
Noname manuscript No.
(will be inserted by the editor)

Toward Early and Order-of-Magnitude Cascade
Prediction in Social Networks

Ruocheng Guo · Elham Shaabani ·
Abhinav Bhatnagar · Paulo Shakarian

Received: date / Accepted: date

Abstract When a piece of information (microblog, photograph, video, link,
etc.) starts to spread in a social network, an important question arises: will it
spread to “viral” proportions – where “viral” can be defined as an order-of-
magnitude increase. However, several previous studies have established that
cascade size and frequency are related through a power-law - which leads to a
severe imbalance in this classification problem. In this paper, we devise a suite
of measurements based on “structural diversity” – the variety of social con-
texts (communities) in which individuals partaking in a given cascade engage.
We demonstrate these measures are able to distinguish viral from non-viral
cascades, despite the severe imbalance of the data for this problem. Further,
we leverage these measurements as features in a classification approach, suc-
cessfully predicting microblogs that grow from 50 to 500 reposts with precision
of 0.69 and recall of 0.52 for the viral class - despite this class comprising under
2% of samples. This significantly outperforms our baseline approach as well
as the current state-of-the-art. We also show this approach also performs well
for identifying if cascades observed for 60 minutes will grow to 500 reposts as
well as demonstrate how we can tradeoff between precision and recall.

Keywords Cascade Prediction · Information Diffusion · Social Network
Analysis · Diffusion in Social Networks

U.S. provisional patent 62/201,517. A non-provisional patent is currently being filed.

Some of the authors of this paper are supported by by AFOSR Young Investigator Program
(YIP) grant FA9550-15-1-0159, ARO grant W911NF-15-1-0282, and the DoD Minerva pro-
gram.

Ruocheng Guo, Elham Shaabani, Abhinav Bhatnagar, Paulo Shakarian
Arizona State University
E-mail: {rguosni, shaabani, abhatn, shak}@asu.edu

ar
X

iv
:1

60
8.

02
64

6v
1 

 [
cs

.S
I]

  8
 A

ug
 2

01
6



2 Ruocheng Guo et al.

1 Introduction

When a piece of information (microblog, photograph, video, link, etc.) starts
to spread in a social network, an important question arises: will it spread to
“viral” proportions – where “viral” is defined as a significant (i.e. order-of-
magnitude) increase in the number of individuals re-posting the information.
However, several previous studies (Bakshy et al, 2011; Cheng et al, 2014) have
established that cascade size and frequency are related through a power-law
- which leads to a severe imbalance in this classification problem. In this pa-
per, we devise a suite of measurements based on “structural diversity” that
are associated with the growth of a viral cascade in a social network. Struc-
tural diversity refers to the variety of social contexts in which an individual
engages and is typically instantiated (for social networks) as the number of dis-
tinct communities represented in an individual’s local neighborhood (Ugander
et al, 2012; Zhang et al, 2013; Shakarian et al, 2014; Li et al, 2015). Previ-
ously, Ugander et al. identified a correlation between structural diversity and
influence (Ugander et al, 2012). We demonstrate these measures are able to
distinguish viral from non-viral cascades, despite the severe imbalance of the
data for this problem. Further, we leverage these measurements as features
in a classification approach, successfully predicting microblogs that grow to
500 reposts from 50 (size-based experiments) or the first-hour observations
(time-based experiments). The main contributions of the paper are as follows:

– We develop a suite of structural diversity-based measurements that are
indicative of cascade growth.

– We are able to identify cascades of 50 reposts that grow to 500 reposts
with a precision of 0.69 and recall of 0.52 for the viral class (200 out of
13,285 samples).

– We are able to identify cascades that have advanced for 60 minutes that
will reach 500 reposts with a precision of 0.65 and recall of 0.53 for the
viral class (200 out of 3,444 samples).

– We demonstrate how to trade-off between precision and recall for the
above-mentioned problems. For instance, to predict cascades that reach
500 nodes, we can obtain precision of 0.78 or recall of 0.71 at the expense
of the other.

– We demonstrate that our approach is stable for alternative definitions of
”viral” (i.e. microblogs that grow to sizes above or below 500 reposts).

We note that our results on the prediction of cascades rely solely upon the use
of our structural diversity based measures for features and limited temporal
features - hence the prediction is based on network topology alone (no content
information was utilized). We also achieved these results while maintaining the
imbalance of the dataset - where we leave the ratio of ’viral’ and ’non-viral’
samples as it is. This differs from some previous studies (i.e. (Jenders et al,
2013)) which balance the data before conducting classification experiments.
Further, we note that we obtained prediction of order-of-magnitude increases
in the size of the cascade - which also differs from other work (i.e. (Cheng
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et al, 2014)) which focus on identifying cascades that double in size. The
remainder of the paper is organized as follows. In Section 2 we introduce
our notation and describe the dataset used in this paper. This is followed
by an introduction of our structural diversity measurements for cascades in
Section 3. Then we describe our experimental results where we examined both
the behavior of these measurements and the performance of classifiers built
using these measurements in Section 5. Finally, we discuss related work in
Section 6.

2 Technical Preliminaries

Here we introduce necessary notation and describe our social network data.
We represent a social network as G = (V,E) where V is the set of nodes and
E as a set of directed edges with sizes |V |, |E| respectively. The intuition be-
hind edge (v, v′) is that it is possible that v′ repost a microblog from v since
v′ did this previously. This intuition stems from how we create the edges in
our network: (v, v′) is an edge if v′ reposted from v once or more during a
specified time period (for our experiments, May 1 to July 31, 2011). We also
assume a partition over nodes that specifies a community structure. We as-
sume that such a partition is static (based on the same time period from which
the edges were derived) and that the partition C consists of k communities:
{C1, C2, ..., Ck}, each is a set of nodes. There are many possible methods to
derive the communities (if user-reported communities are not available) - for
instance: the Louvain algorithm (Blondel et al, 2008), Infomap (Rosvall and
Bergstrom, 2008), Smart Local Move (SLM) (Waltman and van Eck, 2013)
and Label Propagation (Raghavan et al, 2007). Previous work such as (Weng
et al, 2014; Grabowicz et al, 2012) showed the effectiveness of communities
detected by these algorithms for different applications. In this paper, We uti-
lize the Louvain algorithm, Infomap algorithm and SLM algorithm to identify
communities in the social network G due to their scalability for large social
network. For these algorithms, the number of communities is not an argument
as input but rather produced as part of the output of these algorithms. Note
that we require C to be a partition over nodes - hence we disallow for overlap-
ping communities. This is consistent with the community structure derivations
from previous, related work (Ugander et al, 2012; Zhang et al, 2013; Shakar-
ian et al, 2014; Li et al, 2015) which also required a partition over nodes such
as strongly connected components. As such, we leave the study of structural
diversity in the case of overlapping communities to future efforts.

Cascades. A cascade τ = (U,R) consists of all nodes (U) who posted or re-
posted a certain original microblog and the reposting relationships between
them, treated as edges (R). Naturally, any cascade is a subgraph of the social
network G. In order to predict the final size, snapshots of a cascade can be
taken by different time since adoption of the seed adopter (denoted by t). Then
a snapshot of cascade τ introduces a subset τt = (Ut, Rt) of τ . We refer to
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Ut as adopters. Moreover, we also call the out-neighbors of adopters in G but
not among the adopters as exposed users and denote them as NG(Ut). For
each node v ∈ NG(Ut), we define the adopters who exposes the cascade to v
as its exposers. For convenience, we also define function uea : v → u to return
the earliest adopter u among exposers of v ∈ NG(Ut).

For size-based experiments, the time t for taking snapshot of a cascade
is decided by a given cascade size m. We use t(m) to denote the smallest
t such that |Ut|= m is true for a certain cascade. Accordingly, to get the
corresponding order number n of an adopter u ∈ Ut, we define function Index :
u→ n where n ∈ [1, |Ut|]. To maintain a unique order of reposts, a very small
random number is added to each t(n) for all integers n ∈ [1, |Ut(m)|]. We have
not found this to be a significant issue in this dataset. For convenience and
simplicity, we use t to stand for both t(m) in size-based and t in time-based
experiments later.

For a given snapshot τt = (Ut, Rt), then we want to divide the set NG(Ut)
into two sets, namely recently exposed users (Ft) and past exposed users (Nt).
Intuitively, this division is done based on how long it is since v ∈ NG(Ut) is
true (when it is possible for v to make a repost) till the snapshot τt is taken.
Formally, given a node v ∈ NG(Ut), we decide whether it is a recently or past
exposed user:

texpose(v) = t− t(Index(uea(v))) (1)

As defined before, t(n) denotes the earliest time t when |Ut|= n is true.
Then the value of texpose(v) is the number of time periods since the earliest
adoption among its exposers till when the snapshot of cascade is taken.

A positive constant λ is set as a threshold on texpose(v) (we will discuss
how this constant is set in the last paragraph of 2), the recently exposed users
and past exposed users are defined as follows:

Ft = {v ∈ NG(Ut) s.t. texpose(v) ≤ λ} (2)

Nt = NG(Ut) \ Ft (3)

Sina Weibo Dataset. The dataset we used was provided by WISE 2012 Chal-
lenge1. It included a sample of microblogs posted on Sina Weibo2 from 2009
to 2012. In this dataset, we are provided with time and user information for
each microblog and subsequent repost which enabled us to derive a corpus of
cascades. For every repost in this dataset, the reposting relationship is pro-
vided as uid: v′ tab v which indicates this message is a reposted from user v by
v′. From this data, we derived our social network G = (V,E) that was created
from microblogs (including original posts and reposts) published during May
1, 2011 to July 31, 2011 (the 3-month period). For this network, the number
of active nodes in August (the time period we studied for cascade prediction)
is 5,910,608, while 5,664,625 of them at least have one out-neighbor. During

1 http://www.wise2012.cs.ucy.ac.cy/challenge.html
2 http://weibo.com
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Table 1: Properties of the Social Network and Cascades

Network Properties Value

Vertices (Nodes) 17,996,803
Edges 52,472,547
Average degree 5.83
Average clustering coefficient 0.107
Connected components 4974

Number of communities (Louvain) 379,416
Average size of communities (Louvain) 47.5
Number of communities (Infomap) 39,922
Average size of communities (Infomap) 450.799
Number of communities (SLM) 380,854
Average size of communities (SLM) 47.3

Cascade Properties Value

Number of cascades 2,113,405
Number of viral cascades 208
Number of active nodes in cascades 5,910,608
Average time to become viral 18 (h)

the month of August, there were 22,182,704 microblogs. Of these, 9,323,294
are reposts. 2,252,368 different of original posts succeeded to make at least
one user repost, while 1,920,763 (86.6%) of them were written by authors who
at least published one microblog during the 3-month period mentioned be-
fore. For this dataset, although different from a power-law noted previoulsly
in (Bakshy et al, 2011; Cheng et al, 2014), the histogram of final cascade size
(see Figure 1a) still shows that only quite few cascades went ’viral’. There-
fore, we could demonstrate that this dataset is more representative of cascade
behavior observed in real world than work like (Jenders et al, 2013) which
conducted biased sampling to artificially provide balanced classes.

We select the threshold constant λ as 30 minutes since vast majority of
all the reposts in May-July, 2011 occurred within 30 minutes since adoption
of the seed adopter (see Figure 1b). To justify this selection, knowing that
λ is a threshold on texpose(v) which is upper bounded by t, the proportion
of exposed users became adopter with texpose(v) ≤ 30(min) should be more
than that of those did the repost with t ≤ 30(min). This implies why it is
necessary to distinguish recently and past exposed users due to the significant
difference in probability to adopt. In Figure 1c, we show distribution of how
long it takes for viral cascades to reach 500 nodes - note that the average value
here is approximately 18 hours (which is significantly greater than what we
study in our time-based classification problem).
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(a) The histogram of cascade size for August, 2011
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(b) CDF of adoption time since adoption of the seed adopter (minutes) for May-July, 2011
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(c) Histogram of time (minutes) ’viral’ cascades took to reach size of 500.

Fig. 1: Network Dataset Statistics

3 Structural Diversity Measurements in Real Information Cascades

Found by (Ugander et al, 2012), an individual is more likely to be infected
by a ‘social contagion’ if his/her ‘infected’ in-neighbors are distributed over
more connected components of social network users. For example, as shown
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in Figure 2, although the man on the left has more infected in-neighbors, the
woman on the right is more likely to be infected by the social contagion. As
in-neighbors of her are showing higher structural diversity (from two communi-
ties). Translated into the terminologies introduced in this paper, they showed
that an exposed user is more likely to become an adopter with exposers of
high structural diversity. If this effect is aggregated over all the exposed users
of a cascade, the significance to measure the relationship between structural
diversity of adopters would be revealed. Moreover, we also extend our experi-
ments to measure that of exposed users. Instead of connected components, we
consider structural diversity described by communities. In this section we in-
troduce a suite of various structural diversity measurements. We study these
measurements as cascades progress in Section 4 and then leverage them as
features for our classification problem in Section 5. We introduce these mea-
surements as follows.

Number of communities. For a given set of node S ∈ {Ut, Ft, Nt} we can
retrieve the associated communities C(S) by the partition of the social network
C(G). Formally:

C(S) = {Ci ∈ C(V ) s.t. S ∩ Ci 6= ∅}

where C(V ) is the partition of the social networkG, introduced in Section 2. We
measure the number of communities represented by |C(S)| for S ∈ {Ut, Ft, Nt}.

Gini impurity. For S ∈ {Ut, Ft, Nt} in a cascade τt, the gini impurity IG(S)
proposed by (Breiman et al, 1984) for splitting samples in decision tree, in-
tuitively, is a scalar describing how much the distribution of nodes in S over
communities in C(S) differs from the uniform distribution. Here the uni-

form distribution stands for the situation where |Ci|= |S|
|C(S)| for all Ci ∈ C(S).

To show the extreme values, IG(S) ≈ 1 means the nodes are uniformly dis-
tributed over a large quantity of communities while IG(S) ≈ 0 implies most of
the nodes in S are from the few ’dominant’ communities. Formally, we define
gini impurity as follows:

IG(S) = 1−
∑

Ci∈C(S)

(
|Ci|
|S|

)2 (4)

We study the gini impurity IG(S) for S ∈ {Ut, Ft, Nt} for each cascade. We
note that the impurity of the adopter set IG(Ut) behaves similar to the entropy
of this set (a measurement introduced in (Weng et al, 2014)). However, as we
will see in the next two sections, we found that the impurity of the recently
exposed users is a more discriminating feature.

Overlap. For {Sa, Sb} ⊂ {Ut, Ft, Nt}, the overlap (O(Sa, Sb)) is simply the
number of shared communities between the sets of nodes Sa and Sb. Formally:

O(Sa, Sb) = |C(Sa) ∩ C(Sb)| (5)
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Fig. 2: An example for structural diversity: Although the man on the left has
more infected in-neighbors, the woman on the right is more likely to be infected
by the social contagion. As in-neighbors of her are showing higher structural
diversity (from two communities).

The intuition behind overlap stems directly from the original structural di-
versity results of the related work (Ugander et al, 2012) - for instance a large
overlap value O(Ut, Ft) is likely to indicate that the local neighborhoods of
many of the recently exposed users will exhibit high structural diversity -
hence increasing the probability to become adopters in the future.

Baseline measures. In addition to the aforementioned structural diversity mea-
surements, we also examine two baseline measurements dealing with time and
size.

Average time to adoption. The average time to adoption for adopters in the
cascade snapshot of size m: 1

m

∑m
i=1 t(m).

Number of nodes. The cardinality of adopters, recently and past exposed users
|Ut|,|Ft|,|Nt|.

4 Structural Diversity Measurement Study

Here we examine the behavior of the various structural diversity measurements
as viral and non-viral cascades progress. In this section, we define a cascade as
viral if the number of reposts eventually reaches a threshold (denoted TH) of
500 (in the next section we will explore various values for TH). Only the distri-
butions of feature values computed based on Louvain algorithm are exhibited
in this section as it provides best results in both size-based and time-based clas-
sification tasks (See Section 5). All the measurements are computed by cascade
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Table 2: Number of samples analyzed in different stages

m Samples Viral Samples (%)
10 98,832 0.2%
30 26,733 0.7%
50 13,285 1.5%
100 4,722 4.2%
200 1,324 15%

t (min) Samples Viral Samples (%)
40 2,234 7%
60 3,444 5%
100 5,767 3%
150 8,349 2%
300 15,350 1%

snapshots with five populations of nodes with m = {10, 30, 50, 100, 200} (or
t(m) accordingly) and five values of time since adoption of the seed adopter
with t = {40, 60, 100, 150, 300}. Table 2 shows the number of samples our
analysis covers in both classes for each value of m and t. For each time t we
perform analysis on measurements for those cascade snapshots with no less
than 5 adopters at the time so that the enough information can be provided
from Ut,Ft and Nt for the prediction task. For each size m, we consider the
cascades with |Ut|= m adopters at the corresponding time t(m), t(m) can
vary for different cascades. Hence, cascades with final size less than m are
ignored in our analysis. This leads to that the number of non-viral cascades
decreases as m increases. We examined a total of 24 measurements discussed
in the previous section (12 for size-based and 12 for time-based analysis, listed
as Am and At respectively in Table 3). For each measurement, for each m and
t describing the diffusion process, we attempted to identify statistically sig-
nificant difference between viral and non-viral classes. For this, we performed
KS tests for each pair of measurements. In every test, p ≤ 10−13, so the null
hypothesis is rejected for all cases, which means each pair of the distributions
are significantly different. We choose KS test over T test and Chi-square test
as it is sensitive to both the location and shape of the distribution as well as
it does not require each distribution to cover all possible values of the other.
As notations of the box plots in the following subsections, A and M denotes
mean and median for each box plot respectively.

4.1 Size Progression

Average time to adoption. As a baseline measurement, we study the average
time to adoption for each m of the cascade process (Figure 3). As expected,
viral cascades exhibit shorter average time since adoption of the seed adopter
till each later adoption. While we note that significant differences are present
- especially in the early stages of the cascade, the whiskers of the non-viral
class indicate a significant proportion of non-viral cascades that exhibit rapid
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adoption. We believe this is likely due to the fact that certain cascades may
have very high appeal to specialized communities.

Number of communities. Figure 4 displays how the number of communities
|C(S)| increases over m = {10, 30, 50, 100, 200} for the sets S = {Ut,Ft}. We
note that |C(Ut)| (the communities represented in the set of adopters) was
shown to be a useful feature in (Weng et al, 2014) for tasks where the target
class had fewer reposts than in this study. Here, we note that while statistically
significant differences exist, the average and median values at each of the
examined stages are generally similar. On the other hand, the communities
represented by the set of rencently exposed users (Ft) shows viral cascades
have stronger capability to keep set of rencently exposed users with many
communities than non-viral ones. We also noted that the median of |C(Nt)|
shows viral cascades start with smaller |C(Nt)|. However, it increases faster in
viral cascades as nodes in rencently exposed users become past exposed users
(not pictured) as m increases.

Gini impurity. Cascades in both classes tend to accumulate diversity in the
process of collecting more adopters - and we have also noted that a related
entropy measure (studied in (Weng et al, 2014)) performed similarly. We also
observed that viral cascades can show larger gini impurity in recently exposed
users measured by IG(Ft) in early stages (m = {10, 30, 50}). However, perhaps
most striking, non-viral cascades gain more uniformly distributed nodes over
communities in non-adopters, shown by IG(Nt) (Figure 5). We believe that this
is due to non-viral cascades likely have an appeal limited to a relatively small
number of communities - hence those not adopting the trend may represent a
distribution of nodes over communities which is more different from a uniform
distribution.

Overlap. We found that overlap grows with the number of adopters in the
three types of overlap considered. For O(Ut,Ft), viral cascades start with a
larger initial value and keep leading non-viral ones in the diffusion process of
first 200 nodes (Figure 6). We consider that viral cascades also take advantage
of the densely linked communities to help them become viral. However, in the
case of O(Ut,Nt) and O(Ft,Nt), viral cascades begin with lower value but
grow much faster than non-viral cascades.

4.2 Time Progression

Number of adopters. As a baseline measurement, we study the number of
adopters at regular time intervals and, as expected, found a clear difference
between the two classes. Figure 7 shows how |Ut| changes over 40, 60, 100,
150 and 300 minutes. Although there is an obvious difference in early stages
(40-60 minutes) between the two distributions, we will see in the next section
that this alone does not provide adequate performance for our prediction task
(see Section 5).
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(a) Non-viral cascades
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(b) Viral cascades

Fig. 3: Average time (minutes in 103) since adoption of the seed adopter to
each later adoption
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(a) Number of communities amongst
adopters (|C(Ut)|) for non-viral cascades
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(b) Number of communities amongst
adopters (|C(Ut)|) for viral cascades
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(c) Number of communities amongst recently
exposed users (|C(Ft)|) for non-viral cascades
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(d) Number of communities amongst recently
exposed users (|C(Ft)|) for viral cascades

Fig. 4: Number of communities for m = {10, 30, 50, 100, 200}

Number of communities. Figure 8 shows how |C(S)| for S ∈ {Ut,Ft,Nt}
changes over time. The value of |C(S)| increases over time for Ut and Nt

but decreases for Ft. Here, the differences are somewhat more pronounced
than for the size-progression measurements (compare with Figure 4). Viral
cascades are more likely to have more communities in any one of Ut, Ft, Nt

than non-viral ones. For adopters and non-adopters, |C(Ut)| and |C(Nt)| value
of viral cascades increases faster than that of non-viral ones over time. While
for recently exposed users, |C(Ft)| of non-viral cascades decreases more than
viral ones in the same amount of time.
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(a) Gini impurity of recently exposed users
(IG(Ft)) for non-viral cascades
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(b) Gini impurity of recently exposed users
(IG(Ft)) for viral cascades
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(c) Gini impurity of past exposed users
(IG(Nt)) for non-viral cascades
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(d) Gini impurity of past exposed users
(IG(Nt)) for viral cascades

Fig. 5: Gini impurity for m = {10, 30, 50, 100, 200}

Gini impurity. It takes less than λ = 30 minutes for a considerable portion
of viral cascades to reach size m = 30. This explains the difference between
size-based and time-based gini impurity values in initial-stage cascades (com-
pare Figure 5 and Figure 9). In terms of size-based gini impurity of the non-
adopters (IG(Nt)), the values of viral cascades are smaller than those of non-
viral cascades when m is small. However, when t is small, larger gini impurity
(IG(Nt)) amongst non-adopters are shown in viral cascades. Furthermore, as
m increases, although no significant difference is shown by the median and
average of IG(Nt), Figure 5 shows non-viral cascades are more likely to have
a value smaller than the lower whisker to become outliers.

Overlap. By definition, overlap is the number of shared communities between
two sets of nodes. We found that overlap O(Ut,Ft), O(Ut,Nt) and O(Ut,Nt)
manifest obvious difference between viral and non-viral cascades by values and
trend over time. For instance, in Figure 10, we see growth of O(Ut,Ft) for the
viral cascades compared to the non-viral class. In fact, over time, this value
decreases for non-viral cascades as the set of recently exposed users fades away
for non-viral cascades with time.
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Fig. 6: Overlap for m = {10, 30, 50, 100, 200}
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Fig. 8: Number of communities for t = {40, 60, 100, 150, 300} (min)
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(IG(Nt)) for non-viral cascades
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Fig. 9: Gini impurity for t = {40, 60, 100, 150, 300} (min)
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5 Classification Experiments

Here we examine our experiments for predicting whether a cascade becomes
viral - when the number of adopters exceeds a size threshold (TH = 500)
given that either the cascade has 50 adopters (m = 50) or has progressed for
an hour (t = 60). We shall refer to these as size-based and time-based predic-
tion problems. Based on the distribution of final size of cascades in this dataset
(see Figure 1a), as shown in Table 2, this binary classification task deals with
two heavily imbalanced classes. Hence, we report performance measurements
(precision, recall and F1 score) for only the minority (viral) class. Throughout
the course of our experiments, we found that varying threshold (slightly mod-
ifying the definition of “viral”) for only the training set allows for a trade-off
between precision and recall. We study the trend of performance metrics in
two cases:

– The threshold for test set is maintained as THts = 500 while the training
threshold is varied THtr ∈ {300, 400, 500, 600, 700}.

– The two thresholds are kept as the same TH while we modify this value
TH ∈ {300, 400, 500, 600, 700}.

Table 3 shows the groups of features used in our prediction tasks. The
features introduced in this paper are groups Am (size-based) and At (time-
based). We compare our features (Group Am, At) with the community features
extracted in (Weng et al, 2014) (Group Bm,Bt) and nodal features of the seed
adopter (Group Cm and Ct). Here nodal measures of the seed adopter refer
to k-shell number, out-degree, in-degree, pagerank and eigenvector, which are
computed based on the social network G. In previous work (Pei et al, 2014), k-
shell number of the seed adopter node is shown to be correlated to the average
size of cascades. However, cascades from the seed adopter nodes with the same
k-shell number can end up with quite different size (Shakarian et al, 2015). As
baseline methods, average time to adoption (group Dm) is applied to the size-
based experiment while cascade size at time t (group Dt) is evaluated for time-
based prediction. We extracted each group of community-based features (Am,
At, Bm, Bt) with all the three community detection algorithms mentioned
in Section 2: Louvain, Infomap and SLM. Therefore, for both size-based and
time-based prediction, there are 8 groups of features. Among them, Bm and
Bt were the best performing feature set in the paper (Weng et al, 2014) for a
comparable task.3

Additionally, we study the average size of correctly classified viral cascades
and the other viral samples using features in groups Am and At. We also inves-
tigate the significance and performance of individual and certain combinations
of features introduced in this paper.

3 This was their highest-performing set of features for predicting cascades that grew from
50 to 367 and 100 to 417 reposts. We also included the baseline feature in this set as we
found it improved the effectiveness of this approach.
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Table 3: Features for prediction tasks (size-based and time-based): Am, Bm,
At and Bt are computed based on three community detection algorithms (Lou-
vain, Infomap and SLM)

Name Feature(s) over size

Am |C(Ft)|,|C(Nt)|,
IG(Ut),IG(Ft),IG(Nt),
O(Ut,Ft),O(Ut,Nt),O(Ft,Nt),
|Ft|,|Nt|, 1

m

∑m
i=1 t(i)

where t stands for t(m) with
m ∈ {30, 50}

Bm Community Features Men-
tioned in (Weng et al, 2014)
and 1

m

∑m
i=1 t(i), m = 50

Cm Nodal Features and
1
m

∑m
i=1 t(i), m = 50

Dm
1
m

∑m
i=1 t(i), m = 50

Name Feature(s) over time

At |C(Ft)|,|C(Nt)|,
IG(Ut),IG(Ft),IG(Nt),
O(Ut,Ft),O(Ut,Nt),O(Ft,Nt),
|Ut|,|Ft|,|Nt|
for time t ∈ {40, 60}(min)

Bt Community Features Men-
tioned in (Weng et al, 2014)
and |Ut|, t = 60(min)

Ct Nodal Features and |Ut|, t =
60(min)

Dt |Ut|, t = 60(min)

5.1 Cascade Prediction Results

We split cascades into training set and testing set using ten-fold cross-validation.
All classification experiments are repeated for 10 times to ensure the results
do not take any advantage of randomness in picking training and testing sets.
First we carried out the prediction tasks with fixed thresholds for both training
and testing THtr = 500, THts = 500. Then we modify the training threshold
THtr ∈ {300, 400, 500, 600, 700} to show how this achieves a tradeoff between
precision and recall. The difference in average final size between correctly
classified viral cascades and incorrectly classified ones is also monitored over
THtr ∈ {300, 400, 500, 600, 700} to show the potential to predict exact num-
ber of adopters by features in Am and At. Furthermore, we modify threshold
of both training and testing sets TH ∈ {300, 400, 500, 600, 700} to show the
robustness of our features on related classification problems. We used the over-
sampling method SMOTE (Chawla et al, 2002) with random forest classifier to
generate synthetic samples for the viral class. Other, lesser-performing classi-
fiers were also examined (including SVM, MLP, and other ensemble methods)
and are not reported here. All results shown in this section is a sample mean
produced by repeated experiments (10 times) under each combination of vari-
ables. Error bars represent one standard deviation.

Size-based prediction. We studied cascades of size 50 that reached 500 for this
task. There are 13,285 cascades that can reach the size m = 50 while only 200
out of them reached the size of 500. Maintaining the threshold TH = 500,
Figure 11 shows random forest classifier trained with features in group Am

can outperform the other groups with any of the three community detec-
tion algorithms. The tradeoff between precision and recall can be achieved by
changing the training threshold THtr while maintaining the testing thresh-
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Fig. 11: Classification results based on groups of features (Am,Bm,Cm,Dm)
extracted with three community detection algorithms (Louvain, Infomap and
SLM) when m = 50 for fixed THtr = 500, THts = 500. Error bars represent
one standard deviation.

old THts = 500 (see Figure 12). We also note that the average final size of
viral cascades correctly classified by the classifier increases with the train-
ing threshold. With threshold TH ∈ {300, 400, 500, 600, 700} on both training
and testing samples, the features introduced in this paper (Am) consistently
outperform those previously introduced (Bm) – see Figure 13. The fact that
features in Bm are not able to maintain their predictability over different TH
can be explained as that they only count the number of users on recently ex-
posed users instead of taking the community structure of them or the decay of
probability to repost over time into consideration. As shown in Figure 12a, 12c
and 12e, while the trends relating to this tradeoff are similar among the var-
ious community detection algorithms, the Louvain algorithm led to superior
performance for precision and F1. Infomap and SLM generally outperformed
Louvain in terms of recall for both feature sets. We also note that our features
outperform those of Weng et al. regardless of the testing/training thresholds
and the selected community finding algorithm.

Time-based prediction. As shown in Table 2, there are 3,444 cascades in our
dataset reached the size of m = 5 within 60 (min) with only 5% from the
minority class. When the threshold is kept as TH = 500 for both training
set and testing set, we obtain the results shown in Figure 14 again showing
that the features introduced in this paper (At) outperform the other feature
sets in terms of recall, precision and F1 score, no matter which community
detection algorithm is used. By modifying threshold for training samples only,
two phenomenon are discovered. First, a tradeoff between precision and recall
can be manipulated by controlling the training threshold (THtr). This is shown
in Figure 15a, 15c, 15e. Second, as shown in Figure 15b, 15d, 15f, with THtr

increasing, the average final size of correctly classified viral cascades also grows.
Furthermore, we modify the threshold for training and testing sets together
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(a) Precision, recall, and F1 score for different
training thresholds, using Louvain algorithm.
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(b) Average final size of viral cascades (cor-
rectly classified, mean and incorrectly classi-
fied), using Louvain algorithm.
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(c) Precision, recall, and F1 score for different
training thresholds, using Infomap algorithm.
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(d) Average final size of viral cascades (cor-
rectly classified, mean and incorrectly classi-
fied), using Infomap algorithm.
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(e) Precision, recall, and F1 score for different
training thresholds, using SLM algorithm.
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(f) Average final size of viral cascades (cor-
rectly classified, mean and incorrectly classi-
fied), using SLM algorithm.

Fig. 12: Prediction results when THtr = {300, 400, 500, 600, 700} for
Am(Louvain, Infomap and SLM). Error bars represent one standard devia-
tion.
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(a) Classification results for features in group
Am(Louvain)
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(b) Classification results for features in group
Bm(Louvain)
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(c) Classification results for features in group
Am(Infomap)
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(d) Classification results for features in group
Bm(Infomap)
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(e) Classification results for features in group
Am(SLM)
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Fig. 13: Prediction results based on groups of features extracted for m =
50 when TH = {300, 400, 500, 600, 700}. Error bars represent one standard
deviation.

to show the reliability of features in group At is better than ones in Bt (See
Figure 16). Here, we noted similar trends with regard to both feature sets and
community finding algorithms as found in the size-based tests.
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Fig. 14: Classification results based on groups of features (At,Bt,Ct,Dt) ex-
tracted with three community detection algorithms (Louvain, Infomap and
SLM) when t = 60 for fixed THtr = 500, THts = 500. Error bars represent
one standard deviation.

5.2 Feature Investigation

Here we investigate the importance of each feature in Am (Louvain) and Am

(Louvain) as communities detected by Louvain algorithm achieves the best
classification results out of the three. With THtr = 500 and THts = 500, we
trained 200 randomized logistic regressions models (100 for Am and 100 for
At) - with each assigning weights to the features in those sets. We then catego-
rized the features with weight larger than 0.01 (on average) into groups such
as overlap, gini impurity, etc. Then, we performed classification on the basis
of single feature group or combination of such groups. The average weights
assigned are shown in Table 4 while classification results (by random forest
with SMOTE) are depicted in Figure 17 for groups and combinations of them.
As shown, overlaps can make significant contribution to the prediction tasks.
Intuitively, communication between two sets of nodes is more likely to happen
in their shared communities - which is consistent with the results of (Ugander
et al, 2012). This implies that the larger overlap value, the more likely one set
would repost from the otherFor example, we can infer that viral cascades tend
to have larger O(Ut,Ft) value therefore adopters in them have larger chance to
motivate the recently exposed users to repost than non-viral cascades. Figure 6
and Figure 10 provide evidence of this phenomenon.
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(a) Precision, recall, and F1 score for different
training thresholds, using Louvain algorithm.
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(b) Average final size of viral cascades (cor-
rectly classified, mean and incorrectly classi-
fied), using Louvain algorithm.
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(c) Precision, recall, and F1 score for different
training thresholds, using Infomap algorithm.
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(d) Average final size of viral cascades (cor-
rectly classified, mean and incorrectly classi-
fied), using Infomap algorithm.
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(e) Precision, recall, and F1 score for different
training thresholds, using SLM algorithm.
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(f) Average final size of viral cascades (cor-
rectly classified, mean and incorrectly classi-
fied), using SLM algorithm.

Fig. 15: Prediction results when THtr ∈ {300, 400, 500, 600, 700} for At (Lou-
vain, Infomap and SLM). Error bars represent one standard deviation.
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(a) Classification results for features in group
At (Louvain)
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(c) Classification results for features in group
At (Infomap)
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(d) Classification results for features in group
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(e) Classification results for features in group
At (SLM)
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Fig. 16: Prediction results based on groups of features extracted for t =
60(min) for TH ∈ {300, 400, 500, 600, 700}. Error bars represent one standard
deviation.
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(a) Classification results for subsets of
Am(Louvain): ol means overlap, gini means
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(b) Classification results for subsets of
At(Louvain): ol means overlap, gini means
gini impurity, cs represents number of
adopters (|U60|).

Fig. 17: Classification results (random forest with SMOTE) based on subsets
of features from Am and At (by Louvain algorithm)
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Group Name Features(Am(Louvain)) Weights Features(At(Louvain)) Weights

Gini Impurity

IG(Ft(50)) 0.020 IG(U60) 0.039

IG(Nt(50)) 0.021 IG(U40) 0.049

IG(Nt(30)) 0.521 IG(F40) 0.331

Overlap

O(Ut(30), Ft(30)) 0.503 O(U60, F60) 0.500

O(Ut(30), Nt(30)) 0.037 O(U60, N60) 0.538

O(Ft(30), Nt(30)) 0.227 O(F60, N60) 0.409

O(Ut(50), Ft(50)) 0.500 O(U40, F40) 0.628

O(Ft(50), Nt(50)) 0.257
O(U40, N40) 0.509

O(F40, N40) 0.288

Baseline 1
50

∑50
i=1 t(i) 1.0 |U60| 0.072

Table 4: Weights of features assigned by randomized logistic regression models

6 Related Work

Early works about popularity prediction with data driven approach simplified
the problem of cascade prediction as modeling one step information propaga-
tion Galuba et al (2010); Bian et al (2014); Zhang et al (2013) or as predicting
the near term popularity Gupta et al (2012). As the real pioneer of cascade
prediction, the work (Bakshy et al, 2011) devised a regression model for this
task and was one of the first attempts to explore this problem. They noted
that the severe imbalance of the data due to a power-law relationship between
cascade size and frequency (which we also observed) hindered the creation of
useful model - they obtained an R2 value of only 0.3 for their regression model.
The later work of (Jenders et al, 2013) also studies the problem, again tak-
ing a machine learning approach and identify several useful features to obtain
relatively high precision and recall. However, in their evaluation, they artifi-
cially balance the dataset - they ensure that each fold had equal amounts of
viral and non-viral tweets. The work of (Cheng et al, 2014) predicts “viral”
cascades with high precision and recall, but defines “viral” as cascades that
can double in size (which also has the effect of balancing the classes in the
dataset). The very recent work of (Weng et al, 2014) also looks at predict-
ing viral cascades and does leverage some community-based features, some of
which are also inspired by structural diversity - though their structural diver-
sity features are more limited than in this study - we perform a comparison
with their structural diversity method (see previous section). In a nutshell,
there are two main points differing our work from the ones mentioned in this
section: (1). the method proposed by this paper does not need the content of
microblogs or the underlying topology based on friendship relationships (2).
this method is able to provide a reliable performance in prediction of order-of-
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magnitude increase of cascade size. In a conference version of this paper (Guo
et al, 2015) we described the basics of tis approach. However that work did not
include time-based results, examination of various underlying community find-
ing algorithms and how each sub-group of features performs in independent
classification experiments.

In addition to the work on cascades, there is much related work on struc-
tural diversity. This concept was first studied in (Ugander et al, 2012) and
later explored in the work of (Zhang et al, 2013; Shakarian et al, 2014; Li
et al, 2015; Bao et al, 2013a,b; Huang et al, 2013). However, these papers
leverage structural diversity for a variety of other social network applications
including the creation of new diffusion models, the study of peer influence,
identifying influential nodes, and ranking communities. Finally, we note that
the popular work on diffusion in the areas of computer science (Kempe et al,
2003), physics (Gallos et al, 2010), and biology (Lieberman et al, 2005) have
led to a ground swell of research on this topic over the past decade, please see
(Shakarian et al, 2015) for a review of major results.

7 Conclusion

In this paper, we explored the effect of structural diversity on a diffusion
process which allowed us to predict viral cascades. Moving forward, we look to
integrate our structural-diversity approach with content information (which
we believe will further increase performance) as well as study how to best
operationalize this method in a system to detect viral cascades in near-real
time.
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