arXiv:1601.00289v1 [cs.DC] 3 Jan 2016

An Empirical Comparison of Big Graph Frameworks in the Context of

Network Analysis

Jannis Koch Christian L. Staudt

Abstract

Complex networks are relational data sets commonly rep-
resented as graphs. The analysis of their intricate struc-
ture is relevant to many areas of science and commerce,
and data sets may reach sizes that require distributed stor-
age and processing.

We describe and compare programming models for dis-
tributed computing with a focus on graph algorithms for
large-scale complex network analysis. Four frameworks —
GraphLab, Apache Giraph, Giraph++ and Apache Flink
— are used to implement algorithms for the representative
problems Connected Components, Community Detection,
PageRank and Clustering Coefficients. The implementa-
tions are executed on a computer cluster to evaluate the
frameworks’ suitability in practice and to compare their
performance to that of the single-machine, shared-memory
parallel network analysis package NetworKit. Out of the
distributed frameworks, GraphLab and Apache Giraph
generally show the best performance.

In our experiments a cluster of eight computers run-
ning Apache Giraph enables the analysis of a network
with about 2 billion edges, which is too large for a sin-
gle machine of the same type. However, for networks that
fit into memory of one machine, the performance of the
shared-memory parallel implementation is far better than
the distributed ones. The study provides experimental ev-
idence for selecting the appropriate framework depending
on the task and data volume.

Keywords: big graph frameworks, distributed com-
puting, graph algorithms, complex networks, network

analysis

1 Introduction

Complex networks are data sets which map items and the
links among them, forming complex relational patterns.
They are typically represented as graphs, i.e. a set of n
vertices V' and m edges E. This abstraction is as gen-
eral as it is powerful, and has been employed in numerous
problem domains [Costa et al., 2011]. The task of network
analysis is to characterize the structure of the network as
a whole or identify important elements in it, typically by
applying a collection of graph algorithms tailored to this
purpose (see Section .

Maximilian Vogel

Henning Meyerhenke

Many applications — think for example of the networks
collected by online social networking sites — produce enor-
mous amounts of network data that exceed the memory of
any single computer, calling for distributed solutions. A
distributed system consists of a set of autonomous proces-
sors, each with their own memory, running software that
performs computations and exchanges data as messages
via a network. Distributed systems are highly scalable
in the sense that additional computers can be added eas-
ily. Of course, additional computers may mean additional
overhead as well.

Distributed Computing

General-Purpose | Graph-Specific

MapReduce PACT Vertex- Graph-
Centric Centric
Pregel ? ?GAS
Hadoop Apache Flink Apache GraphLab Giraph++

Giraph

Lab

G

Figure 1: Overview and classification of distributed pro-
gramming models (black) and implementations (blue) con-
sidered in this paper.

Multiple programming models for distributed par-
allel computing have been introduced, some general-
purpose (like MapReduce), others focus on the pro-
cessing of large graphs (like Pregel) — sometimes
called Big Graph frameworks to express their re-
lation to Big Data. Among the software frame-
works implementing these programming models, we
consider Apache Giraph [Apache, 2015b], Apache Gi-
raph++ [Tian et al., 2013, GraphLab [Dato, 2015] and
Apache Flink [Apache, 2015a] in our study. An overview
of programming models and their implementations is
shown in Figure

Considering performance, the scalability and expressive-
ness enabled by such frameworks comes at the cost of over-
head: A recent experimental study [Satish et al., 2014]
compares implementations of graph algorithms based on

frameworks (including GraphLab and Giraph) to ad hoc,
hand-optimized code and observes a substantial perfor-
mance gap. Similar algorithms chosen for our study were
also used recently by [McColl et al., 2014]. They experi-
ence the aforementioned performance gap, too. However,
they test only on graphs generated with the synthetic
R-MAT model, which lacks realism in several respects.
Moreover, our focus is on distributed frameworks and we
include some not used in their study.

Complex networks present certain inherent performance
challenges for distributed systems: Computation is data-
driven in this case, i.e. it is largely determined by the
graph structure. This makes it difficult to exploit oppor-
tunities for parallelism, because they depend heavily on
the input. Real-world networks often have a skewed de-
gree distribution, which adversely affects load balance. In
synchronous execution models, the few high-degree ver-
tices will delay the whole system. Performance depends
also on how vertices are distributed among the processor
nodes, i.e. the graph must be partitioned so as to re-
duce communication volume and to balance the work load
— a problem whose optimal solution is NP-hard to com-
pute. Given these challenges, performance experiments
on real-world networks are crucial for choosing the right
framework for the problem at hand.

Contribution. We address the shortage of compar-
ative studies and report performance results for several
distributed frameworks. Apache Giraph, GraphLab, Gi-
raph++ and Apache Flink are described and compared re-
garding both theoretical and practical aspects. The theo-
retical areas of comparison include the programming mod-
els and their suitability for expressing graph algorithms.
For an experimental comparison, several well-known graph
algorithms were implemented using the frameworks. With
real-world complex networks (mainly from web applica-
tions) as input, the implementations were executed on a
computer cluster to reveal how the frameworks compare
in practice with regards to performance and memory foot-
print. Additionally, we compare performance with imple-
mentations in a shared-memory parallel framework, Net-
worKit [Staudt et al., 2014]. While the small-scale clus-
ter we had available for this study is not enough to test
out the true scalability of distributed frameworks, our re-
sults enable an informed choice on which framework to
use for a given network analysis problem. It becomes
clear that, compared to shared-memory parallel solutions,
distributed frameworks come with a significant overhead.
Consequently, opting for a distributed solution must be
justified by the fact that the graphs to be processed cannot
fit into main memory, which currently applies to graphs
above the size range of several billion edges.

2 Programming Models for Dis-
tributed Graph Processing

2.1

MapReduce and its Limitations. MapRe-
duce is a programming model for general distributed
computation [Dean and Ghemawat, 2008], and is of-
ten considered the de facto standard for this pur-
pose [Karloff et al., 2010]. A basic MapReduce program
is defined by two user functions - a map and a re-
duce function. Both functions receive and emit data
as key-value pairs. A program is executed in three
phases - a map, a shuffle and a reduce phase. Although
MapReduce is able to express many common graph al-
gorithms [Lin and Dyer, 2010|, it has limited practicality
in this area: Many graph analysis algorithms are itera-
tive. Since the MapReduce model does not provide seam-
less support for iteration, this can only be reproduced by
scheduling several consecutive jobs, resulting in significant
overhead. Because each iteration needs the initial input
graph data, the map function does not only emit an in-
termediate result for the input vertex, but also the vertex
data itself, i.e. the vertex adjacency list and its current
state. Consequently, graph data is sent over the network
unnecessarily. Workarounds like emitting the graph struc-
ture make MapReduce implementations harder to develop
and understand. We do not include MapReduce in the
experimental study, since the models we discuss in the
following offer more intuitive ways of expressing graph al-
gorithms.

General-purpose Models

PACT Model. The PACT ("Parallelization Con-
tract") model [Battré et al., 2010] was proposed to extend
MapReduce in both functionality and optimization oppor-
tunities. It can be seen as a generalization of MapReduce
that offers additional operators. A PACT operator re-
ceives a user-defined function and an input data set con-
taining tuples of predefined types. It applies the user-
function to the input data in parallel and returns the out-
put. The operator is described by a) the Input Contract,
which defines how the user function can be applied to the
input data set in parallel and b) the Output Contract,
which gives additional information on the data output. It
can be optionally attached by the programmer and allows
the PACT compiler to apply optimization techniques to
the execution. When writing a PACT program, the pro-
grammer uses an operator by defining its user function
and the input data it operates on. The output of an oper-
ator can be used as the input of another, which creates a
directed acyclic graph of operators (see Figure . Unlike
MapReduce, the PACT model does not force a specific or-
der of the operators. The PACT compiler examines the
structure of the resulting operator graph and infers an
optimization strategy for the execution, e.g. rearranging
operators in the graph. A PACT program therefore has a
declarative style, reminiscient of the SQL language. The

PACT model is implemented by the Apache Flink frame-
work [Apache, 2015a].

2.2 Vertex-centric Models

Vertex-centric models express programs from a vertex per-
spective. These programs are executed iteratively for each
vertex in the graph. The models are tailored to graph al-
gorithms and, by incorporating vertices and edges, they
include the data dependencies of graphs in the program-
ming model.

Pregel. The Pregel model was introduced by Google
in 2010 [Malewicz et al., 2010]. It is based on the Bulk
Synchronous Parallel model (BSP), which is a general,
iterative model for parallel computation [Valiant, 1990].
An iteration consists of an algorithm that is executed on
each processor, followed by a communication phase for
data exchange between processors. Such an iteration is
called a superstep. The execution is synchronous, thus
a processor will only start executing a superstep if all
other processors have finished with the previous one. The
Pregel model is implemented by the Apache Giraph frame-
work [Apache, 2015b].

Gather-Apply-Scatter (GAS). The GAS model
was proposed as part of the PowerGraph abstrac-
tion |Gonzalez et al., 2012], which is implemented in the
GraphLab framework. GAS programs are iterative and
vertex-centric like Pregel programs, but decompose an it-
eration into the gather, apply and scatter phases. Accord-
ingly, a GAS program is defined by a gather, apply and
scatter and an optional gather_sum function. A further
decomposition of the vertex program enables the frame-
work to execute gather and scatter concurrently on several
machines to balance the workload of high-degree vertices.
In the gather phase, a vertex can gather information from
neighbors. The gather function is called for each edge of
the vertex and returns the desired data. The values re-
turned are aggregated by the gather_sum function. The
apply function is called once per vertex on the result of
the gather aggregation. Apply is the only phase where the
vertex data can be changed. Finally, the scatter func-
tion is called for each edge again. Scatter can be used to
update edge data. The gather and scatter functions only
have read access to vertex data. This allows them to be
executed concurrently without the need for synchroniza-
tion. The GAS model is implemented by the GraphLab
framework [Dato, 2015].

2.3 Graph-centric Model

One of the reasons why vertex programs are so intuitive
is that the abstraction hides details of the distributed ex-
ecution, like graph partitioning. However, this informa-
tion could be used for algorithm-specific optimizations.
The graph-centric model [Tian et al., 2013] is a lower-level

Figure 2: A graph with two partitions P; and P». The
dashed vertices in P, are boundary vertices of P; and
therefore part of the subgraph Gj.

abstraction which provides information on the partition
structure to the programmer: A program is no longer ex-
pressed for one vertex, but for the whole block (or several
blocks) of a partition. Each vertex of the graph is part of
exactly one block. The graph is divided into k£ subgraphs
G; (the blocks), each of which contains the vertices of a
block P; as well as all vertices adjacent to vertices of P;.
The vertices in P; are called internal vertices of G;, all
others are called boundary vertices (see Figure [2] for an
example).

A graph program is executed iteratively and syn-
chronously, just like a Pregel program. It is defined by
a compute function, which can access the data of all ver-
tices, both internal and boundary. Yet, only internal ver-
tices can be changed. Updates to boundary vertices are
only possible by sending a message to the corresponding
internal vertex. The owner of the vertex receives incoming
messages and can update it accordingly.

The lower-level graph-centric abstraction is useful in the
following areas: In vertex programs, data can be passed
to neighbors only, so it can take many supersteps to prop-
agate information across a graph. This is slow and could
be accelerated for the vertices that are in the same parti-
tion. In the graph-centric model, messages need to be sent
to boundary vertices only, as we can directly update ver-
tex states of internal vertices. This reduces the amount of
messages that are sent and processed. It may also reduce
the number of supersteps: Information of one vertex is
available to all vertices in the partition in the same super-
step, which leads to faster convergence and therefore exe-
cution time for some problems. The graph-centric model
also allows the use of sequential algorithms as they can be
easily applied to the subgraph represented by the parti-
tion. Graph-centric programs are executed synchronously,
as a synchronization barrier waits for the last computa-
tion to finish after each superstep. However, local asyn-
chrony is possible, as updates made to vertex data are
available within the computation of one partition imme-
diately. The graph-centric model is implemented by the
Giraph++ [Tian et al., 2013] framework.

3 Frameworks

This section introduces the software frameworks that im-
plement the aforementioned programming models. All
of them share some common implementation principles,
which we discuss briefly before the specifics of each frame-
work: One is the use of a distributed file system, which
provides the means to store data sets that are too large
for a single machine and enable data locality and fault-
tolerance. Files are split up into blocks which can dis-
tributed across a cluster. The file system coordinates how
clients access and write to files. All frameworks presented
support the Hadoop Distributed File System (HDFS).

The frameworks of message-based programming models
also implement message combiners as follows: In many
cases, the message receiver is not interested in each indi-
vidual message value, but some kind of aggregation of the
messages. Therefore, messages can be combined on the
sender node to reduce network traffic. The principle of
combiners can be used in vertex- and graph-centric mod-
els by implementing a combine function which is called by
the framework on messages with the same receiver.

3.1 Apache Flink

Apache Flink [Apache, 2015a] (previously called Strato-
sphere [Apache, 2015¢]) is an open-source framework writ-
ten in Java. It implements the PACT programming model.
PACT was put forward by this project with the goal of ex-
tending the MapReduce model with new operators and a
flexible compiler able to infer optimization strategies from
descriptive programs. Apache Flink offers a Java and a
Scala API to write PACT programs.

3.2 Apache Giraph

Apache Giraph [Apache, 2015b] is an open-source imple-
mentation of the Pregel programming model. It is writ-
ten and implemented in Java and uses Apache Hadoop,
a MapReduce implementation, for the execution of vertex
programs. Facebook uses Apache Giraph in practice for
the analysis of its social graph and is an active contributor
to the project [Avery Ching, 2013].

3.3 GraphLab

The GraphLab [Dato, 2015] package was initially intended
to be used on shared memory systems, but was ex-
tended to support distributed execution [Low et al., 2012].
Programs utilizing GraphLab are written in C+-+;
Python bindings are also available. With GraphLab
2, support for the GAS model was introduced, which
was proposed as part of the PowerGraph abstraction
[Gonzalez et al., 2012].

3.4 Giraph++

The graph-centric model originates from a paper by Tian
et. al. [Tian et al., 2013], who also put forward Gi-
raph+-, an implementation of this model developed on
top of Apache Giraph. Currently Giraph+-+ is not avail-
able as a separate framework, but as a patch for Apache
Giraph which adds support for the graph-centric model to
Giraph [Apache, 2014]. Tt is proposed to become part of
the Apache Giraph project.

4 Network Analysis Algorithms

For the experimental study, we select four common and
typical network analysis problems, Connected Compo-
nents, Community Detection, PageRank, and Clustering
Coefficients. The former two call for a decomposition of
the entire network into cohesive parts, and we opt for al-
gorithms based on label propagation. Thus, both lend
themselves to vertex-centric implementations. The latter
two yield a ranking of vertices by structural relevance,
PageRank through a simple iterative rule, Clustering Co-
efficients based on the somewhat more intricate counting
of triangles. We consider the program flow of these algo-
rithms representative for many algorithmic kernels used
for network analysis. Moreover, their algorithmic struc-
ture is able to highlight challenges and benefits of dis-
tributed processing.

4.1 Connected Components via Label

Propagation

Many real-world networks have several connected com-
ponents, but one of them usually dominates by far in
size [Newman, 2010]. For network analytic purposes it is
interesting to determine whether a vertex belongs to this
giant component or not. Thus, subdividing the network
into connected components is a common analysis task and
can be implemented as attaching a component label to
each vertex. The label propagation algorithm used in this
study starts with each vertex in its own component and
communicates its component ID to all neighbors. A ver-
tex then applies the lowest component ID to itself. If the
label has changed, the vertex will notify all neighbors with
the new component ID.

Figure [3] illustrates the principle of the algorithm in
PACT: The algorithm works on tuples of vertex IDs and
component labels, whereas the edge information is used to
create these tuples.

The implementations in Pregel and GAS can be seen
in Algorithms [1] and After the initialization with the
vertex ID as component label, the vertices distribute their
component label along their edges to neighbors and in
turn apply the lowest component label from all incoming
labels. Figure [4 shows an example run of the algorithm in
the Pregel model.

’m—{ Iteration Output

x

Example data flow
for the first iteration
of the input graph:

O

Figure 3: PACT operator graph of the Connected Com-
ponents example

Join:
(1,c2)
(2,cl)
(2,c3)
(3,¢3)

Group: Reduce:
(1,cl) (1, [cl,c2]) (1, cl)
(2,c2) (2, [cl,c2,c3]) (2, cl)
(3,c2) (3, [c2,c3]) (3, c2)

Algorithm 1: Connected Components in Pregel
model

1 compute (verter, messages) begin

2 if getSuperstep() = 0 then

3 vertex.component < vertex.id

4 changed < true

5 else

6 minMsg < getMinimum(messages)

7 changed < false

8 if minMsg < vertex.component then

// found smaller component
9 changed « true
10 vertex.component <— minMsg
11 if changed then
// component has changed - send new id to neighbors!
12 | sendToAll(vertex.component)

In the graph-centric model, the algorithm does the fol-
lowing: In the first superstep, a sequential algorithm is
used to find all connected components in one partition.
For each boundary vertex, a message with the newly found
component label is sent to the partition with the corre-
sponding internal vertex. If any of the incoming messages
have a smaller label for a vertex, then this vertex and all
other vertices within the same component and partition
will be updated at once. Figure 5] shows an example run
of the computation.

4.2 Community Detection via Label

Propagation

Many real-word networks exhibit a community structure,
i.e. they can be decomposed into internally dense and ex-
ternally sparse subgraphs named communities. Among
heuristics for detecting communities, a label propaga-
tion algorithm [Raghavan et al., 2007] is among the fastest
and easiest to parallelize: Each vertex is initialized with
a unique community label, and vertices propagate their
label to all neighbors in each iteration and update it
with the most frequent of the received labels. Ties
are broken systematically, e.g. uniformly at random
or by preferring the minimum label. The algorithm
can be executed synchronously or asynchronously. As
the synchronous execution can lead to an oscillation of
labels [Raghavan et al., 2007], the asynchronous execu-
tion is preferred. When adapted suitably, the general

Algorithm 2: Connected Components in GAS model

init(verter) begin
L vertex.component < vertex.id

gather (vertex, edge) begin
L return vertex.component

gather_sum(vi, v2) begin
L return minimum(vl, v2)

apply (vertex, minimum) begin

changed < false

if vertex.label > minimum then
L changed < true

H O QoW OOt W N

vertex.component <— minimum
12 scatter (vertezx, edge) begin
13 if changed then
L // signal to inform neighbour of change

14 signal(edge.target())

1)

2)

3)

4)

Figure 4: Example computation of connected components
in the vertex-centric Pregel model. The two connected
components are separated by a larger gap in the middle.
Gray arrows represent graph edges, black arrows repre-
sent message passing, inactive vertices are indicated by a
dotted line.

idea of label propagation is also useful for partitioning
a network into equally sized blocks with few edges run-
ning between different blocks [Meyerhenke et al., 2014]
Slota et al., 2014]. Such results are potentially useful for
computing partitions in the graph-centric model.

In PACT, the algorithm is expressed as follows: The la-
bel of a vertex is initialized with the vertex ID of a random
neighbor. A bulk iteration is performed on the resulting
data set. In each iteration, a join operator is used to
get tuples (vertexId, neighborLabel) for every vertex.
A group operator on both vertex and label followed by a
sum aggregator counts the labels for each vertex. This data
set is then grouped by the vertex ID, a reduce operator
finds the most frequent labels and emits the result.

The label propagation algorithm can be naturally ex-
pressed in the vertex-centric model of Pregel. In the algo-
rithm’s initialization superstep, an optimization is possible
since in Pregel each vertex can access its neighbors’ IDs.
Since these IDs are equal to the initial label value, there
cannot be a most frequent one. Thus, the label of each
vertex is initialized with the label of a randomly selected

DEE @6
Y ODAD B ®®
2 1 () 1 £

Figure 5: Example computation of connected components
in the graph-centric model of Giraph++: For each bound-
ary vertex, a message with the component label is sent to
the partition with the corresponding internal vertex.

neighbor. This label will be sent to all neighbors, which
select the most frequent of the incoming labels. If the new
label differs from the previous one, a local converged flag
is set to false. Global aggregation of this flag is used to
check for termination.

In GAS the algorithm works similarly, as gather and
gather_sum determine the label frequency, apply applies
the new label and scatter distributes it among neighbors.

The graph-centric implementation is again similar, with
the major difference that within a partition the labels
can be updated directly, because messages have to be ex-
changed for boundary vertices only. Since the label up-
dates are not applied globally in a synchronized way, label
oscillation is less likely to occur.

4.3 PageRank

PageRank is a well-known centrality algorithm, enabling
a ranking of vertices by their structural importance —
and taking the importance of neighbors into account.
It was originally developed to rank websites in the web
graph [Brin and Page, 1998|, but due to Google’s suc-
cess it has experienced much wider attention and ap-
plications |[Newman, 2010]. The PageRank corresponds
to the dominant eigenvector of a transition matrix mod-
eling a random surfer. In practice one often approxi-
mates a vertex score P(v) by using the power iteration
algorithm, i.e. by computing the iteration P;ii(v) =
ar()+(1=a) X, e f;T%, where « is a dampening
factor that models a random jump to an arbitrary web-
page (as opposed to following a link). In the following we
make the usual assumption of r(v) =1 for all v € V' and
call P(v) the score of vertex v.

The PACT implementation works on different sets of
tuples: 1) vertex ID and score and 2) vertex ID and a list
of neighboring vertices. A bulk iteration for the vertices
is then defined by a join over the neighbor tuple and the
corresponding scores. Afterwards, a group by vertex ID
and the aggregation by computing the sum follows.

In GAS, the PageRank algorithm is easily expressed as
follows (also see Algorithm [3): gather is called for all

incoming edges and returns the neighbor vertex score di-
vided by its outdegree. apply receives the sum of these
values, which is used to calculate the new score and
the delta value. If delta is below the tolerance, the
converged flag is set to true. scatter, which is called
on outgoing edges, signals neighbor vertices, but only if
the vertex score has not converged. In Pregel, the termi-
nation is handled differently as all vertices remain active
as long as the global termination criterion is not met (Al-

gorithm [4)).

Algorithm 3: PageRank in GAS model

// gather on incoming edges
gather (vertex, edge) begin
L return edge.source.score / edge.source.numOutEdges

o

1

2

3 apply(vertex, sum) begin

4 newScore = a + (1 - a) * sum

5 delta <— newScore - vertex.score

6 vertex.score <— newScore;

7 if /delta/ > TOLERANCE then
8 ‘ converged < FALSE

9 else

0 L converged <— TRUE

// scatter on outgoing edges

scatter (vertez, edge) begin

if not converged then
| signal(edge.target)

11
12
13

// alternative scatter using GraphLab’s delta caching

14 scatter (vertez, edge) begin

15 if not converged then

16 postDelta(edge.target, delta);
L vertex has not converged */

/* post delta only if

Algorithm 4: PageRank in Pregel

1 compute (verter, messages) begin

2 if getSuperstep() = 0 then

3 ‘ vertex.rank < 1

4 else

5 newScore <— o + (1 - &) * sum(messages)

6 delta < newScore - vertex.rank

7 vertex.rank <— newScore

8 if [delta) > TOLERANCE then

9 ‘ converged < FALSE

10 else

11 L converged < TRUE

12 setAggregatorValue(CONVERGENCE, converged)

13 if getAggregatorValue(CONVERGENCE) then
// algorithm converged

14 voteToHalt()

15 else

16 sendMessageToAllEdges(vertex.rank /
vertex.numEdges)

17 combine(msgl, msg2) begin

L return msgl + msg2

The graph-centric implementation is again similar to
the vertex-centric models, in this case Pregel. However,

in Giraph-++ the support for local asynchrony is used:
Values from vertices within the partition can be accessed
directly while for boundary vertices messages need to be
exchanged. Also, here we can make use of a minor opti-
mization [Zhang et al., 2012 that was shown to converge
faster than the traditional iterative approach.

4.4 Clustering Coefficients

Transitivity is a network analytic concept to express if
two neighbors of a vertex are likely to be neighbors as
well or not. In social networks, for example, two friends
of the same person are more likely to be friends as well
than a random pair of vertices [Newman, 2010]. Thus, as
one formalization of the transitivity, we can use the av-
erage local clustering coefficient C(G) for an undirected
graph G to examine its local connectivity. This particular
measure is defined as the mean over the local clustering
coefficient over all vertices, i.e. C(G) = ﬁ Y wev %,
where V' := {v € V | deg(v) > 2), é6(v) is the num-
ber of triangles v belongs to, and 7(v) (degQ(”)) (see
e.g. [Schank and Wagner, 2005]). This is different from
the global clustering coefficient, which contrasts the num-
bers of closed triangles and of connected triplets in a graph
(times a constant factor).

All of the described measures can be computed with
the same algorithmic idea, as the basic operation is count-
ing triangles. Since the exact algorithm is computa-
tionally expensive for large complex networks, we are
also interested in an efficient approximation algorithm.
[Schank and Wagner, 2005] proposed a sequential random
sampling algorithm to approximate the clustering coeffi-
cient with a (probabilistic) additive error bound. For the
average local clustering coefficient, it randomly selects a
vertex v, and two different neighbors of v, v and w. If
u and w are connected, a counter is incremented. This
process is repeated for a fixed number of samples. The
approximation value of the average local clustering coef-
ficient is the number of links found divided by the num-
ber of samples. For the global clustering coefficient the
samples will be chosen with a probability proportional to
deg(v) - (deg(v) — 1) for a vertex v, where deg(v) denotes
the degree of v.

In PACT, to count the relevant edges, two join opera-
tions are necessary. The first is carried out on the edges
with themselves resulting in a set of neighbors of neigh-
bors of a vertex. The second join then joins the resulting
set with the edges again with respect to a vertex. The rest
of the algorithm is straightforward.

The Pregel implementation (Algorithm [5) consists of
two supersteps where the first one sends the edge infor-
mation to incident vertices while the second one computes
the local clustering coefficient and sets the aggregators for
the global values.

The GAS implementation (Algorithm @ is similar as it
uses one step to calculate the common neighbors of two
vertices and uses this information in the second step to

do the final computation. Aggregation of the vertices’
values is then done using mapReduce functions. The
graph-centric model does not yield any advantages over
the vertex-centric models in this application, so the im-
plementation basically follows the Pregel implementation.
Again, the main difference is that the computation for
edges in a partition can be done directly, whereas explicit
message exchange is necessary for boundary vertices.

The implementation of the approximation algorithm
principally follows the implementation of the exact algo-
rithm with a few exceptions. Depending on whether the
global or the average local clustering coefficient is com-
puted, the probability for each vertex needs to be set.
Then, instead of exchanging the whole neighborhood, each
vertex will only draw a fixed number of vertex pairs and
send it to these vertices, e.g. during a superstep in Pregel.
Another superstep is then used to intersect the neighbor-
hoods and the incoming messages and for each match the
link counter will be incremented. Afterwards, the usual
global aggregation will compute the final values.

Algorithm 5: Clustering Coefficients in Pregel model

1 compute(verter, messages) begin

2 if getSuperstep() = 0 then

3 for edge € vertex.edges do

4 L sendMessageToAl1Nghbrs (edge.other Vertez.id)

5 else if getSuperstep() = 1 then

6 neighborEdges < 0

7 for msg € messages do

8 if msg € vertex.edges then

9 L | neighborEdges < neighborEdges + 1

10 neighborEdges < neighborEdges / 2 // each link has a
message from both vertices

11 possibleEdges < vertex.numEdges * (vertex.numEdges -
1) /2

12 vertex.localClustering < neighborEdges / possibleEdges
// Use aggregators for global values

13 setAggregatorValue(POSSIBLE, possibleEdges)

14 setAggregatorValue(ACTUAL, neighborEdges)

15 setAggreagtorValue(LOCALCC, vertex.localClustering)

16 masterCompute() begin

17 avglocalCC «+ getAggregatorValue(LOCALCC) /

numVertices
18 globalCC <+ getAggregatorValue(ACTUAL) /

getAggregatorValue(POSSIBLE)

4.5 Discussion

In summary, we confirm that graph-specific frameworks
(Giraph, Giraph+-+, GraphLab) offer a more concise and
intuitive way to express graph algorithms. Not surpris-
ingly, vertex-centric programming models are well suited
for vertex-centric algorithmic techniques as in label prop-
agation or PageRank’s iterative method.

Algorithm 6: Clustering Coefficients in GAS model

// gather on all edges
gatherl (vertez, edge) begin
L return [edge.otherVertex|

gather_sumi (list1, list2) begin
| append(listl, list2)

applyl(vertex, neighbors) begin
| vertex.neighbors = neighbors

U AW NN

// scatter on all edges

7 scatterl(vertex, edge) begin
8 otherVertex = edge.otherVertex
9 commonNeighborsList = intersection(vertex.neighbors,
otherVertex.neighbors)
10 edge.commonNeighbors = commonNeighborsList.size
11

12 gather2(vertex, edge) begin
13 L return edge.commonNeighbors

14 apply2(vertex, neighborEdges) begin
15 vertex.neighborEdges <— neighborEdges

16 vertex.possibleEdges <— vertex.numEdges * (vertex.numEdges
-1)/2

17 vertex.localClustering < neighborEdges /
vertex.possibleEdges

18

19 main(graph) begin

20 executeVertexPrograms(graph)

21 avglocalCC < mapReduce(vertex.localClustering) /

numVertices
22 globalCC <+ mapReduce(vertex.neighborEdges) /
mapReduce(vertex.neighborEdges)

5 Experimental Comparison

In the following we present a comparative experimental
study on the performance of four distributed and one
single-machine framework.

5.1 Experimental Setup

For the experiments a rather modest computer cluster of 8
nodes was used. Each system has 24GB RAM and runs an
Intel® Xeon® X5355 CPU with 2.66 GHz and 8 cores on
two processors. The framework versions are GraphLab
2.2, Apache Giraph 1.1.0, Apache Flink 0.6, and Net-
worKit 3.3. (The NetworKit version has been patched
with a fix for an earlier performance bug in the PageR-
ank implementation.) Apache Giraph was deployed in a
Apache Hadoop MapReduce environment, using Hadoop
0.20.203.0 and Apache ZooKeeper 3.4.6. For scaling ex-
periments, the algorithms were run on 1, 2, 4 and 8 cluster
nodes. NetworKit was run on a single node of the same

type.

Fault tolerance. Apache Giraph is the only one of the
examined frameworks which supports the recovery in case
of a failure during the algorithm’s execution. It uses a
checkpoint mechanism which saves the current computa-
tion state of the algorithm execution to the distributed file
system. Workers regularly send heartbeat messages to the
Master to indicate they are executing, thus the absence of

a heartbeat message indicates a failure. In this case, the
master starts up new workers replacing the failed ones.
Then, all workers load the last checkpoint from the file
system and resume the computation. The checkpointing
mechanism was tested in experiments for this particular
purpose by killing off one worker process. The master de-
tects the missing worker immediately, and computation
resumes without errors. However, the overhead for saving
checkpoints regularly slows down the performance. Al-
though GraphLab has a similar checkpoint mechanism,
it does not automatically recover in the case of a fail-
ure. GraphLab periodically saves a binary serialization
snapshot of the graph. The algorithm has to be restarted
manually using the snapshot as the input graph.

A Shared-Memory Framework for Comparison.
NetworKit [Staudt et al., 2014] is a tool suite of algo-
rithms and data structures for the analysis of large com-
plex networks, implemented in C++, OpenMP in the
backend and in Python for a user-friendly frontend. Net-
worKit runs on a single computer, its OpenMP implemen-
tations exploit multicore capabilities. It is based at Karl-
sruhe Institute of Technology and developed with inter-
national contributors under an open-source model[l] The
aim of the package is to provide efficient, often parallelized
graph algorithms and lean data structures for network
analysis.

For this study, we let efficient shared-memory paral-
lel implementations of network analysis algorithms from
NetworKit compete with implementations in distributed
frameworks. The aim of the comparison is to see when it
is worth to move to distributed systems.

Test data sets. Real world graph data sets used
for the experiments are listed in Table The
uk-2002 data set [Boldi and Vigna, 2004] originates from
a web crawl of the .uk domain. The remaining data
sets were taken from the KONECT graph collection
[Kunegis, 2013]. The Wikipedia data set consists of
linked encyclopedia pages of the English Wikipedia.
The orkut-links, livejournal-links, flickr-links
graphs represent the users and friendships of the respec-
tive social networks. twitter [Kwak et al., 2010] and
twitter-1 [Cha et al., 2010] are snapshots of the follower
graph of the social network Twitter. twitter-1 is the
largest data set used in the experiments with almost two
billion edges, taking up over 36 GB of disk space when
represented in an edge list file. The relatively small
flickr-edges graph is based on images of the Flickr web-
site, adjacent images share common meta data. Addition-
ally, synthetic graphs (scale-free graphs generated using
NetworKit’s Dorogovtsev-Mendes generator) are used for
weak scaling experiments. These synthetic data sets con-
tain 16 million edges per compute node, i.e. 16, 32, 64
and 128 million edges for the experiments on a single, 2,
4 and 8 compute node(s).

Uhttp:/ /networkit.iti.kit.edu

http://networkit.iti.kit.edu

5.2 Results

flickr-links

244279324 415 34256, 237

241 *209 23
10 5464 76 103
1 08 I I I
0.1 I
NetworKit GraphLab Giraph Giraph++ Flink
orkut-links
1000 -
164 1
100 = & 6 53 1% 6 =
7555228
’ I I I I
23
1 =
NetworKit GraphLab Gll‘aph Giraph++ Flink
uk-2002
1000 329 28 619 469 708 570
141 123
100
21
10 I
1
NetworKit GraphLab Giraph Giraph++ Flink

ml m2 m4 =8 nodes

Figure 6: Running times [in seconds] of Connected Com-
ponents.

Connected Components via Label Propagation.
As Figure[f] shows, the shared-memory parallel implemen-
tation in NetworKit is much faster than the distributed
frameworks. Out of the latter, GraphLab performs best,
followed by Apache Giraph. Giraph++ cannot benefit
from graph-centric optimizations and although it reduces
the number of supersteps, it performs worse. Apache
Flink is much slower than the other frameworks on a sin-
gle node (over 13x slower than GraphLab and 6x slower
than Giraph for the orkut-links graph). It catches up
in the cluster setup due to higher speedup rates, but re-
mains slower than GraphLab and Giraph. For smaller
graphs such as the flickr-links graph, GraphLab and
Apache Giraph running times increase with adding addi-
tional compute nodes due to overhead, while Giraph++
and Apache Flink do achieve a speedup. The connected
components on uk-2002 can only be computed with at

name (directed) n m size
tuitter—1 (1) 52M | 1,963M | 36.16
tuitter (1) 1M | 1,468M | 22.35
wikipedia-links-en (1) 27TM 601M 9.48
uk-2002 (1) 18M | 261M | 8.26
orkut-links (1) 3M 117M 1.65
livejournal-links-d (0) | 4.8M 68M 0.99
livejournal-links-u (1) 5M 49M 0.67
flickr-links (0) 1.7M 15M 0.18
flickr-edges (0) 105k 2.3M 0.02

Table 1: Properties of the networks (with n vertices and
m edges) used in the experiments. Size denotes the size
of the graph stored in edge list format in GB.

least 4 nodes by any of the distributed frameworks. The
billion-edge twitter network can only be processed with
GraphLab and Giraph (besides NetworKit), and the two
distributed frameworks require at least 8 nodes. Figure 7]
shows that only the Giraph implementation has a stable
weak scaling behavior, and that GraphLab has the largest
relative increase, with the time quadrupling from the sin-
gle node to the eight node execution.

n 400} 8
8
g
= 200 b
s 00

0L | | [

1 2 4 8
‘ —— GraphLab —— Giraph —— Giraph++ —— Flink

Figure 7: Weak scaling of connected components with gen-
erated data sets of 16 million edges per node

flickr-edges

4 1000
2.99 148.6
159 122
3 80.75 88 oo o
N 1.97 201
1.42
1 om I I I
0 .
NetworKit GraphLab Giraph Glraph++ Flink
livejournal-links-u
120 10000
o 1411
90 1000 6% 633
32233
60 — 100
41
EI— I I I 10
o M) A\ A\
NetworKit GraphLab Giraph Giraph++ Flink

ml m2 m4 18 nodes

Figure 8: Running times [in seconds| of Community De-
tection on 1, 2, 4 and 8 nodes. The flash symbol indicates
that a graph is too large to be processed with the respec-
tive tool using the given number of nodes.

Community Detection via Label Propagation.
Out of the distributed frameworks, GraphLab has a
clear advantage over the other frameworks with its
asynchronous model, which is evident in the running
times (Figure [§). NetworKit is again much faster.
For flickr-edges and livejournal-links-u, GraphLab
gets slower when more computing nodes are added.
Flink can only handle the flickr-edges data set. Gi-
raph-++ computes data sets up to the orkut-1links graph,
but is very slow (6x the execution time of Giraph for
livejournal-links-u). Both GraphLab and Giraph pro-
cess graphs up to the size of wikipedia-links-en on a
cluster of eight nodes. The synchronous execution of this
algorithm can cause convergence problems that prevented
some implementations from terminating. Label oscilla-
tions can occur as two neighboring vertices join the com-
munity of the other vertex and because the communication
happens synchronized after local computations are done,
they effectively exchange their labels. This is a disadvan-
tage of frameworks only supporting synchronous execution
(Giraph, Giraph++ and Flink) for this type of algorithms.

PageRank. With the exception of NetworKit’s imple-
mentation, the PageRank implementations tested run for
a fixed number of iterations. PageRank was executed
on the directed test graphs. The livejournal-links-d
graph could be processed by all frameworks in every set-
ting. uk-2002 and wikipedia-links-en could be pro-
cessed by the distributed frameworks with 4 and 8 nodes
only, twitter only in the 8 node setting. The largest
graph, twitter-1, could only be processed by Apache Gi-
raph. GraphLab stopped with memory allocation errors
and Flink aborted the computation.

GraphLab and NetworKit achieve the best perfor-
mance for PageRank (see Figure E[): Apache Giraph
is slower than GraphLab by a factor of 1.6 to 2.5 for
the smaller livejournal-links-d, and 2.8 to 3 for the
larger wikipedia-links-en and twitter. The differ-
ences to Apache Flink are even larger, the latter’s run-
ning time is up to 12 times (uk-2002) higher than that
of GraphLab. The Giraph++ algorithm exhibits poor
performance. GraphLab is sometimes faster than Net-
worKit due to the fact that NetworKit iterates longer until
a higher accuracy is achieved.

Clustering Coefficients. The exact local clustering
coeflicients algorithm is the most challenging algorithm for
the frameworks. It needs a lot of memory, as every vertex
exchanges its total neighborhood with every neighbor, so
the number of messages sent is in O(n - d?,,,). Of the
test data sets, only the small flickr-edges graph can be
handled by NetworKit, GraphLab, and Apache Giraph,
even when the distributed frameworks use all 8 servers
(see Figure . Apache Flink runs the algorithm for two
hours, after which the execution is aborted. NetworKit
has again the fastest execution time on a single node, fol-
lowed by GraphLab and Apache Giraph. GraphLab needs

10

livejournal-links-d

416
163 211 s
163 167 144
Illl | I |

NetworKit

1000

100

GraphLab Giraph Giraph++ Flink

uk-2002
1000

100 88

NetworKit

10

GraphLab Flink

ml m2 m4 =8 nodes

Giraph

Figure 9: Running times [in seconds| of PageRank.

789 760
1000 410
183 154 219
100 55 61
34
) I I
1
NetworKit GraphLab Giraph
ml m2 w4 =8 nodec

Figure 10: Running times [in seconds] of the ezact clus-
tering coefficient for the flickr-edges graph.

8 nodes to be faster than NetworKit, and Apache Giraph
still takes four times as long on 8 nodes.

As expected, the approximation of the clustering co-
efficients allows much larger graphs to be analyzed (see
Figure [11). NetworKit’s implementation is by far the
fastest as it can access the graph structure much faster,
while in distributed frameworks this requires message ex-
change, possibly over the network. In most cases, adding
additional cluster nodes does not benefit the running time
(with the exception of the Giraph implementation).

Memory Usage. The memory footprint of the frame-
works is crucial to their use in practice — all the more as we
often experience a rather poor scaling behavior in terms
of running time for the graph computations we investi-
gate here. Factors important for memory usage are the
underlying programming language, data structures, and
the framework structure and functionality. In Apache Gi-
raph for example, messages sent in a vertex program are
cached and only sent at the end of a superstep, which
requires additional memory.

GraphLab can only process graphs which can be loaded
into memory entirely, i.e. up to twitter. Giraph, on
the other hand, offers an optional graph swapping func-
tionality. With this feature enabled, Giraph is able to
load the twitter-1 graph, but only the memory efficient

flickr-edges
100

17 15 4, 24 24 20 28 26 24
10 S
L2822 22
1
0.01
NetworKit GraphLab Giraph Giraph++ Flink
livejournal-links-d
100 74 63 47 7779 5245 35 © 35 36 34
14 14
10
1
0.1
0.01
NetworKlt GraphLab Giraph Giraph++ Flink
uk-2002 twitter-1
244 50
41
100
12 25
10
0
Giraph Giraph++ Giraph
ml m2 w4 =8 nodes

Figure 11: Running times [in seconds| for the approzimate
average local clustering coefficient using 100.000 samples.

algorithms PageRank and ConnectedComponents can be
executed without memory errors. Swapping functions nat-
urally slow down algorithm execution due to the I/O op-
erations. Out of the test data sets, the largest graph Gi-
raph+-+ can load on 8 nodes is uk-2002. Apache Flink’s
engine also swaps out data to disk when memory runs out.
In this experimental setting, it can process graphs up to
the size of twitter. NetworKit is able to load the test
graphs up to the size of uk-2002 on a single machine.

CPU and Network Utilization. In the following, the
CPU and network utilization of the distributed frame-
works is examined on the basis of the PageRank algorithm
executed on the uk-2002 graph. The values were obtained
using Sysstat utilities, which monitors CPU values with a
time resolution of one second. Figure shows the CPU
utilization during the execution of the algorithm, starting
after the I/O phase. Iterations are visible most clearly
in the Giraph execution, with low CPU activity during
synchronization phases between supersteps. On average,
Flink has the highest CPU utilization with over 90%, fol-
lowed by Giraph with 85% and GraphLab with 81.4 %.
Giraph+-+ comes last with 74.4 %.

The network utilization is shown in Figure which
gives the send and receive rates of network communication

11

GraphLab Giraph

100

@814 %

71 81 91 101

@85.0 %

1 11 21 31 41 51 61 1 11 21 31 41 71 81 91 101

Flink

51 61

Giraph+-+

100 100

@ 74.4 %

51 61 71 81 91 101

@911 %

1 11 21 31 41 1 11 21 31 41 51 61 71 81 91 101

Figure 12: CPU utilization of the first 100 seconds of the
PageRank execution on the uk-2002 graph. The average
values are taken from the whole computation.

GraphLab Giraph

100

-

101 151 201

101

201

Giraph++ Flink

0 M
51 101 151 201

0

1 51 101 15

=Sent mReceived

Figure 13: Network utilization of the first four minutes
of the PageRank execution on the uk-2002 graph. The
values give the send and received number of kB/s in thou-
sands.

in kB/s. When comparing the vertex-centric frameworks
GraphLab and Giraph, it is noticeable that GraphLab’s
network communication is more evenly distributed. This
can be explained with the GAS model with its decomposi-
tion in three phases, each of which requires the exchange of
data for synchronization. Furthermore, GraphLab sends
network messages as they arrive and not at the end of each
superstep. Apache Giraph, in contrast, buffers messages
during the vertex program, and sends them collectively at
the end of each superstep. Therefore, there is no commu-
nication during the execution of a vertex program. Gi-
raph++ stands out with extraordinarily low values. The
peak rate of both curves is only at around 8500 kB/s.
This explains the long synchronization times and the weak
performance in general of Giraph-+’s executions. In the
diagram of Apache Flink, the longer execution time of it-
erations are visible.

Tuning GraphLab. Since GraphLab has emerged as

the generally fastest distributed framework, we examine

some of its features and tuning options in more detail.
GraphLab’s asynchronous execution engine provides op-

portunities for a faster algorithm convergence, but also
requires synchronization to ensure serializability. The
execution of PAGERANK-FIXED and CON-COMP shows that
the asynchronous engine indeed leads to faster conver-
gence: The top graphs in Figure show the total num-
ber of updated vertices during algorithm execution for the
livejournal-links-u graph. The number of vertex up-
dates in the asynchronous execution is consistently lower
than in the synchronous execution (only about 30% to
65%).

However, the increased convergence does not translate
into faster execution times: The synchronous execution
is almost always faster than the asynchronous execution.
The difference is moderate with PAGERANK-FIXED, but
drastic with CON-COMP-MSG, where the execution time is
1.7 to 2.4 times slower than the synchronous execution
time. What is also noteworthy is that some algorithms
are faster when executed on a single machine than with
two or four nodes. If executed on more than one node,
GraphLab needs to maintain copies of vertices on several
machines and also coordinate the execution of a vertex
program to ensure serializability. This overhead can ex-
ceed the advantage of the increased computational power,
thus leading to higher execution times. This behavior de-
pends on both the algorithm and the input graph.

GraphLab provides a message API that allows vertices
to send messages to other vertices, just like in the Pregel
model. Furthermore, GraphLab offers delta caching which
caches a vertex’s gather result and updates it using delta
values from neighbors. The impact of those two GraphLab
functions is examined using the Connected Components
algorithm, which is run in three different versions: The
standard GAS implementation, a GAS implementation
with delta caching, and a message-based implementation.

Figure 15| shows the execution times of the various im-
plementations. In the synchronous execution (top graphs),
the performance differences of the implementations is rel-
atively small (5% - 15%). The standard implementation is
slower than the delta caching and message-based variants
in almost all cases. The message based implementation
is slower than the delta caching implementation on the
livejournal-links-u graph in the single- and two-node
setup, but slightly slower on four and eight nodes and on
all orkut-links graph executions. In the asynchronous
execution mode, the differences are clearer. The message-
based implementation is slower than the standard GAS
one in almost all cases, by up to 36.7%.

6 Conclusion

We examined several distributed computing frameworks
with a focus on graph algorithms for network analysis.
The prominent MapReduce model was discarded due to
its restrictions in the context of graph algorithms. The
PACT model extends the approach of MapReduce and
is more powerful, although graph algorithms are generally
more difficult to express than in the graph-specific models.

On the other hand, the vertex-centric Pregel and GAS are
very intuitive models for this purpose. The graph-centric
extension allows to add optimizations to vertex-centric al-
gorithms by giving the programmer access to partition
information.

We implemented representative network analysis algo-
rithms in distributed frameworks, each of which employs
one of the presented programming models. The imple-
mentations show how the programming models can be
used in practice to express typical graph algorithms for
network analysis, and how existing sequential algorithms
such as the Clustering Coefficient approximation can be
adapted to distributed programming models. Generally,
the vertex-centric Apache Giraph and GraphLab pro-
grams are very similar and the easiest to implement. The
resulting programs in Giraph++ are slightly more verbose
and complex, but can use optimizations impossible in the
vertex-centric model.

Experiments were conducted on a cluster of eight nodes.
We show that this distributed setting is able to process
graphs of almost two billion edges, using standard com-
modity hardware. Not all frameworks perform equally
well: Generally, GraphLab shows the best performance.
Apache Giraph is less efficient in most cases, but offers an
out-of-core mechanism which enables it to handle larger
data sets. It is the only framework that could process
the twitter-1 graph. Giraph+-+ unexpectedly performs
worse than the vertex-centric models. However, it must
be remembered that only an experimental version of Gi-
raph+-+, based on an outdated version of Apache Gi-
raph, is available. Apache Flink performed worse than the
vertex-centric frameworks. Also, larger graphs could not
be processed for some of the algorithms due to issues with
memory. Support for asynchronous execution is essential
for the label propagation community detection algorithm,
since the heuristic may not converge for synchronous exe-
cution due to label oscillation.

The single-machine software package NetworKit outper-
forms the distributed frameworks in almost all scenarios.
It can handle larger graphs than the distributed frame-
works on a single machine, and its execution times are
often only a fraction of the other frameworks’, due to effi-
cient native code and lack of overhead associated with the
software machinery that enables and supports distributed
computing. Consequently, the decision for a distributed
computing solution for complex network analysis should
come out of the necessity of massive graph data volumes
that exhaust typical main memory capacity.

Acknowledgements.

This work is partially supported by the German Research Foundation
(DFG) under grant ME 3619/3-1 within the Priority Programme 1736
Algorithms for Big Data. Parts of this paper have been published in

preliminary form as [Koch et al., 2015].

12

References

[Apache, 2014] Apache (2014). Giraph++ patch for
apache giraph. https://issues.apache.org/jira/browse/
GIRAPH-818. [Online; accessed 31-July-2014].

[Apache, 2015a] Apache (2015a). Website of the frame-
work apache flink.

[Apache, 2015b] Apache (2015b). Website of the frame-
work apache giraph.

[Apache, 2015¢| Apache (2015¢c). Website of the research
project stratosphere.

[Avery Ching, 2013] Avery Ching (2013). Scal-
ing apache giraph to a trillion edges. https:
/ /www.facebook.com /notes/facebook-engineering/
scaling-apache-giraph-to-a-trillion-edges/
10151617006153920. [Online; accessed 30-July-2014].

[Battré et al., 2010] Battré, D., Ewen, S., Hueske, F.,
Kao, O., Markl, V., and Warneke, D. (2010).
Nephele/pacts: A programming model and execution
framework for web-scale analytical processing. In Proc.
1st ACM Symp. on Cloud Computing, SoCC 10, pages
119-130, New York. ACM.

[Boldi and Vigna, 2004] Boldi, P. and Vigna, S. (2004).
The WebGraph framework I: Compression techniques.
In Proc. of the Thirteenth International World Wide
Web Conference (WWW 2004), pages 595-601, Man-
hattan, USA. ACM Press.

[Brin and Page, 1998] Brin, S. and Page, L. (1998). The
anatomy of a large-scale hypertextual web search en-
gine. In COMPUTER NETWORKS AND ISDN SYS-
TEMS, pages 107-117. Elsevier Science Publishers B.
V.

[Cha et al., 2010] Cha, M., Haddadi, H., Benevenuto, F.,
and Gummadi, K. P. (2010). Measuring User Influence
in Twitter: The Million Follower Fallacy. In Proceedings
of the 4th International AAAI Conference on Weblogs
and Social Media (ICWSM).

[Costa et al., 2011] Costa, L. d. F., Oliveira Jr, O. N.,
Travieso, G., Rodrigues, F. A., Villas Boas, P. R., An-
tiqueira, L., Viana, M. P., and Correa Rocha, L. E.
(2011). Analyzing and modeling real-world phenomena
with complex networks: a survey of applications. Ad-
vances in Physics, 60(3):329-412.

[Dato, 2015] Dato (2015). Website of the company dis-
tributing graphlab.

[Dean and Ghemawat, 2008] Dean, J. and Ghemawat, S.
(2008). Mapreduce: simplified data processing on large
clusters. Communications of the ACM, 51(1):107-113.

13

[Gonzalez et al., 2012] Gonzalez, J. E., Low, Y., Gu, H.,
Bickson, D., and Guestrin, C. (2012). Powergraph: Dis-
tributed graph-parallel computation on natural graphs.
In Proceedings of the 10th USENIX Conference on Op-
erating Systems Design and Implementation, OSDI’12,
pages 17-30, Berkeley, CA, USA. USENIX Association.

[Karloff et al., 2010] Karloff, H., Suri, S., and Vassilvit-
skii, S. (2010). A model of computation for mapreduce.
In Proceedings of the Twenty-First Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 938-948. So-
ciety for Industrial and Applied Mathematics.

[Koch et al., 2015] Koch, J., Staudt, C. L., Vogel, M.,
and Meyerhenke, H. (2015). Complex network analy-
sis on distributed systems: An empirical comparison.
In Pei, J., Silvestri, F., and Tang, J., editors, Proc.
2015 IEEE/ACM Intl. Conf. on Advances in Social
Networks Analysis and Mining, ASONAM 2015, pages
1169-1176. ACM.

[Kunegis, 2013] Kunegis, J. (2013). Konect: the koblenz
network collection. In Proc. 22nd Intl. Conf. on World
Wide Web companion, pages 1343-1350. International
World Wide Web Conferences Steering Committee.

[Kwak et al., 2010] Kwak, H., Lee, C., Park, H., and
Moon, S. (2010). What is Twitter, a social network
or a news media? In WWW ’10: Proceedings of the

19th international conference on World wide web, pages
591-600, New York, NY, USA. ACM.

[Lin and Dyer, 2010] Lin, J. and Dyer, C. (2010). Data-
intensive Text Processing with MapReduce. G - Refer-
ence,Information and Interdisciplinary Subjects Series.
Morgan & Claypool.

[Low et al., 2012 Low, Y., Gonzalez, J., Kyrola, A., Bick-
son, D., Guestrin, C., and Hellerstein, J. M. (2012). Dis-
tributed graphlab: A framework for machine learning in
the cloud. CoRR, abs/1204.6078.

[Malewicz et al., 2010] Malewicz, G., Austern, M. H.,
Bik, A. J., Dehnert, J. C., Horn, I., Leiser, N., and
Czajkowski, G. (2010). Pregel: a system for large-
scale graph processing. In Proceedings of the 2010 ACM
SIGMOD International Conference on Management of
data, pages 135-146. ACM.

[McColl et al., 2014] McColl, R. C., Ediger, D., Poovey,
J., Campbell, D., and Bader, D. A. (2014). A perfor-
mance evaluation of open source graph databases. In
Proc. 1st Workshop on Parallel Programming for Ana-
lytics Applications, PPAA ’14, pages 11-18, New York,
NY, USA. ACM.

[Meyerhenke et al., 2014] Meyerhenke, H., Sanders, P.,
and Schulz, C. (2014). Partitioning complex networks
via size-constrained clustering. In Proc. 13th Intl. Symp.
on Experimental Algorithms (SEA 2014), volume 8504
of LNCS, pages 351-363. Springer.

https://issues.apache.org/jira/browse/GIRAPH-818
https://issues.apache.org/jira/browse/GIRAPH-818
https://www.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-edges/10151617006153920
https://www.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-edges/10151617006153920
https://www.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-edges/10151617006153920
https://www.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-edges/10151617006153920

[Newman, 2010] Newman, M. (2010). Networks: An In-
troduction.

[Raghavan et al., 2007] Raghavan, U. N., Albert, R., and
Kumara, S. (2007). Near linear time algorithm to detect
community structures in large-scale networks. Physical
Review E, 76(3):036106.

[Satish et al., 2014] Satish, N., Sundaram, N., Patwary,
M. M. A., Seo, J., Park, J., Hassaan, M. A., Sen-
gupta, S., Yin, Z., and Dubey, P. (2014). Navigating
the maze of graph analytics frameworks using massive
graph datasets. In Proc. 2014 ACM SIGMOD Interna-
tional Conference on Management of Data, SIGMOD
14, pages 979-990, New York, NY, USA. ACM.

[Schank and Wagner, 2005] Schank, T. and Wagner, D.
(2005). Approximating clustering-coefficient and tran-
sitivity. Journal of Graph Algorithms and Applications,
9(2):265-275.

[Slota et al., 2014| Slota, G. M., Madduri, K., and Raja-
manickam, S. (2014). Pulp: Scalable multi-objective
multi-constraint partitioning for small-world networks.
In 2014 IEEE Intl. Conf. on Big Data, Big Data 2014,
pages 481-490.

[Staudt et al., 2014] Staudt, C. L., Sazonovs, A., and
Meyerhenke, H. (2014). NetworKit: A tool suite for
large-scale complex network analysis. arXiv:1403.3005.

[Tian et al., 2013] Tian, Y., Balmin, A., Corsten, S. A.,
Tatikonda, S., and McPherson, J. (2013). From "think
like a vertex" to "think like a graph". PVLDB,
7(3):193-204.

[Valiant, 1990] Valiant, L. G. (1990). A bridging model
for parallel computation. Communications of the ACM,
33(8):103-111.

[Zhang et al., 2012] Zhang, Y., Gao, Q., Gao, L., and
Wang, C. (2012). Accelerate large-scale iterative com-
putation through asynchronous accumulative updates.
In Proceedings of the 3rd workshop on Scientific Cloud
Computing Date, pages 13-22. ACM.

14

CON-COMP CON-COMP-MSG PAGERANK-FIXED
| | | | | |

25 N 30 B
w _ _ _ _ _ _ _ _ _ _ _ _
=
= 0] |
E 20 | n 25 |- .
R=
&
5 15 - - 20 | i 8- N
=
=
g 10| SE— |
g 6| 1
=
5 L H I I I | 10 - H I I I - H H H H
1 2 4 8 1 2 4 8 1 2 4 8
’ —Jsynch T TJasynch ’ —Jsynch T asynch ’ I synch T asynch ‘
(a) (b) (c)
| | |
45 60 - 57 i 40
— — 40 - 3_7_ |
I N 50 |- 8 33
40 44 45]
w0 (|] 30 [27 |
R= 34 40 I N !
- o
g 33
& 30| | 20 |
= 27 26.9 301 i 0
26 25 | 24
24 23 21 11 123
21. 20 17.6 | 10 | 9 9. i
I I il
1 1 1 1 10 = 1 1 1 1 - T T 1 1
1 2 4 8 1 2 4 8 1 2 4 8
—Jsynch[Jasynch ‘ ’ —Jsynch CTJasynch ‘ —Jsynch T TJasynch ‘

(d) (e) (®)

Figure 14: Comparison of Graphlab’s synchronous and asynchronous execution for Connected Components, message
based Connected Components and PageRank (from left to right) on the livejournal-links graph. The top diagrams
shows the number of updated vertices, the middle and bottom ones the algorithm exection time.

15

livejournal-links-u, sync orkut-links, sync
| | | | | |

1 2

= 300 o :
© o S oo L 9 o =
60 [2) SRS PRI S 3
o] =1 R 0 —
5 :
n =0 20] — |
< —
S 40 — Bl ; % n
: 0 Se=
D T
= =5 5 3
R
D~ - .
20 | I
v—4|_‘ —
I I I I I I I I
1 2 4 8 1 2 4 8
(a) (b)
livejournal-links-u, async orkut-1links, async
| | | | | |
2 60 |- s .
80 - — s —
. 3 < 50 |- " . - ; .
2 6ol ° 3 | . 5 %
: o a
N= = ™ | |
o n = 40 o
] <
g o
40 - . -
el
. 30 |- < 5 N
= 3 [
I I T I I
1 8 4

2 4

©) ’ 3 Standard 1 Message API[Delta Caching ﬂd)

Figure 15: GraphLab’s execution times of the standard, message based and delta caching versions of CON-COMP for
the 1livejournal-links-u graph (left) and the orkut-links graph (right) in synchronous and asynchronous modes

16

	1 Introduction
	2 Programming Models for Distributed Graph Processing
	2.1 General-purpose Models
	2.2 Vertex-centric Models
	2.3 Graph-centric Model

	3 Frameworks
	3.1 Apache Flink
	3.2 Apache Giraph
	3.3 GraphLab
	3.4 Giraph++

	4 Network Analysis Algorithms
	4.1 Connected Components via Label Propagation
	4.2 Community Detection via Label Propagation
	4.3 PageRank
	4.4 Clustering Coefficients
	4.5 Discussion

	5 Experimental Comparison
	5.1 Experimental Setup
	5.2 Results

	6 Conclusion

