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Abstract Peatland fires and haze events are disasters with national, regional, and
international implications. The phenomena lead to direct damage to local assets, as
well as broader economic and environmental losses. Satellite imagery is still the main
and often the only available source of information for disaster management. In this
article, we test the potential of social media to assist disaster management. To this
end, we compare insights from two datasets: fire hotspots detected via NASA satel-
lite imagery and almost all GPS-stamped tweets from Sumatra Island, Indonesia,
posted during 2014. Sumatra Island is chosen as it regularly experiences a significant
number of haze events, which affect citizens in Indonesia as well as in nearby coun-
tries including Malaysia and Singapore. We analyse temporal correlations between
the datasets and their geo-spatial interdependence. Furthermore, we show how Twit-
ter data reveals changes in users’ behavior during severe haze events. Overall, we
demonstrate that social media are a valuable source of complementary and supple-
mentary information for haze disaster management. Based on our methodology and
findings, an analytics tool to improve peatland fire and haze disaster management by
the Indonesian authorities is under development.
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1 Introduction

Peatland fires and their associated haze events are slow onset but medium impact
disasters. At times the fires occur when several environmental conditions meet, but
most fires are man-made disasters resulting from — predominantly illegal — agricul-
tural practices, e. g., conversion often forests and peatland into palm oil plantations
through slash-and-burn techniques [17]. The impact of these activities span environ-
mental (e. g., accelerated deforestation by up to 62% [23]) and economic losses, but
the associated haze events also seriously affect local residents’ health. When such
fires, in particular peat fires, produce haze, wide areas can be affected within a rel-
atively short period of time. If the haze severity level is low, the Government of In-
donesia advises its citizens to reduce their outdoor activities. If the level is high,
residents are asked to evacuate the affected area, because haze generated by peatland
fires may lead to various health issues [1],[14]. Dense haze, including a case in In-
donesia on October 20, 2015 as shown in the image below reduces the visibility to
less than 100 meters (and in rare instances to less than 20-30 meters) and leads the
closure of airports and schools. Haze is not only a national issue for Indonesia, but
also an international issue, as it affects Singapore and Malaysia.

“Riau extends haze emergency status’’ (Source - Jakarta Post')

In order to respond to a fire or haze event, a disaster management authority needs
fire hotspot information along with (static) baseline information, including an es-
timate of the affected population and data on the available facilities. Fire hotspots
(henceforth referred to as ‘hotspot’” or ‘hotspots’) are identified relatively efficiently
from satellite imagery using a classification algorithm. Due to the limited resources
available to public authorities, more efficient and effective approaches to disaster
management are welcome, including through the generation of new information.

In this article, we investigate the opportunities that social media offer for im-
proved management of peatland fire and haze disasters. Specifically we analyse Twit-
ter as the primary data source and use hotspot and air quality data to further interpret
and verify the results of our analysis. Our objective is not the evaluation of informa-

1http: //www.thejakartapost.com/news/2015/10/20/riau- extends-haze-emergency-status.html
(accessed on Jan 12, 2016)
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Fig. 1: The three islands in Indonesia (Sumatra, Kalimantan, and Papua) with
the largest numbers of hotspots in 2014

tion offered by other channels, such as hotspots identified from satellite imagery, but
the provision of ‘complementary’ situational information. We concentrate our analy-
sis on peatland fires on Sumatra Island as the haze situation in this region is the most
critical in terms of geographic coverage and severity — as explained in Figure 1, and,
in doing so, analyse (almost) all geotagged tweets from Sumatra Island posted during
2014.

We aim to explore two research themes concerning the utility of social media for
haze disaster management.

1. How do peat fires/haze events and social media conversations about haze-related
topics relate to each other? If such a (temporal and geo-spatial) relationship exists,
how can it be described and quantified?

2. How do social media capture situational information on affected populations,
such as mobility patterns, which can be useful in managing disaster response?

The contribution of our work with regard to haze disaster response on Sumatra
Island can be summarized as follows:

1. We find strong temporal and geo-spatial correlations between hotspots and haze-
related conversations on Twitter.

2. We investigate the mobility patterns of haze-affected populations as captured in
social media data and confirm that they reflect movement patterns during haze
situations in the real-world.

These insights can significantly contribute to the prioritisation of haze disaster re-
sponse activities, conducted by national and local public authorities in Indonesia, by
raising real-time awareness of the social impact of the phenomenon, as opposed to
current practice which uses hotspot and population data in isolation.

The rest of this article is structured as follows. In Section 2 we explain related
work. Section 3 discusses the data we use for our analysis, covering both insights and
limitations. Section 4 presents how different online conversations reflect real-world
haze disasters. Section 5 shows what kind of information on population mobility can
be developed from social media with respect to haze disasters. We close this article
with a discussion on research issues in Section 6 and a conclusion in Section 7.
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2 Related Work

We focus on two groups of related work — studies of how social media can be used to
assist disaster management and research about data mining studies on forest fires.

Social Media and Disasters: A vast body of research exists on social media and its
potential reflection of real-world phenomena. We consider the literature that demon-
strates how social media relate to different disasters.

Carley et al. [12] discuss the usage of Twitter for disaster management in In-
donesia. This work makes two important contributions relevant for the current arti-
cle. First, the viability of using Twitter data for disaster management is demonstrated;
second, the paper provides a baseline for Twitter use to support disaster management.

The potential application of social media to disaster and crisis management is
attracting the research community’s attention either as a tool or as a source of data,
e.g., for the creation of crisis maps. Oz and Bisgin [30] made a social-media based re-
search about attribution of responsibility (e.g., how users assign political responsibil-
ity) regarding Flint water crisis. Gao et al. [15] consider social-media-based crowd-
sourced maps with data from external sources as a powerful tool in humanitarian
assistance and disaster relief. Goolsby [16] describes how social media can be used
as crisis management platform to create crisis maps for different agencies. Middle-
ton et al. [28] propose a social media crisis-mapping platform, where real-time crisis
maps are generated based on statistical analysis of tweet streams matched to areas at
risk. Cresci et al. [13] propose a crisis mapping system that overcomes some limi-
tations of other systems: they introduce an SVM-based damage detection approach,
and describe a new geoparsing technique to perform a better geolocation of social
media messages.

Imran et al. [19] provide an overview of existing and proposed methods and sys-
tems to retrieve information about emergencies from social media, such as Crisis-
Tracker [33] and TweetTracker [26]. Furthermore, Imran et al. suggest a platform
to collect human annotations in order to maintain automatic supervised classifiers
for social media messages [20] and describe automatic methods for extracting brief,
self-contained information items from social media, which are relevant to disaster re-
sponse [21]. Abel et al. [7] propose the *Twitcident’, a system for filtering, searching
and analyzing information about real-world incidents or crises. A number of systems
are implemented and deployed for special kinds of disasters: Avvenuti et al. [9][10]
describe the design, implementation and deployment of social media based system
for detection and damage assessment of earthquakes in Italy. The system is able to
detect outbraking seismic events with low occurrences of false positives. Cameron et
al. [11] describe ESA-AWTM - a system deployed for trial by the Australian Gov-
ernment. This tool formalises the usage of Twitter by the Crisis Coordination Center,
replacing an ad-hoc fashion monitoring of social media.

Following studies focus rather on algorithmical aspects of social media for dis-
aster management, rather than on system architecture or implementation. Rogsta-
dius [32] discusses different aspects of possibilities for enhanced disaster situational
awareness using social media. Sakaki et al. [34] present how social media can be
utilised as an early warning system with regard to earthquake events. Krstajic et
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al. [24] show not only how natural disasters and man-made catastrophes can be de-
tected using Twitter, but also how semantic aspects of such events can be represented.
Schulz et al. [36] explore the possibilities of detection of small scale incidents using
microblogs. Mandel et al. [27] made a demographic analysis of online sentiment dur-
ing a hurricane, particularly focusing on the level of concern disaggregated by gender.
Morstatter et al. [29] address the problem of finding (non-geotagged) tweets that orig-
inate from a crisis region. Zhang and Vucetic [38] propose an improved method to
identify disaster-related tweets using a semi-supervised approach with an unlabeled
corpus of tweets.

Disaster damage assessment is another important topic in context of disaster man-
agement: Kryvasheyeu et al. [25] examine the online activity of different areas before,
during and after Hurricane Sandy. They demonstrate that per-capita Twitter activity
strongly correlates with the per-capita economic damage inflicted by the hurricane.

Forest Fires/Haze and Data Mining: The following works contribute to the forest
fires issue, applying data mining methods to different aspects of this emergency. We
do not address in detail the topic of forest fire detection using satellite imagery as this
topic is not in focus of current work, but we note that usage of satellite imagery for
forest fires detection is pretty well studied; e.g., Jaiswal et al. [22] describe how forest
fire risk zones can be mapped using satellite imagery and geographic information
systems.

A number of studies present novel data mining methods for haze-related issues.
Sakr et al. [35] presents a model to predict forest fires risks using data on previous
weather conditions with the best results having been achieved using support vector
machines and a Gaussian kernel function. Iliadis [18] introduce a decision support
system for long-term forest fire risk estimation, based on fuzzy algebra. The system
was applied in Greece but, according to authors, can be used on a global basis. Si-
tanggang and Ismail [37] suggest a classification model for hotspot occurrences using
a decision tree model C4.5 algorithm, which achieves an accuracy of 63%. The forest
fire data from the Rokan Hilir district on Sumatra Island, Indonesia was used in that
research.

Prasetyo et al. [31] used Twitter and Foursquare data to analyze public percep-
tions of haze in Singapore. In particular, their analysis showed that (1) social media
users focus significantly on the haze problem and (2) the problem has a substantial
emotional and behavioral impact. The UN presented the first feasibility study [5] for
supporting peat fire and haze disaster management using social media.

Overall, there are a lot of publications describing different aspects of social media
as an assistance tool for disaster management at different scales. Some researchers
applied data analysis and mining techniques to forest and peatland fires data.

In this article, we concentrate on peatland fires in Indonesia. This disaster occurs
periodically and has a huge impact on environment and lives of millions of people. In
contrast to previous works, we consider the dataset of (almost) all geotagged tweets
and all hotspots during one year on Sumatra Island. We created four rich taxonomies
for identification of different topics related to haze and peatland fires. Furthermore,
one of the main focuses of our work is to estimate whether social media can be
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used for estimation of users’ behaviour w.r.t. Twitter and mobility. To the best of the
authors’ knowledge, those aspects were not covered in previous works.

3 Data Set

We use two main datasets: twitter data from Sumatra Island and hotspots on Sumatra
Island detected by National Aeronautics and Space Administration (NASA) satellites.
In this section, we describe the data, its basic characteristics and its limitations.

3.1 Fire Hotspots and Twitter Data

Fire Hotspots in Sumatra in 2014: We use hotspot information that is first identified
by the NASA from imagery, captured by Terra and Aqua satellites[4], and further
refined and augmented by GLosAL Forest Watch? [3]. Based on consultations with and
recommendations by a domain expert from the UN Office for REDD+ Coordination
in Indonesia (UNORCID)?, we filter hotspots classified as ‘peatland hotspot’ and
‘high confidence-level’ between two confidence levels (i.e., high and low) and use
7,892 hotspots for our analyses after the filtering process, among the 38,723 hotspots
in Sumatra in 2014 discovered by GLoBAL ForesT WatcH, cf. Table 1.

Table 1: Size of hotspot and Twitter datasets

Fire Hotspot Twitter
Area Peatfire Peatfire &
Al only  High Cont. Tweet
Sumatra Island || 38,723 27,060 7,892 | 29,528,786
Riau Province 21,563 19,191 5,463 3,509,849

(Almost) All GPS-stamped tweets posted in Sumatra during 2014: Indonesia has
a large number of Twitter users, which stands at approximately 12 million in 2014 [2].
Originally we attempt to collect the entire GPS-stamped tweets posted within Suma-
tra Island between January 1 and December 31, 2014 but for unexpected technical
reasons, we failed to collect tweets during two time frames:

— about half of all tweets posted during January 2014

— no tweets collected between April 16 and 30 2014
Overall, we analyse more than 29 million tweets with exact locational information,
which includes longitude and latitude. The tweets are posted by 575,295 users, equiv-
alent to 1% of the population of Sumatra Island.

2http: //www.globalforestwatch.org

3UN REDD Programme is United Nations Collaboration for Reducing Emissions from Deforestation and Forest
Degradation in Developing Countries
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Fig. 2: Basic characteristics of hotspot and tweet datasets - (a) Monthly hotspots,
by province, on Sumatra in 2014, (b) weekly hotspots on Sumatra in 2014, (c)
daily hotspots on Sumatra island and in Riau province in March 2014, and (d)
monthly tweets by province of Sumatra in 2014 (a) and (d) are best viewed in
color)

3.2 Basic characteristics

Background: Sumatra Island is an area heavily affected by peatland fire and haze
events, as shown in Figure 1. The central and southern parts of the island experience
more haze than other areas and in particular, Riau province is recognised as the most
haze prone area, not only based on the total yearly hotspots, as shown in Figure 2(a),
but also based on the number of haze situations reported in the media.

Hotspots: Among other interesting observations, about 5,500 high confidence peat
fire hotspots are detected in Riau Province during 2014, while the number of high
confidence peat fire hotspots across Sumatra stands at 7,892 in 2014, which means
almost 70% of high confidence peat fires take place on less than 19% of the island
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area, namely Riau province. This leads us to a further investigation, namely of the
effects of haze on the behaviors of people who live in Riau province, the results of
which will be discussed in Section 5. It is worth mentioning that there are two main
fire periods on Sumatra Island in 2014: between February and March, and between
June and November as shown in Figures 2(a) and 2(b). In particular, Figure 2(b), the
weekly hotspot dynamics shows a similar pattern to the monthly pattern provided in
Figure 2(a). However, we can find it is similar to monthly dynamics, but there are
some less severely affected weeks in June, July and October and strong irregularity
in different scales. Moreover, when we have a close look at hotspots dynamic in
March, the worst month in 2014 (c.f. Figure 2(c), we find that the hotspots almost
disappeared after evacuation announcement but then emerged again after one week.

Tweets: Comparing Figure 2(d) and Figure 2(a) highlight that the dynamics pattern
from Twitter use in general is different from the patterns of hotspots. The usage of
Twitter on Sumatra Island decreases towards the end of 2014, and the distribution of
tweets among the different provinces remains stable during the year.

3.3 Data limitations

This section briefly elaborates four limitations of social media data, the first two
concern inherent limitations of social media and the other two concern the limitations
of our data in particular. First, the digital divide may introduce a limitation, in that
social media data connected to urban areas are considerably denser compared with
rural areas and in that the cost of smart phones limits the participation of less affluent
cohorts of society. Secondly, there may be some bias connected to the characteristics
of users of social media in that we largely "hear’ the opinions of younger or more
extrovert users. Thirdly, the number of unique users from our dataset (about 500,000
users) equates to approximately 1% of the entire population of Sumatra island; it thus
may also limit our ability to abstract or generalise based on our findings. Fourthly,
due to technical issues, our data are incomplete, specifically in January and April
2014.

It is, however, worth noting that a key objective of this work is to test the potential
of social media as a complementary data source which can be used to inform human-
itarian efforts. The aim is not to produce statistics solely from social media but to
sense in near real-time signals on the behaviors of affected populations, which could
better inform decision-making and improve the targeting of humanitarian response.
We expect that the missing data will not affect the validity of our analysis because
the missing periods are predominantly outside of the observed haze seasons.

4 Temporal and spatial analysis

In this section, we investigate the temporal and spatial characteristics of tweets related
to haze and for that, prepare four different datasets by developing four taxonomies re-
lated to haze to identify four different haze-related topics, i.e., haze-general, haze-hashtag,
haze-impact, and haze-health. We extend a simple taxonomy used for a feasibility
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Table 2: Four types of conversations related to peat fires and haze in 2014 on
Sumatra Island and filtering rules for the identification of corresponding tweets
- haze—general (43), haze-hashtags (5), haze-health (39), and haze-impact (39)

Conversations about forest and peat fires and haze, detected primarily by the keywords —
9,707 tweets (e.g., “When the haze problem will be solved?”):
( (bencanal| |badail|polusi| |parah||teball|kabut) && (asapl||kabut) )

‘ E OR ( (awas| |berbahayal|darurat]| |pekat]||lebat) && (asapl||kabut) )

s g OR ( kabut asap||titik api||sumber api||titik panas||polusi udara]| |haze )

2 g OR ( forest fire ) OR ( (kerusakan||pembalakan| |pembukaan| |kebakaran
| Ipenggundulan| |penebangan) && (hutan]|ladang]||lahan]| |gambut) )

% | Conversations which contain one of identified hashtags — 3,024 tweets

!ﬂ %— (e.g., “Let’s participate in #melawanasap movement.”):

g « ( #saveriau| |#prayforriau| |#melawanasap]| |#prayforasap| |#hentikanasap )
Conversations about happenings in a negative way due to haze, such as flight delay
or school closing — 6,994 tweets (e.g., “Day #3 off because of Haze.”):

| ﬁ ( (tutup| |batall|dibatalkan| |tertundal |delay]| |cancel] |ditutup)

% é && (penerbangan]| |bandara) ) OR ( jarak pandang )

L A OR ( (sekolah| |kampus]| |kuliah) && (tutup||ditutup]||libur]||diliburkan) )
OR ( (ekonomi| |dampak]| |akibat||merugi]| |lumpuh]| |resiko) && (asap]| |kabut) )
Conversations with keywords indicating haze-related or derivable diseases —

46,241 tweets (e.g., Welcome to Pekanbaru; do not forget to wear mask!”):
o ( (infeksi||sesak) && (pernapasan]| |napas| |pernafasan) )

b ﬁ OR ( (iritasi||radang) && (matal||kulit||enggorokan]| |hidung] |paru) )

E E OR ( batuk||pusing||muall||ispal |masker||asmal||asthmal| |paru-paru )
OR ( (asapl||kabut) && (kesehatan]||sehat||pernafasan]||hamil]| |anak
| lorang tua) ) OR ( mata && (pedih||perih]||sakit) )

study [5] in this work in order to capture broader contexts related to haze crises. Over-
all, we establish 126 filtering rules, combinations of Indonesian words and boolean
operators as presented in Table 2, which identify 64,383 tweets posted by 33,127
users out of 29,528,786 tweets across four topics, while allowing for overlapping
topics. For ease of understanding, even though we use both | | and OR in different
places, both operators have one meaning, namely OR. For instance, the following rule
will collect a tweet if its content contains both A and C or both B and C, [Rule] - “(
A |l B) & C”.

4.1 Temporal Dynamics of Tweet Topics and Hotspots

Users, inherently, engage in more intensive discussions on haze not only offline but
also online, when the haze situation deteriorates, which is quantitatively measured by
the number of hotspots.

In order to visualize any correlation between two quantities of haze-relevant con-
versations and haze situations, we present the weekly numbers of tweets from four
datasets as well as the number of hotspots on Sumatra island in Figure 3. Although
our data are incomplete in January and April due to technical issues, as explained in
the previous section, the figure shows that Twitter users respond to haze events on the
ground by discussing on social media the four topics of interest.
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Table 3: Values of correlation coefficients between the weekly number of
hotspots and the number of tweets on Sumatra Island and in Riau Province

Arca haze- haze- haze- haze-
general hashtag impact health

Sumatra 0.89 0.71 0.83 0.79

Riau 0.89 0.72 0.85 0.91

To easily quantify such correlations, we calculate Pearson’s correlation between
tweet dynamics and hotspot dynamics in Sumatra and it reveals strong correlation co-
efficient values as shown in Table 3. Among the four conversation topics, haze-general
has the strongest coefficient. When we conduct the same calculation with tweets and
hotspots in Riau, it also shows strong correlation coefficients but in this instance
haze-health 1S strongest, which is understandable because Riau is one of the most
haze-affected provinces in Sumatra island.

The high values of correlation coefficients confirm that four identified conversa-
tions are relevant for haze problems. This is a confirmation of relevancy of chosen
taxonomies, Table 2.

3000
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Haze-General
Haze-Hashtag
Haze-Impact

Haze-Health
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Number of
Tweets
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Fig. 3: Correlation between the weekly number of hotspots and the weekly con-
versations about different topics on Sumatra Island

In Figure 4, per topic we plot weekly tweet volume and hotspot volume in = and
y axes, respectively, while all y axes are presented in a logarithm scale. As already
shown in Figure 3 and Table 3, we find positive correlations from four subfigures
but confirm an interesting phenomenon that people discuss the studied topics except
haze-hashtag during haze-free periods. The conversations classified by haze-hashtag
happened only during haze periods. This behaviour is explained by the observation
that specific hashtags are commonly used in connection to a specific event.

4.2 Spatial Characteristics of Different Topical Conversations

This section discusses the spatial relationships between hotspots and tweets. For in-
stance, if one can identify hotspots (not areas) from social media, it would be useful
for the prioritisation of disaster response and humanitarian action during haze disas-
ters. It is still challenging to understand to which hotspot a user refers in a tweet for
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Fig. 4: Number of detected hotspots per week vs. number of conversations (log-
scaled)

many reasons. We investigate spatial characteristics using a simple mapping process
based on the distance between the position of a tweet and a hotspot. This still allows
for interesting insights on spatial characteristics.

We start with an analysis of the corresponding or nearest hotspot of each tweet.
The users usually discuss haze and its derived problems such as impact, rather than
hotspots themselves, as hotspots exist far away and are invisible. However, those
hotspots are the origin of the problem. Since people who live closer to a hotspot will
be affected by haze than ones who live farther, we use a simple model that consid-
ers the distance from tweets to their nearest hotspot and analyse the corresponding
or nearest hotspot of each tweet. Let us say that, given a hotspot n, its popularity
popularity (h) denotes the number of tweets correspondent to n when the hotspot and
tweets are identified and posted at the same day, respectively.
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Fig. 5: Popularity distribution of hotspots considering different taxonomies

Figure 5 shows the frequency of popularity (87) where u#/ is a set of hotspots satis-
fying popularity (n) > 1.The figure shows that (a) there are highly referenced hotspots
from nhaze-general and haze-hashtag, such as 700-800 tweets per hotspot in some in-
stances, while many other hotspots are referred to by only a small number of tweets
from the two datasets, and (b) haze-impact and haze-health do not display as skewed
distributions as the other two datasets but they still contain such characteristics.

Such an analysis is useful for a disaster management, particularly by helping
prioritise hotspots based on an understanding on which hotspots are more discussed
by affected people.

In the following, we ground our exploration in two sets of cascading research
questions.
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Fig. 6: Probability Density Functions of the distance from conversations of given
types to the nearest relevant hotspots

(1) What insights can be generated when we observe the locations of haze-related
tweets? What is the likelihood of hotspots nearby when we observe such tweets
by their known locations?

For every tweet from the entire dataset, regardless of its haze-topic, we calculate the
shortest distance between it and its corresponding (nearest) hotspot from the same
day. We present its empirical probability density function of the whole distance val-
ues with straight lines in Figure 6. This is a basis from which to determine whether
another distance distribution from a haze-specific topic has similar or different char-
acteristics. Then we conduct the same process for each of the four haze datasets,
represented with dotted lines in the figure.

The two distributions from haze-general and haze-hashtag are significantly dif-
ferent from the ones from haze-impact and haze-health, while the latter two distribu-
tions are relatively similar to the distance distribution from the entire data. Notable
spikes are present in Figure 6(a) around x=100km. These imply that haze-hashtag
and haze-general are likely posted with relatively close proximity, of up to 100km, to
hotspots as local issues that attract the attention of populations living near hotspots,
but haze-impact and nhaze-health are topics of relevance to many residents across
Sumatra island. Also, a close look at the four subject-matter distributions, comparing
them with the global distribution, highlights that naze-hashtag is the topic with the
closest proximity to real world hotspots, followed by haze-general, haze-impact, and
haze-health in a decreasing order, getting toward general topics.

(2) What insights can be generated when we know the locations of hotspots?
Could we guess what topics would be more likely to be discussed nearby?

For this, on a given day, for every hotspot, we identify its corresponding tweet for
haze-general, haze-hashtag, haze-impact, OI' haze-health by 1dent1fy1ng the nearest



14 Mark Kibanov et al.

S ?
- ---- haze-general ® ---- haze-hashtag
— Null Model © — Null Model
? 2
o
>% | >°
B £
8 aY
2 g3
S, o%
&% | &
3 T
wn o
9 |
x
N
o - RN o d
; T T T T T ) ; T T ’
0 200 400 600 800 1000 1200 0 500 1000 1500
Distance (in km) Distance (in km)
(a) haze—-general (b) haze-hashtag
?
o w
. | ---- haze-impact . ---- haze-health
o | —— Null Model @ —— Null Model
7 1 —
&
1 2%
g 3 g4
Qe Qa
29 e
a % as
9
@ X
o 2]
9
x
~N
o - J o -
; T T T ) ; T T T T T )
0 200 400 600 800 0 50 100 150 200 250 300
Distance (in km) Distance (in km)
(c) haze-impact (d) haze-health

Fig. 7: Probability Density Functions of the distance from relevant hotspots to
the nearest conversations of given types

tweet. We present the distance distribution between each hotspot and corresponding
tweet along with null models in Figure 7 presented in Probability Density Functions.
Note that this differs from the previous section where we investigated, given a tweet,
how far it is located to its nearest hotspot.

As a null model for a haze-specific topic (for instance haze-genera1), for each
date we randomly select a number of tweets, of the same magnitude as the size of the
haze-specific topic compared to the total tweets posted at the same date. For instance,
if n tweets from given category (e. g.,naze-general) and m hotspots were detected
on a given day, we choose n random tweets 1" from the whole dataset and compute
distances from the hotspots to the nearest tweets from 7. The final null model for a
topic is built from multiple random processes (1,000 times). Numbers of tweets of
each category is different on different days, so each haze-specific topic may have its
own null model.
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Table 4: Parameters of probability distribution of the distance from hotspots to
the nearest conversations of given types

Average Median St.Dev.
Real Null Real Null Real Null
Data | Model Data | Model Data | Model

haze-general 77.1 109.2 51.5 87.5 81.5 88.4
haze-hashtag 159.3 161.6 | 111.8 118.7 | 111.8 144.7
haze-impact 104.8 121.4 85.6 106.9 88.3 90.9
haze-health 59.5 61.7 55.0 61.1 349 32.7

As expected from the previous two figures, the four distributions from the four
different topic datasets are dissimilar. In a general sense, for all haze-specific topics
(possibly except haze-general), the real distribution and the distribution from its null
model are generally similar to one another. This implies that the creation of a hotspot
is not a trigger for haze-related discussions, regardless of its geographical location.
A detailed look at the distributions, however, along with a reexamination of Table
4 showing mean, median and standard deviation values, reveals a set of insights,
including (a) the increased likelihood of tweets on topics including haze-general and
haze-impact closer to a hotspot compared to their null models and (b) the greater
density of tweet locations on haze-hashtag of a given hotspot, compared to a null
model.

It is worth noting that the two research questions and their results we discuss
in Section 4.2 are complement each other and useful in different aspects in disaster
management. First, we showed that haze-general Or haze-hashtag conversations can
be indication of a nearby hotspot. Health and haze impact issues are discussed all
over Sumatra Island, not necessary near hotspots. In the second question, we tried to
identify relevant tweets near the hotspots. There are only few “popular’ hotspots with
many tweets near them. The reason may be that many hotspots are detected in rural
areas.

5 Change of Mobility Analysis

Peat fires and haze incidents have an impact on people’s behaviour, especially their
mobility patterns. Some residents move to haze-free areas, while others stay at home
but limit their outdoor activities. In rare cases, the government advises an evacuation
due to severe haze and the need to protect affected and vulnerable populations. In this
section, we investigate mobility patterns, which is of practical importance as often
this information but is not available in a (near) real-time fashion which would be
preferable for disaster management. We tackle this by looking at the spatial-temporal
information available from social media and investigate how patterns of mobility
artuculated by social media can be quantified. For this, we analyse all the tweets with
GPS information posted by users who spend most of their time in Riau Province, one
of the most haze-affected regions, as explained by Figure 2(a).
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5.1 Mobility in General

For this part of the study we first classify all weeks in 2014 into three categories
based on the weekly number of hotspots in Sumatra as shown in Table 5, with the
exception of weeks which see large population movements such as over new year,
school holidays, and religious celebrations. Then we add a special week, W, during
which an evacuation was advised by a local government (the Week of March 13,
2014). This classification is easily extended to the level of users, WX Wk WS,
and WF, by only examining a week when the number of tweets during the week
posted by User v > a threshold 7 € N. We use 7 = 4, but when using different
threshold values, we have similar results.

Table 5: Four types of weeks by the number of weekly hotspots (#w.h.) in
Sumatra

[[ Description [ Condition | Week
WhE no-haze #w.h.{100 2, 18-24, 33-36, 43, 46-51
wH haze 100j#w.h. ;400 5,6, 12,3742, 44,45
W sH severe-haze 400;#w.h. 7-10, 11, 13
WE evacuation — 11

Now we define four notations as presented in Table 6 with specific reference to
all users %, §v, DwLw2) and RG(wl,w2)

Table 6: Four notations to analyse mobility patterns

CENTROID (average latitude and
cy average longitude) of all GPS-stamped
tweets posted by User u in the Week w

Euclidean DISTANCE between

D(wl ,w2)
“ two centroids, C¥! and C%2
qu SPREAD, the average distance between C7 and
v tweets posted by u in Week w
Rg(wlw?) RELATIVE SPREAD between two weeks
u

calculated by S¥2 / Swt

(1) Mobility Patterns by Situation (Analysing DISTANCE)

During a slow onset disaster situation, an affected person can change her or his mo-
bility pattern. The individual has two options to (significantly) increase her or his
movements due to an evacuation or to (significantly) decrease her or his mobility by
staying at home. In order to quantify changes in mobility, we calculate the distribu-
tions of DISTANCE D{”"*? when wy € WY and w2 € {WNH WH WSH WE}
as shown in Figure 8.
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Fig. 8: Distributions of the numbers of users classified by the distance between
two centroid positions per situation

Figure 8(a) shows the overall distriburion of D{""""? using Cumulative Density

Functions (CDFs) for three cases except w2 € W, Overall people tend to move
further during a severe haze period, while mobility patterns during periods of (light)
haze and no haze are very similar, as implied by the observation that the two distri-
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butions, WNH and WH | are similar to each other while the distribution for W5# is
stretched toward the x-axis in the positive direction.

Considering smaller order mobility of up to 10km, shown in Figure 8(b), we see
that during the haze free weeks (w2 € W) residents make more short-distance
movements than during the weeks with haze, w2 € {WH WSH},

From the tails of the distance distributions in Figure 8(c), an investigation of long
distance movement patterns shows a tendency that some people significantly increase
their mobility by hundreds of kilometers during evacuation periods and severe haze
w2 € {WSH WE} while there is no significant difference between the (light) haze
and no haze periods, w2 € {WNH W},

(2) Mobility Reduction by Situation (Analysing DISTANCE and RELATIVE SPREAD)

Now we focus on the reduction of mobility. Examining a week from among haze-
free weeks (say wl € WNHY we interpret that a user (say u) reduces her or his
mobility in another week (say w2) when uw’s RELATIVE SPREAD is smaller than 1
or RS{“"*? < 1.In this article, we specifically say that u does reduce her or his
mobility if RS(“1%2) < V3 which means she or he reduced her or his SPREAD more

than three times *.

Share of Users who extremely reduce their mobility

A B Users who moved not further than 50 km
@ Users who moved between 50km and 500km
O Users who moved further than 500km

0.8

0.2
1

0.0

No Haze Haze Severe Haze Evacuation

Fig. 9: Proportions of users who reduce mobility compared to no-haze weeks
with respect to haze situation and the distance people moved away

Additionally, the information on where people currently reside is important to
understand movement patterns. For instance, during a period with severe haze, people

4We tried different threshold values (e. g., /5), but the results were similar.
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who stay in an affected area may display a different pattern of mobility reduction
when compared to people who have already evacuated from the area.

Figure 9 summarises people’s mobility behavior changes given two different
weeks in different circumstances, classified by DISTANCE DWLw2) and our haze/non-
haze scenarios. Of note, the baseline weeks remain as the haze-free week scenario
(.e.,wl e WNH ). In other words, we measure, for a given user, to what extent she
reduces her mobility in a haze-free week, a haze week and a severe haze week, com-
pared to a baseline haze-free week. For instance, the very first bar shows that about
20% of users, out of the users who move less than 50km in two haze-free weeks,
reduce their mobility, although their mobility patterns are studied in two haze-free
weeks. It means that overall about 20% of users exhibit their mobility patterns within
a wide range of variation, even when they still remain in a city (e.g. within a 50km
radius).

This figure shows a couple of interesting points. First, considering people who
do not move far from their previous location, the probability that they noticeably de-
crease their mobility (i.e. by a factor of three) is higher during severe haze weeks
and evacuation periods (about 25% and 27%, respectively) than during haze free
and moderate haze weeks (about 21%). A similar result will be discussed in Sec-
tion 5.2-(2). Second, people that move far away, similar to the above, also reduce
their mobility in the haze and evacuation periods (about 51.4% and 50.6%, respec-
tively) compared to the no haze or moderate haze periods (about 38-39%) but the
proportion is much larger. The above may imply that although some people move far
away (e.g., more than 500km), expecting fresh air, their movement patterns in their
new location are decreased. One possible explanation is that moving to an new area
naturally reduces mobility due to the unfamiliarity of the surroundings.

5.2 Mobility Patterns with Ground-truth Situational Data in Riau

The importance of this section is based on a close interpretation of mobility-related
information revealed from social media and real-world situations including air qual-
ity, local context such as infrastructure-based connectivity, and people’s custom be-
haviors, to qualitatively assess the potential of social media as a complementary data
source. With this purpose, we analyse mobility patterns, taking into account the ad-
ministrative boundaries in Riau province, of a set of users (838 users) whose home
locations are identified as Pekanbaru, the capital city of Riau province and the city
with the largest populations in Riau province’ , as well as their tweets (109,096 GPS-
stamped tweets).

Riau consists of 12 cities and regencies, each of which is identified by a 4-digit
post code; a regency or a city consists of sub-districts. For a detailed study, in this
section, we limit the timespan to include February 26 and March 23, which is exactly
when the information on air quality, officially published by the Indonesian National
Board for Disaster Management [6], is available®. Based on the air quality informa-

SIndonesian Central Bureau of Statistics
http://riau.bps.go.id/linkTabelStatis/view/1d/210
6http ://www.menlh.go.id/DATA/ispu.riau.PDF
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Table 7: Air quality of different regencies in Pekanbaru between February 26
and March 23

Postal | February March

Code |26 (27|28 | 1[2|3|4|5|6|7|8|9|10|11|12|13|14|15|16| 17| 18| 19|20 21|22 |23
1401 | - |- |- |-|-|-|=-|-1-1-/-1-1-/-/-|-1-1-1-/-1-1-/-1-/-1]-
1402 | - |- |- |-|-|-|-|-1-1-|-1-]-
1403 | - |- |- |-|-|-|-|-|-1-|-1-
1404 | —
1405 | —
1406 | —
1407 | —
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Fig. 10: Map of Riau province with postal codes

tion, each day in each regency (identified by 4-digit post code) can be associated with
one of the classes of air quality: {‘G’reen, ‘BL’ue, ‘Y’ellow, ‘R’ed, ‘B’lack}, where
‘G’reen means the best air quality, and ‘B’lack signifies the worst air quality. Table 7
shows daily air quality in 12 different regencies between February 26 and March 23.
Figure 10 shows the locations of those regencies.

(1) Diversity of Users’ Mobility

First, we try to estimate the overall mobility of citizens of Pekanbaru, the capital
of Riau Province. Table 8 consists of three parts. The header contains the information
about air quality in Pekanbaru. The second part, Table 8[1], contains daily numbers
of regencies that citizens of Pekanbaru visit. The third part, Table 8[2], shows how
users move inside of different regencies — particularly, how many sud-districts were
visited in each regency or city. Figure 10 shows the locations of the regencies in Riau
Province.

We use the number of cities and regencies visited by them as a measure of their
movement diversity. Table 8[1] shows how many different cities and sub-districts in-
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Table 8: Distribution of regencies and sub-districts, visited by Pekanbaru resi-
dents between Feb 26 and Mar 23 (best viewed in color):

[1] (a-b) Number of regencies and cities visited by Pekanbaru citizens out-
side (a) and inside (b) Riau

[2] Number of sub-districts visited by Pekanbaru residents in each regency

February é
Date  156]27]28 8 910 11 19] |2t
Air Quality
(Pekanbaru) e © ©
(atb) [6]5]7 61233544
m| @ [2[2[1 2]0]0[0[T]0]1
(b) 4[13]6 41233 [4]4]3
1401 |1
1402 |1 1
1403
1404 1 I {1]1
1405 2/ 1[|2]1]1]1|1
2] 1406 [ 1[2]1 (2 11 {12 1 121581 1 2 1|1
1407 1[1]1 1 I721] 4
1408 I[1]1]1 1 1|12/ 1| 1] 1[T1]1
1409 1
1410
1471 [3[45[5]2]4[4]2[2|2]4|3[2 2|23 4,4 (3 [3[2[4[4]3]3]3
1408 1 1

side and outside of Riau were visited by those users. The diversity of visited regencies
is consistent most of the time, except during the period following an evacuation rec-
ommendation by the local government. In that period users visit many more areas,
possibly trying to escape the haze. This type of information, namely whether citizens
listen to and act on evacuation advice, is not currently captured by the government in
a real-time manner.

(2) Mobility Behaviors of Pekanbaru Citizens

Next, we demonstrate how social media enables us to recognise the behavioral
patterns of users. We use air quality data and other information to try to interpret the
identified patterns. This enables us find different insights in social media data. Table
8[2] shows the daily number of sub-districts that Pekanbaru residents visit, based on
tweet locational information. For instance, no one who live in Pekanbaru tweets (or
visits) in regency 1410 during the period of the study.

- ‘Moving to Areas with Cleaner Air’: During the severe haze situation in Pekanbaru,
from March 8 till March 15, users tend to visit regencies in the South (1401, 1402, 1403)
and the West (1406, 1407). Southern and western regencies had better air quality than
other regencies in Riau, according to information from the media. We also observe
more activity in the regency 1408 although the air quality in 1408 is similarly bad to
that of Pekanbaru. An investigation confirms that they were present only on the main
road of Sumatra island in 1408 which connects to western regencies.

- ‘Avoiding Areas with Bad Air Quality’: The citizens of Pekanbaru avoided visiting
the regency 1405 until the air quality improved. Another example of how people avoid
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areas affected by haze are the regencies 1409 and 1473. These regencies were affected
by haze during the recommended evacuation period, and users also avoid these areas
during that period of time.
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Fig. 11: Number of users who visit one, two, three, or over four sub-districts per
day in Pekanbaru

- ‘Limited Mobility in Pekanbaru’: According to the Table 8[2], regency 1471 has
not shown an outstanding dynamical change of the number of sub-districts, while a
tendency is observed that people limited mobility before and during the severe haze
period. For a closer look, we count the number of users who posted in one, two, three,
and more than four sub-districts in regency 1471. In Figure 11, we find a tendency
that the number of users who visit one sub-district per day increases and the number
of users who visit two more sub-districts slightly decreases during the severe haze
period, and especially after the evacuation order.

5.3 Additional Information related to Mobility Patterns

In this section, we study mobility patterns by analyzing tweets posted by the users
used in previous section, from two different angles, what (possibly) people say and
what (possibly) people do. Concerning what people say, we collect and analyze the
dynamics of tweets over time mentioning two words, "home’ (rumah) and ’evacua-
tion’ (evakuasi, ngungsi). Regarding what people do, we identify two lists of tweets
posted (i) by Foursquare’ and (ii) using web browsers, instead of via a mobile appli-
cation, which is part of the meta-information of a tweet, and present its dynamics in
Figure 12. Again similar to the results discussed in Section 5, this does not aim to
quantify the exact number of people who stay in or evacuate from affected areas but
aims to understand whether this information could show any tendency or behaviour
change.

First, two thin lines, depicted in red, show what people say. There are peaks
around March 13 when the government advised residents to evacuate. The two thicker

7http: //foursquare.com
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Fig. 12: Numbers of tweets that (a) mention ‘home’ or ‘evacuation’ or (b) are
posted using web browsers or from FoursqQuare

lines, depicted in black, signify behaviour. The number of tweets posted by regular
web browsers clearly increases around March 13, while the number of Foursquare
check-in around the same period of time slightly decreases. We would be able to ref-
erence this information to better understand haze-affected residents’ behaviors and
to complement existing and new types of information for disaster response, but this
should be further validated and evaluated which we leave for future research.

6 Discussion - Applications, Challenges, and Collaborations

We have mined and analysed social media to test its potential to address a real-world
problem, namely the need to provide (near) real-time situational information on peat-
land fire and haze disasters in Indonesia, as complementary information. Meanwhile
we validated our approach and methods with secondary information, such as quanti-
tative data, namely hotspot and air quality, contextual information, including typical
evacuation behaviors led by geographical characteristics, and qualitative discussions,
namely consultations with officials involved in humanitarian activities in Indonesia,
despite limited access to disaster-related data due to the nature of haze disasters. In
this chapter, we discuss applications and challenges, by examining other information
needs in local and global contexts, briefly explaining a platform we are building for
policy-makers based on the results of this analysis, and reviewing research challenges
for the attention of the research community.

(1) Information Needs

Humanitarian action can be characterised by three stages, before , during and after an
event, where the perore stage involves disaster preparedness and the development of
early warning systems, the quring stage deals with humanitarian needs during a par-
ticular disaster, and the arter stage is related to disaster recovery [8]. Even though
data and information exist and are commonly used throughout all states® such as a
population distribution as baseline information, different sets of data and information

8For instance, JASC Guidelines Common Operational Datasets (CODs) in Disaster Preparedness and Response

(Visit - www . humanitarianresponse.info)
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are required at each stage. Recently social media has been investigated in both an
active mode as a tool for collective knowledge, for instance to map affected areas,
assess damage and disseminate information quickly, and in a passive mode such as
mining tweets in a humanitarian theatre, for instance to improve an early warning
system and better understand supply and demand, as we mentioned in Section 2.

Moreover, last year the United Nations adopted the Sendai Framework®, a non-
binding agreement for Disaster Risk Reduction as the successor of the Hyogo Frame-
work, to better prepare for different natural disasters by providing global guidelines.
This framework encourages national disaster management authorities to prioritise na-
tional policy agendas for understanding disaster risks and to strengthen disaster risk
governance. But some countries, including some developing countries, are experi-
encing difficulties in implementing aspects of the guidelines, due in part to missing
information, some of which, our and other research suggests to extract or mine from
new digital data sources including social media.

(2) A system in progress

Throughout this article we see that social media can provide useful information, such
as a better understand of residents’ behavioral changes over time. Section 4 addresses
opportunities for before , during and arter haze disasters, and Section 5 shows op-
portunities for auring and arter haze disasters. We consulted with officials who have
been involved in haze disasters who confirmed that this type of information will be
useful for disaster management, but its utility requires further clarification and has to
be improved upon taking into account inputs from local and national governments as
well as UN agencies. Pulse Lab Jakarta is currently building a system to collect, ana-
lyze and visualize relevant data and information including from social media, which
was discussed in this article, not only for providing complementary and supplemen-
tary information about haze and peatland fires, but also for assisting in the coordina-
tion process between different public bodies, who maintain different datasets relevant
to disaster response.

(3) A common research agenda

In this article, we presented the results of analysis connected to a specific disaster,
namely haze on the scale witnessed in Indonesia, but from limited angles, for example
conversations and mobility patterns, while analyzing GPS-stamped social media data.
When we broaden the scope to other types of disasters and their associated research
angles and new types of information, many more practical and theoretical research
questions arise, but few have been addressed to date by the research community.
Social media is a data source that many researchers have recently used for quantitative
and qualitative studies of human beings and societies. Clearly, using social media in
a passive mode is a task with many challenges, such as whether mined information is
correct or not, but we see many opportunities to help (potentially) affected people and
disaster management authorities across all three stages of humanitarian action. This
article aims to share these findings with the research community but more importantly
also aims to refresh this area among researchers and request a collaboration between

9http: //www.unisdr.org/we/coordinate/sendai-framework
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the research community and the humanitarian sector. UN Global Pulse wishes to
foster a stronger link between domain specific challenges and research methods from
other disciplines.

7 Summary and Future Work

Haze and peatland fires remain a near annual disaster in Indonesia and South-East
Asia. As the phenomenon affects millions of citizens in Indonesia and beyond, dis-
aster management needs significant improvement. We propose to use social media
(Twitter) for haze disaster management by extracting complementary and supple-
mentary information. We showed how users of Twitter react to haze emergencies and
found correlations between the public discourse on Twitter and peat fire hotspots. We
also showed how it is possible to understand the changes in users’ travel patterns dur-
ing haze periods using social media. We demonstrated that, despite some limitations,
social media data can be used to inform disaster management at different stages of
an emergency. We aim to encourage additional work and research in this field. Con-
cerning our own research agenda, we hope to extend our data sources and to offer
data-driven solutions for the management of haze disasters.
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Appendix

Table 9: English translation of the filtering rules for the identification of corre-
sponding tweets, see Table 2

haze-

general

Conversations about forest and peat fires and haze, detected primarily by the keywords —
9,707 tweets (e.g., “When the haze problem will be solved?”):

( (disaster||storm||pollution]||severe]||thick]||fog) && (haze)™)
OR ( (danger]|alert||emergency||strong]||heavy) && (haze)™)

OR ( haze||fire spot||fire source| |hotspot]||air pollutionllhaze”
OR ( forest firef) OR ( (damagelllogging”llopenlIfire
IIdeforestationlIlogginq”) && (forest||field]||land]| |peat) )

haze-

ashtag]

=]

Conversations which contain one of identified hashtags — 3,024 tweets
(e.g., “Let’s participate in #melawanasap movement.”):

( #saveriau| |#prayforriau| | #melawanasap| |#prayforasap| |#hentikanasap )

haze-

impact

Conversations about happenings in a negative way due to haze, such as flight delay
or school closing — 6,994 tweets (e.g., “Day #3 off because of haze.”):

( (closelIcancellIcacelledl|delay||delay1||cancelT|Iclosed)

&& (flight||airport) ) OR ( visibility )

OR ( (school]||college] |university) && (closed]||close||leavel||left) )
OR ( (economy]| |impact||effect||loss]||down]||risk) && (haze)™)

haze-

health

Conversations with keywords indicating haze-related or derivable diseases —
46,241 tweets (e.g., Welcome to Pekanbaru; do not forget to wear mask!”):

( (infection||stertorous) && (respiratory||breath||breathing) )

OR ( (irritation||inflammation) && (eyellskinl|throat||nose||lungsi) )
OR ( coughllheadachelIsickl|ari§||mask||asthma|Iasthmatlllungsi)

OR ( (haze)®&& (health||healthy||breath||pregnant]||child

| lelderly) ) OR ( eye && (sorelIirritatellacute)w)

*“Kabut asap” is translated as “haze”. Both words “kabut” and “asap” are also often used to describe
haze. However, if used not together, both words also may have further meanings.

T These keywords were originally used in English.

I Both words “pembalakan” and “penebangan” are synonymous and mean “logging”.

t“Paru-paru” is translated as “lungs”. Sometimes, the word “paru” is translated as “lungs” as well.
The word “paru” is ambiguous unless it is put in context with further words, such as “infection”.

8 ARI stands for Acute Respiratory Infection. We used the abbreviation ISPA (Infeksi Saluran Per-
nafasan Akut) which is commonly used by Indonesian Twitter users.

9 All three terms “pedih”, “perih”, “sakit” describe the eye sore.




