
27 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Reducing Seed Noise in Personalized PageRank

Published version:

DOI:10.1007/s13278-015-0309-6

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1530123 since 2017-05-18T13:49:34Z

Noname manuscript No.
(will be inserted by the editor)

Reducing Seed Noise in Personalized PageRank

Shengyu Huang* · Xinsheng Li* · K.
Selçuk Candan · Maria Luisa Sapino

Received: date / Accepted: date

Abstract Network based recommendation systems leverage the topology of
the underlying graph and the current user context to rank objects in the
database. Random-walk based techniques, such as PageRank, encode the
structure of the graph in the form of a transition matrix of a stochastic process
from which the significances of the nodes in the graph are inferred. Personal-
ized PageRank (PPR) techniques complement this with a seed node set which
serves as the personalization context. In this paper, we note (and experimen-
tally show) that PPR algorithms that do not differentiate among the seed
nodes may not properly rank nodes in situations where the seed set is incom-
plete and/or noisy. To tackle this problem, we propose alternative robust per-
sonalized PageRank (RPR) strategies, which are insensitive to noise in the set
of seed nodes and in which the rankings are not overly biased towards the seed
nodes. In particular, we show that novel teleportation discounting and seed-set
maximal PPR techniques help eliminate harmful bias of individual seed nodes
and provide effective seed differentiation to lead to more accurate rankings.
We also show that the proposed techniques lead to efficient implementations,
where existing approximation algorithms and/or parallel implementations for
computing the PPR scores can be easily leveraged. Moreover, the proposed
formulations are reuse-promoting in the sense that, it is possible to divide
the work relative to individual seed nodes and cache the intermediary results

This paper is the extended version of Shengyu Huang, Xinsheng Li, K. Selçuk Candan,
Maria Luisa Sapino. “Can you really trust that seed?” : Reducing the Impact of Seed Noise
in Personalized PageRank. International Conference on Advances in Social Network Analy-
sis and Mining (ASONAM). Beijing, China. 2014. ”*” indicates student authors with equal
contributions.

Shengyu Huang, Xinsheng Li, K. Selçuk Candan
Arizona State University
E-mail: {shengyu.huang,lxinshen,candan}@asu.edu

Maria Luisa Sapino
University of Torino
E-mail: marialuisa.sapino@unito.it

2 Shengyu Huang* et al.

obtained during the computation, and especially in systems with large query
throughputs, it may be possible to cluster queries based on the partial overlaps
between the seed sets and reduce the overall robust PPR computation costs.
Experiment results show that the proposed techniques are efficient and highly
effective in improving recommendations and eliminating unwanted bias due to
imperfections in the seed set.

1 Introduction

How a given pair of nodes in a social network are related to each other re-
flects the underlying network topology. Recommendation systems often use
the analysis of the structure of a given data and/or social graph, relative to
the user’s current context, to generate rankings and recommendations [22].

Significance of a node in a graph needs to reflect both the topology of
the graph and the application semantics and measures: The betweenness mea-
sure [43] for example aims to quantify whether deleting the node would dis-
connect or disrupt the graph. The centrality/cohesion [9] measures quantify
how close to a clique the given node and its neighbors are. Other authority,
prestige, and prominence measures [5, 9, 10] measure the significance of the
node in the graph through eigen-analysis or random walks. For example, the
well-known PageRank algorithm [10] associates an importance score to each
node relying on random walks: Let us consider a weighted, directed graph
G(V,E), where the weight of the edge ej ∈ E is denoted as wj(≥ 0) and∑
ej∈outedge(vi) wj = 1.0. The PageRank score of nodes V is the stationary

distribution of a random walk on G, denoted with a vector p:

p = (1− β)TG × p + βv, (1)

where TG denotes the transition matrix corresponding to the graph G (and
the underlying edge weights), v is a so-called teleportation vector, where all
entries are 1

‖V ‖ and β, transportation probability, is probability of the random

walk with teleporting.
An early attempt to contextualize the PageRank scores was the topic sen-

sitive PageRank [24] approach which adjusts the PageRank scores of the nodes
by assigning the teleportation probabilities in vector j in a way that reflects
the graph nodes’ degrees of match to a given search topic. In many appli-
cations, however, the context relevant to the recommendation is defined not
through an explicit query, but a subset of the nodes (often referred to as the
“seed nodes”) in the graph. Personalized PageRank (PPR) [5, 14], for exam-
ple, reflects a user’s interest by modifying the teleportation vector taking into
account a given set of important nodes which are the target of the random
jumps: given a set of nodes S ⊆ V , instead of jumping to a random node
in V with probability β, the random walk jumps to one of the nodes in the
seed set, S, given by the user. More specifically, if we denote the Personalized
PageRank (PPR) scores of the nodes in V with a vector π, then

π = (1− β)TG × π + βs, (2)

Reducing Seed Noise in Personalized PageRank 3

Fig. 1 An example interface enabling the user to explicitely eliminate outliers (e.g., a book
purchased as a gift to a friend) in generating recommendations; such explicit corrections are
not feasible in all applications of social networks

Rank Statistics of 9 Noisy Seeds w/o Seed Differentiation
(out of 49 Seeds in 2500 Movies)

Best Rank Avg. Rank Worst Rank

18 42.9 52

Table 1 Bias and lack of seed differentiation in PPR scores: most of the 49 seeds (out of
2500 movies) have very high PPR ranks, even if they are outliers in the seed set

where s is a re-seeding vector, such that if vi ∈ S, then s[i] = 1
‖S‖ and s[i] = 0,

otherwise.

1.1 Problem - Noisy Seed Sets

The above formulation of PPR assumes that all seeds are equally important
in characterizing the user’s interest. This, however, may not always be the
case, since in practice, the user feedback is often incomplete and noisy [11]
(Figure 1). Unfortunately unless (a) each individual seed node is a good repre-
sentative for the entire seed set, (b) the user/system was successful in including
all seed nodes relevant for defining the current user context, and (c) most im-
portantly, the user/system did not include any outlier nodes in the seed set,
the resulting rankings might be biased and might contain undesirable arti-
facts, such as movies with low ratings, having high PPR rankings. Consider
the following example:

Example 1 (Impact of the Noise in the Seed Set) Table 1 shows the PPR scores
and ranks of the noisy seed nodes in a movie graph (see Section 5 for more
details about this data set) for a sample user. In this example, we construct
an imperfect seed set as follows: we select a random user and include in the
seed set 40 movies rated “↑” (for “like”) and 9 movies rated “↓” (for “dislike”)
by this user (out of 81 movies rated ↑ and 25 movies rated ↓ by this user).

Table 1 studies the relationship between the original user rating and the
PPR ranking. As we see here, while as expected the average PPR rankings of

4 Shengyu Huang* et al.

Rank Statistics of 9 Noisy Seeds with Seed Differentiation
(out of 49 Seeds in 2500 Movies)

Best Rank Avg. Rank Worst Rank

94 1109.8 1568

Table 2 Seed differentiation and bias elimination through robust personalized PageRank
(RPR) scores: in the same situation as in Table 1, the average rating of the noisy seeds is
greater than 1000 out of 2500 movies

the 9 noisy seed movies is poor among the rankings of the seed movies (∼ 43
out of 52), it is also true that all the seed movies (including the 9 ↓-rated
outlier movies) rank highly (i.e., better than 53 out of 2500). �

Note that, while we often do not care about the ranks of the seed movies,
high PPR-ranking of ↓-rated seeds implies that those movies neighboring these
noisy seeds are also likely to be ranked highly, which is generaly undesirable.

1.2 Our Contributions: Robust Personalized PageRank (RPR)

Intuitively, a noisy seed (provided by the user or selected by the system) does
not properly reflect the user’s focus in that it does not fit in the context
defined by the seed set as a whole. The above example illustrates that a poor
seed may overestimate the rankings of its (equally poor) neighbors in the final
ranking. This is primarily due to (a) Teleportation-bias: Firstly, as discussed
in Section 1, the teleportation-vector based seeding algorithms jump on the
seed set, S, relatively often (the common transportation probability, β, is
0.15) and the size of the seed set is often much smaller relative to the size
of the data graph: as a result, the PPR value of the least significant seed
node will be at least β

|S| , which is likely to be much higher than the PPR

of non-seed nodes in the graph. (b) Need for seed differentiation: Secondly, as
we commented above, the negative impact of the teleportation-bias can be
alleviated if the teleportation rates to the seeds can be differentiated, but this
requires a way to identify which seeds are truly better than others as this
information is not available a priori1:

In this paper, we first propose techniques to eliminate teleportation-bias
and/or provide seed differentiation:

– First and foremost, we discuss how the node rankings can be negatively
affected by possible incompleteness and/or imperfection in the seeds set,
and we experimentally establish that the conventional PPR metrics might
not properly differentiate seed nodes in a graph.

– Secondly, we propose alternative Robust personalized PageRank (RPR)
strategies, (a) which are insensitive to noise in the set of seed nodes (and
thus differentiate seeds well) and (b) in which the rankings are not overly
biased towards the seed nodes (Table 2).

1 Otherwise the seed set would have been constructed differently

Reducing Seed Noise in Personalized PageRank 5

In particular, we propose novel teleportation discounting and seed-set maximal
PPR techniques that can help eliminate harmful bias of individual seed nodes
and provide effective seed differentiation to lead to more accurate rankings.
Moreover, we also show that

– these can be obtained highly efficiently, if necessary, leveraging existing
approximation algorithms [2,4,14,17,21,23,41] and/or parallel implemen-
tations [3, 32] for computing the PPR scores,

– the proposed formulations are reuse-promoting in the sense that, it is pos-
sible to divide the work relative to individual seed nodes and cache the
intermediary results obtained during the computation – these cached re-
sults can then be reused for future queries sharing seed nodes, and

– especially in systems with large query throughputs, it may be possible to
cluster queries based on the partial overlaps between the seed sets and,
thus, significantly reduce the overall robust PPR computation costs.

1.3 Structure of this Paper

In the next section, we discuss the related work. In Section 3, we first formally
introduce the problem and then present our solutions for seed differentiation,
seed-bias elimination, and Robust personalized PageRank (RPR) computation.
We propose four methods to solve this problem: PPR with global seed rank-
ing (PPR-G), teleportation-discounted PPR (RPR-1), seed-set maximal PPR
(RPR-2) and teleportation-discounted and seed-set maximal PPR(RPR-3). In
Section 4, we discuss optimization and parallelization opportunities. First, we
optimize the seed set maximal PPR problem by formulating it into a set of
linear equations. We also discuss how to re-use intermediate results for efficient
incremental computations. We next show that RPR queries can not only be
approximated by relying on existing approximate PPR solutions, but (as we
later show it experimentally) the proposed teleportation-discounting strategy
can further improve the robustness of the RPR against inaccuracies due to
graph partitioning. In this section, we also propose a multi-query strategy for
high-throughput systems where RPR results are computed collectively for a
set of PPR queries together. In Section 5, we evaluate the proposed robust per-
sonalized PageRank schemes for different data sets under different scenarios
in terms of recommendation effectiveness, seed differentiation power, seed-bias
elimination and efficiency. In Section 6, we conclude the paper.

2 Related Works

2.1 Node Significance

As described in the introduction, significance of a node in a graph needs to
reflect both the topology of the graph and the application semantics. Measures
like betweenness [43], centrality/cohesion [9], and others (including authority,

6 Shengyu Huang* et al.

prestige, and prominence measures [5,9,10]) help quantify how significant any
node is on a given graph under different assumptions of significance.

Many of these measures recognize that a node is more significant if it is
reachable from many nodes in the graph through many short paths. Since
enumerating all paths among the graph nodes would require exponential time
in the size of the graph, Random-walk based techniques encode the struc-
ture of the network in the form of a transition matrix of a stochastic process
from which the node significance can be inferred. For example, the well-known
PageRank algorithm [10] associates an importance score to each node relying
on random walks: the PageRank score of nodes of the graph is the stationary
distribution of a random walk on the graph. Another example is the Katz index
where the significance vector, r , can be computed by solving r = βAG(r+1),
given a binary adjacency matrix, AG, and an attenuation factor, β [19, 26].

2.2 Context-Sensitive Node Significance and Personalization

As also briefly discussed in the introduction, an early attempt to contextualize
the PageRank scores was the topic sensitive PageRank [24] approach: here, the
PageRank scores of the nodes were contextualized by varying the probabilities
underlying the stochastic process in a way that reflects the nodes match to a
given search topic.

In many applications, the context relevant to the recommendation is de-
fined through a subset of the nodes (often referred to as the “seed nodes”) in
the graph and one needs to measure how related a given node in the graph is
to the seed nodes. Naturally, how two nodes are related to each other reflects
the topology of the graph G. Path-length based definitions, such as those pro-
posed by [7, 16, 34, 42, 44, 45] help capture the relatedness of a pair of nodes
solely based on the properties of the nodes and edges on the shortest path
between the pair. [12] and [13] were among the first works which recognized
that random-walks can also be used for measuring the significance of the graph
nodes relative to a given seed node set, S ⊆ V : authors observed that, if one
constructs a random-walk graph such that transition probabilities represent
the separation between the seed nodes in the graph then the random-walk
would spend more time on nodes that are closer to the seed nodes in S. More
specifically, in [12] the authors proposed to construct a transition matrix, TS ,
where edges leading away from the seed nodes are weighted less than those
edges leading towards the seed nodes. Consequently, in this scheme, a node
with a high connectivity but separated from the seed nodes in too many hops
may be less significant within the context of seed nodes. In fact, a node which
both has a high connectivity and few hops away from the seed nodes will have
the highest convergence score. In other words, the convergence probabilities
of the nodes capture both (a) the separations among the seeds and the graph
nodes and (b) the connectivity of the graph nodes relative to nodes in S.

Note that there are other random walk based approaches to personaliza-
tion: [15,20,33,37], for example, rely on a hitting time based approach, where

Reducing Seed Noise in Personalized PageRank 7

the hitting time is defined as the expected number of steps a random walk
from the source vertex to the destination vertex will take, for query sugges-
tion. Another approach to contextualizing PageRank scores is to use the PPR
techniques [5, 14, 25, 39, 40] discussed in Section 1. One key advantage of this
teleportation vector modification based approach over modifying the transi-
tion matrix, as in [12], is that the term β (in Equation 2) can be used to
directly control the degree of seeding (or personalization) of the PPR score. In
fact, these personalized random-walk and PageRank based measures of node
significance have been shown to be highly effective in many prediction and
recommendation applications [1, 29], where it is necessary to rank the nodes
of the graph relative to a given set of (seed) nodes that represent the user’s
interest. Therefore, in this paper, we rely on this PPR based formulation of
personalized, context-sensitive node significance.

2.2.1 Obtaining PageRank and Personalized PageRank Scores

Despite its effectiveness in prediction and recommendation applications, how-
ever, the use of personalized PageRank for large graphs is difficult due to its
high computation cost.

One way to obtain PageRank and Personalized PageRank scores is to
mathematically solve for p and π in Equations 1 and 2, respectively, math-
ematically [6]. Alternatively, PowerIteration [27] or using iterative approxi-
mations [14, 30], which explicitly simulate the dissemination of probability
mass by repeatedly applying the transition process to an initial distribu-
tion π0 until a convergence criterion is satisfied. Recent advances on PPR
computation include top-k and approximate personalized PageRank algo-
rithms [2, 4, 14,17,21,23,41] and parallelized implementations on MapReduce
or Pregel based systems [3, 32, 36, 38]. The FastRWR algorithm [41], for ex-
ample partitions the graph into subgraphs and indexes partial intermediary
solutions. Given a seed node set S then relevant intermediary solutions are
combined to quickly solve for approximate PPR scores. Naturally, there is
a trade-off between the number of partitions created for the input graph G
and the accuracy: the higher the number of partitions, the faster the run-
time execution (and smaller the memory requirement), but the higher the
drop in accuracy. Recently, [31] proposed a fast Personalized PageRank al-
gorithm: firstly the graph is decomposed into two parts: a core part which
behaves like an expander graph and thus making the convergence of an itera-
tive method very fast, and an almost a tree part. Authors suggest to rely on
LU decomposition [18], which is a matrix factorization of the form A = LU,
where L is a lower triangular matrix with unit diagonals and U is an upper
triangular matrix. For the tree part and the result is used as a precondition
which accelerates iterative solution on the rest of graph significantly. Finally
they rely on the generalized minimal residual method to solve the problem
for the entire graph. Also recently, [8] proposed a sublinear time Personalized
PageRank(PPR) computation which identifies a set of nodes that, with high
probability, contains all nodes with PageRank score at least ∆. Their approach

8 Shengyu Huang* et al.

has two main parts: firstly they propose a local algorithm for approximating
PPR values based on a careful simulation of random walks from the restart
nodes; they also propose a multi-scale matrix sampling algorithm on the PPR
result matrix. [28] proposed an alternative locality-sensitive, re-use promoting,
approximate Personalized PageRank (LR-PPR) algorithm for efficiently com-
puting the PPR values relying on the localities of the given seed nodes on the
graph: The LR-PPR algorithm is (a) locality sensitive in the sense that it re-
duces the computational cost of the PPR computation process by focusing on
the local neighborhoods of the seed nodes and is (b) re-use promoting in that
instead of performing a monolithic computation for the given seed node set us-
ing the entire graph, LR-PPR divides the work into localities of the seeds and
caches the intermediary results obtained during the computation. The robust
personalized PageRank formulations proposed in this paper are also re-use
promoting in the same sense, though they rely on a different mechanism for
dividing the work relative to individual seed nodes to support caching and
reuse of the intermediary results obtained during the computation.

3 Robust Personalized PageRank

Before presenting the proposed solutions for seed-bias elimination and Ro-
bust personalized PageRank (RPR) computation, let us briefly recall that the
personalized PageRank scores of the nodes in G are captured using a vector π,

π = (1− β)TG π + βs,

where s is a re-seeding vector, such that if vi ∈ S, then s[i] = 1
‖S‖ and s[i] = 0,

otherwise. Note that the above stationary state equation can be rewritten as

(I− (1− β)TG) π = βs,

which (since the s is known a priori) corresponds to a set of linear equations,
which can be solved for π, either mathematically [6] or using iterative approxi-
mations [14,30]. Intuitively, since at each step, the random-walk has a non-zero
probability of jumping back to the seed nodes from its current position in the
graph, the nodes closer to the nodes in S will have larger stationary scores
than they would have had if, during teleportation, the random walk jumped
randomly in the entire graph.

As we discussed in Sections 1.1 and 1.2, PPR solutions cannot properly
handle noise that may exist among the seed nodes and this may negatively
affect the node rankings in situations where the seed set is (a) incomplete
and/or (b) imperfect/noisy. Since the seed nodes are visited uniformly during
the teleportation process, the conventional PPR scores rely on an inherent
assumption that all seed nodes are equally good, at least in terms of being
candidates for restarting points of the random-walk. In scenarios where we
cannot assume that the seed set is noise free, however, the assumption that
all seed nodes are equally good candidates for teleportation may not be valid.

Reducing Seed Noise in Personalized PageRank 9

Therefore, addressing the problem of noisy seeds through non-uniform tele-
portation to the seed nodes requires a mechanism to distinguish among the
nodes in the seed set, S.

3.1 PPR-G: PPR with Global Seed Ranking

A first (and as we see later, mostly ineffective) attempt to differentiate among
the seeds might be to consider the global properties of the nodes in the seed
set. One relatively straightforward way to achieve this is to first measure the
significance of the individual seed nodes in the overall graph, G, (using for
example PageRank) and, then, modulate the teleportation rates onto the seed
nodes based on the relative significance values of the seeds; i.e., instead of
selecting a seed node uniformly randomly when transporting, we could select
the seed in such a way that those seeds that are more significant in S have a
higher likelihood of being chosen as the restart points.

In other words, we can compute the PPR scores with global seed ranking
(also referred to as PPR-G scores) as follows: Given a graph, G(V,E), and a
seed node set S, let p be the PageRank scores computed by solving Equation 1.
Then, the PPR-G scores, g, are obtained by solving

g = (1− β)TG g + βs2,

where s2 is a re-seeding vector, such that for each vi /∈ S, s2[i] = 0, and for

each vi ∈ S, s2[i] = p[i]∑
vj∈S

p[j] .

As we later see in Section 5, however, in many cases, simply modifying the
teleportation rates of the seed nodes based on the global significances of the
nodes in the seed set does not properly eliminate seed-bias.

3.2 RPR-1: Teleportation-Discounted PPR

In the PPR formulation, the seed and non-seed nodes have different contribu-
tors to their final scores. For the non-seed nodes, the only contributor to their
PPR scores is the number of times they are visited during the regular random-
walk process. On the other hand, for the seed nodes, both (a) the number of
times they are visited during the regular random-walk process and (b) the
number of times they are selected as a teleportation destination for random-
walk restart contribute to the PPR scores; we refer to these as the random-walk
contribution (rw-PPR) and teleportation contribution (t-PPR), respectively. As
described above, for non-seed nodes, the value of t-PPR score is 0.0.

Our first observation is that the t-PPR score of a seed node is exactly
β/|S| for each seed and, thus, a seed node will have at least β/|S| overall PPR
score, even if it is an outlier in the overall context defined by the seed set, S.
Therefore, the first proposal to increase robustness of the PPR scores against
noise in the the seed set S is to discount the teleportation contributions from
the PPR scores.

10 Shengyu Huang* et al.

A

B

C A

B

C

(a) A is under-accounted rela-

tive to B and C if we discount

teleportations

(b) A is not under-accounted

when teleportation scores are

discounted

Fig. 2 (a) Discounting teleportation scores would cause under-accounting of A relative to
B and C. (b) If we add self-loops to nodes, when A is selected as a re-start point, A will
not be under-accounted relative to its neighbors

3.2.1 Teleportation-Discounting

Based on this observation, we define teleportation-discounted PPR scores (also
referred to as RPR-1 scores) as follows: Given a graph, G, and a seed node set
S, let π be the PPR scores as defined earlier:

– for each vi /∈ S, the corresponding RPR-1 score, ρ1[i], is defined as ρ1[i] =
π[i]
1−β ;

– in contrast, for each vi ∈ S, the corresponding RPR-1 score, ρ1[i], is defined

as ρ1[i] =
π[i]− β

|S|
1−β .

PPR-1 scores as defined above do not alter the relative ordering of the non-
seed nodes; instead (as discussed above) they aim to allow us to discover the
significance of the seed nodes themselves relative to the non-seed nodes within
the overall context defined by the seed set, S.

3.2.2 Preventing Under-Accounting of Seeds

One potential problem with the teleportation-discounting is that this time the
seed nodes may in fact be under-accounted: neighbors of a seed node may get
higher amounts of random-walk traffic (i.e, rw-PPR) than the seed node itself,
simply because once you teleport to a seed node, you need to visit one of its
neighbors but not vice versa. In order to prevent this under-accounting, we
modify the input graph G by inserting a self-loop to each node in the network
(Figure 2). In the resulting graph G′, every node is a neighbor of itself and
thus a seed node, v, will not get a lesser amount of random-walk traffic than
its neighbors when v is selected as a re-start point.

3.3 RPR-2: Seed-Set Maximal PPR

RPR-1 reduces the teleportation bias, but the seed nodes are still being tele-
ported to with the same, undifferentiated rate. The PPR-G scheme we dis-
cussed in Section 3.1 aimed to address this, but the key disadvantage of the
PPR-G score is that the a priori significance of the individual seed nodes (used

Reducing Seed Noise in Personalized PageRank 11

for modulating the teleportation rates) is decided based on the global struc-
ture of the graph, without considering the context provided by the other seed
nodes.

An alternative to fixing the teleportation significance of the individual seed
nodes a priori, without considering the context provided by the other seed
nodes (as in the PPR-G scheme we discussed in Section 3.1), is to discover
the teleportation significance of the individual seed nodes, relying on a novel
seed-set maximality principle that would tie the teleportation rates of the seeds
to their contributions to the overall personalized PageRank score of the seed
set.

Principle 1 (Seed-Set Maximal PPR Scores) Let G(V,E) be a graph
and let S ⊆ V be a set of seed nodes. Given an overall teleportation rate
β, the re-seeding/re-start vector, s, should be selected such that the overall
PageRank scores of the nodes in S will be maximal.

Based on this principle, the seed-set maximal PPR scores (also referred
to as the RPR-2 scores) are computed as follows: Given a graph G(V,E), a
teleportation probability, β, and a seed set, S, the re-start vector s should be
such that

ρ2 = (1− β)TG ρ2 + βs,∑
vi∈V

s[i] = 1,∀vi∈V 0 ≤ s[i] ≤ 1,
∑
vi∈V

ρ2[i] = 1, 0 ≤ ρ2[i] ≤ 1,

and the following term is maximized:

seed set significance =
∑
vi∈S

ρ2[i].

�

Intuitively, this principle requires that the seed set as a whole must score
highly, but does not require that the individual seed nodes themselves have
high scores. As we see in Section 5.4, this provides an effective mechanism
through which the impact of noisy seed nodes in the seed set are discounted.

3.4 RPR-3: Teleportation-Discounted, Seed-Set Maximal PPR

As we have seen in Section 3.2, one disadvantage of the use of standard PPR
scores is that the teleportation contribution t-PPR score of a seed node (which
is exactly β

|S| for each seed node) may not capture how significant the node is

within the context defined by the entire seed set S. This is especially true in the
case of RPR-2 scores, where the set, Scrit, of seed nodes selected for re-start is
very small. In fact, when Scrit is singleton (as most likely), the only seed node
in Scrit will have at least β overall RPR-2 score. Therefore, when computing
the teleportation-discounted, seed-set maximal PPR scores (or RPR-3 scores,
also denoted as ρ3), we replace the use of πi vectors for each vi ∈ S, with the
RPR-1 vectors ρ1,i as introduced in Section 3.2.

12 Shengyu Huang* et al.

4 Efficient Computation of Seed-Set Maximal PPR

In the previous section, we proposed a seed-set maximality principle that ties
the teleportation rates of the seeds to their contributions to the overall per-
sonalized PageRank score of the seed set: intuitively, this principle requires
that the seed set as a whole must score highly, whereas it allows individ-
ual seed nodes themselves to have low scores. As we experimentally show in
Section 5.6, this principle helps discover the teleportation significance of the
individual seed nodes, thereby differentiating among them, without having to
set them a priori.

To recap, given a graph, G(V,E), and a seed set, S ⊆ V , the seed-set
maximal PPR scores, ρ2, are obtained using a re-start vector s such that the
overall PageRank scores of the nodes in S will be maximal. More specifically,
s should be selected such that the term seed set significance =

∑
vi∈S ρ2[i]

is maximized, where

ρ2 = (1− β)TG ρ2 + βs,∑
vi∈V

s[i] = 1,∀vi∈V 0 ≤ s[i] ≤ 1,
∑
vi∈V

ρ2[i] = 1, 0 ≤ ρ2[i] ≤ 1.

Naturally, one possible concern with this new formulation is that it might
potentially increase the computation cost. In this section, we show that RPR-
2 scores can be cheaply computed.

4.1 Seed only Re-Starts for RPR-2

According to the above formulation of seed-set maximal PPR scores, the seed
nodes in S are not necessarily the only targets for re-starts. However, we
can show that, for any traversal that re-starts at a non-seed node, there is
a traversal that starts only at the seed nodes, but has a higher seed node
traversal rate.

Proof 1 (Seed Only Re-Starts) Given a graph G(V,E), let s be an optimal
re-start vector, such that ∃vi /∈ S and s[i] > 0. Now consider the traversals
that start only from a vi /∈ S and let αi be a vector describing the average
portion of time the random walk spends on the graph nodes in V before the
next teleportation. We can then define two quantities (that add up to 1.0):

seed ratioi =
∑
vj∈S

αi[j], and non seed ratioi =
∑
vj /∈S

αi[j].

Note that, since the traversal starts at a non-seed node, we have
non seed ratioi > 0; moreover, we can split this term into two,
non seed ratioi,before and non seed ratioi,after; i.e., the amount of time spent
on non-seed nodes before and after a seed node is met during the random-walk,
respectively. Let us also define a vector, fi, where for a given vj ∈ S, the value

Reducing Seed Noise in Personalized PageRank 13

of fi[j] is the likelihood of vj being the first seed met during the random-walk
starting at node vi.

Now consider an alternative re-start vector σ such that (a) σ[i] = 0, (b)
∀vj /∈S, if j 6= i, then σ[j] = s[j], and (c) ∀vj∈S, σ[j] = s[j] + s[i] fi[j]. It is
easy to see that the random-walks resulting when using the restart vector σ
are similar to the random-walks resulting when using s, except that the value
of non seed ratioi,before is equal to 0. This means some of this time will be
spent on the seed nodes contradicting the initial premise that s was an optimal
re-start vector, maximizing the total amount of time spent on seed nodes. �

Based on the above proof, we can reformulate the equation set for seed-set
maximal PPR scores in a way that limits the transportation targets, as follows:

ρ2 = (1− β)TG ρ2 + βs,
∑
vi∈V

ρ2[i] = 1, 0 ≤ ρ2[i] ≤ 1,∑
vi∈S

s[i] = 1, ∀vi∈s0 ≤ s[i] ≤ 1, ∀vi /∈ss[i] = 0,

and seed set significance =
∑
vi∈S ρ2[i] is maximum.

4.2 Constraining the Size of the Re-Start Set

We can further show that in practice the restart set, Scrit, is a singleton; i.e.,
with very high likelihood, |Scrit| = 1.

Proof 2 (Singleton Re-Start Set) Given a graph G(V,E), let s be an op-
timal re-start vector, such that ∃vi, vj ∈ S and s[i] > 0 and s[j] > 0. Now
consider all the traversals that start only from vi and let αi be a vector de-
scribing the average portion of time the random walk that starts at vi spends
on the nodes in V before the next teleportation. Similarly, let αj be a vector
describing the average portion of time a random walk that starts at vj spends
on the nodes in V before the next teleportation. Given αi and αj, let us define
two quantities,

seed ratioi =
∑
vk∈S

αi[k] and seed ratioj =
∑
vk∈S

αj[k],

and let us assume that seed ratioi > seed ratioj (a similar argument holds
when seed ratioj > seed ratioi).

Now consider an alternative re-start vector σ such that (a) ∀vk /∈{vi,vj},
σ[k] = s[k], (b) σ[j] = 0, and (c) σ[i] = s[i] + s[j]. It is easy to see that in
the random-walks resulting when using the restart vector σ are similar to the
random-walks resulting when using s, except that all transportations to vj are
replaced with transportations to vi (with the higher seed ratio value among the
two); thus, overall, more time will be spent on seed nodes when using σ instead
of s. It follows that when seed ratioi > seed ratioj, an optimal re-start vector
cannot contain both vi and vj, contradicting the initial premise that s is an
optimal re-start vector, such that s[i] > 0 and s[j] > 0. �

14 Shengyu Huang* et al.

In other words, since in practice it is highly unlikely that seed ratio values
will be equivalent for different seed nodes, the subset Scrit of S is likely to
contain the one and only node, vi, which has the highest seed ratioi.

4.3 Efficient and Re-Use Promoting Computation of RPR-2

Given a graph, G(V,E), a seed set, S, and a teleportation probability, β, one
way to obtain the RPR-2 scores is to solve the linear optimization problem

maximize
∑
vi∈S ρ2[i]

subject to the constraints

ρ2 = (1− β)TG ρ2 + βs,
∑
vi∈V

ρ2[i] = 1, 0 ≤ ρ2[i] ≤ 1,

∑
vi∈S

s[i] = 1, ∀vi∈s0 ≤ s[i] ≤ 1, ∀vi /∈ss[i] = 0.

While there are many efficient linear solvers that one can use to obtain a
solution to the above optimization problem, there are two issues to consider:
(a) in general, solving the optimization problem is more expensive than simply
solving the linear equations for a given re-start vector s, and (b) when the seed
set S changes (even if the change is small, say one new seed node is considered
or one of the seed nodes is dropped) the linear optimization problem needs
to be reformulated and solved anew. In this subsection, we note that we can
avoid treating the problem as an optimization problem (thereby reducing its
cost) and, in the meantime, also support the re-use of existing solutions, by
converting the problem into a set of single-seed PPR computations.

4.3.1 Converting the Problem into a Set of Linear Equations

Given a graph, G(V,E), a seed set, S, and an overall teleportation probability,
β, we reformulate the problem (relying on the observation in Section 4.2) as
follows:

– Step 1. for each vi ∈ S, solve the linear equation πi = (1− β)TG πi + βsi,
where si is a re-start vector such that si[i] = 1 and ∀j 6=i si[j] = 0;

– Step 2. Next, for each vi ∈ S, compute Π(vi) =
∑
vj∈S πi[j];

– Step 3. Let Scrit be the (small) subset of S, where Scrit = {v|v =
argmaxvi (Π(vi))};

– Step 4. If Scrit is singleton (i.e., Scrit = {vi}) then πi gives the RPR-
2 scores; i.e., ρ2 = πi; else (i.e., if Scrit is not a singleton), then ρ2 =

1
|Scrit|

∑
vi∈Scrit πi.

Note that, since in general the seed set S includes relatively few nodes, the
above formulation requires the solution of a small number of single-seed PPR
problems. This is especially advantageous when G is large as we can leverage
any of the highly effective approximation algorithms [2, 4, 14, 17, 21, 23, 41] or

Reducing Seed Noise in Personalized PageRank 15

parallelized implementations [3, 32] for computing these PPR scores. Most
importantly, the first step of the algorithm (where we solve a linear equation
independently for each seed node) can be trivially parallelized by assigning
each node to a different computation unit.

4.3.2 Solution Re-Use for Incremental Computation

Given a graph, G(V,E), a seed set, S, and an overall teleportation probability,
β, assume that we have already computed πi and Π(vi) for all vi ∈ S. Let
Snew be a new seed set, let ∆S+ = Snew \S denote the new nodes in the seed
set and ∆S− = S \ Snew denote the set of nodes dropped from the seed set.
We can incrementally compute the RPR-2 scores as follows:

– Step 1. For each vi ∈ ∆S+, solve the linear equation πi = (1− β)TG πi +
βsi, where si is a re-start vector such that si[i] = 1 and ∀j 6=i si[j] = 0;

– Step 2. Next, for each vi ∈ ∆S+, compute Πnew(vi) =
∑
vj∈Snew πi[j];

– Step 3. Also, for each vi ∈ Snew ∩ S, compute Πnew(vi) = Πnew(vi) +∑
vj∈∆S+ πi[j]−

∑
vj∈∆S− πi[j];

– Step 4. Given these, once again, let Scrit be the (small) subset of S, where
Scrit,new = {v|v = argmaxvi (Πnew(vi))}, and compute the ρ2 scores as
ρ2 = 1

|Scrit,new|
∑
vi∈Scrit,new πi.

It is easy to see that, when ∆S+ and ∆S− are small, the RPR-2 com-
putations can be done very fast (if necessary, leveraging approximation algo-
rithms [2,4,14,17,21,23,41] and/or parallel implementations [3,32] for comput-
ing the new PPR scores). Once again, the first step of the algorithm (where we
solve a linear equation independently for each new seed node) can be trivially
parallelized by assigning each node to a different computation unit.

4.4 Multi-Query Robust Personalized PageRank

Note that the above formulation also leads to efficient computations of the
RPR-2 scores in systems with large PPR query throughputs – i.e., in sys-
tems where PPR based recommendations are continuously executed for 100s
or 1000s of users, which may share certain interests while also having their
personal preferences.

Consider a graph, G(V,E), a set, S = {S1, S2, . . . , Ss}, of seed sets, and
a teleportation probability, β. We refer to the task of identifying a (robust-)
personalized PageRank vector, ρj for each sj ∈ S as the multi-query (robust-)
personalized PageRank problem. The naive way of executing a multi-query
robust personalized PageRank (m-RPR) task would be to go over the set S
and process each RPR query separately, from scratch. It is, however, easy to
see that this would lead to significant amount of redundant work, especially
if there are seed sets with large degrees of overlaps (i.e., users who share
interests).

16 Shengyu Huang* et al.

If we are computing RPR-2 scores, on the other hand, a clearly better al-
ternative is to leverage caching opportunities discussed in the previous section
by caching πi for all vi’s that have been considered and re-using them, from
the cache, for each subsequent Sj ∈ S, where vi ∈ Sj : More specifically, for
each Sj ∈ S,

– Step 1. For each vi ∈ Sj but πi 6∈ cache, solve the linear equation πi =
(1 − β)TG πi + βsi, where si is a re-start vector such that si[i] = 1 and
∀j 6=i si[j] = 0;

– Step 2. For each vi ∈ Sj , compute Πj(vi) =
∑
vk∈S πi[k];

– Step 3. Given these, let Scrit be the (small) subset of S, where
Scrit,j = {v|v = argmaxvi (Πj(vi))}, and compute the ρ2 scores as
ρ2 = 1

|Scrit,j |
∑
vi∈Scrit πi.

This, however, may have a key disadvantage: If the cache is limited, it is
possible that some πi will be ejected from the cache, only to be recomputed
later for a subsequent seed set that also contains it. Therefore, a potentially
more advantageous approach is to first identify clusters of seed sets in S that
have large overlaps and process each cluster together to ensure that the cache
is maximally utilized. Note that the larger the overlaps are, the smaller the
amount of redundant work and the larger the expected gains.

4.5 Approximate RPR with Fast Random Walk

At their core, all RPR formulations presented in Section 3 rely on random
walk with restart (RWR). However, it is well known that a straightforward
implementation of RWR does not scale for large graphs since the naive imple-
mentation includes finding the inverse of a very large matrix.

As discussed in Section 4.4, there are various solutions proposed to address
this challenge. One such solution is to pre-compute the matrix inverse for the
whole graph and re-use it for each query. However, since matrix inverses tend
to be dense, the matrix inverse of a large graph may require large storage. A
second possible approach is to compute matrix inverses only for parts of the
graph and combine these matrix inverses, on-demand, during query processing.

An example of this approach is the fast random walk (FRW) scheme pre-
sented in [41]. FRW partitions the graph into subgraphs and indexes partial
intermediary solutions. Given a seed node set S the relevant intermediary
solutions are combined to quickly solve for approximate PPR scores. Let us
consider the term

r = (1− β)TGr + βs,

which forms the core of the PPR and the various RPR measures. [41] rewrites
TG as

Tg = B + X,

where B is a block diagonal matrix obtained by partitioning, off-line, the graph
G into t partitions and keeping only in-partition links and X contains all cross-
partition links. Then, again during the off-line phase, for each partition, l, the

Reducing Seed Noise in Personalized PageRank 17

matrix inverse, Q−1l , is computed for the corresponding block, Bl:

Q−1l = (I − (1− β)Bl)
−1.

Also, during the off-line phase, a low-rank approximate decomposition of X is
obtained; i.e., for a small decomposition rank, r,

X ∼ UrΣrVr.

This low rank approximation is then used for obtaining, still in the off-line
phase, a small r × r matrix, Λ, as

Λ =
(
Σr
−1 − (1− β)VrQ

−1Ur

)−1
,

where Q−1 is a block-diagonal matrix constructed by combining Q−11 through
Q−1t at the diagonal.

The key idea of [41] is that, relying on the Sherman-Morisson lemma [35],
one can solve for r, during the on-line phase, by computing

r = β(Q−1s + (1− β)Q−1UrΛVrQ
−1s).

Naturally, there is a trade-off between the number of partitions created for
the input graph G and the accuracy: The higher the number of partitions, the
faster the run-time execution and smaller the memory requirement. This is
because, (assuming that the partitions are roughly same size),

– the number of non-zero entries in Q−1 is ∼ t×
(
|V |
t

)2
= |V |2

t

– Ur and Vr are |V | × r and r × |V | matrices, respectively, and
– Λ is a small r × r matrix.

In this paper, we note that this formulation is especially suitable for the seed-
set maximal RPR (i.e., RPR-2) computation, since (as we discussed in Sec-
tion 4.3.1), given a seed set S, we can convert the seed-set maximal RPR
problem into a set of |S| linear equations, where for each vi ∈ S, we need to
solve πi = (1− β)TG πi + βsi, where si is a re-start vector such that si[i] = 1
and ∀j 6=i si[j] = 0. Once the block-diagonal Q−1, Λ, Ur, and Vr are ob-
tained during the on-line phase, we can simultaneously obtain (approximate)
solutions for the |S| linear equations, by

P = β(Q−1S + (1− β)Q−1UrΛVrQ
−1S),

where

– each column of S is a re-start vector, si, corresponding to the node vi ∈ S
and

– each column of P is the solution vector, πi, for the linear equation corre-
sponding to node vi ∈ S.

18 Shengyu Huang* et al.

As we experimentally show in Section 5.13, the robust PPR measures pro-
posed in this paper can effectively leverage this block-diagonal solution to
significantly reduce memory needed to maintain the inverse matrices. Thanks
to the possibility of converting (as discussed in Section 4.3.1) a given seed-set
maximal PPR computation task from an expensive optimization problem into
a set of linear equations of the form πi = (1−β)TG πi+βsi, the proposed RPR
measures can also easily leverage other random-walks with restart approxima-
tion techniques, such as [31]: one only needs to replace the computation of πi

with the selected approximate PPR technique to obtain an approximation of
πi.

Most importantly, though, the experimental results show that
teleportation-discounting not only increases robustness of PPR scores
against noise in the seed set S but also significantly improves robustness
against noise introduced due to approximate computation. This is because,
the graph-partitioning (and block diagonalization) scheme, which essen-
tially distorts the graph structure due to the low-rank approximation of
cross-partition edges and teleportations cause frequent cross-partition jumps.
Teleportation-discounting (does not completely eliminate, but) carefully pulls
down the overall contribution of the teleportation process and, consequently,
provides robustness against noise introduced during fast random walk
computation.

5 Experimental Evaluations

In this section, we present experimental results assessing the effectiveness of
the proposed alternative robust Personalized Page Rank (RPR) schemes in
handling noise in the seed set. We ran the experiments on a quad-core Intel(R)
Core(TM)i5-2400 CPU @ 3.10GHz machine with 8.00GB RAM. All codes are
implemented in Matlab and run using Matlab 7.11.0 (2010b).

5.1 Data Sets

For comparing the different RPR alternatives’ performances against conven-
tional PPR, we used the IMDB and MovieLens datasets available from [46,47].
This dataset contains metadata (e.g. actors, directors) about 1681 movies, a
total of 100K ratings (between 1, for “dislike” (↓), to 5, for “like” (↑)) provided
by 943 users and big dataset containing about one million ratings relationship
provided by 6040 users. From this graph, we have constructed three data and
social graphs, with distinct semantics and topological properties:

– Metadata Graph: In the metadata graph, nodes represent the data elements
(such as movies) and the edges represent relationships between these data
elements (such as an actor playing in a movie). The data graph contains
1272 nodes and 60K relationship edges (with average node degree of ∼47).

– User-Movie (UM) Graph: In the UM graph, nodes represent users and
movies. There is an edge between a user-movie pair if the user has watched

Reducing Seed Noise in Personalized PageRank 19

Parameter Range Default Value

of seeds {10, 40} 10

% of noise in the seed set {0%, 10%, 20%} 10%

Table 3 Personalized PageRank evaluation parameters

the movie (indicated by the existence of a rating). This graph has 1682
movie nodes, 943 user nodes, and 200K directional (user to movie) edges
(with average node degree of ∼76).

– Ratings Graph: The ratings graph consists of the same nodes and edges as
the user-movie (UM) graph. However, each ratings edge ui → mj has an
associated numeric weight between 1 and 5, reflecting user ui’s preference
for movie mj .

In addition to these, in order to help observe the impact of the data size,
we have also considered larger versions of the UM and ratings graphs, with
∼ 10K nodes and ∼ 1M edges:

– User-Movie II (UM-II) Graph: In the UM2 graph, once again, nodes rep-
resent users and movies. There is an edge between a user-movie pair if the
user has watched the movie (indicated by the existence of a rating). This
graph has 3952 movie nodes, 6040 user nodes, and 1 million directional
(user to movie) edges. In this graph, the average node degree is around
200.

– Ratings-II Graph: This ratings graph consists of the same nodes and edges
as the UM-II graph. However, each ratings edge ui → mj has an associated
numeric weight between 1 and 5, reflecting user ui’s preference for movie
mj .

Note that the metadata graph captures no knowledge about users and their
preferences. The user-movie (UM,UM-II) graphs, which can be seen as a rich
social network of users and movies, capture which users judged (rated) which
movies, but does not capture the value of the rating. The ratings and ratings-II
graphs also capture users’ declared preferences in the form of edge weights. In
these experiments, we set the default value of β to 0.15 as is commonly done.
Results for other β values are similar.

5.2 Evaluation Strategies

5.2.1 Effectiveness

In order to measure effectiveness of the scores computed for ranking movies,
we rely on the following criteria:

– Relevance: If we select a subset of a user’s ↑-rated movies as seeds, the
scores should be such that the user’s remaining ↑-rated movies should rank
well, whereas user’s ↓-rated movies should rank poorly.

20 Shengyu Huang* et al.

– Robustness: Moreover, if the scores are robust, then even if the seed set
contains some small number of ↓-rated movies, this should not negatively
affect the rankings significantly.

As shown in Table 3, we consider seed sets of different sizes (10 and 40).
For each configuration, we select those users who have sufficient ↑-rated movies
(e.g., if the target seed set size is 10, then we pick those users with at least 10
↑-rated movies):

– For the UM and Ratings graphs, there are 313 users for seed set size 10
and 64 users for seed set size 40.

– For the UM-II and Ratings-II graphs, there are 1959 users for seed set size
10 and 516 users for seed set size 40.

– For the Metadata graph, there are 139 users when the seed set size is 10
and 42 users when the seed set size is 40.

For each user, we created random seed sets with different degrees of noise (see
Table 3 for the experiment parameters). Each seed set consists of a number of
movies rated “↑” by the user (for measuring relevance) and a smaller number
of movies rated “↓” by the same user. The “↓” movies included in the seed set
act as noise (and serve for measuring robustness). For each configuration, we
have considered 10 different (randomly picked) seed sets. For each seed set,
we treated the rest of the movie ratings by this user as the ground truth
to help measure the following effectiveness criteria based on the transition
probabilities implied by the underlying graph:

– Recommendation Effectiveness – Average rank for non-seed ↑-rated movies
(AvgRank(N↑)): Movies that we know (from the ground truth) that the
user would like, but are not included in the seed set are expected to rank
well; i.e., have small average rank values.

– Seed Differentiation Power – Average rank for ↓-rated seed movies
(AvgRank(S↓)): “Noise” in the seed set (i.e., movies we know from the
ground truth that the user does not like, but nevertheless included in the
seed set) are expected to have large average rank values, even though they
are in the seed set. Note that, since a well ranked ↓-rated seed would imply
that the movies neighboring this noisy seed would also be well ranked, the
average rankings of the seed nodes help us (indirectly) quantify the impact
of noise on the neighbors of the seeds.

– Seed-Bias Elimination – Average rank for ↑-rated seed movies
(AvgRank(S↑)): Movies that the user likes and are included in the
seed set are expected to rank well and have small average rank values.

5.2.2 Efficiency

In addition to the above consideration of effectiveness, we also consider the effi-
ciency. In particular, we computed matrix algebra based formulations of PPR
and RPR using Matlab. The RPR-2 and RPR-3 schemes, which seek seed-
maximal solutions, are implemented by converting the maximization problem

Reducing Seed Noise in Personalized PageRank 21

to a set of linear equations (as discussed in Sections 4.1 through 4.3): these
enable the same evaluation mechanism for PPR, PPR-G, and RPR-1 to be
applicable also for RPR-2 and RPR-3, making the accuracy and execution
time comparisons straightforward.

5.3 Approximation Schemes

As we discussed in Section 4.5, computation of PPR and RPR can be expensive
for large graphs and alternative approximation algorithms (such as block diag-
onalization/partitioning based techniques [41]) may be used to reduce compu-
tational cost. To assess the impact of such approximation on the effectiveness
and efficiency of RPR schemes, we also implemented partitioning-based fast
random walk based PPR and RPR schemes as discussed in Section 4.5. For
partitioning the graph, we used the multi-level based graph partitioner of the
METIS tool set [48]. In the experiments reported in this section, we consid-
ered different graph partitions, t, and low-rank approximation, r for different
graphs (as a function of the graph size). In particular, for the meta-data graph,
t = 12, r = 12; for UM and Ratings graphs, t = 26, r = 26; and for the UM-II
and Ratings-II graphs, t = 99, r = 99. It is important to note that these are
intentionally low values, to help us observe the performance of robust person-
alized PageRank (RPR) schemes under significant quality degradations.

5.4 Effectiveness Evaluations

Figures 3 through 8 compare and evaluate the effectiveness of the different
ranking algorithms described in this paper, based on the three effectiveness
criteria C = {N↑, S↑, S↓} listed above. For each of these three criteria, we
compare the rankings returned by algorithm A to the rankings returned by the
conventional PPR (i.e., PPR with uniform teleportation probabilities) using
the measure

relative rank(A,C) = (AvgRankC by A)/(AvgRankC by PPR).

This measure helps us observe how algorithm A handles seed noise relative
to PPR with no seed differentiation.

5.4.1 Recommendation Effectiveness

Firstly, let us consider Figure 3 which compares the average user rankings of
↑-rated movies that were not included in the seed set. Since the primary goal of
a movie ranking system is to locate non-seed movies that the user would enjoy
(N↑) and rank them earlier than the other movies, the smaller the value of
the relative rank(A,N↑), the better would be the recommendations returned
by the algorithm A.

22 Shengyu Huang* et al.

0.5	

0.6	

0.7	

0.8	

0.9	

1	

1.1	

0%	
 10%	
 20%	
 0%	
 10%	
 20%	

10	
 40	

Av
g.	
 R

an
k/A

vg.
	
 PP

R	
 R
an

k	

#	
 seeds	
 ;	
 %	
 noise	

Rela5ve	
 Rank	
 for	
 ↑-­‐rated	
 Non-­‐seed	
 Movies	
 (N↑);	

	
 beta	
 =	
 0.15	
 on	
 Data	
 Graph	

PPR-­‐G	

RPR-­‐1	

RPR-­‐2	

RPR-­‐3	

(a) Metadata graph (Exact RPR)

0.5	

0.6	

0.7	

0.8	

0.9	

1	

1.1	

0%	
 10%	
 20%	
 0%	
 10%	
 20%	

10	
 40	

Av
g.	
 R

an
k/A

vg.
	
 PP

R	
 R
an

k	

#	
 seeds	
 ;	
 %	
 noise	

Rela5ve	
 Rank	
 for	
 ↑-­‐rated	
 Non-­‐seed	
 Movies	
 (N↑);	

beta	
 =	
 0.15	
 on	
 User-­‐Movie	
 Graph	
 	

PPR-­‐G	

RPR-­‐1	

RPR-­‐2	

RPR-­‐3	

(b) User-Movie (UM) graph (Exact RPR)

0.5	

0.6	

0.7	

0.8	

0.9	

1	

1.1	

0%	
 10%	
 20%	
 0%	
 10%	
 20%	

10	
 40	

Av
g.	
 R

an
k/A

vg.
	
 PP

R	
 R
an

k	

#	
 seeds	
 ;	
 %	
 noise	

Rela5ve	
 Rank	
 for	
 ↑-­‐rated	
 Non-­‐seed	
 Movies	
 (N↑);	

beta	
 =	
 0.15	
 on	
 Ra5ngs	
 Graph	
 	

PPR-­‐G	

RPR-­‐1	

RPR-­‐2	

RPR-­‐3	

(c) Ratings graph (Exact RPR)

0.5	

0.6	

0.7	

0.8	

0.9	

1	

1.1	

0%	
 10%	
 20%	
 0%	
 10%	
 20%	

10	
 40	

Av
g.	
 R

an
k/A

vg.
	
 PP

R	
 R
an

k	

#	
 seeds	
 ;	
 %	
 noise	

Rela5ve	
 Rank	
 for	
 ↑-­‐rated	
 Non-­‐seed	
 Movies	
 (N↑);	

	
 beta	
 =	
 0.15	
 on	
 UM-­‐II	
 Graph	

PPR-­‐G	

RPR-­‐1	

RPR-­‐2	

RPR-­‐3	

(d) UM-II graph (Exact RPR)

0.5	

0.6	

0.7	

0.8	

0.9	

1	

1.1	

0%	
 10%	
 20%	
 0%	
 10%	
 20%	

10	
 40	

Av
g.	
 R

an
k/A

vg.
	
 PP

R	
 R
an

k	

#	
 seeds	
 ;	
 %	
 noise	

Rela5ve	
 Rank	
 for	
 ↑-­‐rated	
 Non-­‐seed	
 Movies	
 (N↑);	

	
 beta	
 =	
 0.15	
 on	
 Ra5ngs-­‐II	
 Graph	

PPR-­‐G	

RPR-­‐1	

RPR-­‐2	

RPR-­‐3	

(e) Ratings-II graph (Exact RPR)

Fig. 3 Average exact RPR ranks of non-seed ↑-rated movies relative to their ranks
returned by conventional exact PPR (the ratio for exact PPR itself is 1.0) :
the lower is the ratio, the better is the measure

– As we see in the Figure 3, PPR-G does not provide any significant advan-
tages over pure PPR, unless the teleportation rate is very small (i.e., not
much significance is given to the seed set) or the seed set contains large
amounts of noise.

Reducing Seed Noise in Personalized PageRank 23

– Figures 3 show that the proposed RPR schemes lead to significant im-
provements in the rankings, with RPR-2 providing the most consistent
improvements.

– Teleportation-discounting (used in RPR-1 and RPR-3) is effective in (meta-
data and UM) graphs, which do not properly capture user preferences.
Seed-set maximization (used in RPR-2), however, provides benefits for all
graphs, including the Ratings graph, which reflects the user preferences
in the transition probabilities. In fact as the data size grows (UM-II and
Ratings-II graphs) seed-set maximization strategy provides the single most
dominant gain in recommendation effectiveness.

– It is important to note that the RPR techniques provide better recommen-
dation rankings even in situations where the seed set contains 0% artifi-
cially introduced noise, confirming that RPR provides better personaliza-
tion given user history.

5.5 Recommendation Effectiveness under Approximate Computation

As discussed before, in order to observe the impact of such approximation
on the effectiveness and efficiency of RPR schemes, we also implemented
partitioning-based fast random walk based PPR and RPR schemes. Figure 4
compares the recommendation effectiveness of the RPR schemes obtained un-
der a fast random walk based approximation scheme against the recommen-
dation effectiveness of the PPR schemes also obtained under the same fast
random walk based approximation. As before, the smaller the value of the
relative rank(A,N↑), the better is the recommendations returned by the algo-
rithm A:

– As before, fast random walk based PPR-G does not provide any significant
advantages over fast random walk based PPR.

– Also as before, as the graph size becomes larger (i.e., UM-II and Ratings-
II graphs) the effectiveness performance of RPR schemes over the PPR
scheme becomes more consistent.

– Again, as before, RPR techniques provide better recommendation rank-
ings even in situations where the seed set contains 0% artificially intro-
duced noise, confirming that RPR provides better personalization given
user history even under approximate computation.

– The most interesting (and, at the first look, surprizing) result, however, is
that, when using graph partitioning based approximations, RPR techniques
that leverage teleportation-discounting (RPR-1 or RPR-3) provide the best
overall gains in recommendation effectiveness.
This shows that the graph-partitioning (and block diagonalization) scheme,
which essentially distorts the graph structure due to the low-rank approxi-
mation of cross-partition edges, cannot properly account for teleportation-
contributions (t-PPR, Section 3.2) which may involve frequent jumps across
partitions. While teleportation-discounting increases robustness of PPR

24 Shengyu Huang* et al.

0.5	

0.6	

0.7	

0.8	

0.9	

1	

1.1	

0%	
 10%	
 20%	
 0%	
 10%	
 20%	

10	
 40	

Av
g.	
 R

an
k/A

vg.
	
 PP

R	
 R
an

k	

#	
 seeds	
 ;	
 %	
 noise	

Rela5ve	
 Rank	
 for	
 ↑-­‐rated	
 Non-­‐seed	
 Movies	
 (N↑);	

	
 beta	
 =	
 0.15	
 on	
 Data	
 Graph	

PPR-­‐G	

RPR-­‐1	

RPR-­‐2	

RPR-­‐3	

(a) Metadata graph (Approximate RPR)

0.5	

0.6	

0.7	

0.8	

0.9	

1	

1.1	

0%	
 10%	
 20%	
 0%	
 10%	
 20%	

10	
 40	

Av
g.	
 R

an
k/A

vg.
	
 PP

R	
 R
an

k	

#	
 seeds	
 ;	
 %	
 noise	

Rela5ve	
 Rank	
 for	
 ↑-­‐rated	
 Non-­‐seed	
 Movies	
 (N↑);	

	
 beta	
 =	
 0.15	
 on	
 UM	
 Graph	

PPR-­‐G	

RPR-­‐1	

RPR-­‐2	

RPR-­‐3	

(b) UM graph (Approximate RPR)

0.5	

0.6	

0.7	

0.8	

0.9	

1	

1.1	

0%	
 10%	
 20%	
 0%	
 10%	
 20%	

10	
 40	

Av
g.	
 R

an
k/A

vg.
	
 PP

R	
 R
an

k	

#	
 seeds	
 ;	
 %	
 noise	

Rela5ve	
 Rank	
 for	
 ↑-­‐rated	
 Non-­‐seed	
 Movies	
 (N↑);	

	
 beta	
 =	
 0.15	
 on	
 Ra5ng	
 Graph	

PPR-­‐G	

RPR-­‐1	

RPR-­‐2	

RPR-­‐3	

(c) Ratings graph (Approximate RPR)

0.5	

0.6	

0.7	

0.8	

0.9	

1	

0%	
 10%	
 20%	
 0%	
 10%	
 20%	

10	
 40	

Av
g.	
 R

an
k/A

vg.
	
 PP

R	
 R
an

k	

#	
 seeds	
 ;	
 %	
 noise	

Rela5ve	
 Rank	
 for	
 ↑-­‐rated	
 Non-­‐seed	
 Movies	
 (N↑);	

	
 beta	
 =	
 0.15	
 on	
 UM-­‐II	
 Graph	

PPR-­‐G	

RPR-­‐1	

RPR-­‐2	

RPR-­‐3	

(d) UM-II graph (Approximate RPR)

0.5	

0.6	

0.7	

0.8	

0.9	

1	

0%	
 10%	
 20%	
 0%	
 10%	
 20%	

10	
 40	

Av
g.	
 R

an
k/A

vg.
	
 PP

R	
 R
an

k	

#	
 seeds	
 ;	
 %	
 noise	

Rela5ve	
 Rank	
 for	
 ↑-­‐rated	
 Non-­‐seed	
 Movies	
 (N↑);	

	
 beta	
 =	
 0.15	
 on	
 Ra5ngs-­‐II	
 Graph	

PPR-­‐G	

RPR-­‐1	

RPR-­‐2	

RPR-­‐3	

(e) Ratings-II graph (Approximate RPR)

Fig. 4 Average approximate RPR ranks of non-seed ↑-rated movies relative to their ranks
returned by approximate PPR: the lower is the ratio, the better is the measure

scores against noise in the seed set S by carefully discounting the telepor-
tation contributions, we see that this technique also improves robustness
against noise introduced due to graph-partitioning and block diagonaliza-
tion inherent in many approximation schemes.

Reducing Seed Noise in Personalized PageRank 25

0	

5	

10	

15	

20	

25	

30	

10%	
 20%	
 10%	
 20%	

10	
 40	

Av
g.	
 R

an
k/A

vg.
	
 PP

R	
 R
an

k	

#	
 seeds	
 ;	
 %	
 noise	

Rela5ve	
 Rank	
 for	
 ↓-­‐rated	
 Seed	
 Movies	
 (S↓,i.e.	

noise)	
 ;	
 beta=0.15	
 On	
 Data	
 Graph	

PPR-­‐G	

RPR-­‐1	

RPR-­‐2	

RPR-­‐3	

(a) Metadata graph (Exact RPR)

0	

5	

10	

15	

20	

25	

30	

10%	
 20%	
 10%	
 20%	

10	
 40	

Av
g.	

Ra

nk
/A

vg.
	
 PP

R	
 R
an

k	

#	
 seeds	
 ;	
 %	
 noise	

Rela5ve	
 Rank	
 for	
 ↓-­‐rated	
 Seed	
 Movies	
 (S↓,	
 i.e.	

noise)	
 ;	
 beta	
 =	
 0.15	
 on	
 User-­‐Movie	
 Graph	
 	

PPR-­‐G	

RPR-­‐1	

RPR-­‐2	

RPR-­‐3	

(b) User-Movie (UM) graph (Exact RPR)

0	

5	

10	

15	

20	

25	

30	

10%	
 20%	
 10%	
 20%	

10	
 40	

Av
g.	

Ra

nk
/A

vg.
	
 PP

R	
 R
an

k	

#	
 seeds	
 ;	
 %	
 noise	

Rela5ve	
 Rank	
 for	
 ↓-­‐rated	
 Seed	
 Movies	
 (S↓,	
 i.e.	

noise)	
 ;	
 beta	
 =	
 0.15	
 on	
 Ra5ngs	
 Graph	
 	

PPR-­‐G	

RPR-­‐1	

RPR-­‐2	

RPR-­‐3	

(c) Ratings graph (Exact RPR)

0	

10	

20	

30	

40	

50	

10%	
 20%	
 10%	
 20%	

10	
 40	

Av
g.	
 R

an
k/A

vg.
	
 PP

R	
 R
an

k	

#	
 seeds	
 ;	
 %	
 noise	

Rela5ve	
 Rank	
 for	
 ↓-­‐rated	
 Seed	
 Movies	
 (S↓,i.e.	

noise)	
 ;	
 beta=0.15	
 On	
 UM-­‐II	
 Graph	

PPR-­‐G	

RPR-­‐1	

RPR-­‐2	

RPR-­‐3	

(d) UM-II graph (Exact RPR)

0	

10	

20	

30	

40	

50	

10%	
 20%	
 10%	
 20%	

10	
 40	

Av
g.	
 R

an
k/A

vg.
	
 PP

R	
 R
an

k	

#	
 seeds	
 ;	
 %	
 noise	

Rela5ve	
 Rank	
 for	
 ↓-­‐rated	
 Seed	
 Movies	
 (S↓,i.e.	

noise)	
 ;	
 beta=0.15	
 On	
 Ra5ngs-­‐II	
 Graph	

PPR-­‐G	

RPR-­‐1	

RPR-­‐2	

RPR-­‐3	

(e) Ratings-II graph (Exact RPR)

Fig. 5 Average exact RPR ranks of ↓-rated movies included in the seed set relative to
their ranks returned by conventional exact PPR (the ratio for exact PPR itself is 1.0):
the higher is the ratio, the better is the measure

5.6 Seed Differentiation Power

Next, let us consider the effectiveness of the different personalized PageRank
measures in differentiating the noise in the seed set (S↓). Figure 5 compares
the average user rankings of ↓-rated movies that were included in the seed

26 Shengyu Huang* et al.

set. In this case, the higher the relative rank, the better is the algorithm in
differentiating the noise in the seed set:

– As we have seen in the figure, once again, PPR-G does not provide any
significant advantages over pure PPR;

– The proposed RPR algorithms, on the other hand push the ↓rated seed
nodes (i.e., noise) significantly further down in the overall ranking rela-
tive to conventional PPR, indicating that RPR algorithms are effective in
eliminating seed-bias; and

– As was the case with recommendation effectiveness, teleportation-
discounting (used in RPR-1 and RPR-3) is effective in (metadata and UM)
graphs, which do not capture user preferences; but seed-set maximization
(used in RPR-2), provides benefits for all graphs. In fact, as the graph size
becomes larger, as in UM-II and Ratings-II graphs, seed-set maximiza-
tion based RPR-2 becomes the single most beneficial approach in terms of
seed-set differentiation.

5.7 Seed Differentiation Power under Approximate Computation

In order to observe the impact of approximation schemes on the seed differen-
tiation effectiveness, we also experimentally compared partitioning-based fast
random walk based PPR and RPR schemes. Figure 6 compares the average
user rankings of ↓-rated movies that were included in the seed set for fast
random walk algorithm. Again, the higher the relative rank, the better is the
algorithm in differentiating the noise in the seed set:

– As we have seen in the figure, once again, PPR-G does not provide signif-
icant advantages over pure fast random walk PPR.

– Also, under the use of approximations, RPR algorithms are able to push
the ↓rated seed nodes (i.e., noise) significantly further down in the overall
ranking relative to conventional (approximate) PPR, indicating that RPR
algorithms are effective in seed differentiation even when approximation
schemes are used for efficiency.

– Confirming our observation in 5.5, also in the case of seed-set differentia-
tion, when using graph partitioning based approximations, RPR techniques
that leverage teleportation-discounting (RPR-1 or RPR-3) are more effec-
tive than solely seed-set maximization based scheme (RPR-2). This is again
because teleportation-discounting strategy not only improves robustness of
PPR scores against noise in the seed set S, but also improves robustness
against noise introduced due to graph-partitioning and block diagonaliza-
tion inherent in approximation schemes.

5.8 Seed-Bias Elimination

As we discussed in Section 3, PPR assumes that all the nodes in the seed
set are very important and thus they tend to rank better than most (if not

Reducing Seed Noise in Personalized PageRank 27

0	

4	

8	

12	

16	

10%	
 20%	
 10%	
 20%	

10	
 40	

Av
g.	
 R

an
k/A

vg.
	
 PP

R	
 R
an

k	

#	
 seeds	
 ;	
 %	
 noise	

Rela5ve	
 Rank	
 for	
 ↓-­‐rated	
 Seed	
 Movies	
 (S↓,i.e.	

noise)	
 ;	
 beta=0.15	
 On	
 Data	
 Graph	

PPR-­‐G	

RPR-­‐1	

RPR-­‐2	

RPR-­‐3	

(a) Metadata graph (Approximate RPR)

0	

10	

20	

30	

40	

50	

60	

70	

10%	
 20%	
 10%	
 20%	

10	
 40	

Av
g.	
 R

an
k/A

vg.
	
 PP

R	
 R
an

k	

#	
 seeds	
 ;	
 %	
 noise	

Rela5ve	
 Rank	
 for	
 ↓-­‐rated	
 Seed	
 Movies	
 (S↓,i.e.	

noise)	
 ;	
 beta=0.15	
 On	
 UM	
 Graph	

PPR-­‐G	

RPR-­‐1	

RPR-­‐2	

RPR-­‐3	

(b) UM graph (Approximate RPR)

0	

10	

20	

30	

40	

50	

60	

70	

10%	
 20%	
 10%	
 20%	

10	
 40	

Av
g.	
 R

an
k/A

vg.
	
 PP

R	
 R
an

k	

#	
 seeds	
 ;	
 %	
 noise	

Rela5ve	
 Rank	
 for	
 ↓-­‐rated	
 Seed	
 Movies	
 (S↓,i.e.	

noise)	
 ;	
 beta=0.15	
 On	
 Ra5ng	
 Graph	

PPR-­‐G	

RPR-­‐1	

RPR-­‐2	

RPR-­‐3	

(c) Ratings graph (Approximate RPR)

0	

10	

20	

30	

40	

50	

10%	
 20%	
 10%	
 20%	

10	
 40	

Av
g.	
 R

an
k/A

vg.
	
 PP

R	
 R
an

k	

#	
 seeds	
 ;	
 %	
 noise	

Rela5ve	
 Rank	
 for	
 ↓-­‐rated	
 Seed	
 Movies	
 (S↓,i.e.	

noise)	
 ;	
 beta=0.15	
 On	
 UM-­‐II	
 Graph	

PPR-­‐G	

RPR-­‐1	

RPR-­‐2	

RPR-­‐3	

(d) UM-II graph (Approximate RPR)

0	

10	

20	

30	

40	

10%	
 20%	
 10%	
 20%	

10	
 40	

Av
g.	
 R

an
k/A

vg.
	
 PP

R	
 R
an

k	

#	
 seeds	
 ;	
 %	
 noise	

Rela5ve	
 Rank	
 for	
 ↓-­‐rated	
 Seed	
 Movies	
 (S↓,i.e.	

noise)	
 ;	
 beta=0.15	
 On	
 Ra5ngs-­‐II	
 Graph	

PPR-­‐G	

RPR-­‐1	

RPR-­‐2	

RPR-­‐3	

(e) Ratings-II graph (Approximate RPR)
Fig. 6 Average approximate RPR ranks of ↓-rated movies included in the seed set relative to
their ranks returned by approximate PPR: the higher is the ratio, the better is the measure

all) non-seed nodes. However, we expect that a seed-bias eliminating ranking
system would push some of the highly rated seeds further down in the rankings
to bring up those movies that are good, but not used as seeds:

– In Figure 7, we see that this is indeed true for the proposed RPR
schemes: as we would expect from a good seed bias eliminating algorithm,
teleportation-discounting (for metadata and UM graphs) and seed-set max-

28 Shengyu Huang* et al.

0	

2	

4	

6	

8	

10	

12	

14	

16	

18	

0%	
 10%	
 20%	
 0%	
 10%	
 20%	

10	
 40	

Av
g.	
 R

an
k/A

vg.
	
 PP

R	
 R
an

k	

#	
 seeds	
 ;	
 %	
 noise	

Rela5ve	
 Rank	
 for	
 ↑-­‐rated	
 Seed	
 Movies	
 (S↑);	
 	

beta	
 =	
 0.15	
 on	
 Data	
 Graph	

PPR-­‐G	

RPR-­‐1	

RPR-­‐2	

RPR-­‐3	

(a) Metadata graph (Exact RPR)

0	

2	

4	

6	

8	

10	

12	

14	

16	

18	

0%	
 10%	
 20%	
 0%	
 10%	
 20%	

10	
 40	

Av
g.	
 R

an
k/A

vg.
	
 PP

R	
 R
an

k	

#	
 seeds	
 ;	
 %	
 noise	

Rela5ve	
 Rank	
 for	
 ↑-­‐rated	
 Seed	
 Movies	
 (S↑);	

	
 beta	
 =	
 0.15	
 on	
 User-­‐Movie	
 Graph	

PPR-­‐G	

RPR-­‐1	

RPR-­‐2	

RPR-­‐3	

(b) User-Movie (UM) graph (Exact RPR)

0	

2	

4	

6	

8	

10	

12	

14	

16	

18	

0%	
 10%	
 20%	
 0%	
 10%	
 20%	

10	
 40	

Av
g.	
 R

an
k/A

vg.
	
 PP

R	
 R
an

k	

#	
 seeds	
 ;	
 %	
 noise	

Rela5ve	
 Rank	
 for	
 ↑-­‐rated	
 Seed	
 Movies	
 (S↑);	

	
 beta	
 =	
 0.15	
 on	
 Ra5ngs	
 Graph	

PPR-­‐G	

RPR-­‐1	

RPR-­‐2	

RPR-­‐3	

(c) Ratings graph (Exact RPR)

0	

5	

10	

15	

20	

25	

0%	
 10%	
 20%	
 0%	
 10%	
 20%	

10	
 40	

Av
g.	
 R

an
k/A

vg.
	
 PP

R	
 R
an

k	

#	
 seeds	
 ;	
 %	
 noise	

Rela5ve	
 Rank	
 for	
 ↑-­‐rated	
 Seed	
 Movies	
 (S↑);	
 	

beta	
 =	
 0.15	
 on	
 UM-­‐II	
 Graph	

PPR-­‐G	

RPR-­‐1	

RPR-­‐2	

RPR-­‐3	

(d) UM-II graph (Exact RPR)

0	

5	

10	

15	

20	

25	

0%	
 10%	
 20%	
 0%	
 10%	
 20%	

10	
 40	

Av
g.	
 R

an
k/A

vg.
	
 PP

R	
 R
an

k	

#	
 seeds	
 ;	
 %	
 noise	

Rela5ve	
 Rank	
 for	
 ↑-­‐rated	
 Seed	
 Movies	
 (S↑);	
 	

beta	
 =	
 0.15	
 on	
 Ra5ngs-­‐II	
 Graph	

PPR-­‐G	

RPR-­‐1	

RPR-­‐2	

RPR-­‐3	

(e) Ratings-II graph (Exact RPR)
Fig. 7 Average exact RPR ranks of ↑-rated movies included in the seed set relative to
their ranks returned by conventional exact PPR (the ratio for exact PPR itself is 1.0):
the lower is the ratio, the better is the measure

imization (for all graphs) approaches help increase the relative rankings of
the ↑-rated seed nodes, for accommodating the better rankings of good,
but not seed nodes – as we have already seen in Figure 3.

– As also observed before, the performance is especially consistent for large
(UM-II and Ratings-II) graphs.

Reducing Seed Noise in Personalized PageRank 29

0	

10	

20	

30	

40	

0%	
 10%	
 20%	
 0%	
 10%	
 20%	

10	
 40	

Av
g.	
 R

an
k/A

vg.
	
 PP

R	
 R
an

k	

#	
 seeds	
 ;	
 %	
 noise	

Rela5ve	
 Rank	
 for	
 ↑-­‐rated	
 Seed	
 Movies	
 (S↑);	
 	

beta	
 =	
 0.15	
 on	
 Data	
 Graph	

PPR-­‐G	

RPR-­‐1	

RPR-­‐2	

RPR-­‐3	

(a) Metadata graph (Approximate RPR)

0	

10	

20	

30	

40	

0%	
 10%	
 20%	
 0%	
 10%	
 20%	

10	
 40	

Av
g.	
 R

an
k/A

vg.
	
 PP

R	
 R
an

k	

#	
 seeds	
 ;	
 %	
 noise	

Rela5ve	
 Rank	
 for	
 ↑-­‐rated	
 Seed	
 Movies	
 (S↑);	
 	

beta	
 =	
 0.15	
 on	
 UM	
 Graph	

PPR-­‐G	

RPR-­‐1	

RPR-­‐2	

RPR-­‐3	

(b) User-Movie (UM) graph (Approximate RPR)

0	

10	

20	

30	

40	

0%	
 10%	
 20%	
 0%	
 10%	
 20%	

10	
 40	

Av
g.	
 R

an
k/A

vg.
	
 PP

R	
 R
an

k	

#	
 seeds	
 ;	
 %	
 noise	

Rela5ve	
 Rank	
 for	
 ↑-­‐rated	
 Seed	
 Movies	
 (S↑);	
 	

beta	
 =	
 0.15	
 on	
 Ra5ng	
 Graph	

PPR-­‐G	

RPR-­‐1	

RPR-­‐2	

RPR-­‐3	

(c) Ratings graph (Approximate RPR)

0	

10	

20	

30	

40	

50	

60	

0%	
 10%	
 20%	
 0%	
 10%	
 20%	

10	
 40	

Av
g.	
 R

an
k/A

vg.
	
 PP

R	
 R
an

k	

#	
 seeds	
 ;	
 %	
 noise	

Rela5ve	
 Rank	
 for	
 ↑-­‐rated	
 Seed	
 Movies	
 (S↑);	
 	

beta	
 =	
 0.15	
 on	
 UM-­‐II	
 Graph	

PPR-­‐G	

RPR-­‐1	

RPR-­‐2	

RPR-­‐3	

(d) UM-II graph (Approximate RPR)

0	

10	

20	

30	

40	

50	

60	

0%	
 10%	
 20%	
 0%	
 10%	
 20%	

10	
 40	

Av
g.	
 R

an
k/A

vg.
	
 PP

R	
 R
an

k	

#	
 seeds	
 ;	
 %	
 noise	

Rela5ve	
 Rank	
 for	
 ↑-­‐rated	
 Seed	
 Movies	
 (S↑);	
 	

beta	
 =	
 0.15	
 on	
 Ra5ngs-­‐II	
 Graph	

PPR-­‐G	

RPR-­‐1	

RPR-­‐2	

RPR-­‐3	

(e) Ratings-II graph (Approximate RPR)
Fig. 8 Average approximate RPR ranks of ↑-rated movies included in the seed set relative to
their ranks returned by approximate PPR: the lower is the ratio, the better is the measure

5.9 Seed-Bias Elimination under Approximate Computation

Figure 8 compares seed-bias in RPR and PPR schemes under graph
partitioning-based fast random walk approximation. As in the previous sub-
section, we expect that a seed-bias eliminating ranking system would push some

30 Shengyu Huang* et al.

of the highly rated seeds further down in the rankings to bring up those movies
that are good, but not used as seeds:

– In Figure 8, we see that this is indeed true for the proposed fast ran-
dom walk based RPR schemes: as we would expect from a good seed bias
eliminating algorithm, teleportation-discounting and seed-set maximization
increase the relative rankings of the ↑-rated seed nodes, for accommodating
the better rankings of good, but not seed nodes.

– As also observed in other measures of effectiveness, when using graph-
partitioning based approximation schemes, teleportation-discounting pro-
vides better gains than seed-set maximization as it reduces the impact of
noise caused by teleportations which may involve frequent jumps across
partitions.

5.10 Effectiveness Summary

The above experiments have shown that the proposed RPR schemes are effec-
tive in improving ranking quality. When the underlying equations are solved
exactly, the seed-set maximization technique performs well for all graphs (in-
cluding those that already capture user preferences) and noise scenarios and
thus should be the preferred ranking technique (according to the results, even
in situations where the noise is 0%).

When graph-partitioning based approximations are used however,
teleportation-discounting provides the highest gains since teleportation-
discounting increases robustness of PPR scores against both noise in the seed
set S as well as against noise introduced due to cross-partition teleportations
needed under graph-partitioning.

5.11 Efficiency Evaluations

In Figures 9 and 10, we consider the execution times of the differ-
ent personalized PageRank algorithms considered in this paper (with-
out explicit parallelization). In particular, we consider three scenarios:
Fresh graph, fresh seed set: In the first scenario, we are given a graph and
a fresh set of seeds and the computation starts from scratch (Figures 9(a), (b)
and (c), columns corresponding to 0% overlap). Cached graph, fresh seed set:
In the second, the graph is fixed and the matrix inverse has already been com-
puted and cached; given a fresh seed set, this cached inverse is used for comput-
ing the scores and rankings (Figures 10(a), (b) and (c), columns corresponding
to 0% overlap). Fresh/cached graph, overlapping (i.e., cached) seed set: In the
third scenario (Figures 9 and 10, columns corresponding to more than 0% over-
lap), the new seed set overlaps with seed sets considered in the past and this
overlap is leveraged as described in Section 4.3.

– As we see in Figures 10(a) and (b), when a cached inverse of the transition
matrix is available and the seed set overlap is low, RPR-2 and RPR-3

Reducing Seed Noise in Personalized PageRank 31

0	

0.05	

0.1	

0.15	

0.2	

0.25	

0.3	

0.35	

0.4	

0.45	

0%	
 overlap	

(10new)	

80%	
 overlap	

(2new)	

90%	
 overlap	

(1new)	

0%	
 overlap	

(40new)	

80%	
 overlap	

(8new)	

90%	
 overlap	

(4new)	

95%	
 overlap	

(2new)	

98%	
 overlap	

(1new)	

10	
 40	

Ex
ec
u&

on
	
 Ti
me

	
 (s
ec
on

ds
)	

#	
 seeds	
 ;	
 %	
 seed	
 set	
 overlap	
 (#new	
 seeds)	
 	

Execu&on	
 Time;	
 beta=0.15	
 on	
 Data	
 Graph	

(without	
 cached	
 inverse)	

PPR	

PPR-­‐G	

RPR-­‐1	

RPR-­‐2	

RPR-­‐3	

(a) Metadata graph, without cached inverse

0	

0.5	

1	

1.5	

2	

2.5	

0%	
 overlap	

(10new)	

80%	
 overlap	

(2new)	

90%	
 overlap	

(1new)	

0%	
 overlap	

(40new)	

80%	
 overlap	

(8new)	

90%	
 overlap	

(4new)	

95%	
 overlap	

(2new)	

98%	
 overlap	

(1new)	

10	
 40	

Ex
ec
u&

on
	
 Ti
me

	
 (s
ec
on

ds
)	

#	
 seeds	
 ;	
 %	
 seed	
 set	
 overlap	
 (#new	
 seeds)	

Execu&on	
 Time;	
 beta=0.15	
 on	
 User-­‐Movie	
 Graph	

(without	
 cached	
 inverse)	

PPR	

PPR-­‐G	

RPR-­‐1	

RPR-­‐2	

RPR-­‐3	

(b) User-Movie (UM) graph, without cached inverse

0	

0.5	

1	

1.5	

2	

2.5	

0%	
 overlap	

(10new)	

80%	
 overlap	

(2new)	

90%	
 overlap	

(1new)	

0%	
 overlap	

(40new)	

80%	
 overlap	

(8new)	

90%	
 overlap	

(4new)	

95%	
 overlap	

(2new)	

98%	
 overlap	

(1new)	

10	
 40	

Ex
ec
u&

on
	
 Ti
me

	
 (s
ec
on

ds
)	

#	
 seeds	
 ;	
 %	
 seed	
 set	
 overlap	
 (#new	
 seeds)	

Execu&on	
 Time;	
 beta=0.15	
 on	
 Ra&ng	
 Graph	

(without	
 cached	
 inverse)	

PPR	

PPR-­‐G	

RPR-­‐1	

RPR-­‐2	

RPR-­‐3	

(c) Ratings graph, without cached inverse

0	

5	

10	

15	

20	

25	

30	

35	

40	

45	

0%	
 80%	
 90%	
 0%	
 80%	
 90%	
 95%	
 98%	

(10	
 new)	
 (2	
 new)	
 (1	
 new)	
 (40	
 new)	
 (8	
 new)	
 (4	
 new)	
 (2	
 new)	
 (1	
 new)	

10	
 40	

Exe
cu&

on	

Tim

e	
 (s
eco

nds
)	

#	
 seeds	
 ;	
 %	
 seed	
 set	
 overlap	
 (#new	
 seeds)	

Execu&on	
 Time;	
 beta=0.15	
 on	
 UM-­‐II	
 Graph	
 	

(without	
 cached	
 inverse)	

PPR	

PPR-­‐G	

RPR-­‐1	

RPR-­‐2	

RPR-­‐3	

(d) UM-II graph, without cached inverse

0	

5	

10	

15	

20	

25	

30	

35	

40	

45	

0%	
 80%	
 90%	
 0%	
 80%	
 90%	
 95%	
 98%	

(10	
 new)	
 (2	
 new)	
 (1	
 new)	
 (40	
 new)	
 (8	
 new)	
 (4	
 new)	
 (2	
 new)	
 (1	
 new)	

10	
 40	

Exe
cu&

on	

Tim

e	
 (s
eco

nds
)	

#	
 seeds	
 ;	
 %	
 seed	
 set	
 overlap	
 (#new	
 seeds)	

Execu&on	
 Time;	
 beta=0.15	
 on	
 Ra&ngs-­‐II	
 Graph	
 	

(without	
 cached	
 inverse)	

PPR	

PPR-­‐G	

RPR-­‐1	

RPR-­‐2	

RPR-­‐3	

(e) Ratings-II graph, without cached inverse

Fig. 9 Execution times for different measures (w/o explicit parallelization) – personalized
PageRank computation starts from scratch. For each configuration, we consider different
rates of updates to the seed set.

schemes (which need to solve multiple linear equations per Section 4.3)
are slower than PPR, PPR-G, and RPR-1 schemes. Thus, when cached
inverse is available and seed overlaps are small, we recommend using the

32 Shengyu Huang* et al.

0.001	

0.01	

0.1	

1	

0%	
 overlap	

(10new)	

80%	
 overlap	

(2new)	

90%	
 overlap	

(1new)	

0%	
 overlap	

(40new)	

80%	
 overlap	

(8new)	

90%	
 overlap	

(4new)	

95%	
 overlap	

(2new)	

98%	
 overlap	

(1new)	

10	
 40	

Ex
ec
u&

on
	
 Ti
me

	
 (lo
g	
 s

ec
on

ds
)	

#	
 seeds	
 ;	
 %	
 seed	
 set	
 overlap	
 (#new	
 seeds)	

Execu&on	
 Time;	
 beta=0.15	
 on	
 Data	
 Graph	
 	

(with	
 cached	
 inverse)	

PPR	

PPR-­‐G	

RPR-­‐1	

RPR-­‐2	

RPR-­‐3	

(a) Metadata graph, with cached inverse (time is log scale)

0.01	

0.1	

1	

0%	
 overlap	

(10new)	

80%	
 overlap	

(2new)	

90%	
 overlap	

(1new)	

0%	
 overlap	

(40new)	

80%	
 overlap	

(8new)	

90%	
 overlap	

(4new)	

95%	
 overlap	

(2new)	

98%	
 overlap	

(1new)	

10	
 40	

Ex
ec
u&

on
	
 Ti
me

	
 (lo
g	
 s

ec
on

ds
)	

#	
 seeds	
 ;	
 %	
 seed	
 set	
 overlap	
 (#new	
 seeds)	
 	

Execu&on	
 Time;	
 beta=0.15	
 on	
 User-­‐Movie	
 Graph	
 	

(with	
 cached	
 inverse)	

PPR	

PPR-­‐G	

RPR-­‐1	

RPR-­‐2	

RPR-­‐3	

(b) User-Movie (UM) graph, with cached inverse (time is log scale)

0.01	

0.1	

1	

0%	
 overlap	

(10new)	

80%	
 overlap	

(2new)	

90%	
 overlap	

(1new)	

0%	
 overlap	

(40new)	

80%	
 overlap	

(8new)	

90%	
 overlap	

(4new)	

95%	
 overlap	

(2new)	

98%	
 overlap	

(1new)	

10	
 40	

Ex
ec
u&

on
	
 Ti
me

	
 (lo
g	
 s

ec
on

ds
)	

#	
 seeds	
 ;	
 %	
 seed	
 set	
 overlap	
 (#new	
 seeds)	
 	

Execu&on	
 Time;	
 beta=0.15	
 on	
 Ra&ng	
 Graph	
 	

(with	
 cached	
 inverse)	

PPR	

PPR-­‐G	

RPR-­‐1	

RPR-­‐2	

RPR-­‐3	

(c) Ratings graph, with cached inverse (time is log scale)

0.1	

1	

10	

100	

0%	
 80%	
 90%	
 0%	
 80%	
 90%	
 95%	
 98%	

(10	
 new)	
 (2	
 new)	
 (1	
 new)	
 (40	
 new)	
 (8	
 new)	
 (4	
 new)	
 (2	
 new)	
 (1	
 new)	

10	
 40	

Exe
cu&

on	

Tim

e	
 (l
og	

sec
ond

s)	

#	
 seeds	
 ;	
 %	
 seed	
 set	
 overlap	
 (#new	
 seeds)	

Execu&on	
 Time;	
 beta=0.15	
 on	
 UM-­‐II	
 Graph	
 	

(with	
 cached	
 inverse)	

PPR	

PPR-­‐G	

RPR-­‐1	

RPR-­‐2	

RPR-­‐3	

(d) UM-II graph, with cached inverse (time is log scale)

0.1	

1	

10	

100	

0%	
 80%	
 90%	
 0%	
 80%	
 90%	
 95%	
 98%	

(10	
 new)	
 (2	
 new)	
 (1	
 new)	
 (40	
 new)	
 (8	
 new)	
 (4	
 new)	
 (2	
 new)	
 (1	
 new)	

10	
 40	

Exe
cu&

on	

Tim

e	
 (l
og	

sec
ond

s)	

#	
 seeds	
 ;	
 %	
 seed	
 set	
 overlap	
 (#new	
 seeds)	

Execu&on	
 Time;	
 beta=0.15	
 on	
 Ra&ngs-­‐II	
 Graph	
 	

(with	
 cached	
 inverse)	

PPR	

PPR-­‐G	

RPR-­‐1	

RPR-­‐2	

RPR-­‐3	

(e) Ratings-II graph, with cached inverse (time is log scale)

Fig. 10 Execution times for different measures (w/o explicit parallelization) – personalized
PageRank computation leverages cached matrix inverses. For each configuration, we consider
different rates of updates to the seed set.

RPR-1 scheme which (as we have seen earlier) is more robust than PPR
and PPR-G and, also, as fast.

– Figures 9 and 10 also show that the difference between the various strate-
gies is small or non-existent (a) when the graph itself is fresh (i.e., no

Reducing Seed Noise in Personalized PageRank 33

Execution time in seconds (with cached inverse)
10 seeds per unit 20 seeds per unit 40 seeds per unit

UM 0.26 0.51 1.02
Ratings 0.26 0.51 1.03
UM-II 3.63 7.44 14.48

Ratings-II 3.61 7.38 14.51

Table 4 The execution time of the RPR-II scheme grows linearly with the number of seeds

Required Cache Size
UM and Ratings Graphs UM-II and Ratings-II Graphs

Exact RPR 52.57MB 761.72MB
Approximate RPR 4.54MB 29.13MB

Table 5 Required cache size for exact and approximate PPR/RPR schemes

cached inverse is available), (b) the seed set is small, or (c) the overlap
between the current seed set and the seeds considered in the past is large
(i.e., cached solutions for individual seeds can be reused per Section 4.3).
In these cases, RPR-2 and RPR-3 are competitive in execution times and
should be used where the accuracy provided by the seed-set maximization
strategy is critical.

As discussed in Section 4.3, RPR is trivially parallelizable by mapping new
seeds such that each computation unit processes only one (or few) new seeds.
The impact of processing only one seed per processing unit can be seen by
considering the cases marked “1new” in Figures 9 and 10, which illustrate
the cost of performing RPR computation when each seed is processed by a
dedicated processing unit.

5.12 Parallelization Opportunities

In Table 4, we study the parallelization opportunities provided by the pro-
posed RPR-II scheme, discussed in Section 4.3.1, where the seed-set maximal
optimization problem is converted into a set of linear optimization problems,
each (or a subset)can be assigned to a different computation unit. The table
confirms that the execution time (with a cached inverse that can be shared
across computation units) grows linearly with the number of seeds assigned to
each unit. This indicates that, as argued in Section 4.3.1, RPR-II is perfectly
parallelizable across multiple computation units.

5.13 Space Consumption of RPR under Graph-Partitioning based
Approximate Computation

As we see in Table 5, in these experiments, the sizes of cached inverses for
exact RPR on Ratings graph and Rating-II graph are 52.57 MB and 761.72
MB, respectively. Size of cached inverses for approximate RPR on Ratings

34 Shengyu Huang* et al.

0	

30	

60	

90	

5	
 10	
 20	
 5	
 10	
 20	
 5	
 10	
 20	

50	
 100	
 150	

Tim
e	
 (

se
c)	

#of	
 seed	
 sets	
 (50,100,150)	
 -­‐	
 #	
 of	
 seeds	
 per	
 set	
 (5,10,20)	

Mul:-­‐Query	
 vs.	
 Standard	
 Processing	

(Ra:ngs	
 Graph)	

Mul,-­‐Query	
 Standard	

(a) Execution times for multi-query RPR-2 and standard RPR-2 on the Ratings graph

0	

400	

800	

1200	

5	
 10	
 20	
 5	
 10	
 20	
 5	
 10	
 20	

50	
 100	
 150	

Tim
e	
 (

se
c)	

#of	
 seed	
 sets	
 	
 (50,100,150)	
 -­‐	
 	
 #	
 of	
 seeds	
 per	
 set	
 (5,10,20)	

Mul:-­‐Query	
 vs	
 Standard	
 Processing	

(Ra:ngs-­‐II	
 Graph)	

Mul+-­‐Query	
 Standard	

(b) Execution times for multi-query RPR-2 and standard RPR-2 on the Ratings-II graph

Fig. 11 Execution times for multi-query RPR-2 and standard RPR-2 on the Ratings and
the, larger, Ratings-II graphs (leveraging cached inverses)

0	

30	

60	

90	

5	
 10	
 20	
 5	
 10	
 20	
 5	
 10	
 20	

50	
 100	
 150	

Pa
r$
al	

Da

ta
	
 Si
ze
	
 (M

B)
	

#	
 of	
 seed	
 sets	
 (50,100,150)	
 -­‐	
 #	
 of	
 seeds	
 per	
 set	
 (5,10,20)	

Size	
 of	
 the	
 Par$al	
 Results	
 Maintained	

in	
 Mul$-­‐Query	
 Execu$on	

Ra+ngs	
 Graph	
 Ra+ngs-­‐II	
 Graph	

Fig. 12 Sizes of the partial results maintained during multi-query RPR-3 processing for
Ratings and Ratings-II graphs

graph and Rating-II graph are 4.54 MB and 29.13 MB. Cache size is the same
for different users and seeds settings because it is only related with graph size.

These results indicate, along with the accuracy results presented in the
previous subsections, that RPR can benefit from approximate computations
to reduce the resource requirements and teleportation-discounting can help im-
prove the robustness of the algorithms to the noise introduced due to inherent
graph partitioning.

Reducing Seed Noise in Personalized PageRank 35

5.14 Multi Query Evaluation

Finally, in Figure 11, we study the usefulness of multi-query processing scheme
proposed in Section 4.4 in scenarios with high query throughput: the algorithm
first groups different users’ shared seeds, then conducts partial computation
on shared seed sets, and finally obtains RPR scores for the individual users by
combining relevant partial computations.

In this experiment, we have considered the Ratings and Rating-II graphs (of
different sizes) and varied the number of seed sets for which we need to compute
RPR-2 scores as 50, 100, and 150. These seed sets were obtained by selecting
random users from the system, for which we generate recommendations. For
each randomly selected user, we considered 5, 10, and 20 seeds. In this figure,
the standard scheme involves running an RPR-2 task separately for each user
(i.e., seed set).

As we see in Figure 11, multi-query processing significantly lowers the
query execution time needed to process large number of RPR queries. The
gains are especially significant when the graph size, number of seeds sets,
and the number of seed per set are large: ∼ 1100 seconds in standard RPR-
2 processing on the Ratings-II graph for 150 random queries with 20 seed
sets vs. only ∼ 370 seconds in multi-query RPR-2 processing on the same
scenario. These large time savings in multi-query processing are due to the
partial results shared by the different seed-sets (Figure 12). These savings are
especially impressive when we consider that, in these experiments, the users
(to whom the seed sets belong) are selected randomly.

6 Conclusions

In this paper, we have shown that conventional personalized PageRank (PPR)
algorithms associate unnecessarily high bias to the seed nodes and this nega-
tively affects the node rankings when the seed set is incomplete and/or noisy.
To deal with this problem, we propose three alternative robust personalized
PageRank (RPR) algorithms that eliminate the potential noise in the seed
set. We have shown that a novel teleportation discounting technique ensures
that rankings are not overly biased towards the seed nodes and a novel seed-
set maximal PPR principle helps differentiate among the seeds by considering
the overall context defined by the seed set. Experiment results showed that
the resulting robust Personalized PageRank (RPR) techniques are efficient
and highly effective in improving recommendations and eliminating unwanted
bias due to imperfections in the seed set. The RPR measures also have effi-
cient implementations, where existing approximation algorithms and/or paral-
lel implementations for computing the PPR scores can be easily leveraged. In
fact, experiment results confirm that the seed-set maximal approach is reuse-
promoting in that it is possible to divide the work relative to individual seed
nodes and teleportation discounting technique provides additional robustness

36 Shengyu Huang* et al.

against noise introduced during graph-partitioning (and block diagonalization)
based approximate random walk computation processes.

References

1. Andersen R, et al. (2008) Trust-based recommendation systems: an axiomatic ap-
proach. WWW, pages 199-208, 2008.

2. Avrachenkov K, et al. (2011) Quick Detection of Top-k Personalized PageRank Lists.
WAW, pages 50-61, 2011,

3. B. Bahmani., K. Chakrabarti, D. Xin, Fast personalized PageRank on MapReduce.
In SIGMOD, pages 973-984, 2011.

4. Bahmani B., et al. Fast incremental and personalized PageRank. PVLDB. 4, 3, pages
173-184, 2010.

5. Balmin A., et al. ObjectRank: Authority-based keyword search in databases. VLDB,
pages 564-575, 2004.

6. Berkhin P. Bookmark-coloring approach to personalized pagerank computing. Inter-
net Mathematics, 3(1), 2007.

7. Boldi P, Rosa M, Vigna S (2011) HyperANF: Approximating the neighbourhood
function of very large graphs on a

8. Borgs C, Brautbar M, Chayes J, et al. Multiscale Matrix Sampling and Sublinear-
Time PageRank Computation[J]. Internet Mathematics, 10(1-2): 20-48, 2014

9. Borgatti MG., et al. Network measures of social capital. Connections 21(2):27-36,
1998.

10. Brin S., et al. The anatomy of a large-scale hypertextual Web search engine. Computer
Networks and ISDN Systems 30: 107-117, 1998.

11. Buckley C., Voorhees E.M. Retrieval evaluation with incomplete information. SIGIR,
pages 25-32, 2004.

12. Candan K.S. and Li W.S. Using random walks for mining web document associations.
PAKDD, pages 294-305, 2000.

13. Candan K.S., et al. Reasoning for Web document associations and its applications in
site map construction. Data Knowl. Eng. 43(2): 121-150, 2002.

14. Chakrabarti S. Dynamic personalized pagerank in entity-relation graphs. WWW,
pages 571-580, 2007.

15. Chen M., et al. Clustering via random walk hitting time on directed graphs. AAAI,
pages 616-621, 2008.

16. Cohen E, Halperin E, Kaplan H, Zwick U (2003) Reachability and distance queries
via 2-hop labels. SIAM, 2003.

17. Csalogany K., et al. Towards Scaling Fully Personalized PageRank: Algorithms, Lower
Bounds, and Experiments Internet Math. 2,3, pages 333-358, 2005.

18. Davis T. A., et al. Direct methods for sparse linear systems. SIAM, 2006.
19. Foster K.C., Muth S.Q., Potterat J.J., and Rothenberg R. B., A Faster Katz Status

Score Algorithm, Comput. and Math. Organ. Theo., 7(4):275-285, 2001.
20. Fouss F., et al. Random-walk computation of similarities between nodes of a graph

with application to collaborative recommendation. TKDE, pages 1041-4347, 2007.
21. Fujiwara Y., et al. Fast and exact top-k search for random walk with restart. PVLDB.

5, 5, pages 442-453, 2012.
22. Guan Z., et al. Personalized tag recommendation using graph-based ranking on multi-

type interrelated objects. SIGIR, 540-547, 2009
23. Gupta M., et al. Fast algorithms for Top-k Personalized PageRank Queries. WWW,

pages 1225-1226, 2008.
24. Haveliwala T.H. Topic-sensitive PageRank. WWW, 517-526, 2002.
25. Jeh G., Widom J. Scaling personalized web
26. Katz L., ”A new status index derived from sociometric analysis. Psychometrika, 18:39-

43, 1953.
27. Kamver S.D.,Haveliwala T., Manning C.D., Golub G. Extrapolation methods for ac-

celerating PageRank computations. Proceedings of the 12th international conference
on World Wide Web (WWW’03). ACM, New York, NY, USA, 261-270. 2003.

Reducing Seed Noise in Personalized PageRank 37

28. Kim H. J., Candan K. S., Sapino M. L., LR-PPR: Locality-Sensitive, Re-use Promot-
ing, Approximate Personalized PageRank Computation. CIKM’13, 2013

29. Kim H.N, El-Saddik A. Personalized PageRank vectors for tag recommendations:
inside FolkRank. RecSys, 45-52, 2011.

30. Langville A.N., Meyer C.D. Updating pagerank with iterative aggregation. WWW
(Alternate Track Papers & Posters)’04. , 2004.

31. Maehara T., Akiba T., et al. Computing personalized PageRank quickly by exploiting
graph structures. Proceedings of the VLDB Endowment, 7:10231034, 2014.

32. Malewicz G., et al. Pregel: a system for large-scale graph processing. SIGMOD, pages
135-146, 2010.

33. Mei Q., et al. Query suggestion using hitting time. CIKM, 2008.
34. Palmer C, Gibbons P, Faloutsos C (2002) Anf: a fast and scalable tool for data mining

in massive graphs. KDD’02, 2002.
35. Piegorsch W, Casella G.E (1990) Inverting a sum of matrices. In SIAM Review, 1990.
36. Perozzi B. , McCubbin C. , Halbert J.T.. Scalable graph clustering with parallel

approximate PageRank. Social Network Analysis and Mining, 4:179-189, 2014
37. Sarkar P., et al. Fast incremental proximity search in large graphs. ICML, pages

896-903, 2008.
38. Sarma A.D, Molla A.R, Pandurangan G, Upfal E. Fast Distributed PageRank Com-

putation. ICDCN, pages 11-26, 2013
39. Tong H, Faloutsos C (Center-piece subgraphs: problem definition and fast solutions.

In KDD ’06: Proceedings of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining}, pp. 404–413, New York, NY, USA, 2006.
ACM.

40. Tong H, Faloutsos C, Koren Y (2007) Fast direction-aware proximity for graph mining.
KDD, pp. 747–756, 2007.

41. Tong H., et al. Fast Random Walk with Restart and Its Applications. ICDM, pages
613-622, 2006.

42. Wei F (2010) Tedi: efficient shortest path query answering on graphs. SIGMOD’10.
43. White D.R., et al. Betweenness centrality measures for directed graphs. Social Net-

works, 16, pages 335-346,1994.
44. Xiao Y, Wu W, Pei J, Wang W, He Z (2009) Efficiently indexing shortest paths by

exploiting symmetry in graphs. EDBT, 2009.
45. Zhou L, Chen L, Ozsu M.T (2009) Distance-join: pattern match query in a large

graph, VLDB, 2009.
46. http://www.imdb.com/
47. http://www.grouplens.org/
48. http://www.cs.umn.edu/ metis

