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Abstract. With the global adoption of smart mobile devices equipped with 
localization (GPS) capabilities and broad popularity of microblogging facilities like 
Twitter, the need for personal privacy has never been greater. This is especially so 
with computational and data processing infrastructures such as Clouds that support 
big data analysis. Differential privacy of geospatially tagged data such as tweets can 
potentially ensure that degrees of location privacy can be preserved whilst allowing 
the information (tweet contents) to be used for research and analysis, e.g. sentiment 
analysis. In this paper, we evaluate differential location pattern mining approaches 
considering both privacy and precision of geo-located tweets clustered according to 
Geo-Locations of Interest (GLI). We consider both the privacy protection strength 
and the accuracy of results, measuring the Euclidean distance between centroids of 
real GLIs and obfuscated ones, i.e. those incorporating privacy-preserving noise. We 
record the performance and sensitivity of the approach. We show how privacy and 
location precision are trade-offs, i.e. the higher degree of privacy protection, the 
fewer GLIs will be identified. We also quantify these trade-offs and their associated 
sensitivity levels. We illustrate the work through a big data case study on use of 
Twitter data for traffic related data protection.  
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1. INTRODUCTION 

Social networks with location awareness such as Twitter are geared towards allowing 

users to share general information through 140 character strings – so called tweets. 

Twitter has become a global phenomenon with over 400 million tweets made daily. Many 

users are unaware that often the geo-location of the tweet is also recorded, i.e. where they 

actually tweeted from and at what time they tweeted. This has obvious privacy issues. As 

an illustration of this, Figure 1 illustrates how Twitter data can provide more information 

on individuals than they would ever have thought possible: tracking them throughout the 

day to potentially discover many aspects of their lives; where they live; where they travel; 

what they are doing; what time of day they are actually doing it etc. Furthermore once an 
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individual has tweeted they can in principle be tracked directly and potentially forever 

using the Twitter Search API that is itself openly (programmatically) accessible. 

 

 
Fig. 1. Geospatially tracking a small sample of Tweeters around Melbourne (colour codes are individual 

Tweeters and vertical lines represent increasing times of day). 

 

It could be argued that location-based information itself should be removed at source, 

e.g. by Twitter, however there is an increasing demand to localize the aggregated analysis 

of Twitter data. This can be for real-time information on a variety of issues: congested 

transport routes around cities; using Twitter data as the basis for early warning health 

outbreaks (avian flu, Ebola virus outbreaks); natural hazards (bushfires, earthquakes, 

floods) amongst many other scenarios. Given this and the potential for the many positive 

uses of such data, supporting degrees of privacy in aggregated geospatial settings, is 
highly desirable. Location-based services are increasingly popular and not restricted 

solely to Twitter [Hasan et al. 2013]. Many mobile applications capture location-based 

information and often are deliberately designed to use this information. Indeed twitter 

provides a “Nearby” application for users to find friends/followers who are tweeting in a 

particular nearby locality. However there is a clear need for more control over the privacy 

of shared information – especially the potentially unforeseen privacy consequences such 

as user location tracking as shown in Figure 1. Thus users might be happy to acknowledge 

that the tweets they make are for public consumption and hence non-private by their 

nature, however where and when they make them and the consequences that can arise 

through this has given rise to increasing demands for privacy [Sadeh et al. 2009]. The 

availability of major computational resources such as Clouds and technologies such as 
NoSQL data resources and big data processing algorithms such as MapReduce and 

ElasticSearch now allow mining and analysis of such data at an unprecedented scale. 

Given this, it is meaningful to explore behavioral analysis and pattern mining of location 

data and ways to obfuscate this sensitive information, especially as it could be used for 

malicious purposes against Tweeters and potentially their followers [Yu et al. 2011].  

Threats to reveal supposedly anonymous individual behaviors are exacerbated when 

attackers possess degrees of background knowledge. Consequently, several solutions have 

been proposed to mine location data with differential privacy [Arik and Assaf 2010]. In 

recent years, differential privacy [Dwork 2006] has been widely used for the protection of 

location-based data. In these solutions, it was shown that location privacy could be 

preserved by adding moderate degrees of noise based on an appropriate degree of required 



 

 

location obfuscation, while supporting degrees of service for other location-based services. 

The advantage of differential privacy for location privacy is that it allows to protect 

individual location information whilst still allowing the data to be used for analysis and/or 

mining. Solutions that can limit the dangers of leaking location privacy would encourage 

more users to share their location information. Hence, a large amount of meaningful work 

with social utility could be carried out with improved aggregate geospatially-coded 

Twitter data, e.g. pandemics and natural disasters often rely on social media and being 

able to undertake pattern mining to extract knowledge such as the Geo-Location of 
Interest (GLI) with “safe” degrees of privacy preservation.  

While these solutions have demonstrated that classical differential privacy can be 

achieved, it is sometimes difficult in practice to introduce suitable degrees of noise. Too 

much noise and the aggregation of geospatial information renders the data useless for 

location-based analysis; too little noise and the dangers of privacy violations exist. To 

tackle this, in this paper a differential privacy-based spatial partition is adopted and 

combined with a spatial clustering algorithm focused on mining locations of interest. 

Specifically, a geo-location database extracted from tweets from Twitter is established 

and populated with geospatial location where optimal quad tree spatial decomposition is 

used with differential privacy to discover targeted locations of interest. Building on this, a 

Recursive Density Based Clustering Algorithm [Changqing et al. 2004] is used for 

clustering likely regions, i.e. privacy protected ones, with actual locations of interests. To 
achieve this, a Laplace noise mechanism is introduced to obfuscate tweet locations into 

targeted privacy-preserving regions. Finally, we contrast noise-based privacy-preserving 

GLI clouds with actual (i.e. non-privacy protected) tweet-based GLIs to analyze the 

overall privacy and the accuracy of the solutions. The Euclidean distance between real 

GLIs (the actual/original tweet location) and noise induced ones together with the number 

of similar neighborhoods surrounding real GLIs and noise-induced ones are analyzed.  

The main contributions of this paper are as follows: (1) development of an adaptive 

privacy preserving special decomposition solution OptQ-SDDP supporting geometric 

privacy budget to improve utility, (2) supporting GLIs with differentially private 

guarantees using intelligent parameter settings, and (3) ensuring private GLI pattern 

mining solutions over large space-time domains comprising realistic location challenges 
facing large-scale social networks with a range of comprehensive evaluation metrics. 

The rest of this paper is structured as follows. Section II describes the foundations for 

GLI pattern mining of tweets; the ideas and mechanisms that underpin differential privacy, 

and the advantages of differential privacy compared with other methods and works used 

for location privacy preservation. Section III introduces the data used for mining, and the 

algorithms used for spatial decomposition and pattern mining. Section IV presents the 

data and methods in the work. Section V presents the evaluation metrics adopted in the 

work. Section VI presents the experimental results of the privacy-preserved Twitter 

analysis focused on traffic events reported through social media. Finally Section VII 

draws conclusions on the work as a whole. 



 

 

2. RELATED WORK 

K-anonymity [Sweeney 2002] has been widely used to protect privacy in location-based 

systems based on the hypothesis that it is impossible for attackers to differentiate an 

individual, from k other different individuals. When it is used for location privacy 

preservation, the set of k points should be indistinguishable. There are many ways to 
implement this method, such as introduction of dummy locations and cloaking. The 

former solution adds k-1 properly selected dummy points and uses both the real and 

dummy locations for analysis. Cloaking uses artificial cloaking areas that include k points 

sharing some property of interest for analysis. The drawback of k-anonymity is that it is 

built on assumptions about the quantity of a potential attacker’s auxiliary knowledge, i.e. 

the approach fails if dummy locations can be distinguished from real locations by 

attackers. Although some improvements have been proposed (i.e. l-diversity [Ashwin et al. 

2007], t-closeness notion [Ninghui et al.  2007]) considering ubiquity, congestion and 

uniformity when dummy points are generated, e.g. to make them look more similar to real 

locations or taking an individual’s auxiliary information into consideration to construct a 

cloaking region, and [Abul et al. 2008] put forward the (k, δ)-anonymity pattern, which 

depends on inaccurate sampling and location systems, where δ represents the possible 
positioning inaccuracy. It focuses on amending trajectories through space translation to 

make k different trajectories co-exist in a cylinder of radius δ. It reveals the problem of k-

anonymization of a trajectory database relating to sensitive events. It aims to ensure that at 

least k users are able to get access to every event. In particular, this work proposes a new 

generalization mechanism known as local enlargement, which works better than 

traditional level or partition-based generalization. However, there are also some defects 

that can be attacked. For example, assumptions cannot be made regarding how much 

additional information an attacker might have. Differential privacy can avoid these defects, 

as it defines rigorous obfuscation (privacy preserving) models and has nothing to do with 

the attacker’s potential auxiliary information about an individual. 

Differential privacy was introduced by Dwork in [Dwork et al. 2006]. It ensures that 
useful information can be inquired and mined from a statistical database comprised of 

individually identifying information, whilst protecting a given individual’s privacy. It 

provides privacy guarantees as to whether or not a single element is present inside a 

database or not without explicitly identifying the individual. Several efforts have explored 

how to apply differential privacy to protect location privacy. One example is to support 

Geo-indistinguishability [Andrés et al. 2013] using a disturbance technique, whereby a 

Laplace distribution including stochastic noise is used to obtain Geo-indistinguishability. 

To evaluate the capacity of Geo-indistinguishability to defend a user’s points of interest 

(POIs), [Primault et al. 2014] collected real mobility traces from two diverse datasets and 

demonstrated that Geo-indistinguishability is often inadequate because attackers can 

distinguish at least 63% of users although the location is often vague. [Jiang et al. 2013] 
has used differential privacy to protect trajectories of ships by generating and adding noise 

to trajectories. They explored three ways to add noise: adding global noise to the whole 

trace; adding noise to each point (x,y) independently, and adding noise to each x and y 



 

 

coordinate independently. The available privacy-preserving data publishing methods 

coming from partition-based privacy models, like k-anonymity, may not protect privacy 

sufficiently, however they identify that differential privacy approaches may well meet this 

objective. There are two main types of space splitting techniques used in partition-based 

privacy models: data-dependent and data-independent. The data-independent method 

doesn’t consider the distribution of the points in space and achieves decomposition 

through recursively splitting the areas, e.g. quad trees split the areas into four equal 

squares. Quad-Tree based solutions split regions based on point distributions. Several 
other techniques distinguish points in space, for example, Hilbert R-Trees seek out points 

in a given space and splits the regions again using the Hilbert curve. [Ho et al. 2011] 

introduced a classical approach to applying differential privacy to location data mining 

focused on protecting the privacy of the outcome of an aggregate function but not the 

entire dataset. To achieve this they used an approach based on equal privacy distribution, 

which leads to lower utility. In addition, there is no sufficient evaluation on utility and 

privacy of the solution. [Xiao et al. 2010] put forward a novel method for spatial data 

partitioning.  [Xiao et al. 2011] developed a wavelet-conversion method suited for 

relational data to reduce noise magnitude, instead of adding independent Laplace noise. It 

questions each probable association of attribute values and establishes a generalized result 

according to the perturbed outcomes. The algorithms in [Dewri 2012] were developed to 

deal with all kinds of entries in the area, causing extensibility of the trajectory data 
background. 

3. DIFFERETIAL PRIVACY PRESERVING GLI MINING  

3.1 Background 

In this section, we contrast various methods that have been used to achieve privacy 

preservation, focusing especially on techniques used for geospatial data privacy. We 

introduce k-anonymity and differential privacy and discuss their advantages and 

disadvantages. We define and describe GLI and present recent approaches for mining with 

privacy protection to discover location information. 

 

3.1.1 Differential Privacy  

Differential privacy was proposed by Dwork in [Dwork et al. 2006]. It is based on the 

idea that valuable knowledge can be gained from datasets without disclosing sensitive 

information. It offers rigorous privacy assurances that one individual cannot be 

recognized whenever this individual is in or is deleted from the dataset, i.e. the results will 

not change sufficiently to identify the difference. 

 

The formalized definition of differential privacy is that if an individual is deleted from a 

database, there is no output that becomes obviously changed. Specifically, a private 

function K with ε-differential privacy for databases D1 and D2, differing at most one 



 

 

element from each other, satisfies differential privacy if for all outcomes of the database S 

(S ⊂ Range (K)) there is:  

 Pr [K(D1) S] ≤ eε Pr [K(D2) S] (1) 

A mining algorithm O provides ε-differential privacy if for any two datasets D1 and D2 

that differ in a single entry and for any a in the database [Nissim et al. 2007] then: 

  (2) 

In (2), O(D) is the output of the algorithm, p is the probability density and ε is a value 

that represents the privacy leakage. ε-differential privacy can be achieved by the addition 

of random noise whose magnitude is chosen as a function derived from the largest change 

a single participant could have on the output to the query function. This often referred to 

as the sensitivity of the function [Nissim et al. 2007]. 

ε-differential privacy can be realized by introduction of noise in several ways. One 

example (adopted here) is through introduction of a Laplace noise mechanism (Lap(σ)), 

whose magnitude is related to the variation that the removal of a single participant can 
cause on the output. The maximum query output variation when removing an element of 

the database is represented by the global sensitivity of a given query [Dwork et al. 2006]. 

  (3) 

For a given function f :Dn→Rd (where Rd is a d-dimensional vector) the global 

sensitivity is shown in (3). Differential privacy has two important properties [McSherry et 

al. 2009]: 

 Sequential Composition: The Differential Privacy provided by a sequence of 

mechanisms Mi on an input domain D is     . 

 Parallel Composition: If every mechanism Mi acts on a disjoint subset Di  D, the 
privacy provided will be (max(εi))-Differential Privacy for all Mi. 

[Nissim et al. 2007] introduced local sensitivity to improve the limitations of global 

sensitivity, i.e. it cannot reflect a possible function's insensitivity to individual inputs due 

to an overload of noise, because it is concerned with a specific instance of the database. 

For f :Dn→Rd (where Rd is a d-dimensional vector)  the local sensitivity of f at x is:  

  (4) 

The value of this function is calculated over a specific x and all the possible neighbor 

databases y that differ from x by only one element [Ho et al. 2013]. 

1 1

2 2

( (D ) | D )
| log |

( (D ) | D )

p O a

p O a







1 2 1
1, 2

max || (D ) (D ) ||
D D

f f f  

1
, : (x,y) 1
max || (x) ( ) ||local

x y d
f f f y


  



 

 

 

3.1.2 Mining Geo-Locations of Interests in Tweets  

Because of the differences in the location of tweets (i.e. they will typically have different 

latitude/longitude given), any given tweet geo-location can be described as 

, where s is defined as one place (location) where the user tweets. 

Each sj=(latj, lonj, timej), where latj is the latitude, lonj  the longitude, timej is the location 
in time that a user tweets.  

 A Users Location of Interest (ULI) is defined as a geospatial and temporal circle with 

radius ≥ r where the user location dataset loci is contained within the circle of radius r. 

The higher the value of r, the greater the privacy. 

 A Geo-location of Interest (GLI) is an area containing at least m User Location of 

Interest (ULI) where each user has more than r’ tweets location marked in that area. 

One way to consider a ULI and a GLI in the context of Twitter is that a ULI is a cloud 

of uncertainty of where a tweet actually took place. This cloud covers both location and 

temporal dimensions. Some users might demand high privacy in which case the coverage 

(radius) of the cloud is increased. GLI can be considered as areas of high concentrations 

of privacy preserved tweets. It is noted that the actual Tweet content, e.g. particular 
Hashtags such as #Airport #University #Library, can also be used to filter and cluster 

tweets of interest. A GLI can be used to identify correlations between users and events or 

activities without explicitly identifying the location of the event. 

3.2 Data Harvesting and Preprocessing  

All of the data harvesting and preprocessing is implemented on the Australian National 

eResearch Collaboration Tools and Resources (NeCTAR) Research Cloud 

(www.nectar.org.au). The harvester itself implements a RESTful client that connects to 

the Twitter Search API. The returned tweets are processed and incorporated into the 

NoSQL database (CouchDB). This processing involves removal of tweets that do not 

explictly have geo-spatial information included (latitude/longitude). CouchDB was 

selected in part as it natively supports MapReduce.  

The system supports elastic scaling and more harvesters can be deployed across Cloud 

resources. Four medium-sized virtual machines with 8Gb memory and eight virtual CPUs 
with 250Gb volume storage and 100Gb object storage were used as the basis for the work.  

3.2.1 The Structure of Cloud-based Virtual Machine Instances 

The structure of the infrastructure used across the NeCTAR cloud contains six virtual 

machine instances to harvest data from Twitter, with two VMs for stream API harvesting, 

two for ReST API harvesting, one for CouchDB and one for processing data. The tools 

and systems used to deliver the infrastructure included shell scripts, Ansible, OpenStack 

nova-clients, public/private keys and OpenStack RC files. Specifically these were used to 

automatically build, deploy and configure instances and volumes over the NeCTAR 

Cloud. OpenStack Nova-clients allow for instance creation and association of security and 
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configuration information, e.g. to create security groups to connect instances with 

CouchDB to store harvested data. Five small instances were used for the harvesters and 

one medium instance used for CouchDB with one small virtual machine for the user 

interface (UI). Volumes were attached to instances through scripting languages utilising 

Ansible and execution of yml files in the local host and subsequently across the Cloud 

resources. A set of IP address of each virtual instance is returned. 

3.2.2 Cloud-based Data Harvesting 

The focus of data harvesting is to obtain tweets from the Twitter API according to the 
geo-location coordinates specified and saving the data to a centralized CouchDB instance 

with given IP address and the associated name of the database. 

The Twitter Stream API and Search API were utilized concurrently. However, 

different harvesting programs can result in collecting duplicate tweets. To avoid 

duplications, the Tweet ID was used as the document ID in CouchDB. Since CouchDB 

does not allow any repeated document ID in its database, duplicated tweets were avoided 

directly. The harvester program uses two external libraries, namely twitter 4j and couch4j. 

The former is used to invoke the Twitter Streaming API to harvest tweets whilst the latter 

is responsible for checking the availability of CouchDB and saving the collected data. In 

addition to the Streaming API for harvesting real-time tweets, Twitter provides a Restful 

API to search for recent tweets. There are two main approaches to access historical tweets 

to supplement recent tweets as follows. 

3.2.3 Cloud-based Data Processing 

After harvesting the Twitter data it is necessary to process the tweets to generate useful 

results. For this purpose we have used the MapReduce functions of CouchDB. CouchDB 

is an Apache open source database, which unlike Relational Database Management 

Systems stores the data in the form of independent documents with each document 

identified with a unique ID. 

For further analysis, non-English text and non-ASCII letters were filtered from the 

tweet content. The latitude and longitude of the tweets were used as keys and the user 

Tweet id as the value. The resultant data set used for the experiments comprised more 

than 400 locations per user. The tweets were harvested from Miami between the time 

periods of 04/25/2015 to 05/15/2015. The total number of tweets combining the data from 
the Search and Stream APIs after removing duplicates was 1,301,603. After preprocessing, 

the final data set was composed of 308,264 locations from 1324 users. These data were 

saved with the following structure: 

 

UserId | PointID | Longitude | Latitude | Date 

 

3.3 Overview of the Method 

The software architecture used to support the explorations of location privacy of Twitter 

data is shown in Figure 2. This architecture supports data collection (through the Twitter 



 

 

Search API although the Twitter Streaming API could also be used), data preparation, and 

the associated methods required to perform ε-differential privacy and GLI pattern mining 

and associated analysis. 

 
Fig. 2. System Architecture. 

     

Differential privacy concepts were introduced in the previous sections. In this section the 

methods used to generate a differential privacy-driven sanitization database from raw geo-

located Twitter data is presented. This is achieved in two steps. The first step is to 

decompose spatial location regions by optimal quad-trees using differential privacy 

mechanisms. Following this, clustering of intersecting areas to find GLIs with perturbing 

outputs is undertaken to support differential privacy for locations, as shown in Figure 3. 

 
Fig. 3. Spatial decomposition sketch map (points in the red circle will be used for extracting the GLIs). 

 

3.4 Differential Privacy-based Spatial Decomposition 

The classical solution to ensure differential privacy for spatial points datasets is to 
decompose the spatial space, and then publish statistics on the points within each region in 

a differential privacy-preserving way. Users can get obfuscated knowledge of locations by 

intersecting the query regions with the split areas. The method to build differential privacy 

spatial decomposition can be divided into adding noise to counts and index structures 

satisfying differential privacy. The purpose of spatial decomposition is to divide a global 

task into several local subtasks. Local sensitivity Δflocal is required in this situation 
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(equation (4) previously). This approach can guarantee a better output location accuracy at 

a fixed differential privacy level since lower localized sensitivity results in lower σ for the 

Laplace noise mechanism [Ho et al. 2011].  

    There are two approaches that can be adapted to decompose (split) space: data-

dependent and data-independent splitting. KD-Tree is a data-dependent technique based 

on the distribution of points, whilst Quad-tree is a data-independent approach. A Quad-

tree-based spatial decomposition was adopted here to create sets of locations that group 

points within a certain area from the leaf of the Quad-tree. As this can lead to privacy 
leaking when performing a non-perturbed spatial decomposition whereby attackers can 

retrieve the exact count of the points within an area by simply comparing the dimension of 

the sub-region, the next step is to perturb the count of the sub-regions to protect the 

differential privacy of the count query outputs. This can be achieved by recalling the 

differential privacy idea that an attacker cannot guess if a particular point is or is not 

inside the database and if so, how many points fall within a certain area. Adaptive privacy 

budget strategy is used to achieve a more accurate decomposition. Algorithm 1 [OptQ-

SDDP] is used to achieve differential privacy of the space decomposition, namely, some 

areas that should be split are kept whole whilst others that should be kept whole are split.  

There are various approaches to allocate privacy distributions across the tree including 

uniform distributions and geometric distributions.  H is defined as the height of a tree, 

hence the levels of the tree ranges from 0 to H. According to Parallel Composition, the 
privacy of all nodes on level i is εi. According to Sequential Composition and Parallel 

Composition, the sum of privacy across all levels should be ε, namely      
   . To 

optimize the result of differential decomposition, an error measure method is introduced 

as follows: let q represent any query and o´ be the output of the query qp over the privacy 

tree. When the mean of Laplace distribution is 0, o´ can be adapted as an unbiased 

estimator of the true output o. The variance of o´, namely V (o´), can be represented as an 

indicator of error, namely Error (q) = V (o´). 
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Fig. 4. Private Quad Tree (counts in rectangles are with added noise and to be released). 

 

    The variance of the Laplace distribution Lap(εi), namely V(Lap(εi)), is     
 . Let ni 

denote the number of nodes contributed to q at level i of the quad tree, hence the ni is 4
h-i 

if the quad tree is full, in which the root is the level h and leaf is at level 0. For 2 

dimensional Quad-tree decomposition let ni=     when q includes the maximum (upper 

limit) number of counts at each level for all quad tree count queries. Let n(q) denote the 

number of nodes that contribute counts to q. For instance, as shown in Figure 4, one query 

q is used to calculate the count of points in c2, c3, b2, c9, c10 and c14. Thus the n i in the 

different levels is 0,1,4 respectively and n(q)=     
 
    0+1+4 in this instance. 

Consequently,         
 
          

 

 
         

   , whose time complexity is 

O(4H). Since every node is independent from one another and every node at the same level 

of the tree has the same privacy value (and the same Error) according to Parallel 

Composition in Section 2.2, it can thus be deduced that             
  

   . 

    Note that the standard method [Mark et al. 2008] to execute noise range queries is as 
follows: from the root to all nodes N whose rectangle is intersected by q. When q contains 

a whole node N, add the noisy count to the answer qp; if not, traverse the child nodes of N 

until the leaves are reached. If leaf A intersects q but is not included in q, the uniformity 

assumption is adapted to determine that the noisy count can be added to qp.   

    For uniform distributed privacy strategies, let            be used for noise counts 

in trees. This approach has lower accuracy that seriously affects the next step and the 

whole accuracy. Here             
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    For geometric distributed privacy strategies, accuracy can be significantly increased by 

a non-uniform privacy distribution strategy. Specifically, the following optimization 

problem is adapted to minimize the upper bound. 
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    An upper bound for E(q) is  
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Proof: According to the Cauchy-Schwarz inequality, there is: 

       
    

  
 

 

   
        

     
  

 

   
  

 

   
 

    This equality is obtained for all i only when            
  namely      
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attained (C is Constant). According to       
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bound is  
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    The goal is to minimize the resulting query errors. The worst error case is when q is a 

query that includes the maximum (upper limit) number of counts at each level, namely, n i 

=      , as shown in Figure 5, the worst error in the uniform privacy case is 

Euni(q)=  
 

                  and that of geometric privacy case is 

Egeom(q)=  
  

   
     

     
 

    
 with changes with the height of the tree. As seen, uniform privacy 

errors increase far more rapidly than geometric privacy errors. 

 
Fig. 5. Worst case uniform and geometric noise Err(q). 
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The input of Algorithm 1 is a set S of points, e.g. pairs of coordinates with timestamps 

and a userid; a spatial region R that is used for spatial decomposition, a maximum height 

H of the Quad-Trees and a threshold T, namely the minimum leaf size that is used to stop 

the recursion of the algorithm when the count of points in a sub-region falls below L, and 

an upper bound used for perturbed counts in a returned partition which is set to be T= 3L. 

The output is a set of spatial partitions P and a set Sp of points used for the corresponding 

partitions in P. The algorithm executes a noisy count of the current area points, namely 

CountWithNoise, based on the local sensitivity corresponding to the current region, and 
compares it with the threshold L to determine whether it is necessary to keep splitting the 

area, or to stop. The output of this algorithm contains both points and the corresponding 

userid. Note that the maximum height H of the Quad-Trees is 8. 

The upper bound for perturbed point counts can be set as 3*L. As a result, the count 

sensitivity of the optimal Quad-tree decomposition is given by Δf1 = 3*L. 

The Laplace noise σ in Lap(σ) is given by:  

    
   

  
 (5) 

Here ε1 is the privacy budget distributed to the first step according to the space 

decomposition. 

ALGORITHM 1. Optimal QuadTree Spatial Decomposition with Differential Privacy (OptQ-SDDP). 

Variables: P = {}; Sp = {}; H =8 ; T=3L 

OptQ -SDDP (S, R, T) 

0: Obtain εi according to geometric privacy budget strategy 

1: CountWithNoise=|S|+Lap(Δf/εi) ; 

2:if h >8 then 

3: P = P∪{R}; Sp = Sp∪{S}; 

4: return 

5: else if  CountWithNoise <L then 

6: P = P∪{R}; Sp = Sp∪{S}; 

7: return 

8: else 

9:  Split spatial region R into 4 equal quadrants  

10: OptQ -SDDP (S{q1}; Rn{ q1}; T); 

11: OptQ -SDDP (S{q2}; Rn{ q2}; T); 

12: OptQ -SDDP (S{q3}; Rn{ q3}; T); 

13: OptQ -SDDP (S{q4}; Rn{ q4}; T); 

14: end if 

15: return 

 

      

3.5 Extracting GLIs with Differential Privacy Guarantees 

The classical solution to ensure differential privacy for spatial points datasets is to 

decompose the spatial space, and then publish statistics on the points within each region 



 

 

from 4.3. To extract differential privacy GLIs we use a Density-Based Clustering 

Algorithm (DBSCAN). A Recursive Density-based Clustering Algorithm (RDBC) is 

extended from DBSCAN (Density based Spatial Clustering of Applications with Noise). 

The advantages of RDBC are as follows: 

 the number of clusters need not be specified; 

 it can be used to find arbitrarily shaped clusters; 

 it is robust to outliers (and hence to noise); 

 changing the parameters (Eps and MinPts) intelligently during the recursively 
process ensures it is insensitive to the order of points; 

 the identification of core points is performed separately from that of clustering 

individual data points 

RDBC has further improvements to DBSCAN. RDBC calls DBSCAN with different 

distance thresholds ε and density threshold MinPts, and returns the result when the 

number of clusters is appropriate. When abstracting, these core points can be regarded as 

clustering centers. Hence, the input parameters used in RDBC, namely different values of 

ε and Mpts identify this core point set, CSet. Only after an appropriate CSet is determined, 

the core points are clustered, and the remaining data points are then assigned to clusters 

according to their proximity to a particular cluster [Su et al. 2001].     

ALGORITHM 2. Extracting GLIs with Differential Privacy algorithm. 

1:Set initial values Eps = Eps1 and Mpts=Mpts1; G ={};Cgp ={}; CT’ =0;CC’ =(0,0); M={}, Mcj is a set of 

points in M 

2: for i = 1 to |Sp| do 

3:RDBC (Eps1, Mpts, Si) 

4:Use Eps and Mpts to get the core points set CSet 

5:if size (CSet) > size (DataSet) / 2 // Stopping criteria is met. 

6:DBSCAN (DataSet, Eps, Mpts); 

7:else // Continue to abstract core points; 

8:Eps = Eps / 2; Mpts = Mpts / 4 

9:RDBC (Eps, Mpts, CSet); // Collect all other points in around clusters 

11: end if 

12: end for 

11: for i = 1 to |Sp| do 

12: for j = 1 to |M| do 

13: CT’ = | Mci | + Lap(σ
j
ct); 

14: if CT’> ic then 

15:  

16: CC’=NoisyLap(σ
j
)(CCj) 

17: G=G∪{CC’}; 

18: Cgp=Cgp∪{CT’}; 

19: end if 

20: CC’ = (0,0),CT’ = 0; 

21: end for 

22: end for 
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        Algorithm 2 [DPGLIE-RDBC] is used to extract GLIs with differential privacy 

guarantees based on RDBC. As seen from Algorithm 2, the input variables are a set of 

location data subsets obtained by the previous step, threshold ic, initial Eps and MinPts 

for RDBC. It is noted that Eps and MinPts can be changed intelligently during the 

recursive loop. Lap(σct) is used for perturbing the counts of each cluster Cj extracted by 

RDBC, and Lap(σcc) is used to perturb the centroid of each cluster Cj extracted by RDBC. 

If the perturbed count CT’ is greater than the threshold ic, then the region Cj is marked as 
a GLI. The centroid of Cj is used for the next step of the privacy evaluation metrics. The 

output of this algorithm is G - the set of privacy preserved GLIs given as the region 

centroids, Cgp, i.e. the set of privacy preserved counts of points.  

    The count sensitivity and the centroid sensitivity for the cluster Cj are given as follows. 

The count sensitivity     
 

 is defined as MAX(NUMindividual(points)), ∀individual∈Cj. 

So    
 

     
 
    , where εct is the privacy distribution in the counting points step. The 

centroid sensitivity     
 

 is defined as MAX(distance (pi, pj))/2 ∀ pi, pj∈Cj. So

, where εcc is the privacy level of the counting centroid step.  
This algorithm contains a loop where the core points are regarded as points in a space 

on which to cluster. The stop condition is when nearly half the points that remain are core 

points. At this point the algorithm will begin a gathering process to gather the rest of the 

points around the core points found in clusters with radius value Eps2.  

Note that the method NoisyLap(σ) perturbs a real location coordinate lr(xr,yr) to a 

perturbed location coordinate lp(xp,yp) was introduced by [Yonghui et al. 2006]. 

Accordingly, our perturbing approach is achieved by using a Laplace distribution with 

scale σ > 0 to perturb a location lr(xr,yr) such that: 

  (6) 

In (6), σ is set at (maxnxn − minnxn)/εcc to generate xp, and set at (maxnyn − minnyn)/εcc to 

generate yp. It should be noted that this approach for achieving a Laplace noise 

mechanism is to perturb c to such c−σSgn (q) ln(1−2|q|), where q is a random value 

drawn from a uniform distribution between [-0.5,0.5], Sgn is a function that distributes the 

perturbation around c. 

Figure 6 illustrates the extracting GLIs with differential privacy guarantees. The real 

GLI can be extracted from each cluster centroid (round shapes), followed by sanitized the 

centroid by adding random noisy drawn from Laplace distribution to provide differential 

privacy guarantees, as the perturbed GLI (triangle shapes). 
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Fig. 6. Visualization for extracting the GLIs. 

3.6 Privacy Level Distribution 

The two important properties in Section 2 prove that ε-differential privacy guarantees can 

be implemented by performing a sequence of differential privacy mechanisms. The 

privacy leak level ε can be composed of ε =ε1+εct+εcc where ε1 is the privacy leakage 

level used for the optimal Quad-tree spatial decomposition, εct is the privacy leakage level 

used for perturbing the count of numbers of points in each cluster and εcc is the privacy 

leakage level used for perturbing the count of centroids comprising each cluster. For 

instance, if the database must guarantee a maximum privacy leak level of ε=0.8. One can 
subdivide the ε by 0.8 = 0.3+0.3+0.2. Factoring in the optimal quad tree decomposition h, 

it can be shown that 1

1 qt

h

i

 



. Combined with Sequential Composition, the overall 

privacy leak level can be given as . 

4. EVALUATION METRICS 

In this section, the evaluation metrics used to measure the applicability of the approach 

described is presented. Specifically we evaluate the utility and privacy features of the 
differential privacy location pattern mining method to discover GLIs. These evaluation 

metrics contain the inferred number of actual GLIs, the Euclidean distance between actual 

GLIs and location privacy enabled GLIs, the count difference of points in the intersection 

of real regions and privacy preserving regions, as well as the number of similar 

neighborhoods surrounding real GLIs and location privacy enabled GLIs.  

4.1 Metrics for Measuring Utility 

To measure the utility of the privacy preserving mechanisms, we take the view of 

Obfuscated Data Users (ODUs) who want to draw knowledge from perturbed locations by 

sending queries and running the DPGLIE-RDBC algorithm. Metrics for measuring utility 

are given for assessment of the distortion of obfuscated GLIs inferred by the ODUs 

compared to the actual GLIs. The notations used in this section are listed in Table I.  
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Let IS be the set of intersections of the sets SR and SP where SR is the set of regions 

with real points and SP is the set of regions with privacy preserved points. Note that the 

intersection between the two regions’ intersection is not empty [Primault et al. 2014]. 

 
Table I. Notions Used in Evaluation Metrics 

Name Description 

IS 
IS is the set of intersections of the sets SR 

and SP 

SR the set of regions with real points 

SP 
the set of regions with privacy preserved 

points 

CTr CTr={c1r, c2r, …, c|IS|,} 

Cir the count of points in each region in SR 

CTp CTp={c1p, c2p, …, c|IS|,} 

Cip the count of points in each region in SP 

CCr CCr={cc1r, cc2r, …, cc|IS|,} 

ccir 
the centroid (Xccir, Yccir) of points in each 

region in SR 

CCp CCp={cc1p, cc2p, …, cc|IS|,} 

ccip 
the centroid(Xccip, Yccip) of points in each 

region in SP 

    The first step is to find the corresponding real GLIs for each perturbed GLI discovered 

by the DPGLIE-RDBC algorithm. In this situation, we calculate the nearest real GLI to 
the corresponding perturbed GLIs, where these GLIs have been reduced to their centroids. 

The first metric is recall, namely, the number of real GLIs inferred by the ODUs. The 

recall can be defined as follows:  

  (7) 

    As we can see from the definition of recall, this can be used to assess the percentage of 

GLIs that have been discovered from the set of real GLIs by ODUs. 

Although recall can reflect the percentage of discovered GLIs, the distortion of those 

GLIs is not assessed. Hence, the function GeographicDistance uses geographic 

coordinates to calculate the Euclidean distance between real GLIs and perturbed 

(obfuscated) ones to represent the utility of the privacy preserving solution. This can be 

formulized as follows:  

  (8)  

Specifically, the cumulative distance distribution is adapted, e.g. the ratio of distances 

of discovered GLIs to their corresponding obfuscated GLIs and to all discovered GLIs. 
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4.2 Metrics for Measuring Precision 

GLIs are typically used to provide location-based services for user, e.g. finding nearby 

hospitals, hotels, restaurants and so on. Twitter applications such as “Nearby” allow users 

to find their friends’ tweets in a given vicinity. Hence, we assess the precision of our 

approach in measuring distances to GLIs. Specifically, we use the nearest-neighbors 

search service provided by location-based services to discover the top-20 shops around 

given regions of target city (considered as centroids in the IS), and count the number of 

similar shops between real GLI centroids and perturbed ones. Specifically we calculate 

the precision as the count of the intersection of these two sets of shops (out of 20). 

5. EXPERIMENTAL RESULTS 

In this section, our objective is to evaluate the privacy and utility of the differential 

location pattern-mining approach as described in Section 4 in terms of the metrics 

introduced in Section V and apply this approach for traffic information alerting. As noted 

our implementation was performed on virtual machines offered through the NeCTAR 

Research Cloud. The implementation itself was done in Java and Python. 

5.1 Data Sets 

We used the tweet location data sets as described in section 3 to implement the 

experiments. This data set contained 308,264 geospatially tagged tweets from Miami-

based (geolocated) Tweeters with bounding box SW: [-80.320773, 25.711586], NE: [-

80.136924, 25.864451]. 
    For each of these, the (latitude, longitude) coordinate values were expressed in (x, y) 

rectangular coordinates with (0, 0) respecting (-80.320773, 25.711586) in the bottom left 

(the coordinates for Miami). The distance between each coordinate was calculated based 

on the Euclidean distance. 

5.2 Extracting GLIs from Real Locations 

We used the Optimal Quad-tree spatial decomposition method to split the region to 

smaller sub-regions, in which the threshold value T was set to 500. Following this RDBC 

was used to cluster each sub-region. Finally, 90 GLIs were identified containing some 

notable GLIs. Based on this, we set a count of points in each sub-region (CTr), and a set 

of centroids of each sub-region (CCr). 

5.3 Extracting GLIs from Twitter with Privacy Preserving Mechanisms  

We set the threshold value T of the spatial decomposition (DP-Optimal Quad-tree) to 500, 

so the upper bound of points in a given region is 1500. Other parameters were set as 

shown in Table II. 
Table II. Parameters Setting 

Name Value 

T 500 



 

 

MinPts 50 

Eps 0.1 

ic 50 

As the privacy preserving mechanism is based on a randomized approach, the results 

obtained are not deterministic. Therefore, we ran the experiment 20 times to obtain 20 

independently obfuscated data sets, and the final results represent the mean value of these 
outputs. Note that the experiments were performed on three classical differential privacy 

leakage levels obtained by experiments and shown in Table III. 

 
Table III. Different Privacy Leakage level for Whole 

Level of ε 
Distribution of ε 

ε1 ε2 ε3 

Strong 0.1 0.01 0.01 

Normal 1 0.5 0.5 

Weak 5 1 1 

 

From this we identified 102 obfuscated GLIs. As a result, we obtained a set of count of 

points in each sub-region (CTp), and a set of centroids for each sub regions (CCp). 

5.3.1. Utility evaluation.  

Recall. In this part, the most important task was to find the threshold that can be used to 

declare whether the real GLI was discovered or not. An optimal threshold can be used to 

ensure a high recall and associated low distance among GLIs. The way we address this is 
to set the minimum Euclidean distance between the real location and the obfuscated one at 

which the recall is higher than 70% of the threshold. We have assessed the recall of 

differentially privacy-based optimal Quad-tree spatial decomposition algorithm (OptQ-

SDDP) and RDBC with differential privacy protection levels (DPGLIE-RDBC) 

respectively. The results of recall of whole are shown in Table IV and Figure 7. It is clear 

that the recall of whole rate increases as ε becomes larger. That is to say, privacy and 

precision are trade-offs, i.e. the higher degree of privacy protection, the fewer GLIs will 

be identified. Using the method described above, the thresholds are also determined as 

showed in Table V.  

 

 

Table IV. Recall for Different Privacy Leakage Settings  

Level of ε 
Recall of Whole 

Strong 70.34% 

Normal 71.58% 

Weak 75.69% 



 

 

 

Table V. Threshold Distance of Whole 

Level of ε Threshold of Whole 

Strong 101 

Normal 105 

Weak 117 

 

 
Fig. 7. Recall for Different Privacy Levels. 

 

Table VI. Different Privacy Leakage level for DPGLIE-RDBC 

Level of ε 
Distribution of ε 

ε2 ε3 

Strong 0.01 0.01 

Normal 0.5 0.5 

Weak 1 1 

 

Table VII. Threshold Distance of DPGLIE-RDBC 

Level of ε Threshold of DPGLIE-RDBC 

Strong 102 

Normal 106 

Weak 116 
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Fig. 8. Recall for DPGLIE-RDBC Levels. 

 

Table VI shows the different privacy leakage levels of the DP-RDBC. As can see from 

Figure 8, the larger ε2+ε3 are, the larger the recall will be. As above, if the degree of 

privacy protection is higher, fewer GLIs will be found. The thresholds are shown in Table 

VII. 

Regarding the relationship between privacy and precision in DP-QT, different ε3 are 

picked to decompose the space using the DP-Optimal Quad-tree algorithm and used to 

evaluate the recall of DP-QT. The results of recall of DP-QT are shown in Table VIII and 

Figure 9. Similarly, privacy and precision are trade-offs in the DP-QT as shown. 

 

Table VIII. Different Privacy Leakage level for Optimal Quad-Tree 

Level of ε 
Distribution of ε 

ε1 

Strong 0.01 

Normal 1 

Weak 5 
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Fig. 9. Recall for Optimal Quad-Tree Levels. 

 

    Geographic distance. Geographic distance between real GLIs and corresponding 
obfuscated ones across all users for different values of privacy leakage level are shown in 

Figure 10. This shows the percentage of GLIs that resulted in the perturbed points being 

generated within thresholds determined from the real GLIs. Specifically, when the ε is at 

the smallest level, i.e. where strong privacy protection strength is demanded, only about 

56% of GLIs are within 70m; while it can reach 67% when ε is at the highest level. 

 
Fig. 10. Geographic Distance Distribution. 
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5.3.2. Precision evaluation.   

To assess the precision of our approach, we explore a typical query by a location-based 

service, such as: “find all shops within 500 meters of my current location”. To answer this 

we consider the percentage of similar results between real centroids and obfuscated 

centroids respectively. Figure 11 shows the percentage of GLIs that have a similarity of 

more than 10% at different privacy of 15%, 45% and 70% respectively, i.e. when ε is 

smaller, stronger privacy protection arises and hence the similarity will increase. 

 
Fig. 11. Precision Evaluation. 

5.4 Privacy-Preserving Traffic Analysis 

One key area of application of Twitter is real-time information on transport. Tweets about 

traffic conditions such as traffic congestion or traffic accidents provide near real-time 

traffic information that is useful for travelers and could allow them to take alternative 

routes or make other travel plans. As Twitter is becoming increasingly popular and has 

provided location-based services like “Nearby”, more and more real-time road traffic 

information with users’ identification can be collected from actual users traveling on the 

roads. However, users’ privacy information such as time-stamped locations and 

movements is also given. Hence privacy of the individual location and the identity of the 

user is key to protect when mining the location pattern. In this case we consider how to 

aggregate GLIs from related tweets with geographic coordinates whilst protecting the 

privacy of the users’ locations.  

We collected 74,519 traffic related tweets with location information harvested between 

March-May 2015 across Miami as shown in Figure 12, filtered using semantic analysis. In 
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this Figure, the location of the tweets (and hence Tweeter) is shown by a set of dots and 

then visualized in aggregate level through a heat map. The first step is to spatially separate 

these locations through the optimal Quad-tree algorithm and then aggregate them by the 

RDBC algorithm to obtain GLIs as the round shapes as shown in Figure 13 left. Note that 

there are tweets with location information that may not be associated with traffic events, 

i.e. the work did not tackle natural language processing or more advanced semantic 

analysis of the tweets. 

 
Fig. 12. Traffic Accident-related Tweet Geographic Locations. 

  
Fig. 13. GLIs of Real Geographic Locations Data. 

The next step is to decompose the spatial location regions by optimal Quad-trees 

incorporating differential privacy mechanisms. Following this, clustering intersecting of 

areas to find GLIs with perturbed outputs is undertaken to support differential privacy of 

location information. This results in obfuscated GLIs represented by the triangle shapes, 

as shown in Figure 13 right.  

    Figure 14 displays the change of the obfuscated GLIs (triangle shapes) compared to the 

real ones (round shapes). As we can see in Figure 14, a real GLI can have zero, one or 

many obfuscated GLIs according to differential privacy preserving levels. Thus when 

users want traffic information displayed by this method they can identify areas with a 

concentration of traffic related tweets and hence avoid these areas and potentially pick 



 

 

another route as shown. By analyzing tweets collected over long periods, we can find 

areas where traffic congestion or traffic accidents are more likely to occur and alert 

drivers regarding congested roads with alternative routes recommended. 

In addition, this method can not only protect a user’s location privacy while efficiently 

ensuring the accuracy of the location-based service through differential privacy, it protects 

the privacy of each individual user by adding noise to the statistical reports so that a user's 

tweets cannot significantly change the alert status. 

 

Fig. 14. Change of Obfuscated GLIs Compared to Real Ones. 

 

6. CONCLUSION 

In this paper, we explored adding differential privacy capabilities to twitter data. Through 

the application of RDBC to cluster sub-regions split by differentially privacy optimal 

Quad-tree spatial decomposition we explored privacy of Geo-Locations of Interest (GLIs). 

We assessed this approach by comprehensive metrics covering both privacy and precision 

levels of Twitter data. We showed that privacy and precision are trade-offs, noting that 

differential privacy noise mechanisms are indeed an effective way to provide location 

privacy of Twitter data. As shown, the location precision will decrease when the privacy 

protection level increases. In the future, we will explore the impact of temporal 
information on user tweets and how to protect other interconnected information. We shall 

also explore algorithms that allow these methodologies to be used in the context of much 

larger data sets. For example, we have currently harvested over 40Tb of Twitter data from 

across Australian on a range of topics and from a range of regions; the computational 



 

 

overheads of ensuring privacy in such circumstances becomes challenging. We shall also 

explore the practical realities of this work in a range of health projects where social media 

is required, e.g. national pandemic projects currently starting up at the University of 

Melbourne focused on emerging infectious diseases.  
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