rovira i Virgili (Tarragona). [1] It was extracted in 2003.

– YouTube is a video-sharing website that allows users to establish friend-
ship links. [35] The first sample (YouTube1) was extracted in Dec. 2008.
The second sample (YouTube2) was uploaded to ASU’s Social Computing
Data Repository in Aug. 2010.

4.1.4 Non-Symmetric Networks

– Epinions is a consumer review website that allows members to establish
directed trust relationships. [23]

– WikiVote is a sample of Wikipedia users voting beahavior (who votes for
whom). [23]

– Slashdot formerly had a feature called “Slashdot Zoo” that allowed users
to tag each other as friend or foe. We looked at three samples based on
friendship relationships: one sample from 2008 (Slashdot1) and two from
2009 (Slashdot2-Slashdot3). [23]

4.1.5 Runtime

First, we examined the runtime of the algorithm (see Figure 2 and Table 3).
Our experiments aligned well with our time complexity result (Proposition 3).
For example, a network extracted from the Dutch social-media site Hyves con-
sisting of 1.4 million nodes and 5.5 million directed edges was processed by our
algorithm in at most 12.2 minutes. The often-cited LiveJournal dataset con-
sisting of 2.2 million nodes and 25.6 million directed edges was processed in no
more than 66 minutes - a short time to approximate an NP-hard combinatorial
problem on a large-sized input.
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Fig. 2 m lnn vs. runtime in seconds (log scale, m is number of edges, n is number of nodes).
The relationship is linear with R2 = 0.9015, p = 2.2 · 10−16.

4.1.6 Seed Size

For each network, we performed 10 “integer” trials. In these trials, we set
θ(vi) = min(dini , k) where k was kept constant among all vertices for each
trial and set at an integer in the interval [1, 10]. We evaluated the ability of a
network to promote spreading under the tipping model based on the size of the
set of nodes returned by our algorithm (as a percentage of total nodes). For
purposes of discussion, we have grouped our networks into three categories
based on results (Figure 3 and Table 4). We have also included results for
symmetric networks (Figure 4 and Table 5). In general, online social networks
had the smallest seed sets - 13 networks of this type had an average seed set
size less than 2% of the population (these networks were all in Category A).
We also noticed, that for most networks, there was a linear realtion between
threshold value and seed size.

Category A can be thought of as social networks highly susceptible to
influence - as a very small fraction of initially activated individuals can lead
to activation of the entire population. All were extracted from social media



A Scalable Heuristic for Viral Marketing Under the Tipping Model 11

Fig. 3 Threshold value (assigned as an integer in the interval [1, 10]) vs. size of initial seed
set as returned by our algorithm in our three identified categories of networks (categories A-
C are depicted in panels A-C respectively). Average seed sizes were under 2% for Categorty
A, 2− 10% for Category B and over 10% for Category C. The relationship, in general, was
linear for categories A and B and lograthimic for C. CA-NetSci had the largest Louvain
Modularity and clustering coefficient of all the networks. This likely explains why that
particular network seems to inhibit spreading.
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Fig. 4 Threshold value assigned as both an integer in the range [1, 10] (panel 1) as well as
a fraction of node degree (panel 2) for the non-symmetric networks.

websites. For some of the lower threshold levels, the size of the set of seed
nodes was particularly small. For a threshold of three, 11 of the Category A
networks produced seeds smaller than 0.5% of the total populationa. For a
threshold of four, nine networks met this criteria.

Networks in Category B are susceptible to influence with a relatively small
set of initial nodes - but not to the extent of those in Category A. They had an
average initial seed size greater than 2% but less than 10%. Members in this
group included two general purpose social media networks, two specialty social
media networks, and an e-mail network. Non-symmetric networks generally
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perofrmed somewhat poorer than Category B networks (though in general,
not as poorly as those in Category C). The initial seed sizes for the non-
symmmetric networks ranged from 3% to 29%.

Category C consisted of networks that seemed to hamper diffusion in the
tipping model, having an average initial seed size greater than 10%. This
category included all of the academic collaboration networks, two of the email
networks, and two networks derived from friendship links on YouTube.

We also studied the effects on spreading when the threshold values were
assigned as a specific fraction of each node’s in-degree [20,34], which results in
heterogeneous θi’s across the network. We performed 12 trials for each network.
Thresholds for each trial were based on the product of in-degree and a fraction
in the interval [0.05, 0.60] (multiples of 0.05). The results (Figure 5 and Table 4;
for non-symmertic networks see Figure 4 and Table 5) were analogous to our
integer tests. We also compared the averages over these trials with M and C
and obtained similar results as with the other trials (Figure 14 B).

4.2 Comparison with Centrality Measures

We compared our results with six popular centrality measures: degree, be-
tweenness, closeness, shell number, eigenvector, and PageRank. Here, we de-
fine degree centrality is simply the number of outgoing adjacent nodes. 1 The
intuition behind high betweenness centrality nodes is that they function as
“bottlenecks” as many paths in the network pass through them. Hence, be-
tweenness is a medial centrality measure. Let σst be the number of shortest
paths between nodes s and t and σst(v) be the number of shortest paths be-
tween s and t containing node v. In [17], betweenness centrality for node v is

defined as
∑
s6=v 6=t

σst(v)
σst

. In most implementations, including the ones used
in this paper, the algorithm of [8] is used to calculate betweenness centrality.
Another common measure from the literature that we examined is closeness
[18]. Given node i, its closeness Cc(i) is the inverse of the average shortest
path length from node i to all other nodes in the graph. Intuitively, closeness
measures how “close” it is to all other nodes in a network. Formally, if we de-
fine the shortest path between nodes i to j as function dG(i, j), we can express
the average path length from i to all other nodes as

Li =

∑
j∈V \i dG(i, j)

|V | − 1
. (8)

Hence, the closeness of a node can be formally written as

Cc(i) =
1

Li
=

|V | − 1∑
j∈V \i dG(i, j)

. (9)

1 Note that in the symmetric networks we examined, our empirical results hold for the
number of incoming adjacent edges as well as the total number of adjacent edges.
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Fig. 5 Threshold value (assigned as a fraction of node in-degree as a multiple of 0.05 in
the interval [0.05, 0.60]) vs. size of initial seed set as returned by our algorithm in our three
identified categories of networks (categories A-C are depicted in panels A-C respectively,
categories are the same as in Figure 1). Average seed sizes were under 5% for Categorty A,
1 − 7% for Category B and over 3% for Category C. In general, the relationship between
threshold and initial seed size for networks in all categories was exponential.
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The idea of shell number is based on a core to which a node lies in. A c-core of
a network is the subgraph in which every node is connected to the rest of the
network by at least c edges. A node is assigned a shell number based on the
maximal core that contains it. This value can be derived exactly using shell
decomposition [31]. The eigenvector centrality [6] of a node is assigned based on
the associated entry in the eigenvector of the adjacency matrix corresponding
to the largest real eigenvalue. The PageRank [28] for each node based on the
PageRank of its neighbors. An initial value for rank is considered for each node
and the relationship is then computed iteratively until convergence is reached.
Intuitively, PageRank can be thought of as the importance of a node based
on the importance of its neighbors. We note that shell number, eigenvector,
and PageRank are often associated with diffusion processes. A more complete
discussion of centrality measures can be found in [33].

We evaluated the performance of centrality measures in finding a seed set
by iteratively selecting the most central nodes with respect to a given mea-
sure until the Γθ of that set returns the set of all nodes. Due to the compu-
tational overhead of calculating these centrality measures and the repeated
re-evaluation of Γθ, we limited this comparison to only BlogCatalog3, CA-
HepTh, CA-NetSci, URV E-Mail, and Douban (no betweeness calcualted
for Douban). As with the experiments in the previous section, we studied
threshold settings based on an integer in the interval [1, 10] (see Figure 6) and
as a fraction of incoming neighbors in the interval [0.05, 0.60] (multiples of
0.05, see Figure 8). In general, selecting highly-central nodes is an inefficient
method for finding small seed sets.

In all but the lowest threshold settings, the use of centrality measures for
the integer-threshold trials proved to significantly underperformed when the
method presented in this paper - often returning seed-sets several orders of
magnitude larger and in many cases including the majority of nodes in the
network. Even for the centrality measures outperformed our method in these
trials, the reduction in seed set size was minimal (the greatest reduction in
seed set size experienced in a centrality-measure test over the algorithm of this
paper was 0.09%, while often producing seed sets orders of magnitude greater
than our method). This held even for the centrality measures associated with
diffusion (shell number, eigenvector, and PageRank).

Our tests using fractional-based thresholds tell a slightly different story.
While our method still generally outperformed the centrality measures for the
fractional tests, there were a few cases where the centrality measures fared
better. With BlogCatalog3 all of the centrality measures outperformed our
algorithm in the fraction-based experiments. For that dataset, centrality-based
algorithm consistently outperformed our method finding seed sets with less
members (by 3.13−3.29% of the population, on average). With URV-Email,
many trials that utilized a lower threshold setting outperformed our method,
but never finding a feed set with smaller by more than 8% of the total pop-
ulation. However, in the larger threshold settings, our method consistently
found smaller seeds. For a given centrality measure for this dataset, centrality
measures on average provided poorer results than our algorithm ranged - re-
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Fig. 6 The use of degree, betweenness and closeness to find seed-sets on select networks
when the threshold is set to an integer in the interval [1, 10]. For these trials, centrality
measure returned significantly larger (several orders of magnitude) larger seed sets than our
approach.
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Fig. 7 The use of shell number, Eigenvector, and PageRank to find seed-sets on select
networks when the threshold is set to an integer in the interval [1, 10].
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turning seed sets which were, on average 10.22−67.14% (by overall population)
larger than that returned by our algorithm. Perhaps the most interesting re-
sult among the centrality measures were the PageRank fraction-based tests on
CA-NetSci, which is associated with the largest seed sets. PageRank found
seed sets that were, on average 14.45% smaller (by population) than our ap-
proach. Additionally, though centrality measures outperformed TIP DECOMP
for BlogCatalog3, this does not appear to hold for all social networks as
the seed sets returned using centrality measures for the Douban approaches at
least an order of magnitude increase over our method for nearly every frac-
tional threshold setting for all centrality measures. Hence, we conclude that for
fraction-based thresholds, using centrality measures to find seed sets provides
inconsistent results, and when it fails, it tends to provide a large portion of
the network. A possibility for a practical algorithm that could combine both
methods would be to first run TIP DECOMP, returning some set V ′. Then,
create set V ′′ by selecting the most central nodes until either |V ′| = |V ′′| or
Γθ(V

′′) = V (whichever ensures the lower cardinality for V ′′. If |V ′| = |V ′′|,
return V ′, otherwise return V ′′. For such an approach, we would likely recom-
mend using degree centrality due to its ease of computation and performance
in our experiments. However, we note that highly-central nodes often may not
be realistic targets for a viral-marketing campaign. For instance, it may be
cost-prohibitive to create a seed set consisting of major celebrities in order to
spread the use of a product. As such is a practical concern, we look at the per-
formance of TIP DECOMP when high-degree nodes are removed in the next
section.

4.3 The Speed of the Activation Process and Sets of “Critical Mass”

An important aspect to consider in viral marketing is the speed of the activa-
tion process. We illustrate this speed for several networks under a threshold of
2 as well as a majority threshold (half of each nodes neighbors) in Figure 10.
Interestingly, we found that the size of the initial seed set was not indica-
tive of the speed of spreading. For instance, in BlogCatalog3, a Category A
network (for which our algorithm found a very small seed set) the activation
process proceeded quickly when compared to the others examined. However,
this was also true for CA-NetSci, a Category C network (large seed set).
Conversely, the activation process in the Douban and CA-HepTh networks
(also Category A and C, respectively) proceeded more slowly than the rest.

Another interesting feature we learned in exploring the speed of the ac-
tivation process was that in all of our experiments there was a single time
step where the number of activated nodes increased significantly more than
the other time periods - sometimes by several orders of magnitude (see Fig-
ure 11). We can think of such a set of activated nodes as when the population
reaches a “critical mass” which results in mass adoption in the next interval.
In many cases, such a critical mass is reached early - normally in the first few
time-steps.
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Fig. 8 The use of degree, betweenness and closeness to find seed-sets on select networks
when the threshold is set to an fraction in the interval [0.05, 0.60] (multiples of 0.05).
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Fig. 9 The use of shell number, Eigenvector, and PageRank to find seed-sets on select
networks when the threshold is set to an fraction in the interval [0.05, 0.60] (multiples of
0.05).
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Fig. 10 An examination of several of speed of activation initiated from the seed set using
a threshold of two (panel 1) and a majority threshold (panel 2).

Finding a subset of the population of “critical mass” may be an important
problem in its own right. Though the critical mass point will often be larger
than the seed set found by an algorithm in this paper, we can be assured
that in one time step of the model, the number of individuals reached (with
a certain number of signals from their neighbors) is substantially larger than
the investment. In practice, this could lead to quicker spreading of information
in an advertising campaign, for example. Further, our experiments indicate
that order-of-magnitude critical mass sets exist in several networks. We are
currently conducting further research on this topic.
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Fig. 11 Greatest Percent increase experienced in a single time step (the effect of reaching
“critical mass”) for integer-based and percentage-based thresholds (panel 1 and 2 respec-
tively).

4.4 Effect of Removing High-Degree Nodes

In the last section we noted that high-degree nodes may not always be tar-
getable in a viral marketing campaign (i.e. it may be cost prohibitive to include
them in a seed set). In this section, we explore the affect of removing high-
degree nodes on the size of the seed-set returned by TIP DECOMP. This type
of node removal has also recently been studied in a different context in [5]. In
these trials, we studied all 31 networks and looked at two specific threshold
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settings: an integer threshold of 2 (Figure 12) and a fractional threshold of 0.5
(Figure 13). We then studied the effect of removing up to 50% of the nodes in
order from greatest to least degree.

With an integer threshold of 2, networks in category A still retained a seed-
size (as returned by TIP DECOMP) two orders of magnitude smaller than the
population size up to the removal of 10% of the top degree nodes, and for
many networks this was maintained to 50%. Networks in category B retained
seed sets an order of magnitude smaller than the population for up to 50% of
the nodes removed. For most networks in category C, the seed size remained
about a quarter of the population size up to 15% of the top degree nodes being
removed.

With a fractional threshold of 0.5, we noted that many networks in category
A actually had larger seed sets (as returned by TIP DECOMP) when more high
degree nodes are removed. Further, networks in categories A-B retained seed
sets of at least an order of magnitude smaller than the population in these
tests while most networks in category C retained sizes of about a quarter of
the population.

4.4.1 Seed Size as a Function of Community Structure

In this section, we view the results of our heuristic algorithm as a measurement
of how well a given network promotes spreading. Here, we use this measure-
ment to gain insight into which structural aspects make a network more likely
to be “tipped.” We compared our results with two network-wide measures
characterizing community structure. First, clustering coefficient (C) is defined
for a node as the fraction of neighbor pairs that share an edge - making a
triangle. For the undirected case, we define this concept formally below.

Definition 7 (Clustering Coefficient) Let r be the number of edges be-
tween nodes with which vi has an edge and di be the degree of vi. The clus-

tering coefficient, Ci =
2r

di(di − 1)
.

Intuitively, a node with high Ci tends to have more pairs of friends that are
also mutual friends. We use the average clustering coefficient as a network-wide
measure of this local property.

Second, we consider modularity (M) defined by Newman and Girvan. [27].
For a partition of a network, M is a real number in [−1, 1] that measures the
density of edges within partitions compared to the density of edges between
partitions. We present a formal definition for an undirected network below.

Definition 8 (Modularity [27]) Given partition C = {c1, . . . , cq}, modu-
larity,

M =
1

2m

∑
c∈C

∑
i,j∈c

wij − Pij

where m is the number of undirected edges; wij = 1 if there is an edge between

nodes i and j and wij = 0 otherwise; Pij =
kikj
2m
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Fig. 12 Size of the seed set returned by TIP DECOMP (as a fraction of the popualtion)
as a function of the percent of the highest degree nodes removed from the network with an
integer theshold of 2 for networks in categories A-C.
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The modularity of an optimal network partition can be used to measure
the quality of its community structure. Though modularity-maximization is
NP-hard, the approximation algorithm of Blondel et al. [4] (a.k.a. the “Louvain
algorithm”) has been shown to produce near-optimal partitions.2 We call the
modularity associated with this algorithm the “Louvain modularity.” Unlike
the C, which describes local properties, M is descriptive of the community
level. For the 31 networks we considered, M and C appear uncorrelated (R2 =
0.0538, p = 0.2092).

We plotted the initial seed set size (S) (from our algorithm - averaged
over the 10 threshold settings) as a function of M and C (Figure 14a) and
uncovered a correlation (planar fit,R2 = 0.8666, p = 5.666·10−13, see Figure 14
A). The majority of networks in Category C (less susceptible to spreading)
were characterized by relatively large M and C (Category C includes the top
nine networks w.r.t. C and top five w.r.t. M). Hence, networks with dense,
segregated, and close-knit communities (large M and C) suppress spreading.
Likewise, those with low M and C tended to promote spreading. Also, we note
that there were networks that promoted spreading with dense and segregated
communities, yet were less clustered (i.e. Category A networks Friendster and
LiveJournal both have M ≥ 0.65 and C ≤ 0.13). Further, some networks
with a moderately large clustering coefficient were also in Category A (two
networks extracted from BlogCatalog had C ≥ 0.46) but had a relatively less
dense community structure (for those two networks M ≤ 0.33).

5 Related Work

Tipping models first became popular by the works of [19] and [30] where
it was presented primarily in a social context. Since then, several variants
have been introduced in the literature including the non-deterministic version
of [21] (described later in this section) and a generalized version of [20]. In
this paper we focused on the deterministic version. In [34], the authors look
at deterministic tipping where each node is activated upon a percentage of
neighbors being activated. Dryer and Roberts [15] introduce the MIN-SEED
problem, study its complexity, and describe several of its properties w.r.t.
certain special cases of graphs/networks. The hardness of approximation for
this problem is described in [12]. The work of [3] presents an algorithm for
target-set selection whose complexity is determined by the tree-width of the
graph - though it provides no experiments or evidence that the algorithm can
scale for large datasets. The recent work of [29] proves a non-trivial upper
bound on the smallest seed set.

Our algorithm is based on the idea of shell-decomposition that currently is
prevalent in physics literature. In this process, which was introduced in [31],
vertices (and their adjacent edges) are iteratively pruned from the network
until a network “core” is produced. In the most common case, for some value

2 Louvain modularity was computed using the implementation available from CRANS at
http://perso.crans.org/aynaud/communities/.

http://perso.crans.org/aynaud/communities/
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Fig. 14 (A) Louvain modularity (M) and average clustering coefficient (C) vs. the average
seed size (S). The planar fit depicted is S = 43.374·M+33.794·C−24.940 with R2 = 0.8666,
p = 5.666 · 10−13. (B) Same plot at (A) except the averages are over the 12 percentage-
based threshold values. The planar fit depicted is S = 18.105 ·M + 17.257 ·C − 10.388 with
R2 = 0.816, p = 5.117 · 10−11.
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k, nodes whose degree is less than k are pruned (in order of degree) until no
more nodes can be removed. This process was used to model the Internet in [9]
and find key spreaders under the SIR epidemic model in [22]. More recently, a
“heterogeneous” version of decomposition was introduced in [2] - in which each
node is pruned according to a certain parameter - and the process is studied
in that work based on a probability distribution of nodes with certain values
for this parameter.

5.1 Notes on Non-Deterministic Tipping

We also note that an alternate version of the model where the thresholds are
assigned randomly has inspired approximation schemes for the corresponding
version of the seed set problem.[21,24,13] Work in this area focused on finding
a seed set of a certain size that maximizes the expected number of adopters.
The main finding by Kempe et al., the classic work for this model, was to
prove that the expected number of adopters was submodular - which allowed
for a greedy approximation scheme. In this algorithm, at each iteration, the
node which allows for the greatest increase in the expected number of adopters
is selected. The approximation guarantee obtained (less than 0.63 of optimal)
is contingent upon an approximation guarantee for determining the expected
number of adopters - which was later proved to be #P -hard. [13] Recently,
some progress has been made toward finding a guarantee [7]. Further, the
simulation operation is often expensive - causing the overall time complexity
to be O(x · n2) where x is the number of runs per simulation and n is the
number of nodes (typically, x > n). In order to avoid simulation, various
heuristics have been proposed, but these typically rely on the computation
of geodesics - an O(n3) operation - which is also more expensive than our
approach.

Additionally, the approximation argument for the non-deterministic case
does not directly apply to the original (deterministic) model presented in
this paper. A simple counter-example shows that sub-modularity does not
hold here. Sub-modularity (diminishing returns) is the property leveraged by
Kempe et al. in their approximation result.

5.2 Note on an Upper Bound of the Initial Seed Set

Very recently, we were made aware of research by Daniel Reichman that proves
an upper bound on the minimal size of a seed set for the special case of
undirected networks with homogeneous threshold values. [29] The proof is
constructive and yields an algorithm that mirrors our approach (although
Reicshman’s algorithm applies only to that special case). We note that our
work and the work of Reichman were developed independently. We also note
that Reichman performs no experimental evaluation of the algorithm.
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Given undirected network G where each node vi has degree di and the
threshold value for all nodes is k, Reichman proves that the size of the min-
imal seed set can be bounded by

∑
i min{1, k

di+1}. For our integer tests, we
compared our results to Reichman’s bound. Our seed sets were considerably
smaller - often by an order of magnitude or more. See Figure 15 for details.

6 Conclusion

As recent empirical work on tipping indicates that it can occur in real social
networks,[11,36] our results are encouraging for viral marketers. Even if we
assume relatively large threshold values, small initial seed sizes can often be
found using our fast algorithm - even for large datasets. For example, with the
FourSquare online social network, under majority threshold (50% of incom-
ing neighbors previously adopted), a viral marketeer could expect a 297-fold
return on investment. As results of this type seem to hold for many online
social networks, our algorithm seems to hold promise for those wishing to “go
viral.” An important open question to address in future work is if a similar
decomposition-based approach is viable for finding seed sets under other dif-
fusion models, such as the independent cascade model [21] and evolutionary
graph theory [25] as well as probabilistic variants of the tipping model and
diffusion processes on multi-modal networks [32]. Exploring other models can
lead to the development of decomposition algorithms in domains where social
behavior is more dynamic such as cell-phone networks [16,10].
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(NEU), Sameet Sreenivasan (RPI), Boleslaw Szymanski (RPI), Patrick Roos (UMD), John
James (USMA), and Chris Arney (USMA) for their discussions relating to this work. Fi-
nally, we would also like to thank Megan Kearl, Javier Ivan Parra, and Reza Zafarani of
ASU for their help with some of the datasets. The authors are supported under by the
Army Research Office (project 2GDATXR042) and the Office of the Secretary of Defense
(project F1AF262025G001). The opinions in this paper are those of the authors and do not
necessarily reflect the opinions of the funders, the U.S. Military Academy, or the U.S. Army.

References

1. Arenas, A.: Network data sets (2012). URL http://deim.urv.cat/~aarenas/data/

welcome.htm

2. Baxter, G.J., Dorogovtsev, S.N., Goltsev, A.V., Mendes, J.F.F.: Heterogeneous k-core
versus bootstrap percolation on complex networks. Phys. Rev. E 83 (2011)

3. Ben-Zwi, O., Hermelin, D., Lokshtanov, D., Newman, I.: Treewidth governs the com-
plexity of target set selection. Discrete Optimization 8(1), 87–96 (2011)

4. Blondel, V., Guillaume, J., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities
in large networks. Journal of Statistical Mechanics: Theory and Experiment 2008,
P10,008 (2008)

5. Boldi, P., Rosa, M., Vigna, S.: Robustness of social and web graphs to node removal.
Social Network Analysis and Mining pp. 1–14 (2013). DOI 10.1007/s13278-013-0096-x.
URL http://dx.doi.org/10.1007/s13278-013-0096-x

http://deim.urv.cat/~aarenas/data/welcome.htm
http://deim.urv.cat/~aarenas/data/welcome.htm
http://dx.doi.org/10.1007/s13278-013-0096-x


30 Paulo Shakarian et al.

Fig. 15 Integer threshold values vs. the seed size divided by Reichman’s upper bound [29]
the three categories of networks (categories A-C are depicted in panels A-C respectively).
Note that in nearly every trial, our algorithm produced an initial seed set significantly
smaller than the bound - in many cases by an order of magnitude or more.



A Scalable Heuristic for Viral Marketing Under the Tipping Model 31

6. Bonacich, P.: Factoring and weighting approaches to status scores and clique iden-
tification. The Journal of Mathematical Sociology 2(1), 113–120 (1972). DOI
10.1080/0022250X.1972.9989806

7. Borgs, C., Brautbar, M., Chayes, J., Lucier, B.: Influence maximization in social net-
works: Towards an optimal algorithmic solution (2012)

8. Brandes, U.: A faster algorithm for betweenness centrality. Journal of Mathematical
Sociology 25(163) (2001)

9. Carmi, S., Havlin, S., Kirkpatrick, S., Shavitt, Y., Shir, E.: From the Cover: A model of
Internet topology using k-shell decomposition. PNAS 104(27), 11,150–11,154 (2007).
DOI 10.1073/pnas.0701175104

10. Catanese, S., Ferrara, E., Fiumara, G.: Forensic analysis of phone call networks. Social
Network Analysis and Mining 3(1), 15–33 (2013). DOI 10.1007/s13278-012-0060-1.
URL http://dx.doi.org/10.1007/s13278-012-0060-1

11. Centola, D.: The Spread of Behavior in an Online Social Network Experiment. Science
329(5996), 1194–1197 (2010). DOI 10.1126/science.1185231

12. Chen, N.: On the approximability of influence in social networks. SIAM J. Discret.
Math. 23, 1400–1415 (2009)

13. Chen, W., Wang, C., Wang, Y.: Scalable influence maximization for prevalent viral
marketing in large-scale social networks. In: Proceedings of the 16th ACM SIGKDD
international conference on Knowledge discovery and data mining, KDD ’10, pp. 1029–
1038. ACM, New York, NY, USA (2010)

14. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, sec-
ond edn. MIT Press (2001). URL http://mitpress.mit.edu/catalog/item/default.

asp?tid=8570&#38;ttype=2

15. Dreyer, P., Roberts, F.: Irreversible -threshold processes: Graph-theoretical threshold
models of the spread of disease and of opinion. Discrete Applied Mathematics 157(7),
1615 – 1627 (2009). DOI 10.1016/j.dam.2008.09.012

16. Dyagilev, K., Mannor, S., Yom-Tov, E.: On information propagation in mobile call
networks. Social Network Analysis and Mining pp. 1–21 (2013). DOI 10.1007/
s13278-013-0100-5. URL http://dx.doi.org/10.1007/s13278-013-0100-5

17. Freeman, L.C.: A set of measures of centrality based on betweenness. Sociometry 40(1),
pp. 35–41 (1977). URL http://www.jstor.org/stable/3033543

18. Freeman, L.C.: Centrality in social networks conceptual clarification. Social Net-
works 1(3), 215 – 239 (1979). DOI 10.1016/0378-8733(78)90021-7. URL http:

//www.sciencedirect.com/science/article/pii/0378873378900217

19. Granovetter, M.: Threshold models of collective behavior. The American Journal of
Sociology (6), 1420–1443. DOI 10.2307/2778111

20. Jackson, M., Yariv, L.: Diffusion on social networks. In: Economie Publique, vol. 16,
pp. 69–82 (2005)

21. Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through a
social network. In: KDD ’03: Proceedings of the ninth ACM SIGKDD international
conference on Knowledge discovery and data mining, pp. 137–146. ACM, New York,
NY, USA (2003). DOI http://doi.acm.org/10.1145/956750.956769

22. Kitsak, M., Gallos, L.K., Havlin, S., Liljeros, F., Muchnik, L., Stanley, H.E., Makse,
H.A.: Identification of influential spreaders in complex networks. Nat Phys (11), 888–
893. DOI 10.1038/nphys1746

23. Leskovec, J.: Stanford network analysis project (snap) (2012). URL http://snap.

stanford.edu/index.html

24. Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J., Glance, N.: Cost-
effective outbreak detection in networks. In: KDD ’07: Proceedings of the 13th ACM
SIGKDD international conference on Knowledge discovery and data mining, pp. 420–
429. ACM, New York, NY, USA (2007). DOI http://doi.acm.org/10.1145/1281192.
1281239

25. Lieberman, E., Hauert, C., Nowak, M.A.: Evolutionary dynamics on graphs. Nature
433(7023), 312–316 (2005). DOI 10.1038/nature03204. URL http://dx.doi.org/10.

1038/nature03204

26. Newman, M.: Network data (2011). URL http://www-personal.umich.edu/~mejn/

netdata/

http://dx.doi.org/10.1007/s13278-012-0060-1
http://mitpress.mit.edu/catalog/item/default.asp?tid=8570&#38;ttype=2
http://mitpress.mit.edu/catalog/item/default.asp?tid=8570&#38;ttype=2
http://dx.doi.org/10.1007/s13278-013-0100-5
http://www.jstor.org/stable/3033543
http://www.sciencedirect.com/science/article/pii/0378873378900217
http://www.sciencedirect.com/science/article/pii/0378873378900217
http://snap.stanford.edu/index.html
http://snap.stanford.edu/index.html
http://dx.doi.org/10.1038/nature03204
http://dx.doi.org/10.1038/nature03204
http://www-personal.umich.edu/~mejn/netdata/
http://www-personal.umich.edu/~mejn/netdata/


32 Paulo Shakarian et al.

27. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks.
Phys. Rev. E 69(2), 026,113 (2004). DOI 10.1103/PhysRevE.69.026113

28. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: Bringing
order to the web. In: Proceedings of the 7th International World Wide Web Conference,
pp. 161–172 (1998)

29. Reichman, D.: New bounds for contagious sets. Discrete Mathematics (in press) (0), –
(2012). DOI 10.1016/j.disc.2012.01.016

30. Schelling, T.C.: Micromotives and Macrobehavior. W.W. Norton and Co. (1978)
31. Seidman, S.B.: Network structure and minimum degree. Social Networks 5(3), 269 –

287 (1983). DOI 10.1016/0378-8733(83)90028-X
32. Shakarian, P., Subrahmanian, V., Sapino, M.L.: Using generalized annotated programs

to solve social network optimization problems. In: M. Hermenegildo, T. Schaub (eds.)
Technical Communications of the 26th International Conference on Logic Program-
ming, Leibniz International Proceedings in Informatics (LIPIcs), vol. 7, pp. 182–
191. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2010).
DOI http://dx.doi.org/10.4230/LIPIcs.ICLP.2010.182. URL http://drops.dagstuhl.

de/opus/volltexte/2010/2596

33. Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications, 1 edn.
No. 8 in Structural analysis in the social sciences. Cambridge University Press (1994)

34. Watts, D.J., Dodds, P.S.: Influentials, networks, and public opinion formation. Journal
of Consumer Research 34(4), 441–458 (2007). URL http://www.journals.uchicago.

edu/doi/abs/10.1086/518527

35. Zafarani, R., Liu, H.: Social computing data repository at ASU (2009). URL http:

//socialcomputing.asu.edu

36. Zhang, L., Marbach, P.: Two is a crowd: Optimal trend adoption in social networks.
In: Proceedings of International Conference on Game Theory for Networks (GameNets)
(2011)

http://drops.dagstuhl.de/opus/volltexte/2010/2596
http://drops.dagstuhl.de/opus/volltexte/2010/2596
http://www.journals.uchicago.edu/doi/abs/10.1086/518527
http://www.journals.uchicago.edu/doi/abs/10.1086/518527
http://socialcomputing.asu.edu
http://socialcomputing.asu.edu


A Scalable Heuristic for Viral Marketing Under the Tipping Model 33

Table 1 Information on the networks in Categories A, B, and C.



34 Paulo Shakarian et al.

N
am

e

#
 N

o
d

e
s

#
 E

d
ge

s

A
vg

. D
e

gr
e

e

So
u

rc
e

Ty
p

e

Epinions 75879 508837 6.71 SNAP SocMedia

Wiki-Vote 7115 103689 14.57 SNAP SocMedia

Slashdot1 70491 396378 5.62 SNAP SocMedia

Slashdot2 74899 422349 5.64 SNAP SocMedia

Slashdot3 75144 425072 5.66 SNAP SocMedia

NON-SYMMERTRIC

Table 2 Information on non-symmetric networks.
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BlogCatalog1 0.44 Delicious 2.33 CA-AstroPh 0.03 Epinions 0.05

BlogCatalog2 0.39 Digg 9.32 CA-CondMat03 0.04 Wiki-Vote 0.01

BlogCatalog3 0.03 EU E-Mail 0.51 CA-CondMat03a 0.03 Slashdot1 0.04

Buzznet 0.64 Hyves 11.66 CA-CondMat05 0.06 Slashdot2 0.05

Douban 0.24 Yelp 2.85 CA-CondMat99 0.02 Slashdot3 0.05

Flickr 1.22 CA-GrQc 0.00

Flixster 49.61 CA-HepPh 0.02

FourSquare 4.48 CA-HepTh 0.01

Frienster 212.78 CA-NetSci 0.00

Last.Fm 12.53 Enron E-Mail 0.05

LiveJournal 64.17 URV E-Mail 0.00

Livemocha 0.58 YouTube1 0.02

WikiTalk 33.47 YouTube2 9.73

CAT A CAT B CAT C NON-SYM

Table 3 Runtime data on the datasets used in the experiments.
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Table 4 Regression analysis and network-wide measures for the networks in Categories A,
B, and C.
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Table 5 Regression analysis and network-wide measures for the non-symmetric networks.
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