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Abstract

Robustness in response to unexpected events is always desirable for real-world networks. To improve the robustness of any
networked system, it is important to analyze vulnerabilityto external perturbation such as random failures or adversarial attacks
occurring to elements of the network. In this paper, we studyan emerging problem in assessing the robustness of complex
networks: the vulnerability of the clustering of the network to the failure of network elements. Specifically, we identify vertices
whose failures will critically damage the network by degrading its clustering, evaluated through the average clustering coefficient.
This problem is important because any significant change made to the clustering, resulting from element-wise failures,could
degrade network performance such as the ability for information to propagate in a social network. We formulate this vulnerability
analysis as an optimization problem, prove its NP-completeness and non-monotonicity, and we offer two algorithms to identify the
vertices most important to clustering. Finally, we conductcomprehensive experiments in synthesized social networksgenerated
by various well-known models as well as traces of real socialnetworks. The empirical results over other competitive strategies
show the efficacy of our proposed algorithms.

I. I NTRODUCTION

Network resilience to attacks and failures has been a growing concern in recent times. Robustness is perhaps one of the most
desirable properties for corporeal complex networks, suchas the World Wide Web, transportation networks, communication
networks, biological networks and social information networks. Roughly speaking, robustness of a network evaluates how
much the network’s normal function is affected in case of external perturbation, i.e., it measures the resilience of thenetwork
in response to unexpected events such as adversarial attacks and random failures (Holme et al., 2002). Complex systems that
can sustain their organizational structure, functionality and responsiveness under such unexpected perturbation are considered
more robust than those that fail to do so. The concept ofvulnerability has generally been used to realize and characterize
the lack of robustness and resilience of complex systems (Criado and Romance, 2012). In order to improve the robustness of
real-world systems, it is therefore important to obtain keyinsights into the structural vulnerabilities of the networks representing
them. A major aspect of this is to analyze and understand the effect of failure (either intentionally or at random) of individual
components on the degree of clustering in the network.

Clustering is a fundamental network property that has been shown to be relevant to a variety of topics. For example,
consider the propagation of information through a social network, such as the spread of a rumor. A growing body of work has
identified the importance of clustering to such propagation; the more clustered a network is, the easier it is for information
to propagate (Barclay et al., 2013; Centola, 2010, 2011; Lü et al., 2011; Malik and Mucha, 2013). In addition, in Fig. 1, we
show experimentally a strong relationship between the finalspread of information and the level of clustering in the network,
with higher clustering corresponding to higher levels of expected spread. The importance of clustering is not limited to social
networks; in the context of air transportation networks, Ponton et al. (2013) argued that higher clustering of such a network is
beneficial, as passengers for a cancelled flight can be rerouted more easily. In this work, we use average clustering coefficient
(ALCC) as our definition and measure of clustering in a network. ALCC was proposed for this purpose by Watts and Strogatz
(1998).

The identification of elements that crucially affect the clustering of the network, as a result, is of great impact. For example, as
a matter of homeland security, the critical elements for clustering in homeland communication networks should receivegreater
resources for protection; in complement, the identification of critical elements in a social network of adversaries could potentially
limit the spread of information in such a network. However, most studies of network vulnerability in the literature focus on
how the network behaves when its elements (nodes and edges) are removed based on the pair-wise connectivity (Dinh et al.,
2012b), natural connectivity (Chan et al., 2014), or using centrality measures, such as degrees, betweeness (Albert etal., 2000),
the geodesic length (Holme et al., 2002), eigenvector (Allesina and Pascual, 2009), etc. To our knowledge, none of the existing
work has examined the average clustering coefficient from the perspective of vulnerability - as evidenced by the examples
above, the damage made to the average clustering, resulted from element-wise failures, can potentially have severe effects on
the functionality of the network. This drives the need for ananalysis of clustering vulnerabilities in complex networks.

Finding a solution for this emerging problem, nevertheless, is fundamentally yet technically challenging because (1)the
behavior of ALCC is not monotonic with respect to node removal and thus can be unpredictable even in response to minor
changes, and (2) given large sizes of real networks, theNP -completeness of the problem prohibits the tractable computation
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Fig. 1. Relationship between the value of ALCC and the expected number of activations under the LT and IC models, normalized by initial value. For
more details and discussion ofp, see Section VII.

of an exact solution. In this paper, we tackle the problem andanalyze the vulnerabilities of the network clustering. Particularly,
we ask the question:

“Given a complex network and its clustering coefficient, what are the most important vertices whose failure under attack,
either intentionally or at random, will maximally degrade the network clustering?”

There are many advantages of ALCC over other structural measures (Watts and Strogatz, 1998): (1) it is one of the most
popular metrics for evaluating network clustering - the higher the ALCC of a network the better clustering it exhibits, (2) it
implies multiple network modular properties such as small-world scale-free phenomena, small diameter and modular structure
(or community structure), and (3) it is meaningful on both connected and disconnected as well as dense and sparse graphs:
Sparse networks are expected to have small clustering coefficient whereas extant complex networks are found to have high
clustering coefficients.

Our contributions in this paper are: (1) We define the Clustering Vulnerability Assessment (CVA) on complex networks,
and formulate it as an optimization problem with ALCC as the objective function. (2) We study CVA’s complexity (NP-
completeness), provide rigorous proofs and vulnerabilityanalysis on random failures and targeted attacks. To our knowledge,
this is the first time the problem and the analysis are studiedspecifically for ALCC. (3) Given the intractability of the problem,
we provide two efficient algorithms which scale to large networks to identify the worst-case scenarios of adversary attacks.
Finally, (4) we conduct comprehensive experiments in both synthesized networks (generated by various well-known models) as
well as real networks. The empirical results over other methods show the efficacy and scalability of our proposed algorithms.

The paper is organized as follows: Section II reviews studies that are related to our work. Section III describes the notations,
measure functions and the problem definition. Section IV shows the proof of NP-completeness implying the intractability of the
problem. Section V and VI present our analysis of clusteringbehaviors on random failures and targeted attacks, respectively. In
Section VII, we provide further evidence for a correlation between the extent of influence propagation and ALCC. In Section
VIII, we report empirical results of our approaches in comparison with other strategies. Finally, Section IX concludesthe paper.

II. RELATED WORK

Vulnerability assessment has attracted a large amount of attention from the network science community. Work in the literature
can be divided into two categories: Measuring the robustness and manipulating the robustness of a network. In measuringthe
robustness, different measures and metrics have been proposed such as the graph connectivity (Dinh et al., 2012b), the diameter,
relative size of largest components, and average size of theisolated cluster (Albert et al., 2000). Other work suggestsusing
the minimum node/edge cut (Frank and Frisch, 1970) or the second smallest non-zero eigenvalue or the Laplacian matrix
(Fiedler, 1973). In terms of manipulating the robustness, different strategies has been proposed such as Albert et al. (2000);
Peixoto and Bornholdt (2012), or using graph percolation (Callaway et al., 2000). Other studies focus on excluding nodes
by centrality measures, such as betweeness and the geodesiclength (Holme et al., 2002), eigenvector (Allesina and Pascual,
2009), the shortest path between node pairs (Grubesic et al., 2008), or the total pair-wise connectivity (Dinh et al., 2012b).
Veremyev et al. (2014, 2015) developed integer programmingframeworks to determine the critical nodes that minimize a
connectivity metric subject to a budgetary constraint. Formore information on network vulnerability assessments, the reader
is referred to the surveys (Chen, 2016) and (Gomes et al., 2016) and references therein.

The vulnerability of the average clustering of a complex network has been a relatively unexplored area. In a related work
(Nguyen et al., 2013), the authors introduced the communitystructure vulnerability to analyze how the communities areaffected
when topk vertices are excluded from the underlying graphs. They further provided different heuristic approaches to find out
those critical components in modularity-based community structure. Alim et al. (2014b) suggested a method based on the
generating edges of a community to find out the critical components. In a similar vein, Alim et al. (2014a) studied the problem
of breaking all density-based communities in the network, proved its NP-hardness and suggested an approximation as well
as heuristic solutions. These studies, while forming the basis of community-based vulnerability analysis, face a fundamental
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TABLE I
L IST OF SYMBOLS

Notation Meaning

N Number of vertices/nodes (N = |V |)
M Number of edges/links (M = |E|)
du The degree ofu
N(u) The set of neighbors ofu
T (u) The number of triangles containingu
C(u), C(G) Clustering coefficients ofu andG
C̃v(u), C̃v(G) Clustering coefficients ofu andG

after removing nodev from G
G[S] The subgraph induced byS ⊆ V in G
tr(u, v) The number of triangles containing bothu, v

limitation due to the ambiguity of definitions of a communityin a network. Our work overcomes this particular shortcoming as
ALCC is a well-defined and commonly accepted concept for quantifying the clustering of a network. Ertem et al. (2016) studied
the problem of how to detect groups of nodes in a social network with high clustering coefficient; however, their work doesnot
consider the vulnerability of the average clustering coefficient of a network. The diffusion of information in a social network
has been studied from many perspectives, including worm containment (Nguyen et al., 2010), viral marketing (Dinh et al.,
2012a, 2013; Kempe et al., 2003; Kuhnle et al., 2017), and thedetection of overlapping communities (Nguyen et al., 2011).

III. N OTATIONS AND PROBLEM DEFINITION

A. Notations

Let G = (V,E) be an undirected graph representing a complex network whereV is the set ofN nodes andE is the set of
edges containingM connections. For a nodeu ∈ V , denote bydu andN(u) the degree ofu and the set ofu’s neighbors,
respectively. For a subset of nodesS ⊆ V , let G[S] and mS in this order denote the subgraph induced byS in G and
the number of edges in this subgraph. Hereafter, the terms “vertices” and “nodes” as well as “edges” and “links” are used
interchangeably.

(Triangle-free graphs)A graphG is said to betriangle-free if no three vertices ofG form a triangle of edges. Verifying
whether a given graphG is triangle-free or not is tractable by computing the trace of A3 whereA is the adjacency matrix
of G. The trace is zero if and only if the graph is triangle-free. This verification can be done in polynomial timeO(Nω) for
ω ≤ 2.372 with the latest matrix multiplying result (Gall, 2014). Alternatively, one can use the method of (Schank and Wagner,
2005) with time complexityO(M3/2) to check if the graph is triangle-free.

B. Clustering Measure Functions

1) Local Clustering Coefficient (LCC):Given a nodeu ∈ V , there aredu adjacent vertices ofu in G and there are
du(du− 1)/2 possible edges among allu’s neighbors. The local clustering coefficientC(u) is the probability that two random
neighbors ofu are connected. Equivalently, it quantifies how close the induced subgraph of neighbors is to a clique. The local
clustering coefficientC(u) is defined (Watts and Strogatz, 1998)

C(u) =







2T (u)

du(du − 1)
du > 1

0 otherwise

whereT (u) is the number of triangles containingu. It is clear that0 ≤ C(u) ≤ 1 for any u ∈ V . For any nodev 6= u, let
C̃v(u) denote the clustering coefficient ofu in G[V \{v}]. Finally, definetr(u, v) as the number of triangles containing both
verticesu andv.

2) Average Clustering Coefficient (ALCC):In graph theory, the average local clustering coefficient (ALCC) C(G) of a
graphG is a measure indicating how much vertices ofG tend to cluster together (Watts and Strogatz, 1998). This measure is
defined as the average of LCC over all vertices in the network.C(G) is defined as:

C(G) =
1

N

∑

u∈V

C(u). (1)

Because0 ≤ C(u) ≤ 1 for every nodeu ∈ V , C(G) is normalized and can only take values in the range[0, 1] inclusively.
For instance,C(G) = 0 whenG is a triangle-free graph andC(G) = 1 whenG is a clique or a collection of cliques. The
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higher the clustering coefficient ofG the more closely the graph locally resembles a clique. Also,we define

C̃v(G) = C (G[V \{v}]) .

C. Problem definition

We define theClustering Structure Assessmentproblem (CSA) as follows

Definition 1 (CSA(G, k)). Given a networkG = (V,E) and a positive integerk ≤ N , find a subsetS∗ ⊆ V of cardinality
at mostk that maximizes the reduction of the clustering coefficient,i.e.,

S∗ = argmax
S⊆V,|S|≤k

∆C(S),

where∆C(S) = C(G) − C(G[V \S]).

CSA problem aims to identify the most critical vertices of the network with respect to the average clustering coefficient. The
input parameterk can be interpreted as the the maximum number of node failuresthat normal functionality of the network
can withstand once adversarial attacks or random corruptions occur. Accordingly, the case|S| = k identifies exactlyk critical
vertices and examines the worst scenarios that can happen when these vertices are compromised.

D. Formulation as cubic integer program

In this section, we formulate the CSA problem as an integer program. Let(eij)i,j∈V be the adjacency matrix ofG.

Lemma 1. For u ∈ V , T (u) can be calculated in the following way:

2T (u) =
∑

i∈V

∑

j∈V

euieujeij .

Proof: The summandeuieujeij = 1 iff i, j are neighbors ofu, and if edge(i, j) is in the graph; that is, verticesu, i, j
form a triangle.

We formulate CSA as an integer program in the following way. Letxi = 1 if i is included in the setS, andxi = 0 otherwise.

Integer Program 1.
min

∑

u∈V :d(u)>1

∑

i∈V

∑

j∈V

euieujeijxixjxu

du(du − 1)(N − k)
(2)

such that
∑

u∈V

xu ≤ k,

xu ∈ {0, 1}, u ∈ V.

Notice that the sum (2) computes the ALCC of the residual graph after removingS. As we show in Section V, Corollary
1, there always exists a node the removal of which will not increase the ALCC; thus, an optimal solution to the program is
an optimal solution to CSA.

IV. COMPLEXITY OF CSA

In this section, we show the NP-completeness ofCSA(G, k). This intractability indicates that an optimal solution for CSA
might not be computationally feasible in practice.

Definition 2 (Decision problem –CSA(G, k, α)). Given a networkG = (V,E), a numberk ≤ N and a value0 ≤ α ≤ 1,
does there exist a setS ⊆ V of sizek such that∆C(G) ≥ α?

Theorem 1. CSA(G, k, C(G)) is NP-Complete.

Proof: We show that the following subproblem ofCSA(G, k, C(G)) is NP-complete; the subproblem asks for a set
S ⊆ V of k nodes whose removal completely degrades the clustering coefficient C(G[V \S]) to 0, or equivalently, makes the
residual graphG[V \S] triangle-free (Lemma 2). To show the NP-completeness, we first show that CSA is in NP, and then
prove its NP-hardness by constructing a polynomial time reduction from 3-SAT toCSA(G, k, C(G)). Given a setS ⊆ V of
k nodes, one can verify whetherG[V \S] is triangle-free by computing the trace ofA3 whereA is the adjacency matrix of
G[V \S]. As we mentioned above, this can be done inO((N − k)2.372). Therefore,CSA(G, k, C(G)) is in NP.

Now, given an instance boolean formulaφ of 3-SAT with m variables andl clauses, we will construct an instance of
CSA(G, k, C(G)), wherek = m+ 2l, as follows:
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Fig. 2. Reduction example for a toy instance(x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x3) of 3-SAT.

1) For each clauseC = l1 ∨ l2 ∨ l3 of φ, introduce a 3-clique inG with 3 clause literals as vertices: add verticeslC1 , l
C
2 ,

C
3 ,

and edges(lCi , l
C
j ) for 1 ≤ i < j ≤ 3. Color these vertices blue.

2) For each variablexi of φ, create two vertices representing literalsx and¬x in G and connect them by an edge. That is,
add verticesvxi

, v¬xi
and edge(vxi

, v¬xi
). Color these vertices green.

3) For each blue vertex in a 3-clique created in step 1, connect it to the corresponding green literal created in step 2. That
is, for each literallj in each clauseC, if lj = xi, then add edge(lCj , vxi

). If literal lj = ¬xi, then instead add edge
(lCj , v¬xi

).
4) Finally, for every edge inG, create a dummy vertexd (color it red) and connectd to the two endpoints of that edge.

Figure 2 illustrates the reduction of the toy boolean formula (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x3). In this example, step 1
introduces two 3-cliques with blue vertices, step 2 createsthree pairs of green vertices, and step 3 consequently connects blue
vertices to their corresponding green vertices by the thickcurly edges. Finally, step 4 assembles dummy nodesd’s (in red)
and two dotted lines for every existing edges inG.

Let G−d denote the graphG without dummy verticesd’s and their adjacent dotted edges. Assume thatφ has a satisfied
assignment, we constructS by (i) include inS all vertices corresponding to true literals, and (ii) for each clause, include in
S all vertices of the 3-clique but the one corresponding to itsfirst true literal. Thus,S includesm green vertices and2l blue
vertices. It is verifiable that vertices inS form the vertex cover ofG−d. As a result, the removal of all nodes inS will make
G[V \S] triangle-free (since it leaves no edges inG−d).

Suppose there exists a setS of k nodes such that removingk nodes inS leavesG[V \S] triangle-free. We note thatS will
not contain any dummy noded because replacingd by any of its adjacent literals (which are not already inS yet) yields a
better solution in term of triangle coverage. As a consequence,S only contains blue and green vertices. Furthermore, nodes
in S have to be indeed the vertex cover ofG−d in order forG[V \S] to be triangle-free. This cover must contain one green
vertex for each variable and two blue vertices for each 3-clique (or clause), requiring exactlyk = m+2l vertices. Now, assign
valuetrue to the variables whose positive literals are inS. Becausek = m+2l, for each clause at least one edge connecting
its blue 3-clique to the green vertices is covered by a variable vertex. Hence, the clause is satisfied.

V. V ULNERABILITY ANALYSIS IN RANDOM FAILURE

A. Monotonicity of ALCC

The value of ALCC is not monotonic in terms of the set of excluded nodesS. Counterexamples showing the non-
monotonicity of ALCC are presented in Fig. 3(a). This implies that we do not always have eitherC(G[V \S1]) ≥ C(G[V \S2])
or C(G[V \S1]) ≤ C(G[V \S2]) for any subsetsS1 ⊆ S2 ⊆ V . In fact, it is possible that ALCC could be at a local minimum
with further node removal increasing the value of ALCC. Our analysis in Section V-B shows that is always possible to degrade
the value of ALCC by removing a vertex. We show that in any network G there exists a vertexu such thatC̃u(G) ≤ C(G).
This result is the basis of the algorithms we present in Section VI.

B. Analysis of Random Failure

When random failures occur, the ALCC value is unpredictabledue to the nonmonotonicity of ALCC. That is, the removal
of nodes can result in either higher or lower ALCC of the residual graph. We show that under uniform random failures the
expected ALCCEu[C̃u(G)] is at most the current ALCC value (Theorem 2). This result also indicates that, given a network
G, there exists a sequence of subgraphsGi of G whose ALCC values form a nonincreasing sequence (Corollary1).

Lemma 2. In a graphG, the following statements hold:

(i) C(G) = 0 if and only ifG is a triangle-free network.
(ii) C(G) = 1 if and only ifG is a clique or contains only separated cliques.

Proof:
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a) b)

(a) Nonmonotonicity of ALCC

Fig. 3. Nonmonotonicity of ALCC. a) ALCC = 0 whereas b) ALCC = 1when the green vertex is removed

(i) Suppose there exists a triangleu, v, w in G. ThenC(u) > 0, soC(G) > 0. For the converse, ifC(G) > 0, there exists
u ∈ V such thatC(u) > 0. By definition ofC(u), there exists a triangleu, v, w containingu.

(ii) SupposeC(G) = 1. Then, for eachu ∈ V , the subgraph induced by{u} ∪N(u) is a clique, from whichG is a clique
or only separated cliques. The converse follows directly from the definition ofC(G).

Lemma 3. For anyu ∈ V ,
2T (u) =

∑

v∈N(u)

|N(u) ∩N(v)|.

Proof: For each neighborv of u, the number of triangles that contain bothu andv is |N(u)∩N(v)|. Since each triangle
containingu contains exactly two neighbors ofu, it follows that the summation

∑

v∈N(u) |N(u) ∩ N(v)| counts twice the
number of triangles containingu.

Lemma 4. For any nodeu ∈ V :
1

N − 1

∑

v∈V \{u}

C̃v(u) ≤ C(u). (3)

Proof: To prove this Lemma, we will show the following statements regarding the degree ofu:

1

N − 1

∑

v∈V \{u}

C̃v(u) ≤ C(u) whendu ≤ 2. (4)

1

N − 1

∑

v∈V \{u}

C̃v(u) = C(u) whendu > 2. (5)

Eq. (3) is equivalent to
∑

v∈V \{u}

C̃v(u) ≤ (N − 1)C(u).

Expanding the left-hand-side (LHS) of this inequality yields
∑

v∈V \{u}

C̃v(u) =
∑

v∈N(u)

C̃v(u) +
∑

v∈V \(N(u)∪{u})

C̃v(u)

=
∑

v∈N(u)

C̃v(u) + (N − du − 1)C(u). (6)

To find
∑

v∈V \(N(u)∪{u}) C̃v(u), we use the fact that removing a non-neighbor node ofu will not affect the local clustering
coefficientC(u), i.e., C̃v(u) = C(u) for v ∈ V \ (N(u) ∪ {u}). There are(N − du − 1) non-neighbors vertices ofu in G.
Thus the second term of (6) follows. To evaluate the first termof Eq. (6), we consider two cases:
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Case (i): Whendu ≤ 2 (i.e., u has only one or two neighbors). In this case, the removal of any neighbor ofu will make
du ≤ 1, and thus, will dropC̃v(u) to 0 based on the definition of LCC. This implies0 =

∑

v∈N(u)

C̃v(u) ≤ du × C(u).

Substituting this to the first term of Eq. (6) yields Eq. (4)
Case (ii): Whendu > 2. For anyv ∈ N(u), removingv degradesdu to du − 1 and decreases the number of triangles onu

by an amount of|N(u) ∩N(v)|. As a result,

C̃v(u) =
2 (T (u)− |N(u) ∩N(v)|)

(du − 1)(du − 2)
. (7)

Therefore,

∑

v∈N(u)

C̃v(u) =

∑

v∈N(u) 2 (T (u)− |N(u) ∩N(v)|)

(du − 1)(du − 2)

=
2(duT (u)−

∑

v∈N(u) |N(u) ∩N(v)|)

(du − 1)(du − 2)
(8)

By Lemma 3, we can simplify Eq. (8) to
∑

v∈N(u)

C̃v(u) =
2(du − 2)T (u)

(du − 1)(du − 2)
= duC(u)

Substituting this to Eq. (6) yields Eq. (5). Theinequality in Lemma 4 occurs only ifu is of single degree, oru has exactly
two connected neighbors.

Using Lemma 4, we can show the following main result of ALCC’sbehavior on random failures:

Theorem 2. In a graphG, Eu[C̃u(G)] ≤ C(G).

Proof: By definition of ALCC, we have

∑

v∈V

C̃v(G) =
∑

v∈V





1

N − 1

∑

u∈V \{v}

C̃v(u)



 .

Applying Eq. (3) in Lemma 4 gives

∑

u∈V





1

N − 1

∑

v∈V \{u}

C̃v(u)



 ≤
∑

u∈V

C(u) = N × C(G).

ThusE[C̃·(G)] =
1

N

∑

v∈V

C̃v(G) ≤ C(G).

Corollary 1. In a graphG ≡ G0 of N nodes, there exists a sequence of subgraphsG0 ⊇ G1 ⊇ · · · ⊇ GN ≡ ∅ such that
C(Gi) ≥ C(Gi+1) andGi+1 is constructed by removing one vertex fromGi for i = 0, . . . , N − 1.

VI. A LGORITHMS

In this section, we present two algorithms for CSA problem, namelysimple_greedy (Alg. 1), and Fast Adaptive Greedy
Algorithm (FAGA) (Alg. 2). Alg. 1 is a simpler greedy algorithm than FAGA, which employs more sophisticated strategies
to more efficiently provide a solution of significantly higher quality than Alg. 1.

Algorithm 1 Greedy Algorithm (simple_greedy)

1: S ← ∅;
2: for eachu ∈ V do
3: C̃u(G)← C(G[V \ {u}]);
4: end for
5: S ← k vertices with lowestC̃·(G) values;
6: return S

A. Simple Greedy Algorithm

Our first algorithm (Alg. 1) computes for each nodeu the ALCC value after removingu, denoted byC̃u(G). The k
vertices associated with the lowest values ofC̃u(G) are included in the solution. Notice that in this algorithm,the values of
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C̃u(G) are computed only once, andk nodes are simultaneously included in the final solution. Since the local clustering
coefficient of a nodeu is dependent only on the subgraph of its neighbors, we chose this approach over iteratively recomputing
C̃u(G\{s1, . . . , si}) for all nodes after choosing{s1, . . . , si} into setS.

Time-complexity: The complexity of Alg. 1 depends on theN calls to compute the ALCC of the network. There are two
state-of-the-art methods in (Gall, 2014) and (Schank and Wagner, 2005) for this purpose. If ALCC is computed using the
matrix multiplying technique in (Gall, 2014), the time-complexity is O(Nω) with ω ≤ 2.372. Alternatively, if ALCC is
computed using the method in (Schank and Wagner, 2005), which has complexity ofO(M3/2), the overall complexity will
be O(NM3/2). In practice, neither of these two upper bounds fully dominates the other. In our experimental evaluation in
Section VIII, we utilize (Schank and Wagner, 2005) for computing ALCC.

B. Fast Adaptive Greedy Algorithm

We next present the Fast Adaptive Greedy Algorithm (FAGA - Alg. 2) that significantly improvessimple_greedy. For
small values ofk, this algorithm requires as much time as computing ALCC onlyonce; it isN times faster than its predecessor.
Furthermore, it provides a significant quality improvementoversimple_greedy in our empirical studies.

In principle, FAGA employs an adaptive strategy in computing the reduction of ALCC when nodes are removed iteratively.
At each round, the nodev incurring the highest reduction in ALCC is selected into thesolution. As shown in the proof of
Theorem 3, a nodev does exist at any iteration. Nodev is removed from the graph and the procedure repeats itself for the
remaining vertices; that is, FAGA recomputes for each vertex u, which is not yet in the solution, its ALCC reduction∆C̃u

when u is removed from the graph. This strategy provides better solution quality than the non-adaptive greedy algorithm.
While it is more complicated than the previous approach, it can be done faster thansimple_greedy as we show in the
following discussion.

We structure FAGA into two phases. The first phase (lines 1–15) extends the algorithm in (Schank and Wagner, 2005) to
compute both ALCC and the number of triangles that are incident with each edge and node in the graph. This algorithm was
proved to be time-optimal inθ(M3/2) for triangle-listing, and has been shown to be very efficientin practice. The second
phase (lines 16–33) repeats the vertex selection fork rounds. In each round, we select the nodeumax which decreases the
clustering coefficient the most into the solution, removeumax from the graph, and perform the necessary update for∆C̃u for
the remaining nodesu ∈ V .

The key efficiency of FAGA algorithm is in its update procedure for ∆C̃u. The update∆C̃u for remaining nodes after
removingumax can be done in linear time. This is made possible due to the information on the number of triangles involving
each edge. The correctness of this update formulation (lines 18–26) is proved in the following lemma.

Lemma 5. Let N2(u) = {v ∈ N(u) : d(v) = 2}, N>2(u) = {v ∈ N(u) : d(v) > 2}. For eachu ∈ V , ∆C̃u(G) can be
computed in the following way:

∆C̃u =
2T (u)

Nd(u)(d(u)− 1)
+

∑

v∈N>2(u)

4T (v)(1−N) + 2tr(u, v)Nd(v) − 2T (v)d(v)

N(N − 1)d(v)(d(v) − 1)(d(v) − 2)

+
∑

v∈N2(u)

T (v)

N

Proof: Denote the contribution ofv ∈ G to the average clustering coefficient ascv before the removal ofu and ĉv after.
∆C̃u can be written as

∑

v∈G cv − ĉv. If v 6∈ N(u) ∪ {u}, thencv = ĉv. If v = u, then

cv − ĉv =
2T (u)

Nd(u)(d(u)− 1)
.

Let v ∈ N>2(u). Then before removal ofu, v is in T (v) triangles. After removal,v is in T (v)− tr(u, v) triangles. Hence

cv =
2T (v)

Nd(v)(d(v) − 1)
,

and

ĉv =
2(T (v)− tr(u, v))

(N − 1)(d(v)− 1)(d(v) − 2)
,

whence

cv − ĉv =
∑

v∈N>2(u)

4T (v)(1−N) + 2tr(u, v)Nd(v) − 2T (v)d(v)

N(N − 1)d(v)(d(v) − 1)(d(v)− 2)
.

Let v ∈ N2(u). Before removal ofu, v is in T (v) triangles. After removal,v is in 0 triangles, hence the result follows.
One important feature of FAGA is that the produced residual ALCC values will form a nonincreasing sequence. This feature

is summarized in the following theorem.
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Algorithm 2 Fast Adaptive Greedy Algorithm (FAGA -fast_greedy)

1: Number the vertices from1 to N such thatu < v implies d(u) ≤ d(v).
2: S ← ∅;
3: for eachu ∈ V do T (u)← 0;
4: end for
5: for each(u, v) ∈ E do tr(u, v)← 0;
6: end for
7: for u← n to 1 do
8: for each v ∈ N(u) with v < u do
9: for each w ∈ A(u) ∩ A(v) do

10: Increasetr(u, v), tr(v, w) and tr(u,w) by one;
11: IncreaseT (u), T (v) andT (w) by one;
12: Add u to A(v);
13: end for
14: end for
15: end for
16: for i← 1 to k do
17: for eachu ∈ V \ S do
18: ∆C̃u ←

2T (u)
Nd(u)(d(u)−1) ;

19: for eachv ∈ N(v) \ S do
20: if d(v) > 2 then
21: ∆C̃u ← ∆C̃u + 4T (v)(1−N)+2tr(u,v)Nd(v)−2T (v)d(v)

N(N−1)d(v)(d(v)−1)(d(v)−2) ;
22: end if
23: if d(v) = 2 then
24: ∆C̃u ← ∆C̃u + T (v)/N ;
25: end if
26: end for
27: end for
28: umax ← argmaxu∈V \S{∆C̃u};
29: Removeumax from G, addumax to S, and decreaseN by one;
30: for each(v, w) ∈ E andv, w ∈ N(umax) \ S do
31: DecreaseT (v) andT (w) by one;
32: end for
33: end for
34: return S

Theorem 3. The ALCC values of networks after each iteration (Alg. 2, lines 16 – 28) form a non-increasing sequence.

Proof: We first show that in a graphG, there always exists a nodeu such thatC̃u(G) ≤ C(G). Assume otherwise, that
is C̃v(G) > C(G) for all nodev ∈ V . This implies

∑

v∈V C̃v(G) > N × C(G) which contradicts Theorem 2. Thus, the
statement holds true. Finally, the theorem follows becauseat each step we select the nodes that maximally degrades ALCCof
the whole network.

Time-complexity: The first phase takesO(M3/2) as in (Schank and Wagner, 2005). The second phase takes a linear time
in each round and has a total time complexityO(k(N +M)). Thus, the overall complexity isO(M3/2 + k(M +N)). When
k < M1/2, the algorithm has an effective time-complexityO(N3/2), which isN times faster thansimple_greedy.

VII. C LUSTERING AND THE SPREAD OF INFORMATION

In this section, we provide additional evidence for the relationship between the propagation of information in a socialnetwork
and the average network clustering. Since information cannot propagate from one connected component to another, we consider
this relationship when the graphG representing the social network is connected. Thus, we consider connected graphs with
different values of ALCC. We define the relevant models of influence propagation in Section VII-A; then, we demonstrate an
empirical relationship in Section VII-B; next, we provide theoretical evidence in support of this relationship in Section VII-C.

A. Models of influence

To observe the effect of ALCC on influence propagation, we adopted the following two standard models (Kempe et al.,
2003); intuitively, the idea of a model of influence propagation in a network is a way by which nodes can be activated given a
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set of seed nodes. An instance of influence propagation on a graphG follows the independent cascade (IC) model if a weight
can be assigned to each edge such that the propagation probabilities can be computed as follows: once a nodeu first becomes
active, it is given a single chance to activate each currently inactive neighborv with probability proportional to the weight of
the edge(u, v). In the linear threshold (LT) model each network useru has an associated thresholdθ(u) chosen uniformly
from [0, 1] which determines how much influence (the sum of the weights ofincoming edges) is required to activateu. u
becomes active if the total influence from its active neighbors exceeds the thresholdθ(u).

B. Experimental evidence

To test the relationship between influence propagation and clustering empirically, we used a variety of Watts-Strogatzgraphs
(Watts and Strogatz, 1998); a graph generated by this model starts as a ring lattice, defined as follows. First,n circular rings
are constructed: for eachj ∈ {1, . . . , n}, verticesuj

1, . . . , u
j
n and edges(uj

i , u
j
i+1), i = 1, . . . , n− 1, and(uj

n, u
j
1). Next, add

edges(uj
i , u

j+1
i ), for j = 1, . . . , n− 1, and(un

i , u
1
i ), for eachi. Finally, all vertices withink hops of each other are connected

by an edge. For these experiments, we usedn = 100 andk = 3. With probabilityp, each edge in the graph is rewired; that is,
replaced with an edge between two uniformly randomly chosenvertices. By varyingp, one can control the level of clustering
in the network, as shown in Fig. 1. Each graph generated in this manner has the same number of edges.

The expected activation was computed using a single seed node and an IT or LT realization; this computation was averaged
over 1000 trials. When we normalize by the initial value, Fig. 1 shows a remarkable similarity between the normalized ALCC
value and the normalized activations, for both the IC and LT models. Therefore, these results provide evidence supporting a
positive correlation between ALCC and the expected activation of both the IC and LT models of information propagation.

C. Theoretical evidence of relationship between ALCC and influence propagation

In this section, we provide further evidence supporting therelationship between clustering and influence propagation, in the
form of the following proposition, which shows how the probability of activation increases when more neighbors are shared;
with higher ALCC, we may expect a higher fraction of shared neighbors between adjacent nodes.

Proposition 1. Supposes is activated; lett be a neighbor ofs, and supposes, t sharek neighbors. Consider the IC model
with uniform probability1/2 on each edge. Then

Pr ( t becomes activated) ≥ 1− (1/2) · (3/4)k.

Proof: Let A be the event that edge(s, t) exists, and letB be the event that edge(s, t) does not exist, but for a common
neighborn, the edges(s, n), (n, t) exist. For each common neighborn, let An be the event that both edges(s, n), (n, t) exist.
Then

Pr ( t becomes activated) ≥ Pr(A) + Pr(B)

= 1/2 + 1/2 · Pr





⋃

n∈N(s)∩N(t)

An



 .

Notice thatPr(An) = 1/4, and letN(s) ∩N(t) = {n1, . . . , nk}. By the inclusion-exclusion principle, we have that

Pr

(

k
⋃

i=1

Ank

)

=

k
∑

i=1

(

k

i

)

(1/4)i(−1)i+1 = 1− (3/4)k.

Therefore,Pr(A) + Pr(B) = 1− (1/2) · (3/4)k.

VIII. E XPERIMENTAL EVALUATION

We present the empirical results of our proposed algorithmson synthesized and real networks. In Section VIII-A, we
describe our methodology; in Section VIII-B, VIII-C we analyze the efficacy of degrading ACC, LCC, respectively; in Section
VIII-D, we analyze the running time of the algorithms.

A. Methodology

a) Algorithms: We are unaware of any competitive method that specifically minimizes ALCC, so to evaluate our
approaches we compare to the following strategies:

• random_fail: Remove nodes uniformly at random,
• lcc_greedy: Remove nodes in greedy fashion according to highest local clustering coefficient,
• max_degree: Remove nodes in greedy fashion according to highest degree,
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• betweenness: Removes in greedy fashion according to the highest betweenness centrality.
• optimal: For a network with 35 nodes, we were able to compute the optimal solution to CVA by exhaustive enumeration.

Method legends are described in Fig. 4(h).
b) Datasets:We use Erd̋os-Rényi (ER) (Erd̋os and Rényi, 1960), Watts-Strogatz (WS) (Watts and Strogatz, 1998), and

Barabasi-Albert (BA)(Albert and Barabási, 2002) models togenerate synthesized testbeds. These are foundational models which
have been widely used in the literature. We used the following parameter values:N = 10000,M = 49772, p = 0.001 (ER
model);N = 35, p = 0.2 (ER model);N = 15000,M = 44994 (BA model); andN = 10000,M = 200000, with n = 100,
k = 3, andp = 0.3, these parameters are defined in Section VII (WS model).

Real-world traces include Facebook (Viswanath et al., 2009), ArXiv ePrint citation (dataset, 2003), and NetHEPT networks
(Chen et al., 2010). The trace of Facebook has 25,492 users and 464,237 friendship links, NetHEPT has 15,234 authors with
31,376 connections, and ArXiv has 26,197 nodes with 14,484 edges. The parameterk is set to a fraction of the total number of
nodes in each graph. Besides ALCC, we also evaluate how the removal of critical nodes affects the maximum Local Clustering
Coefficient (LCC).

B. Results on Average Clustering Coefficient

In this section, we present results on the efficacy of the various algorithms to lower the ALCC. We observe (1) the performance
of our algorithms in view of other strategies, and more importantly (2) the critical behavior of clustering coefficient when
crucial nodes are removed by different criteria. The empirical results on synthesized and real data are presented in Fig. 4.

As depicted in the subfigures, ALCC values produced by our algorithm fast_greedy are consistently the best (lowest)
values in all test cases, except in the ER network with 35 nodes whereoptimal was able to run. A visualization of
the optimal solution on this network fork = 7 is shown in Fig. 5. In the ER network with 10000 nodes,fast_greedy,
lcc_greedy andsimple_greedymethods quickly destroy clustering as soon as 0.02 fractionof nodes (onfast_greedy
andlcc_greedy) and 0.05 fraction of nodes (onsimple_greedy) are excluded from the networks. Interestingly,max_degree

andbetweennessmethods do not appear much better than the baselinerandom_failuremethod especially forbetweenness.
A possible explanation for this is the independence and equal probability of wiring edges in ER model. Moreover, because
ER model neither generates triadic closures nor forms hubs,the network structure might be easily broken when a few random
but important nodes are removed.

In WS model, we observe the same degrading behavior of ALCC value produced by all methods withfast_greedy
outperforminglcc_greedy andsimple_greedy methods. Also in this model, these three methods outperformed the rest
by a large magnitude. In BA model,fast_greedy still performs best, closely followed bymax_degree andbetweenness
methods. As BA model generates graphs with references givento the power-law distribution (i.e., forming hubs) the performance
of max_degree andbetweenness can be explained.lcc_greedy does not do well in this type of network as it takes
a considerable fraction of total nodes in order to degrade the average clustering coefficient.

In conclusion,fast_greedy is the best approach that consistently discovers nodes thatare most important to the network
clustering. The experiments also suggest thatmax_degree andbetweenness, despite their popularity, might not be ideal
methods to analyze structural vulnerability of complex networks. In addition, these experiments also show that (1) ALCC isn’t
very susceptible to random failures, and (2) network clusters generated by ER, WS and BA can potentially be vulnerable to
targeted attacks as the respective ALCC can quickly be impaired when only a few vertices are removed from the graphs.

In real data, the superior nature offast_greedy becomes more visible as it beats other strategies by a significant gap.
In real traces,max_degree andbetweenness perform similarly whilelcc_greedy andsimple_greedy methods
fluctuate in between.random_failure, unsurprisingly, remains the worst. We observe that even inbig real networks,
fast_greedy performs very well by degrading the ALCC dramatically (nearly 90%, 33% and 55% of ALCC decrement
on ArXiv, NetHEPT and Facebook) as more nodes are excluded from the data. This fact implies that those practical systems,
despite their complex structure and functionality, commonly expose their clustering vulnerability to targeted or adversarial
attacks. Our proposed approachfast_greedy effectively discovers the critical nodes with high impact to those network
structures. The results also demonstrate thatsimple_greedy andlcc_greedy are also good options though they require
long execution time as we show below.

C. Maximum Local Clustering Coefficient

We next examine the maximum local clustering coefficient (max-LCC) of nodes remaining in the residual graphs. This local
measure is meaningful in the sense that a small max-LCC of a network indicates a low level of clustering. Therefore, we
observe how the methods reduce the max LCC of the graphs. The results are reported in Fig. 6. The subfigures indicate that
fast_greedy is really effective in not only degrading ALCC but also the max-LCC of all tested networks. In ER and BA
models,fast_greedy quickly destroys the clustering coefficients at just 0.02% total nodes removed, and only lags behind
lcc_greedy (which was expected to be the leading method) in WS model and Facebook. Furthermore,fast_greedy
appears to be more stable than the others as it does not fluctuate between high and low values. In Facebook data,fast_greedy

quickly degrades max-LCC values from 1 to approximately 0.5. This fact indicates that the resulting Facebook clusters and
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Fig. 4. Average clustering coefficients (lower is better).



13

(a) Critical nodes (b) Residual graph

Fig. 5. The optimal solution (black nodes) on the Erdős-Rényi network with 35 nodes, withk = 7. Notice that the residual graph after removal of the
optimal solution is triangle-free.

structure might not be very robust. In ArXiv and NetHEPT data, all methods are unable to degrade the LCC which demonstrates
that there are a lot of local clusters in these networks.

D. Running Time

The running time of all methods is presented in Fig. 7. As the baseline methods,random_failure andmax_degree do
not require much time for their execution due to their simplenature whereaslcc_greedy, in contrast, requires a considerable
amount of execution time.fast_greedy andbetweenness algorithms on average require fairly similar amounts of time
for their tasks on all networks.simple_greedy, as a pay off for its simple design and implementation, takesa significant
amount of time to finish its tasks (at least 5 times more than that taken bylcc_greedy) and is excluded from the charts
for more visibility.

IX. CONCLUSION

Clustering vulnerability is an important aspect in assessing the robustness of complex networks, as the level of clustering
has significance for a variety of applications, including a salient role in the propagation of information in a social network.
We have shown the discovery of the most important nodes to clustering isNP -complete, and we offer two polynomial-time
heuristics for this identification. Empirical results in comparison with different strategies on synthesized and realnetworks
show that the average clustering coefficient is robust to failure of random nodes and confirm that our suggested algorithm
FAGA (fast_greedy) is effective in analyzing node vulnerability of clustering and is scalable to larger networks.
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