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Abstract

Robustness in response to unexpected events is alwayshlesior real-world networks. To improve the robustnessrof a
networked system, it is important to analyze vulnerabildyexternal perturbation such as random failures or adsiatsatacks
occurring to elements of the network. In this paper, we stadyemerging problem in assessing the robustness of complex
networks: the vulnerability of the clustering of the netlwao the failure of network elements. Specifically, we idfntiertices
whose failures will critically damage the network by degnagits clustering, evaluated through the average cluggeroefficient.
This problem is important because any significant changeentadhe clustering, resulting from element-wise failuresuld
degrade network performance such as the ability for inféionato propagate in a social network. We formulate this edtility
analysis as an optimization problem, prove its NP-complete and non-monotonicity, and we offer two algorithms emtidy the
vertices most important to clustering. Finally, we condootmprehensive experiments in synthesized social netwgekerated
by various well-known models as well as traces of real sawivorks. The empirical results over other competitivatefies
show the efficacy of our proposed algorithms.

I. INTRODUCTION

Network resilience to attacks and failures has been a ggpwamcern in recent times. Robustness is perhaps one of tee mo
desirable properties for corporeal complex networks, sashhe World Wide Web, transportation networks, commuitinat
networks, biological networks and social information natks. Roughly speaking, robustness of a network evaluates h
much the network’s normal function is affected in case obexl perturbation, i.e., it measures the resilience ofribigvork
in response to unexpected events such as adversarialsatadkrandom failures (Holme etlal., 2002). Complex systdras t
can sustain their organizational structure, functiogaditd responsiveness under such unexpected perturbadaroasidered
more robust than those that fail to do so. The concepiudfierability has generally been used to realize and characterize
the lack of robustness and resilience of complex systemadG@rand Romance, 2012). In order to improve the robustniess o
real-world systems, it is therefore important to obtain kesights into the structural vulnerabilities of the netk®representing
them. A major aspect of this is to analyze and understandffaet®f failure (either intentionally or at random) of invitilual
components on the degree of clustering in the network.

Clustering is a fundamental network property that has bdews to be relevant to a variety of topics. For example,
consider the propagation of information through a soci&avoek, such as the spread of a rumor. A growing body of work has
identified the importance of clustering to such propagattbe more clustered a network is, the easier it is for infdroma
to propagate (Barclay et lal., 2013; Centola, 2010, 2011;tldil€ 2011 Malik and Mucha, 2013). In addition, in Fig. 1, we
show experimentally a strong relationship between the fpatad of information and the level of clustering in the roky
with higher clustering corresponding to higher levels gbented spread. The importance of clustering is not limiteddcial
networks; in the context of air transportation networkspt®a et al. [(2013) argued that higher clustering of such aordt is
beneficial, as passengers for a cancelled flight can be estenbre easily. In this work, we use average clustering coefil
(ALCC) as our definition and measure of clustering in a nekwdiLCC was proposed for this purpose by Watts and Strogatz
(1998).

The identification of elements that crucially affect thest&ring of the network, as a result, is of great impact. Fangle, as
a matter of homeland security, the critical elements fostelting in homeland communication networks should recgieater
resources for protection; in complement, the identificatibcritical elements in a social network of adversaried@potentially
limit the spread of information in such a network. Howevensinstudies of network vulnerability in the literature fecon
how the network behaves when its elements (nodes and edgesyraoved based on the pair-wise connectivity (Dinh et al.,
2012b), natural connectivity (Chan et al., 2014), or usiegtality measures, such as degrees, betweeness (Alka1 2000),
the geodesic length (Holme etf al., 2002), eigenvector §ike and Pascual, 2009), etc. To our knowledge, none of tis&rex
work has examined the average clustering coefficient froenpbrspective of vulnerability - as evidenced by the example
above, the damage made to the average clustering, restdt@defement-wise failures, can potentially have severecesfon
the functionality of the network. This drives the need foraralysis of clustering vulnerabilities in complex netwark

Finding a solution for this emerging problem, neverthelésfundamentally yet technically challenging becausetli®)
behavior of ALCC is not monotonic with respect to node renh@rad thus can be unpredictable even in response to minor
changes, and (2) given large sizes of real networksNliecompleteness of the problem prohibits the tractable caatjoun
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Fig. 1.  Relationship between the value of ALCC and the exggectumber of activations under the LT and IC models, norredlizy initial value. For
more details and discussion pf see Sectiof_V]I.

of an exact solution. In this paper, we tackle the problemamalyze the vulnerabilities of the network clustering.tieatarly,
we ask the question:

“Given a complex network and its clustering coefficient, @ the most important vertices whose failure under attack

either intentionally or at random, will maximally degradeet network clustering?”

There are many advantages of ALCC over other structural uneas(Watts and Strogatz, 1998): (1) it is one of the most
popular metrics for evaluating network clustering - thehegthe ALCC of a network the better clustering it exhibi®) it
implies multiple network modular properties such as smaltid scale-free phenomena, small diameter and modulactste

(or community structure), and (3) it is meaningful on botmgected and disconnected as well as dense and sparse graphs:
Sparse networks are expected to have small clustering deeffivhereas extant complex networks are found to have high
clustering coefficients.

Our contributions in this paper are: (1) We define the ClusteNulnerability Assessment (CVA) on complex networks,
and formulate it as an optimization problem with ALCC as thseotive function. (2) We study CVA's complexity (NP-
completeness), provide rigorous proofs and vulnerabditglysis on random failures and targeted attacks. To owvletge,
this is the first time the problem and the analysis are stustiiettifically for ALCC. (3) Given the intractability of theqilem,
we provide two efficient algorithms which scale to large rate to identify the worst-case scenarios of adversarclatta
Finally, (4) we conduct comprehensive experiments in bgthtesized networks (generated by various well-known rs)des
well as real networks. The empirical results over other iweshshow the efficacy and scalability of our proposed algorit

The paper is organized as follows: Secfidn Il reviews stuthat are related to our work. Sect{od 11l describes thetaots,
measure functions and the problem definition. Sedfidn IVivshihe proof of NP-completeness implying the intractapibt the
problem. Sectioi V and VI present our analysis of clustebialgaviors on random failures and targeted attacks, regplgcin
Sectior V1], we provide further evidence for a correlatiagtween the extent of influence propagation and ALCC. In 8ecti
[VIIT] we report empirical results of our approaches in congzn with other strategies. Finally, Section IX concluties paper.

Il. RELATED WORK

Vulnerability assessment has attracted a large amountesftatn from the network science community. Work in theréitere
can be divided into two categories: Measuring the robustaesl manipulating the robustness of a network. In meastiniag
robustness, different measures and metrics have beengepach as the graph connectivity (Dinh et/ al., 2012b), idvaeter,
relative size of largest components, and average size ofstiated cluster| (Albert et al., 2000). Other work suggestisg
the minimum node/edge cut (Frank and Frisch, 1970) or thersesmallest non-zero eigenvalue or the Laplacian matrix
(Fiedler, 1973). In terms of manipulating the robustne#fferént strategies has been proposed such as Albert e2@00};
Peixoto and Bornholdt (2012), or using graph percolatioall@@vay et al., 2000). Other studies focus on excluding sode
by centrality measures, such as betweeness and the gedetagiic (Holme et al., 2002), eigenvector (Allesina and Bakc
2009), the shortest path between node pairs (Grubesic, €0f18), or the total pair-wise connectivity (Dinh et al.,120).
Veremyeyv et al.[ (2014, 2015) developed integer programrmfriagneworks to determine the critical nodes that minimize a
connectivity metric subject to a budgetary constraint. fare information on network vulnerability assessments, rimder
is referred to the surveys (Chen, 2016) and (Gomes|et alg)2aid references therein.

The vulnerability of the average clustering of a complexwwek has been a relatively unexplored area. In a related work
(Nguyen et all, 2013), the authors introduced the commutiticture vulnerability to analyze how the communitiesaifected
when topk vertices are excluded from the underlying graphs. Theyh&rprovided different heuristic approaches to find out
those critical components in modularity-based communitycsure.| Alim et al. [(2014b) suggested a method based on the
generating edges of a community to find out the critical congmds. In a similar vein, Alim et al. (2014a) studied the peat
of breaking all density-based communities in the networkyved its NP-hardness and suggested an approximation &s wel
as heuristic solutions. These studies, while forming th&isbaf community-based vulnerability analysis, face a amdntal



TABLE |
LIST OF SYMBOLS

Notation Meaning

N Number of vertices/nodesV = |V)
M Number of edges/linksi = |E|)
dy, The degree of:

N(u) The set of neighbors of

The number of triangles containing

, ) Clustering coefficients ofi and G
,(u),C,(G)  Clustering coefficients of, and G
after removing node from G
G[S] The subgraph induced by C V' in G
tr(u,v) The number of triangles containing bothv

limitation due to the ambiguity of definitions of a communitya network. Our work overcomes this particular shortcayras
ALCC is a well-defined and commonly accepted concept for tifyémg the clustering of a network. Ertem etl al. (2016) sadd
the problem of how to detect groups of nodes in a social nétwith high clustering coefficient; however, their work doest
consider the vulnerability of the average clustering coigffit of a network. The diffusion of information in a sociatwork
has been studied from many perspectives, including wormagument |((Nguyen et al., 2010), viral marketing (Dinh et al.
2012a/) 2013; Kempe etlal., 2003; Kuhnle etlal., 2017), andi#tection of overlapping communities (Nguyen €tlal., 2011)

IIl. NOTATIONS AND PROBLEM DEFINITION
A. Notations

Let G = (V, E) be an undirected graph representing a complex network whagethe set ofN nodes and® is the set of
edges containing/ connections. For a node € V, denote byd,, and N(u) the degree of: and the set ofi’s neighbors,
respectively. For a subset of nodésC V, let G[S] and mg in this order denote the subgraph induced $yn G and
the number of edges in this subgraph. Hereafter, the terregi¢es” and “nodes” as well as “edges” and “links” are used
interchangeably.

(Triangle-free graphsA graph G is said to betriangle-freeif no three vertices of7 form a triangle of edges. Verifying
whether a given graply is triangle-free or not is tractable by computing the tratedd where A is the adjacency matrix
of G. The trace is zero if and only if the graph is triangle-fretisTverification can be done in polynomial tini& N*) for
w < 2.372 with the latest matrix multiplying result (Gall, 2014). Alnatively, one can use the method|of (Schank and Wagner,
2005%) with time complexityO(M?/?) to check if the graph is triangle-free.

B. Clustering Measure Functions

1) Local Clustering Coefficient (LCC)Given a nodeu € V, there ared, adjacent vertices ofi in G and there are
d.(d, —1)/2 possible edges among afls neighbors. The local clustering coefficigfifu) is the probability that two random
neighbors ofu are connected. Equivalently, it quantifies how close theidéed subgraph of neighbors is to a clique. The local
clustering coefficient’(u) is defined |(Watts and Strogatz, 1998)

2T (u)
— dy >1
Clw) = du(dy —1) ™~
0 otherwise

whereT (u) is the number of triangles containing It is clear thatd < C(u) < 1 for anyu € V. For any nodev # u, let
C,(u) denote the clustering coefficient afin G[V'\{v}]. Finally, definetr(u,v) as the number of triangles containing both
verticesu andw.

2) Average Clustering Coefficient (ALCC)n graph theory, the average local clustering coefficient@&) C(G) of a
graphG is a measure indicating how much verticestotend to cluster together (Watts and Strogatz, 1998). Thiasure is
defined as the average of LCC over all vertices in the netw@fk?) is defined as:

C@) = % > Cu). (1)

ueV

Because) < C(u) < 1 for every nodeu € V, C(G) is normalized and can only take values in the raftgé] inclusively.
For instance(C(G) = 0 whenG is a triangle-free graph and(G) = 1 when G is a clique or a collection of cliques. The



higher the clustering coefficient @f the more closely the graph locally resembles a clique. Algo define

Co(G) = C(GIV\{v}]).

C. Problem definition
We define theClustering Structure Assessmeabblem (CSA) as follows

Definition 1 (CSA(G, k)). Given a networki = (V, E) and a positive integek < N, find a subset5* C V of cardinality
at mostk that maximizes the reduction of the clustering coefficieet,

S* = argmax AC(S),
SCV,|S|<k

where AC(S) = C(G) — C(G[V\S)).
CSA problem aims to identify the most critical vertices of thetwork with respect to the average clustering coefficiEing¢
input parametek can be interpreted as the the maximum number of node faithesnormal functionality of the network

can withstand once adversarial attacks or random cormgtiacur. Accordingly, the cas$| = k identifies exactlyk critical
vertices and examines the worst scenarios that can happem tihbse vertices are compromised.

D. Formulation as cubic integer program
In this section, we formulate the CSA problem as an integegiam. Let(e;;); jev be the adjacency matrix df.

Lemma 1. For w € V, T'(u) can be calculated in the following way:
i€V jev

Proof: The summand,;e,je;; = 1 iff ¢, are neighbors of;, and if edge(s, j) is in the graph; that is, vertices, i, j
form a triangle. ]
We formulate CSA as an integer program in the following wagtt; = 1 if 7 is included in the sef, andz; = 0 otherwise.

min 3y S @

ueV:d(u)>1i€V jeV

quﬁk,

ueV
xy €{0,1},u e V.
Notice that the sun{2) computes the ALCC of the residual lyrafter removingS. As we show in Sectiof vV, Corollary

[0, there always exists a node the removal of which will notéase the ALCC; thus, an optimal solution to the program is
an optimal solution to CSA.

Integer Program 1.

such that

IV. COMPLEXITY OF CSA

In this section, we show the NP-completenes€'sfA(G, k). This intractability indicates that an optimal solutiorr f0SA
might not be computationally feasible in practice.

Definition 2 (Decision problem -C'SA(G, k,«)). Given a networkG = (V, E), a numberk < N and a value) < « < 1,
does there exist a sé& C V of sizek such thatAC(G) > «?

Theorem 1. CSA(G, k,C(Q)) is NP-Complete.

Proof: We show that the following subproblem 61SA(G, k, C(G)) is NP-complete; the subproblem asks for a set

S C V of k nodes whose removal completely degrades the clusteririfiaieet C'(G[V'\S]) to 0, or equivalently, makes the
residual graphG[V'\S] triangle-free (Lemmal2). To show the NP-completeness, vee $inow that CSA is in NP, and then
prove its NP-hardness by constructing a polynomial timeicédn from 3-SAT toCSA(G, k,C(G)). Given a setS C V of
k nodes, one can verify wheth€f[V/\S] is triangle-free by computing the trace df where A is the adjacency matrix of
G[V\S]. As we mentioned above, this can be don&if(N — k)2372). Therefore CSA(G, k,C(G)) is in NP.

Now, given an instance boolean formutaof 3-SAT with m variables and clauses, we will construct an instance of
CSA(G,k,C(G)), wherek = m + 21, as follows:



Fig. 2. Reduction example for a toy instange; V —z2 V 23) A (—z1 V 22 V —x3) of 3-SAT.

1) For each claus€ = I, VI, V I3 of ¢, introduce a 3-clique ir; with 3 clause literals as vertices: add vertié¢gsis’, ¢,
and edges{lf,lf) for 1 <14 < j < 3. Color these vertices blue.
2) For each variable:; of ¢, create two vertices representing literalsnd —z in G and connect them by an edge. That is,
add verticex,,, v—,, and edg€v,,, v-.,). Color these vertices green.
3) For each blue vertex in a 3-clique created in §fep 1, cdrinée the corresponding green literal created in step 2.t Tha
is, for each literall; in each clause, if I; = z;, then add edgél§’,v,,). If literal [; = —a;, then instead add edge
(1€, v-,).
4) F'ijnally, for every edge irt7, create a dummy verteX (color it red) and connect to the two endpoints of that edge.
Figure[2 illustrates the reduction of the toy boolean fornul; V =z V 23) A (—21 V 22 V —23). In this example, stejpl 1
introduces two 3-cliques with blue vertices, step 2 cretitese pairs of green vertices, and stép 3 consequently cenbkie
vertices to their corresponding green vertices by the tlioty edges. Finally, stelp 4 assembles dummy netegin red)
and two dotted lines for every existing edgesin
Let G_; denote the grapli without dummy verticesl’s and their adjacent dotted edges. Assume thatas a satisfied
assignment, we construét by (i) include in S all vertices corresponding to true literals, and (ii) foclkalause, include in
S all vertices of the 3-clique but the one corresponding tdiits true literal. Thus,S includesm green vertices anéll blue
vertices. It is verifiable that vertices iti form the vertex cover o&i_;. As a result, the removal of all nodes fwill make
G[V\S] triangle-free (since it leaves no edgesGn ).
Suppose there exists a s¢tof k£ nodes such that removirignodes inS leavesG[V'\ S] triangle-free. We note thaf will
not contain any dummy nodé because replacing by any of its adjacent literals (which are not alreadySiryet) yields a
better solution in term of triangle coverage. As a consegeg$ only contains blue and green vertices. Furthermore, nodes
in S have to be indeed the vertex cover@f ; in order for G[V'\\S] to be triangle-free. This cover must contain one green
vertex for each variable and two blue vertices for each @uéli(or clause), requiring exactly= m + 2[ vertices. Now, assign
valuetrue to the variables whose positive literals areSnBecausé: = m + 2[, for each clause at least one edge connecting
its blue 3-clique to the green vertices is covered by a végiabrtex. Hence, the clause is satisfied. ]

V. VULNERABILITY ANALYSIS IN RANDOM FAILURE

A. Monotonicity of ALCC

The value of ALCC is not monotonic in terms of the set of exeldichodesS. Counterexamples showing the non-
monotonicity of ALCC are presented in F[g. 3(a). This implidat we do not always have eith@(G[V'\S:]) > C(G[V\Sz])
or C(G[V\Sy]) < C(G[V\S2]) for any subsets; C S, C V. In fact, it is possible that ALCC could be at a local minimum
with further node removal increasing the value of ALCC. Omalgsis in Sectiof V-B shows that is always possible to dégra
the value of ALCC by removing a vertex. We show that in any meknG there exists a vertex such thatC,(G) < C(G).
This result is the basis of the algorithms we present in Sefl

B. Analysis of Random Failure

When random failures occur, the ALCC value is unpredictalie to the nonmonotonicity of ALCC. That is, the removal
of nodes can result in either higher or lower ALCC of the reaidgraph. We show that under uniform random failures the

expected ALCC E,[C,,(G)] is at most the current ALCC value (Theoréin 2). This resulb aislicates that, given a network
G, there exists a sequence of subgraghof G whose ALCC values form a nonincreasing sequence (Cordllary

Lemma 2. In a graphG, the following statements hold:

() C(G)=0ifand only ifG is a triangle-free network.
(i) C(G)=11if and only ifG is a clique or contains only separated cliques.

Proof:
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(a) Nonmonotonicity of ALCC

Fig. 3. Nonmonotonicity of ALCC. a) ALCC = 0 whereas b) ALCC =when the green vertex is removed

(i) Suppose there exists a trianglev, w in G. ThenC(u) > 0, so C(G) > 0. For the converse, i€(G) > 0, there exists
u € V such thatC'(u) > 0. By definition of C'(u), there exists a triangle, v, w containingu.

(i) SupposeC(G) = 1. Then, for each: € V, the subgraph induced by} U N(u) is a clique, from whichG is a clique
or only separated cliques. The converse follows directiynfithe definition ofC(G).

|
Lemma 3. For anyu € V,

2T(u)= > |N(u)NN(v)|.

vEN (u)

Proof: For each neighbor of «, the number of triangles that contain battandv is | N (u) N N (v)|. Since each triangle
containingu contains exactly two neighbors of, it follows that the summatior . () [V (u) N N(v)| counts twice the
number of triangles containing,. [ ]

Lemma 4. For any nodeu € V: )
= > Cuw) < Clu), 3)

o veV\{u}

Proof: To prove this Lemma, we will show the following statementgameling the degree af:

> Cu(u) <C(u) whend, <2. 4)
veV\{u}

— > Cu(u)=C(u) whend, > 2. (5)
veV\{u}

Eq. @) is equivalentto > Cy(u) < (N —1)C(u).

veV\{u}
Expanding the left-hand-side (LHS) of this inequality diel

Yo Cw= Y G > Gw)

veV\{u} vEN (u) ’UEV\(N(u)U{u})
= > Cu(w)+ (N —dy—1)C(u). (6)
vEN (u)

To find >, c o\ (v (wyugu)) C,(u), we use the fact that removing a non-neighbor node will not affect the local clustering
coefficientC(u), i.e., Cy(u) = C(u) for v € V'\ (N (u) U {u}). There are(N — d,, — 1) non-neighbors vertices af in G.
Thus the second term dfl(6) follows. To evaluate the first tefriq. (8), we consider two cases:



Case (i): Whend,, < 2 (i.e., u has only one or two neighbors). In this case, the removal gfragighbor ofu will make
d, < 1, and thus, will dropC,(u) to O based on the definition of LCC. This impli@s= Z Cy(u) < dy x C(u).
vEN (u)
Substituting this to the first term of Ed.](6) yields EQl (4)
Case (ii): Whend,, > 2. For anyv € N(u), removingv degradesl, to d,, — 1 and decreases the number of trianglesuon
by an amount of N (u) N N(v)|. As a result,

2(T(u) = |N(u) N N(v)])

Therefore,
- 2(T(u) — |[N(u)NN(v
Z(MM_ZWWUJ<BJ<; (v)])
vEN (u) (u_ )(u_ )
o 2(duT(u) - ZUGN(u) |N(u) N N(’U)|) (8)
- (du —1)(dy — 2)
By Lemma[3, we can simplify Eq[{8) to
~ _ 2(du - 2)T(u) _
vEN (u)
Substituting this to EqL{6) yields Eq.](5). Theequalityin Lemmal4 occurs only if: is of single degree, or has exactly
two connected neighbors. ]
Using Lemmd¥4, we can show the following main result of ALC8&havior on random failures:
Theorem 2. In a graphG, E,[C.(G)] < C(G).
Proof: By definition of ALCC, we have
- 1 -
Z Cu(G) = Z N1 Z Co(u)| -
veV veV uweV\{v}
Applying Eq. [3) in Lemmal4 gives
1 ~
> T Y Culw)| £ Cu) =N xC(G).
ueV veV\{u} ueV
- 1 -
Thus B[C.(G)] = > Cu(G) <C(G). n

veV

Corollary 1. In a graphG = G, of N nodes, there exists a sequence of subgraghs G; 2 --- 2 Gx = 0 such that
C(G;) > C(Gi+1) and G;41 is constructed by removing one vertex framfor i =0,..., N — 1.

V1. ALGORITHMS

In this section, we present two algorithms for CSA probleamelysimple_greedy (Alg. ), and Fast Adaptive Greedy
Algorithm (FAGA) (Alg. [2). Alg.[d is a simpler greedy alganin than FAGA, which employs more sophisticated strategies
to more efficiently provide a solution of significantly highguality than Alg. [1.

Algorithm 1 Greedy Algorithm §imple_greedy)
1. S« 0;
: for eachu eV do
Cu(G) + C(GIV \ {u}));
: end for
. S « k vertices with lowesC'(G) values;
return S

o U A ®WN

A. Simple Greedy Algorithm

Our first algorithm (Alg.[1) computes for each nodethe ALCC value after removing, denoted byC.(G). The k
vertices associated with the lowest values(Hf(G) are included in the solution. Notice that in this algorithtine values of



C.(@) are computed only once, aridnodes are simultaneously included in the final solution. c&ithe local clustering
coefficient of a node: is dependent only on the subgraph of its neighbors, we clisapproach over iteratively recomputing
Cu(G\{s1,...,s;}) for all nodes after choosings,, ..., s;} into sets.

Time-complexityThe complexity of Alg[JlL depends on th€ calls to compute the ALCC of the network. There are two
state-of-the-art methods in _(Gall, 2014) and (Schank andnakl 2005) for this purpose. If ALCC is computed using the
matrix multiplying technique inl(Gall, 2014), the time-cphaxity is O(N*) with w < 2.372. Alternatively, if ALCC is
computed using the method in_(Schank and Wagner,|2005),wiras complexity of0(M3/2), the overall complexity will
be O(NM?/2). In practice, neither of these two upper bounds fully dor@aahe other. In our experimental evaluation in
Sectior VI, we utilize (Schank and Wagher, 2005) for conipgy ALCC.

B. Fast Adaptive Greedy Algorithm

We next present the Fast Adaptive Greedy Algorithm (FAGA g.8) that significantly improvesimple_greedy. For
small values of, this algorithm requires as much time as computing ALCC amige; it iSN times faster than its predecessor.
Furthermore, it provides a significant quality improvememr simple_greedy in our empirical studies.

In principle, FAGA employs an adaptive strategy in compgitine reduction of ALCC when nodes are removed iteratively.
At each round, the node incurring the highest reduction in ALCC is selected into #wdution. As shown in the proof of
TheoreniB, a node does exist at any iteration. Nodeis removed from the graph and the procedure repeats itsethéo
remaining vertices; that is, FAGA recomputes for each wettewhich is not yet in the solution, its ALCC reductiahC,,
when u is removed from the graph. This strategy provides betteutisol quality than the non-adaptive greedy algorithm.
While it is more complicated than the previous approachait be done faster tha®iimple_greedy as we show in the
following discussion.

We structure FAGA into two phases. The first phase (lines Lekfends the algorithm in_(Schank and Wagner, 2005) to
compute both ALCC and the number of triangles that are imtigth each edge and node in the graph. This algorithm was
proved to be time-optimal if(1/3/2) for triangle-listing, and has been shown to be very efficianpractice. The second
phase (lines 16—-33) repeats the vertex selectiorkfovunds. In each round, we select the nadg,, which decreases the
clustering coefficient the most into the solution, remayg,, from the graph, and perform the necessary update\ioy, for
the remaining nodes € V.

The key efficiency of FAGA algorithm is in its update proceeldor AC,. The updateAC,, for remaining nodes after
removingu,,,., can be done in linear time. This is made possible due to tlerrdtion on the number of triangles involving
each edge. The correctness of this update formulations(lifge-26) is proved in the following lemma.

Lemma 5. Let Na(u) = {v € N(u) : d(v) = 2}, Noo(u) = {v € N(u) : d(v) > 2}. For eachu € V, AC,(G) can be
computed in the following way:

5 2T (u) 4T (v)(1 = N) + 2tr(u,v)Nd(v) — 2T (v)d(v)
A Naww -1 ' N%;(u) N(N — Dd()(d(v) — D(d(o) - 2)
T(v
+ Y z(v)
vE N (u)

_ Proof: Denote the contribution of € G to the average clustering coefficient @asbefore the removal ofi and¢, after.
AC, can be written a$° . ¢y — éy. If v & N(u) U {u}, thenc, = ¢,. If v =u, then

B 2T (u)

~ Nd(u)(d(u) - 1)

Let v € N>2o(u). Then before removal of, v is in T'(v) triangles. After removaly is in T'(v) — ¢tr(u,v) triangles. Hence
2T (v)

Cy — Cy

= Nd(w)d(e) - 1)
and . 2(T(v) — tr(u,v))
Y (N = 1)(d(v) —1)(d(v) — 2)’
whence

Z AT (v)(1 = N) + 2tr(u,v)Nd(v) — 2T (v)d(v)
N(N =1d(v)(d(v) = 1)(d(v) =2)

Let v € No(u). Before removal ofu, v is in T'(v) triangles. After removaly is in O triangles, hence the result follows.m
One important feature of FAGA is that the produced residuaC& values will form a nonincreasing sequence. This feature
is summarized in the following theorem.

Cy — év =
vEN>2(u)



Algorithm 2 Fast Adaptive Greedy Algorithm (FAGA fast_greedy)
1: Number the vertices from to N such thatu < v impliesd(u) < d(v).

2: S« 0

3: for eachu eV do T'(u) < 0;

4: end for

5: for each(u,v) € E do tr(u,v) < 0;

6: end for

7. for u <~ nto 1 do

8: for each v € N(u) with v <u do

o: for each w € A(u) N A(v) do

10: Increaser(u, v), tr(v, w) andtr(u, w) by one;
11: Increasel'(u), T'(v) and T (w) by one;

12: Add u to A(v);

13 end for

14: end for

15: end for

16: for i< 1tok do

17 for eachue V\S do

18: ACU — W%_l)’

19: for eachv e N(v)\ S do

20: if d(v)>2 then

21 AC, + AC, + R T T
22: end if

23 if d(v) =2 then

24; AC, + AC, +T(v)/N;

25: end if

26: end for

27 end for

28: Umaz < arg maxueV\S{AC’u};

29: Removeu, ., from G, addu,,., to S, and decreas&’ by one;
30. for each(v,w) € E andv,w € N(tumaqz)\ S do
31 Decreasel'(v) andT'(w) by one;

32: end for

33: end for

34: return S

Theorem 3. The ALCC values of networks after each iteration (Alg. 2¢4il6 — 28) form a non-increasing sequence.

Proof: We first show that in a grap8, there always exists a nodesuch thatC, (G) < C(G). Assume otherwise, that
is C,(G) > C(G) for all nodewv € V. This implies_ C,(G) > N x C(G) which contradicts Theorefd 2. Thus, the
statement holds true. Finally, the theorem follows becatssach step we select the nodes that maximally degrades AfCC
the whole network. ]

Time-complexityThe first phase take®(M?/2) as in (Schank and Wagner, 2005). The second phase takesaa tiime
in each round and has a total time complexityk(N + M)). Thus, the overall complexity i©(M?3/% 4 k(M + N)). When
k < M'/?, the algorithm has an effective time-complexi®f N3/2), which is N times faster thamimple_greedy.

VII. CLUSTERING AND THE SPREAD OF INFORMATION

In this section, we provide additional evidence for thetieteship between the propagation of information in a soc&ivork
and the average network clustering. Since information eapropagate from one connected component to another, wadson
this relationship when the grap® representing the social network is connected. Thus, weidensonnected graphs with
different values of ALCC. We define the relevant models oftiefice propagation in Sectibn VIIFA; then, we demonstrate an
empirical relationship in Sectidn_VI[IB; next, we provideebretical evidence in support of this relationship in BedVII-Cl

A. Models of influence

To observe the effect of ALCC on influence propagation, wepéelb the following two standard models (Kempe et al.,
2003); intuitively, the idea of a model of influence propagatin a network is a way by which nodes can be activated given a
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set of seed nodes. An instance of influence propagation oahgf follows the independent cascade (IC) model if a weight
can be assigned to each edge such that the propagation ite@saban be computed as follows: once a nedérst becomes
active, it is given a single chance to activate each cuiyenéctive neighbor with probability proportional to the weight of
the edge(u,v). In the linear threshold (LT) model each network usehas an associated threshél@:) chosen uniformly
from [0, 1] which determines how much influence (the sum of the weights@fming edges) is required to activate u
becomes active if the total influence from its active neigklexceeds the thresholdu).

B. Experimental evidence

To test the relationship between influence propagation arslering empirically, we used a variety of Watts-Strogattaphs
(Watts and Strogzatz, 1998); a graph generated by this méakds$ sas a ring lattice, defined as follows. Firstgircular rings
are constructed: for eache {1,...,n}, verticesui, ..., v} and edgesu;,u/ ), i=1,...,n— 1, and(u},u]). Next, add
edges(u/,ult"), for j = 1,...,n—1, and(u}, u}), for eachi. Finally, all vertices withink hops of each other are connected
by an edge. For these experiments, we used 100 andk = 3. With probabilityp, each edge in the graph is rewired; that is,
replaced with an edge between two uniformly randomly chagstices. By varyingy, one can control the level of clustering
in the network, as shown in Fifj] 1. Each graph generated srtisinner has the same number of edges.

The expected activation was computed using a single seeglanatlan IT or LT realization; this computation was averaged
over 1000 trials. When we normalize by the initial value,.Bigshows a remarkable similarity between the normalized GLC
value and the normalized activations, for both the IC and lddeis. Therefore, these results provide evidence sumgoati

positive correlation between ALCC and the expected adtimadf both the IC and LT models of information propagation.

C. Theoretical evidence of relationship between ALCC affldence propagation

In this section, we provide further evidence supportingrédationship between clustering and influence propagatiothe
form of the following proposition, which shows how the proligy of activation increases when more neighbors are eiftar
with higher ALCC, we may expect a higher fraction of share@jhieors between adjacent nodes.

Proposition 1. Supposes is activated; lett be a neighbor of, and suppose,t sharek neighbors. Consider the IC model
with uniform probabilityl /2 on each edge. Then
Pr( t becomes activatef> 1 — (1/2) - (3/4)".

Proof: Let A be the event that edds, t) exists, and let3 be the event that edge, t) does not exist, but for a common
neighborn, the edgess, n), (n,t) exist. For each common neighbor let A,, be the event that both edgés n), (n,t) exist.
Then

Pr( t becomes activatefl > Pr(A) + Pr(B)

_1/2+1/2~Pr< U An>.

neN(s)NN(t)

Notice thatPr(A,) = 1/4, and letN(s) N N(t) = {nq,...,nx}. By the inclusion-exclusion principle, we have that

k
Pr <U Ank> => <’j> (1/4)(=1)"* =1 — (3/4).

i=1 i=1

Therefore,Pr(A) + Pr(B) =1 — (1/2) - (3/4)*.

VIIl. EXPERIMENTAL EVALUATION

We present the empirical results of our proposed algoritbmsynthesized and real networks. In Secfion VIII-A, we
describe our methodology; in Section VITI-B, VITIIC we apaé the efficacy of degrading ACC, LCC, respectively; in ®ect
[VIIT-D] we analyze the running time of the algorithms.

A. Methodology
a) Algorithms: We are unaware of any competitive method that specificallpimmzes ALCC, so to evaluate our
approaches we compare to the following strategies:
e random_fail: Remove nodes uniformly at random,

e lcc_greedy: Remove nodes in greedy fashion according to highest Idaatering coefficient,
« max_degree: Remove nodes in greedy fashion according to highest degree



11

« betweenness: Removes in greedy fashion according to the highest betme==ncentrality.
« optimal: For a network with 35 nodes, we were able to compute the @psiution to CVA by exhaustive enumeration.

Method legends are described in Hig. 4(h).

b) Datasets:We use Erés-Rényi (ER)|(Er@s and Rényi, 1960), Watts-Strogatz (WS) (Watts and Strod#98), and
Barabasi-Albert (BA)(Albert and Barabasi, 2002) modelgénerate synthesized testbeds. These are foundationalswaiich
have been widely used in the literature. We used the follgwiarameter valuesy = 10000, M = 49772, p = 0.001 (ER
model); N = 35, p = 0.2 (ER model); N = 15000, M = 44994 (BA model); andN = 10000, M = 200000, with n = 100,

k =3, andp = 0.3, these parameters are defined in Sediion VII (WS model).

Real-world traces include Facebook (Viswanath et al., P088Xiv ePrint citation (dataset, 2003), and NetHEPT natkgo
(Chen et al., 2010). The trace of Facebook has 25,492 usdrd@h237 friendship links, NetHEPT has 15,234 authors with
31,376 connections, and ArXiv has 26,197 nodes with 14,48¢® The parametéris set to a fraction of the total number of
nodes in each graph. Besides ALCC, we also evaluate how thevad of critical nodes affects the maximum Local Clustgrin
Coefficient (LCC).

B. Results on Average Clustering Coefficient

In this section, we present results on the efficacy of theouaralgorithms to lower the ALCC. We observe (1) the perforoea
of our algorithms in view of other strategies, and more ingatly (2) the critical behavior of clustering coefficienhan
crucial nodes are removed by different criteria. The eroglriesults on synthesized and real data are presented .id.Fig

As depicted in the subfigures, ALCC values produced by ouwnrdlgn fast_greedy are consistently the best (lowest)
values in all test cases, except in the ER network with 35 sodlbereoptimal was able to run. A visualization of
the optimal solution on this network fdr = 7 is shown in Fig[5. In the ER network with 10000 nodés;st_greedy,
lcc_greedy andsimple_greedy methods quickly destroy clustering as soon as 0.02 fractiolodes (orfast_greedy
andlcc_greedy)and 0.05 fraction of nodes (enimple_greedy) are excluded from the networks. Interestinglyx_degree
andbetweenness methods do not appear much better than the baselinelom_failure method especially fdsetweenness.
A possible explanation for this is the independence and lggnadability of wiring edges in ER model. Moreover, because
ER model neither generates triadic closures nor forms hhespetwork structure might be easily broken when a few ramdo
but important nodes are removed.

In WS model, we observe the same degrading behavior of ALAGevproduced by all methods withast_greedy
outperforminglcc_greedy andsimple_greedy methods. Also in this model, these three methods outpeddrtime rest
by a large magnitude. In BA modefast_greedy still performs best, closely followed hyax_degree andbetweenness
methods. As BA model generates graphs with references givine power-law distribution (i.e., forming hubs) the merhance
of max_degree andbetweenness can be explainedlcc_greedy does not do well in this type of network as it takes
a considerable fraction of total nodes in order to degradeatrerage clustering coefficient.

In conclusion,fast_greedy is the best approach that consistently discovers nodeathahost important to the network
clustering. The experiments also suggest thett_ degree andbetweenness, despite their popularity, might not be ideal
methods to analyze structural vulnerability of complexwwaks. In addition, these experiments also show that (1) BL§h't
very susceptible to random failures, and (2) network chssgeenerated by ER, WS and BA can potentially be vulnerable to
targeted attacks as the respective ALCC can quickly be iragaivhen only a few vertices are removed from the graphs.

In real data, the superior nature 6&st_greedy becomes more visible as it beats other strategies by a signifgap.

In real tracesmax_degree andbetweenness perform similarly whilelcc_greedy and simple_greedy methods
fluctuate in betweenrandom_failure, unsurprisingly, remains the worst. We observe that evebignreal networks,
fast_greedy performs very well by degrading the ALCC dramatically (rg&0%, 33% and 55% of ALCC decrement
on ArXiv, NetHEPT and Facebook) as more nodes are excluded the data. This fact implies that those practical systems,
despite their complex structure and functionality, comaxpose their clustering vulnerability to targeted or exbarial
attacks. Our proposed approachst_greedy effectively discovers the critical nodes with high impastthose network
structures. The results also demonstrate thatple_greedy andlcc_greedy are also good options though they require
long execution time as we show below.

C. Maximum Local Clustering Coefficient

We next examine the maximum local clustering coefficient{th@C) of nodes remaining in the residual graphs. This local
measure is meaningful in the sense that a small max-LCC oftwonle indicates a low level of clustering. Therefore, we
observe how the methods reduce the max LCC of the graphs.€Euéts are reported in Figl 6. The subfigures indicate that
fast_greedy is really effective in not only degrading ALCC but also thexyiaCC of all tested networks. In ER and BA
models,fast_greedy quickly destroys the clustering coefficients at just 0.02#altnodes removed, and only lags behind
lcc_greedy (which was expected to be the leading method) in WS model awéldook. Furthermoreast_greedy
appears to be more stable than the others as it does not tlibietsveen high and low values. In Facebook dadast _greedy
quickly degrades max-LCC values from 1 to approximately Tlis fact indicates that the resulting Facebook clustes a
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©) @}
(a) Critical nodes (b) Residual graph

Fig. 5.  The optimal solution (black nodes) on the &€dRényi network with 35 nodes, with = 7. Notice that the residual graph after removal of the
optimal solution is triangle-free.

structure might not be very robust. In ArXiv and NetHEPT dalhmethods are unable to degrade the LCC which demonstrate
that there are a lot of local clusters in these networks.

D. Running Time

The running time of all methods is presented in Eig. 7. As theeline methodg;andom_failure andmax_degree do
not require much time for their execution due to their simpéure whereascc_greedy, in contrast, requires a considerable
amount of execution timefast_greedy andbetweenness algorithms on average require fairly similar amounts ofetim
for their tasks on all networkssimple_greedy, as a pay off for its simple design and implementation, takegnificant
amount of time to finish its tasks (at least 5 times more than thken bylcc_greedy) and is excluded from the charts
for more visibility.

IX. CONCLUSION

Clustering vulnerability is an important aspect in asseg$he robustness of complex networks, as the level of dinste
has significance for a variety of applications, includingatient role in the propagation of information in a socialweitk.
We have shown the discovery of the most important nodes w&taring isN P-complete, and we offer two polynomial-time
heuristics for this identification. Empirical results inneparison with different strategies on synthesized and mealorks
show that the average clustering coefficient is robust tluriaiof random nodes and confirm that our suggested algorithm
FAGA (fast_greedy) is effective in analyzing node vulnerability of clustegiand is scalable to larger networks.
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